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Abstract: The paper summarizes the studies of wave fields in structured non-
equilibrium media described by means of nonlocal hydrodynamic models. Due to
the symmetry properties of models, we derived the invariant wave solutions satis-
fying autonomous dynamical systems. Using the methods of numerical and quali-
tative analysis, we have shown that these systems possess periodic, multiperiodic,
quasiperiodic, chaotic, and soliton-like solutions. Bifurcation phenomena caused by
the variation of nonlinearity and nonlocality degree are investigated as well.

Keywords: nonlocal models of structured media; travelling wave solutions; chaotic

attractor; homoclinic curve; invariant tori.

Mathematics Subject Classification (2010): 74D10, 74D30, 37G20, 34A45.

1 Introduction

Open thermodynamic systems attract attention of scientists by their synergetic prop-
erties, their ability to produce localized nontrivial structures and order. Description
of such phenomena requires the creation of new and the refinement of already known
mathematical models.

According to [1–3], with the methods of non-equilibrium thermodynamics and the in-
ternal variables concept [6], the nonlinear temporally and spatially nonlocal mathematical
models have been constructed for non-equilibrium processes in media with structure. In
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this paper, we present the results of investigations of wave processes in such media. To
this end, we use the following hydrodynamic type system

ρ̇+ ρux = 0, ρu̇+ px = γρm,

1

ρ2
Γεr
τTP

{[

−ρxx (1 + a) +
1

ρ
(ρx)

2
(1− aΓV0)

]

+ [−ρ̈ (1 + a) +

+
2
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(
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2

)

+
1

τTP
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]}

+ ω2
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1−ΓV0
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0ρ0 = b (p− p0) + bτTVṗ−
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where

a = T0α∞ΓV0

(

ρ

ρ0

)ΓV0+1

, ω2
0 =

bc2S0α0T0

γ0
, b =

χT0

ρ0τ2TP

, χT0 = ρ−1
0 c−2

T0 = γ∞ρ−1
0 c−2

S0 ;

cT0, cS0 are the isothermal and adiabatic frozen velocities of sound; γ∞ is the frozen
polytropic index, γρm is the mass force.

Using the characteristic quantities t0, u0, ρ0, let us construct the scale transformation

t = t̄t0, x = x̄t0u0, p = p̄ρ0u
2
0, ρ = ρ̄ρ0, u = ūu0,

σ =
ΓεrτTV

(t0u0)2
, τpT = τTV

χT0

χT∞

, τ =
τTV

t0
, (2)

h =
χT0

χT∞

τ2, κ =
ω2
0

bu2
0

, χ =
1

ρ0u2
0χT∞

, a = δnρn+1, δ = T0α∞, ΓV 0 = n,

which leads system (1) to the dimensionless form

ρ̇+ ρux = 0, ρu̇+ px = γρm,
σχρ−2

[

−ρxx(1 + a) + ρ2xρ
−1(1− an)

]

+ hχ ρ−2
[

−ρ̈(1 + a) + 2ρ̇2ρ−1(1− 0.5a(n− 1)) + τh−1ρ̇(1 + a)
]

+κρn = p+ τ ṗ− hp̈− σ
(

pxx + ρxpxρ
−1

)

.

(3)

We would like to emphasize that system (3) can be regarded as a hierarchical set of
submodels which are complicated by taking new effects into account. We are thus going
to study the chain of nested models and to classify their wave solutions using the methods
of qualitative and numerical analysis.

The remainder of the paper is organized as follows. In Section 2 we begin our studies
with a simplified version of system (3) keeping the terms with the first temporal deriva-
tives, then attaching the terms with the second temporal or spatial derivatives. The form
of wave solutions and the description of techniques for their exploration are presented in
detail. Section 3 is devoted to the spatially nonlocal model which is used for investigat-
ing the Shilnikov homoclinic structures whose existence and bifurcations are extremely
important during chaotic regimes formation. The model incorporating both temporal
and spatial nonlocalities is presented in Section 4. Generalizations of the previous mod-
els by means of introducing the third temporal derivatives and incorporating physical
nonlinearity are given in Section 5 and Section 6, respectively. For all models we de-
rive invariant wave solutions and carry out the qualitative analysis of the corresponding
factor-systems.
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2 Wave Solutions of the Models with Dynamic Equation of State (DES)
Incorporating the Second Temporal or Spatial Derivatives

To begin with, let us consider the simplest model with relaxation derived from (3) at
δ = h = σ = 0, n = 1. As has been shown in [5, 6], the system

ρ̇+ ρux = 0, ρu̇+ px = γρ, τ(ṗ− χρ̇) = κρ− p, (4)

due to its symmetry properties [20], admits the ansatz

u = U(ω) +D, ρ = ρ0 exp (ξt+ S(ω)), p = ρZ(ω), ω = x−Dt, (5)

where D is the constant velocity of wave front, ξ determines a slope of the inhomogeneity
of the steady solution (5). According to [5], solutions (5) are described by the plane
system of ODE which possesses limit cycles and homoclinic trajectories.

If we incorporate the second temporal derivatives in the last equation of system (3),
then the previous DES is generalized to the following one:

τ (ṗ− χρ̇) = κρ− p− h

{

p̈+ χ

(

2

ρ
(ρ̇)

2
− ρ̈

)}

. (6)

This model takes into account the dynamics of internal relaxation processes in more
detail. As has been shown in [7], wave solutions (5) are described by the system of ODE
with three dimensional phase space. This system possesses the limit cycles undergoing
the period doubling cascade, and the chaotic attractors.

Consider now the model with relaxation and spatial nonlocality

τ (ṗ− χρ̇) = κρ− p+ σ

{

pxx +
pxρx
ρ

− χ

(

ρxx −
ρ2x
ρ

)}

. (7)

Solutions (5) satisfy the following dynamical system

U
dU

dω
= UW, U

dZ

dω
= γU + ξZ +W (Z − U2),

U
dW

dω
= {U2[τ(γU + ξZ −WU2) + χτW + Z − κ] (8)

+σ[(ξ +W )(2U(γ − UW ) + χW ) + (UW )2]}
[

σ(χ− U2)
]−1

.

This system has the fixed point

U0 = −D, Z0 =
κ

1− 2σ(ξ/D)2
, W0 = 0, γ =

ξZ0

D
(9)

which is the only one lying in the physical parameter range.
We start with analyzing the linearized at the fixed point (9) system (8) with the

matrix M̂

M̂ =





0 0 −D
γ ξ Z0 −D2

A B C



 ,

where

A =
Dκξ(2ξσ −D2τ)

Qσ(2ξ2σ −D2)
, B =

D2(1 + ξτ)

Q
, Q = σ(χ−D2),

C = Q−1

{

ξσ
(

χ−D2
)

−
2D2κξσ

D2 − 2ξ2σ
+D2τ

(

χ−D2
)

}

.
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a b

Figure 1: Bifurcation diagrams of system (8) in the plane (D2, Z) obtained for χ = η = 50, ξ =
1.8, τ = 0.1, σ = 0.76 and κ = 14 (a), κ = 1 (b).

The well-known Andronov-Hopf bifurcation theorem [21] tells us that periodic solution
creation can take place if the spectrum of matrix M̂ is (−α;±Ωi). This is so if the
following relations hold:

α = ξ + C > 0, (10)

Ω2 = AD −B
(

Z0 −D2
)

+ ξC > 0, (11)

αΩ2 = ξ (AD − Z0B) > 0. (12)

The first two take on the form of inequalities imposing some restrictions on the param-
eters. The third one determines the neutral stability curve (NSC) in the space

(

D2;κ
)

provided that the remaining parameters are fixed. For σ = 0.76, ξ = 1.8, τ = 0.1,
χ = 50, it looks like a parabola with branches directed from left to right, see Figure 2a.
Crossing the NSC from right to left, we observe the limit cycle appearance. Development
of limit cycle at decreasing D2 is convenient to study by means of the Poincaré section
technique [13, 22].

Let us choose the plane W = 0 as an intersecting one and find coordinates of intersec-
tion points of phase curves which cross-sect the intersecting plane only in one direction.
Plotting coordinate Z of the cross-section point along the vertical axis, and the value
of the bifurcation parameter D2 along the horizontal one, we will obtain the typical bi-
furcation diagrams in (Figure 1). From the analysis of diagram Figure 1a we can see
that while parameter D2 decreases the development of the limit cycle coincides with the
Feigenbaum scenario, followed by the creation of a chaotic attractor. Moreover, in the
vicinity of the main limit cycle there are the hidden attractors (designated in Figure 1a
by the symbols I and II). These attractors can be visualized by the integrating of system
(8) with special initial data only.

In Figure 1b we see the torus development at decreasing D2. According to the
diagram, we can distinguish tori with densely wound trajectories and striped tori.

Proceeding in the same way, we get the two-parameter bifurcation diagram (Figure 2)
which shows that system (8) possesses the periodic, multiperiodic, quasiperiodic, and
chaotic trajectories.

Such a complicated structure of the phase space of the system can be coursed by
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a b

Figure 2: Left: bifurcation diagram of system (8) in parametric space (D2, κ): 1 – stable focus;
2 – 1T -cycle; 3 – torus; 4 – multiperiodic attractor; 5 – chaotic attractor; 6 – loss of stability.
Right: enlargement of part of the left figure: 6 – 3T -cycle.

homoclinic trajectory existence.

3 Homoclinic Loops of Shilnikov Type and Their Bifurcations

It is worth noting that existence of homoclinic trajectories, i.e. loops consisting of the
separatrix orbits of hyperbolic fixed point, plays a crucial role [16,19] in the formation of
localized regimes (solitary waves) in the phase space of dynamical system. It turned out
that the incorporation of spatial nonlocality causes the creation of solitary waves with
oscillating tails, whereas the well-known soliton equations have solutions with monotonic
asymptotics or compact support (compactons) [17].

For the present, the problem on the existence of homoclinic trajectory of Shilnikov
type [18, 21] in system (8) has been treated numerically.

We investigate a set of points of parameter space (D2, κ) for which the trajectories
moving out of the origin along the one-dimensional unstable invariant manifoldWu return
to the origin along the two-dimensional stable invariant manifold W s. In practice, for
the given values of parameters κ, D2, we numerically define a distance (the counterpart
of split function in [18], p. 198) between the origin and the point (XΓ(ω), Y Γ(ω),WΓ(ω))
of the phase trajectory Γ

(

·; κ, D2
)

:

fΓ
(

κ, D2; ω
)

=

√

[XΓ(ω)]
2
+ [Y Γ(ω)]

2
+ [WΓ(ω)]

2
,

starting from the fixed Cauchy data (0, 0, 0.001). Next we determine

Φ(κ, D2) = min
ω

{fΓ} (13)

for the part of the trajectory which lies beyond the point at which the distance gains
its first local maximum, providing that it still lies inside the ball centered at the origin
and having a fixed (sufficiently large) radius (for this case fΓ(ω) ≤ 5). The results are
presented in Figure 3. The first one is of the most rough scale in this series. Here, white
color marks the values of parameters κ, D2 for which Φ > 1.2, light grey corresponds to
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a b

Figure 3: a) Projection of the homoclinic solution of system (8) onto the (X,W ) plane. b)
A portrait of subset of parameter space (D2, κ), corresponding to different intervals of function
fΓ
min(D

2, κ) values and the following Cauchy data: X(0) = Y (0) = 0, W (0) = 0.001: fΓ
min > 1.2

for white colour; 0.6 < fΓ
min ≤ 1.2 for light grey; 0.3 < fΓ

min ≤ 0.6 for grey; 0.01 < fΓ
min ≤ 0.3 for

dark grey; fΓ
min ≤ 0.01 for black.

the cases when 0.9 < Φ < 1.2 and so on (further explanations are given in the subsequent
captions). The black coloured patches correspond to the case when Φ < 0.01. In [11] the
structure of the set of points in Figure 3b has been studied in more detail.

4 Models with DES taking spatial and temporal nonlocalities into account

Combining the models (6) and (7), we obtain the following spatio-temporal nonlocal
model

τ (ṗ− χρ̇) = κρ− p+ σ

{

pxx +
1

ρ
pxρx − η

(

ρxx −
ρ2x
ρ

)}

−h

{

p̈+ η

(

2

ρ
(ρ̇)2 − ρ̈

)}

. (14)

This model has been studied in [8,14], when the parameters h and σ are regarded as small
quantities, i.e., equations (6) and (7) are perturbed by the terms with high derivatives.
It turned out that the wave localized regimes are saved under perturbations and undergo
some smooth changes.

5 Models Involving DES with the Third Temporal Derivatives

If we need to describe the relaxing processes in more detail, then we can incorporate the
terms with the third temporal derivatives in DES (14). In such case DES has the form [3]

τ (ṗ− χρ̇) = κρ− p+ σ

{

pxx +
1

ρ
pxρx − χ

(

ρxx −
1

ρ
(ρx)

2

)}

−h

{

p̈+ χ

(

2

ρ
(ρ̇)2 − ρ̈

)}

+
h2

τ

...
p +

h2χ

τ

{

−
6ρ̇3

ρ2
+

6ρ̇ρ̈

ρ
−
...
ρ

}

. (15)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (2) (2016) 165–178 171

Solutions (5) satisfy the following dynamical system

U
dU

dω
= UW, U

dZ

dω
= γU + ξZ +W (Z − U2), U

dW

dω
= UR,

U
dR

dω
=

(

bU3
(

χ− U2
))−1

{−κU2 + ηξσW − 2ξσU2W + χτU2W − hξU4W

+bξ2U4W − τU4W + ησW 2 + (χh− σ)U2W 2 − hU4W 2 + bξU4W 2 − bχU2W 3(16)

+bU4W 3 + γ
(

2ξσU + hξU3 − bξ2U3 + τU3 + 2σUW
)

+ U2Z + hξ2U2Z

−bξ3U2Z + ξτU2Z +
(

−ησU + U3
{

σ + χh− 4bχW − hU2 + bξU2 + 4bWU2
})

R},

where b = h2/τ , and quadrature

U
dS

dω
= − (W + ξ) .

The fixed point of this system has the coordinates

U0 = −D,Z0 =
κD2

D2 − 2σξ2
,W0 = 0, R0 = 0. (17)

The conditions under which the linearized matrix

M̂ =









0 0 a1 0
a2 a3 a4 0
0 0 0 a5
a6 a7 a8 a9









=









0 0 −D 0
γ ξ Z0 −D2 0
0 0 0 −D
a6 a7 a8 a9









, (18)

a6 =
κξ

(

−2ξσ +D2
(

hξ − bξ2 + τ
))

∆D (2ξ2σ −D2)
, a7 = −

1 + hξ2 − bξ3 + ξτ

∆
,

a8 =
ξσ (2Z0 − η) +D4

(

hξ − bξ2 + τ
)

−D2 (χτ − 2ξσ)

D2∆
,

a9 =
χD2h−D4h+ bD4ξ +D2σ − ησ

D∆
, ∆ = bD

(

χ−D2
)

admits the spectrum (±Ω2i;−α1;−α2) have the form

B2 =
B1

B3
+B0

B3

B1
, B2

3 − 4B0
B3

B1
≥ 0, (19)

where B3 = −a3 − a9, B2 = a3a9 − a5a8, B1 = a5 (a3a8 − a1a6 − a4a7), B0 =
a1a5 (a3a6 − a2a7) are the coefficients of characteristic polynomial for the matrix M̂ .

If we fix the parameters χ = η = 30, ξ = −1.9, h = 1, τ = 1, b = 1, σ = 2.7,
then in the plane (D2, κ) equation (19) defines the NSC. Crossing this curve at the point
A(2.2852; 3.7), one can observe the appearance of the limit cycle at D2 ≥ 2.2852.

In the Poincaré diagram depicted at increasing D2 (Figure 4) we can identify the
moments of several period doubling bifurcations leading to the chaotic attractor creation.
But the chaotic attractor existing at a short interval of parameter D2 is destroyed.
Instead of it in the phase space of system (16) the complicated periodic trajectory in the
shape of a loop (Figure 5a) appears.
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a b

Figure 4: a) Neutral stability curve in the plane (D2; κ). b) The bifurcation Poincaré diagram
at increasing D2

Consider also the development of oscillating regimes whose basins of attraction are
separated from the basin of attraction of the main limit cycle. Integrating dynamical sys-
tem (16) from initial conditions (0; 0; 0; 0.01) at D2 = 2.722, we see that the phase space
of the system, in addition to the main limit cycle, contains the complicated trajectory
(Figure 5,a) which can be regarded as a hidden attractor. From the analysis of Poincaré
diagram (Figure 6a) it follows that the system weakly responds to the growing of the
parameter D2 until D2 = 2.7445. When D2 > 2.7445, the system jumps to another type
of oscillations followed by chaotic regime creation.

If we plot the Poincaré diagram at decreasing D2 (Figure 6b) starting from the
chaotic attractor, then we observe the periodic trajectory (Figure 5b) that differs from
the initial regime (Figure 5a). Note that the periodic trajectory in Figure 5b can be
revealed directly by the integration from the initial conditions (0; 0; 0; 0.1).

a b

Figure 5: Phase portraits of separated trajectories derived at D2 = 2.722, κ = 3.7, b = 1 and
under different initial conditions.
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a b

Figure 6: The bifurcation Poincaré diagram of development of separated regime at increasing
D2 (a) and decreasing D2. Here b = 1.

6 DES with Physical Nonlinearity and Second Derivatives

Till now we dealt with the models without physical nonlinearity. Generalizing the pre-
vious models in this direction, we obtain the following model [13]

σχρ−2
[

−ρxx (1 + a) + ρ2xρ
−1 (1− na)

]

+hχρ−2[−ρ̈ (1 + a) + 2ρ̇2ρ−1 (1− 0.5a(n− 1))

+τh−1ρ̇ (1 + a)] + κρn = p+ τ ṗ− hp̈− σ
(

pxx + ρxpxρ
−1

)

, a = δnρn+1.

(20)

Properties of solutions to system (20) can be found out using the symmetry of the system
with respect to the Galilei group [20]. One can ascertain by direct verification that system
(20) allows the operator

X̂ =
1

2ξ

∂

∂t
+ t

∂

∂x
+

∂

∂u
.

Let us construct an anzatz with its invariants

ρ = R(ω), p = P (ω), u = 2ξt+ U(ω), ω = x− ξt2, (21)

where parameter ξ is proportional to acceleration of the wave front. Substitution by (21)
into the system yields the following quadrature

UR = C = const

and the dynamical system

R′ = W, P ′ = γRm − 2ξR+
C2

R2
W,

W ′ = −(κRn+3 − PR3 − P ′R2Cτ − hP ′C2W

+P ′R2σW + γmR2+mσW + χLτCW + γhmRmC2W

+hχL(CWR−1)2 − 2C2σW 2 + χMσW 2 − 2C4hR−2W 2

+2hχNC2R−2W 2 − 2R3σWξ − 2hRC2Wξ)×

((C2 − χL)R(σ + hC2R−2))−1,

(22)
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where (·)′ =
d

dω
(·) , L = 1 + a,M = 1− an,N = 1− 0.5a(n− 1), a = δnRn+1.

The single isolated equilibrium (neglecting the trivial) point has the following coor-
dinates

R0 =

(

2ξ

γ

)
1/m− 1

, P0 = κRn
0 , W0 = 0. (23)

At this point the linearized matrix M̂ has the form

M̂ =





0 0 1
a1 0 a2
a3 a4 a5



 , (24)

where

a1 = 2ξ(n− 1), a2 = C2R−2
0 , a4 = R2

0∆
−1,

a3 = (2C3h
[

C2 − χL
]

τ [γRm
0 − 2ξR0]R

−2
0

+Cχ(n+ 1)(L− 1)τ∆− C
[

C2 − χL
]

τ∆

−
[

C2 − χL
] (

C2hR−2
0 + σ

)

×
(

κnR1+n
0 − Cτ (γ(2 +m)Rm

0 − 6ξR0)
)

)/∆2,

a5 = (C2γh (nRn
0 −Rm

0 )− C3τ + CχLτ

+R2
0σ (γ [Rm

0 + nRn
0 ]− 4R0ξ))/R0∆,

∆ =
(

C2 − χL
) (

C2hR−2
0 + σ

)

.

The NSC for system (22) has the following form

G (ξ, σ, n, h, τ, κ, χ) ≡ a5 (a3 + a2a4) + a1a4 = 0. (25)

Let us make the values of parameters fixed as follows:

γ = 1, χ = 10, C = −2.8, σ = 0.2,

τ = 1.1, h = 3.2, δ = 1.4, n = m = 3.2.

Condition (25) allows us to find numerically the value of ξ0 = 0.157 corresponding to
birth of the limit cycle.

Let us consider in more detail the influence on the revealed regimes of parameters
n and δ changes, which determine nonlinearity of the medium in the dynamic equation
of state. Let us make the value of parameter ξ = 0.35 fixed, then there is a limit cycle
with period 2T in the space of the system, and we construct the bifurcation diagram
presented in Figure 7a.

The diagram reveals some peculiarities of system (22) behaviour. In particular, we
would like to pay attention to the presence of a ”special” point in the parameter plane
surrounded by four different types of solutions. One can also see the ”windows” of
periodicity (area 6) in the chaotic area. To find out the structure of phase space in more
detail near area 6, one-parametric Poincaré diagrams were plotted [13].

It turns out that abrupt reconstruction of the chaotic attractor structure can be ob-
served, which is probably caused by the interaction of two (or more) co-existing attractors
of the dynamic system. We also reveal that the chaotic trajectory is localized in a more
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a b

Figure 7: a) The two-parametric bifurcation diagram in case of γ = 1, χ = 10, C = −2.8,
τ = 1.1, σ = 0.2, κ = 0.9, h = 3.2, ξ = 0.35, m = 3.2; b) The Poincaré bifurcation diagram
for development of the torus in case of δ = 0.4, n = 3.2 (for other values of parameters see
Figure 7a) and increasing σ, where graph I is the basic limit cycle, graph II – complicated
periodic trajectory with separated region of attraction.

a b

Figure 8: a) The Poincaré cross-section of the torus surface in case of σ = 14 b) The Poincaré
cross-section of the chaotic attractor in case of σ = 14.6. Fixed parameters γ = 1, χ = 10,
C = −2.8, τ = 1.1, κ = 0.9, h = 3.2, δ = 0.4, ξ = 0.35, n = m = 3.2.
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a b

Figure 9: a) The bifurcation diagram at increasing n. b) The graph of dependence Wi+1 vs
Wi at n = 4.25. The fixed values of parameters γ = 1.49, χ = 50, C = −1.5, τ = 0.1, κ = 1.9,
σ = 0.2, h = 0.9, ξ = 0.18, δ = 0.8.

narrow area of phase space of system (22), stipulating the appearance of a specific win-
dow (area 6) of periodicity with a decrease of n. Analysis of two-parametric bifurcation
diagrams for κ > 0.9 shows that the area of existence of chaotic attractors increases and
the windows of regular behaviour in case of the increasing κ are shifted towards higher
values of the nonlinearity parameter n.

A crucially different set of bifurcations is observed in case of a change of parameter
σ.

Let us fix the values of parameters γ = 1, χ = 10, C = −2.8, τ = 1.1, κ = 0.9,
h = 3.2, ξ = 0.35, n = m = 3.2 and δ = 0.4. Integrating system (22) with the initial data
(0, 0, 0.01) and σ = 5 within phase space near the equilibrium point, in addition to the
limit cycle, other periodic trajectory has been found with a separated pool of attraction
(development of this regime with increasing of σ is presented in Figure 7b graph II).

The presence of such a regime leads to the assumption on the existence of quasi-
periodic regimes. To look for such a regime let us plot a bifurcation diagram of Poincaré
for development of basic limit cycle in case of increasing parameter σ (Figure 7b graph
I).

Another bifurcation, leading to the appearance of the toroidal surface, has been dis-
covered in this system. An intersection of the toroidal attractor with the plane y3 = 0
forms a closed curve, shown in Figure 8a. A further increase of parameter σ causes
the synchronization of tore frequencies, and finally an abrupt increase of vibrations am-
plitude, which shows the creation of a crucial new dynamical behavior. To clarify the
character of the produced regime, let us analyze the Poincaré section for the case of
σ = 14.6 (Figure 8b). The plotted cross-section is specific for chaotic attractor, which
provides reasons for statements on the existence of bifurcation of a quasi-periodic regime
with a producing chaotic attractor.

It turned out that system (22) provides another type of chaotic attractor creation,
namely, intermittency. Let us fix γ = 1, χ = 50, C = −1.5, τ = 0.1, κ = 1.9, σ = 0.2,
h = 0.9, ξ = 0.18.

Plotting the Poincaré bifurcation diagram (Figure 9a), we see that a limit cycle
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undergoes several period doubling bifurcations resulting in the chaotic attractor creation.
But the development of chaotic attractor is interrupted suddenly and new complicated
periodic trajectory appears which bifurcates in chaotic attractor as well at increasing n.
Considering the hereditary sequences (Figure 9b) for chaotic trajectories, we found that
the graph of the map Wi+1 = f(Wi) is close to the bissectrice at n = 4.25. As in the
case with the Lorentz system, existence of narrow passage leads to the alternation of the
chaotic and regular behavior of the system trajectories.

7 Conclusions

Finally, we have studied the hierarchical sequences of the mathematical models for non-
equilibrium media. Analyzing the wave fields in such media we have shown that the
derived models possess wide set of localized wave regimes. In particular, the models with
relaxation admit periodic, multiperiodic and chaotic solutions. Spatially nonlocal models
have in addition quasiperiodic and solitary wave solutions. All the models demonstrate
most bifurcations and scenarios of chaotic regimes creation. The equations of state uti-
lized in this paper are suitable for developing other models of complicated nonequilibrium
systems [23].

On the other hand, identifying internal variables with parameters undergoing fluctu-
ations, one can consider these investigations as the problem on the dissipative structures
creation under the influence of noise.
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