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1 Introduction

Any natural or manmade systems involve interactions between its constituients, which
can be considered as interconnections between them. These interconnections form a
network, which can be expressed by a graph [12, 2]. Also, graphs arise naturally when
one models organizational structures in social sciences [10]. It has been observed that
while many social phenomena change with respect to time, modeling them using static
graphs has limited the study. Thus a dynamic graph, a graph that changes with time
was introduced [12]. This also led to the concept of a rate of change of a graph with
respect to time and a graph differential equation [12]. These concepts were introduced
and successfully utilized to study the stability of complex dynamic systems through its
associated adjacency matrix [12].
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In [13] the author and her group have utilized the concepts defined in [12] including
a graph linear space and its associated matrix linear space. Observing that the study
of graph differential equations (GDEs) falls into the realm of differential equations in
abstract spaces, the author and her group planned to study GDEs through the associated
matrix differential equations (MDEs). This approach appeared to be more reasonable
and practical for the study of GDEs. Hence in [13], a weighted directed simple graph
was considered as a basic element and existence and uniqueness results were obtained by
using monotone iterative technique for the MDE. It is interesting to note that in 2008 a
comparison principle for matrix differential equations was developed by Martynyuk [8]. It
was realized that simple graphs have no loops and hence in terms of applications a simple
graph is not a correct representative of a social structure. This led to the definition of a
pseudo simple graph in [14]. Also in [14] a proposition was made that the non linearity of
a prey predator model can be preserved using graphs. In [3, 11, 13, 15] many results have
been obtained for MDEs and its associated GDEs in terms of iterative techniques and
basic theory. With the basic theory well placed the question of studying the qualitative
theory of MDEs and its associated GDEs came to the fore. In this direction there is a
paper dealing with the stability of dynamic graphs on time scales [2].

The Lyapunov second method, with its advantage of not requiring the knowledge
of solutions, has gained increasing significance and gave impetus for developments in
the stability theory of differential equations [5]. It is now recognized that the Lyapunov
function can be considered to define a generalized distance and can be employed to study
various qualitative and quantitative properties of dynamic systems. Further, Lyapunov
function serves as a vehicle to transform a given completed differential system into a
relatively simpler system and as a result, it is enough to study the properties of solutions
of the simpler system.

It was observed that at times a single Lyapunov function might not cater to the
needs of a problem and hence a vector Lyapunov function [6] was introduced. In another
direction new concepts of stability were defined to be on par with the real world situations.
Concepts like partial stability, eventual stability and practical stability were introduced.
This posed the question of the possibility of unification of all the definitions. As an
answer the concept of stability in terms of two measures [7] was introduced. At this
stage, it is appropriate to mention that the study of stability of physical applications
is quite appealing. In this context we refer to the following two papers dealing with
stability for real world problems [9] and mechanical systems with swiching linear force
fields [1].

In this paper, an attempt has been made to study the qualitative theory of MDEs and
its associated GDEs using the Lyapunov function and the concept of stability in terms
of two measures. The theory is well supported with examples. Further, a comparison
method wherein the Lyapunov function is used to simplify the complicated MDE is given.

2 Preliminaries

In this section, we introduce all the necessary notation and results that have been devel-
oped in earlier works.

Definition 2.1 Pseudo simple graph: A simple graph having loops is called a
pseudo simple graph.

Let v1, v2, ...vN , be N vertice, where N is any positive integer. Let DN be the set of
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all weighted directed pseudo simple graphs D=(V, E). Then (DN ,+, .) is a linear space
with respect to the operations + and . defined in [12, 13].

Let the set of all matrices be R
N×N . Then (RN×N ,+, .) is a matrix linear space

where ’+’ denotes matrix addition and ’.’ denotes multiplication of a matrix by a scalar.

Definition 2.2 Continuous and differentiable matrix function:

(1) A matrix function E : J → R
N×N defined by E(t) = (eij(t))N×N is said to be

continuous if and only if each entry eij(t) is continuous for all i, j = 1, 2, . . . , N where
eij : J → R.
(2) A continuous matrix function E(t) is said to be differentiable if and only if each entry
eij(t) is differentiable for all i, j = 1, 2, . . . , N . The derivative of E(t) (if it exists) is
denoted by E′(t) and is given by E′(t) = (e′ij(t))N×N .

Definition 2.3 Continuous and differentiable graph function: Let D : J →
DN be a graph function and E : J → R

N×N be its associated adjacency matrix function.
Then

(1) D(t) is said to be continuous if and only if E(t) is continuous.
(2) D(t) is said to be differentiable if and only if E(t) is differentiable.

Consider the initial value problem

D′ = G(t,D), D(t0) = D0, (2.1)

where G ∈ C[J×DN , DN ] and J = [t0, T ]. The derivative of a graph function D denoted
by D′ is the graph function whose edges have weight functions that are derivatives of the
weight functions of the corresponding edges of D.

The integral of a graph function D denoted by
∫
D dt is the graph function whose

edges have weight functions that are integrals of the weight functions of the corresponding
edges of D. With the above definitions the initial value problem (IVP) of GDE (2.1) can
be written as the graph integral equation

D(t) = D0 +

∫ t

t0

G(s,D(s))ds. (2.2)

Now using the isomorphism between graphs and matrices we observe that the graph
function G(t,D) will be isomorphic to some matrix function F (t, E), and corresponding
to (2.1) and (2.2), we can consider the IVP of matrix differential equation

E′ = F (t, E), E(t0) = E0, (2.3)

and the matrix integral equation

E(t) = E0 +

∫ t

t0

F (s, E(s))ds, (2.4)

where E0 is the adjacency matrix of D0.
In the following sections, we study stability results for the MDE and using the iso-

morphism that exists between graphs and matrices, we obtain similar results for the
corresponding GDE. In order to do so we begin with the following definitions.
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Definition 2.4 Stability: Consider the differential system

E′ = F (t, E), E(t0) = E0, t ≥ t0, (2.5)

where F ∈ [R+×R
N×N ,RN×N ]. Suppose that the function F is smooth enough to guar-

antee existence, uniqueness and continuous dependence of solutions E(t) = E(t, t0, E0)
of (2.5). Before proceeding further, we introduce the following classes of functions which
are needed in our work

K = {a ∈ C[R+, R+] : a(u) is strictly increasing in u and a(0) = 0},

L = {σ ∈ C[R+, R+] : σ(u) is strictly decreasing in u and limu→∞σ(u) = 0},

KL = {a ∈ C[R2
+, R+] : a(t, s) ∈ K for each s and a(t, s) ∈ L for each t},

CK = {a ∈ C[R2
+, R+] : a(t, s) ∈ K for each t},

Γ = {h ∈ C[R2
+ × R

N×N , R+] : inf{t,E}h(t, E) = 0},

Γ0 = {h ∈ Γ inf h(t, E) = 0 for each t ∈ R+}.

We are ready to define various stability concepts for the system (2.3) in terms of two
measures h0, h ∈ Γ.

Definition 2.5 The differential system (2.3) is said to be
(S1) (h0, h) -equi-stable if, for each ǫ > 0, t0 ∈ R+, there exists a positive function

δ = δ(t0, ǫ) that is continuous in t0 for each ǫ such that h0(t0, E0) < δ implies
h(t, E(t)) < ǫ, t ≥ t0 where E(t) = E(t, t0, E0) is any solution of the system (2.5)

(S2) (h0, h)-uniformly stable if the δ in (S1) is independent of t0;
(S3) (h0, h)-equi-attractive-uniformly stable, if for each ǫ > 0 and t0 ∈ R+ there exist

positive constants δ0 = δ(t0) and T = T (t0, ǫ) such that h0(t0, E0) < δ0
implies that h(t, E(t)) < ǫ, t ≥ t0 + T ;

(S4) (h0, h)-uniformly attractive, if (S3) holds with δ0 and T being independent of t0;
(S5) (h0, h)-equi-asymptotically stable if (S1) and (S3) hold simultaneously;
(S6) (h0, h)-uniformly-asymptotically stable if (S2) and (S4) hold together;
(S7) (h0, h)-equi attractive in the large if for each ǫ > 0 and α > 0 and

t0 ∈ R+, there exists a positive number T = T (t0, ǫ, α) such that h0(t0, E0) < α
implies h(t, E(t)) < ǫ, t ≥ t0 + T ;

(S8) (h0, h)-uniformly attractive in the large if the constant T in (S7) is independent
of t0;

(S9) (h0, h)-unstable if (S1) fails to hold.

In order to understand the generality of the above stability definitions refer to [ P. 5,6 of
[7] ] where examples are given.

Next, we need the following definitions.

Definition 2.6 Let h0, h ∈ Γ. Then we say that
(i) h0 is finer than h if there exist a ρ > 0 and a function φ ∈ CK such that

h0(t, E) < ρ implies h(t, E) ≤ φ(t, h0(t, E));
(ii) h0 is uniformly finer than h if in (i) φ is independent of t;
(iii) h0 is asymptotically finer than h if there exist a ρ > 0 and a function KL such

that h0(t, E) < ρ implies h(t, E) ≤ φ(h0(t, E), t).
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Definition 2.7 Let V ∈ C[R+ × R
N×N , R+] then V is said to be

(i) h-positive definite if there exist a ρ > 0 and a function b ∈ K such that
b(h(t, E)) ≤ V (t, E) whenever h(t, E) ≤ ρ;

(ii) h- decrescent if there exist a ρ > 0 and a function a ∈ K such that
V (t, E) ≤ a(h(t, E)) whenever h(t, E) < ρ;

(iii) h-weakly decrescent if there exist a ρ > 0 and a function a ∈ CK such that
V0(t, E) ≤ a(t, h(t, E)) whenever h(t, E) < ρ;

(iv) h-asymptotically decrescent if there exist a ρ > 0 and a function a ∈ KL
such that V (t, E) ≤ a(h(t, E), t) whenever h(t, E) < ρ.

For any function V ∈ C[R+ × R
N×N , R+] we define the function

D+V (t, E) = lim
δ→0+

= sup
1

δ
[V (t+ δ, E + δF (t, E))− V (t, E))] (2.6)

for (t, E) ∈ R+ × R
N×N .

Let E(t) be a solution of (2.3) existing on [t0,∞) and V (t, E) be locally Lipschitzian
in E . Then, given t ≥ t0, there exists a neighbourhood U of (t, E(t)) and an L > 0 such
that |V (τ, ζ)− V (τ, η)| ≤ L||ζ − η|| for (τ, ζ), (τ, η) ∈ U.

3 Lyapunov Theorems in Two Measures

In this section we propose to state and prove the theorems due to Lyapunov in terms
of two measures for GDEs through its associated MDEs. Though the two theorems of
Lyapunov deal with uniform stability and uniform asymptotic stability, we begin with
a result on equi stability. We weaken the condition of differentiability of the Lyapunov
function by assuming continuity and that it possesses a Dini derivative. We consider the
IVP of MDE given by

E′ = F (t, E), E(t0) = E0, t ≥ t0, (3.1)

where F ∈ C[R+ × R
N×N ,RN×N ].

Theorem 3.1 Assume that
(H1) V ∈ C[R+ ×R

N×N ,R+], h ∈ Γ, V (t, E) is locally Lipschitzian in E and h-positive
definite;

(H2) D+V (t, E) ≤ 0, (t, E) ∈ S(h, ρ) = {(t, E) ∈ R+ × R
N×N , h(t, E) < ρ, ρ > 0};

(H3) h0 ∈ Γ, h0 is finer than h and V(t,E) is h0 weakly decrescent. Then the system
(3.1) is (h0, h)− equi stable.

Proof. From the hypothesis (H1), V is h-positive definite, hence there exist a positive
constant ρ0 ∈ (0, ρ) and a function b ∈ K such that

b(h(t, E)) ≤ V (t, E) whenever h(t, E) ≤ ρ0. (3.2)

By hypothesis (H2), V(t,E) is h0− weakly decrescent, therefore for t0 ∈ R+, E0 ∈ R
N×N ,

there exist a constant δ0 = δ(t0) > 0 and a function a ∈ K such that h0(t0, E0) < δ0
implies

V (t0, E0) ≤ a(t0, h0(t0, E0)). (3.3)
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Further, the fact that h0 is finer than h implies that there exist a constant δ1 = δ1(t0) > 0
and a function ψ ∈ CK such that

h(t0, E0) ≤ ψ(t0, h(t0, E0)) whenever h(t0, E0) < δ1, (3.4)

where δ1 is chosen so that (t0, δ1) < ρ0. Let ǫ ∈ (0, ρ0) and t0 ∈ ψ+ be given. Since
a ∈ CK, there exists a δ2 = δ2(t0, ǫ) > 0 that is continuous in t0 such that

a(t0, δ2) < b(ǫ). (3.5)

Choose δ(t0) = min{δ0, δ1, δ2}. Then, using the fact that h(t0, E0) < δ0 and the relations
from (3.2) to (3.5) we get

b(h(t0, E0)) ≤ V (t0, E0) ≤ a(t0, h0(t0, E0)) < b(ǫ), (3.6)

which in turn yields that h(t0, E0) < ǫ. We claim that for every solution E(t) =
E(t, t0, E0) of (3.1) satisfying h(t0, E0) < δ, we have

h(t, E(t)) < ǫ, t ≥ t0. (3.7)

If this is not true, there exists a t1 > t0 such that

h(t1, E(t1)) = ǫ and h(t, E(t)) < ǫ, t ∈ [t0, t1], (3.8)

for some solution E(t, t0, E0) of (3.1). Set m(t) = V (t, E(t)), for t ∈ [t0, t1] and using
the fact that V is Lipschitzian in E and the definition of D+V (t, E) we arrive at

D+m(t) ≤ 0, which implies by Lemma 1.1 [4] , that m(t) is nonincreasing in [t0, t1],
that is V (t, E(t)) is nonincreasing in [t0, t1], which yields V (t1, E(t1)) ≤ V (t0, E(t0)).
On combining the relations from (3.5) to (3.8), we obtain

b(ǫ) = V (t1, E(t1)) ≤ V (t0, E(t0)) ≤ a(t0, h0(t0, E0(t0))) < b(ǫ) (3.9)

which is a contradiction. Hence (3.7) holds, which means that E(t) < ǫ for all t ≥ t0.
The proof is complete.

Theorem 3.2 Assume that the hypotheses (H1) and (H2) of Theorem 2.1 hold. Fur-
ther assume that h0 ∈ Γ, h0 is uniformly finer than h, and V (t, E) is h0− decrescent.
Then the system (3.1) is (h0, h)− uniformly stable.

Proof. Since h0 is uniformly finer than h and V (t, E) is h0− decrescent, there exist
functions a ∈ K and ψ ∈ K such that

h(t0, E0) ≤ ψ(h0(ǫ)), (3.10)

V (t0, E0) ≤ a(h0(ǫ)). (3.11)

Working along the lines of the proof of Theorem 3.1, the relations (3.2), (3.5), (3.9)
together with the relations (3.10) and (3.11) yield the uniform stability of system (3.1).
The proof is complete.

Theorem 3.3 Assume that
(i) h0, h ∈ Γ and h0 is uniformly finer than h;
(ii) V ∈ C[R+ × R

N×N ,R+], V (t, E) is locally Lipschitzian in E, h-positive definite,
h0− decrescent and

D+V (t, E) ≤ −c(h0(t, E)), (t, E) ∈ S(h, ρ), c ∈ K. (3.12)

Then the system (3.1) is (h0, h)-uniformly asymptotically stable.
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Proof. Since V (t, E) is h-positively definite and h0-decrescent, there exist constants
ρ0, δ0 with 0 ≤ ρ0 ≤ ρ, δ0 > 0 and functions a, b ∈ K such that

b(h(t, E)) ≤ V (t, E), (t, E) ∈ S(h, ρ0) (3.13)

and

V (t, E) ≤ a(h0(t, ǫ)), whenever h0(t, E) < δ0. (3.14)

Since the hypothesis of Theorem 3.2 is satisfied, the system (3.1) is (h0, h)-uniformly
stable. Thus setting ǫ = ρ0, there exists a δ1 = δ1(ρ0) > 0 such that h0(t0, E0) < δ
implies h(t, E(t)) < ρ0, t ≥ t0, where E(t) = E(t, t0, E0) is any solution of the system
(3.1).

Let 0 < ǫ < ρ0. Then the (h0, h) uniform stability of the system (3.1) yields a
δ = δ(ǫ) such that h0(t0, E0) < δ implies h(t, E(t)) < ǫ, t ≥ t0. Taking δ = min{δ0, δ1},
we assume that h0(t0, E0) < δ, and choose T = T (ǫ) = a(δ)/c(δ) + 1.

To show that the system (3.1) is (h0, h)-uniformly stable, it is enough to show that
there exists a t ∈ [t0, t0+T ] such that h0(t, E(t)) < δ. If the above relation does not hold,
then there exists a solution E(t) = E(t, t0, E0) of the system (3.1) with h0(t0, E0) < δ
such that

h(t, E(t)) ≥ δ, t ∈ [t0, t0 + T ]. (3.15)

Let m(t) = V (t, E(t)). Then, since V (t, E) is locally Lipschitzian in E, taking Dini
derivative we get D+m(t) ≤ D+V (t, E(t)) ≤ −c[h0(t, E(t))], t ≥ t0, which yields

m(t0 + T )−m(t0) ≤ −
∫ t0+T

t0
c(h0(s, E(s)))ds. Thus

∫ t0+T

t0
(h0(s, E(s)))ds ≤ m(t0)−m(t0 + T ) ≤ V (t, E(t0)) ≤ a(h0(t0, E(t0))) < a(δ).

On the other hand,∫ t0+T

t0
c(h0(s, E(s)))ds ≥ c(δ)T = c(δ).a(δ∗)/c(δ) + 1 = a(δ̂ + 1) > a(δ∗),

which is a contradiction. Thus, the proof of the theorem is complete.

Now we proceed to consider the IVP of GDE given by

D′ = G(t, E), D(t0) = D0, (3.16)

where G ∈ C[R+ × DN , DN ]. In order to study the stability properties of the system
(3.16), we use the existence of an isomorphism between graphs and matrices and state
and prove the following theorem.

Theorem 3.4 Assume that there exists a function F (t, E) isomorphic to G(t,D)
in GDE (3.16) such that F ∈ C[R+ × R

N×N ,R+]. Further, assume that there exists a
function V ∈ C[R+ × R

N×N ,R+] satisfying the hypothesis of Theorem 3.1. Then the
system (3.16) is equistable.

Proof. Since F is isomorphic to G and the existence of continuous function F is
given, we consider the IVP for MDE (3.1). As the hypothesis of Theorem 3.1 is satisfied,
we have that the system (3.1) is equistable. Now by virtue of the existence of isomorphism
between graphs and matrices, we observe that the Lyapunov function V also caters to
the GDE (3.16) and hence the system (3.16) is equistable.

Similar results parallel to Theorem 3.2 and Theorem 3.3 can be established for the
IVP of the GDE (3.16).



186 J. VASUNDHARA DEVI

4 Examples

In this section, we proceeed to give examples to each of the theorems in the previous
section. We consider a graph differential equation of a system having two vertices and
weighted edge functions. Note that we have taken the examples in 7 and extended them
suitably to cater to our need.

Example 4.1 Consider a graph differential equation given by two vertices V1 and
V2 and whose derivatives of weighted edges are given by the following equations





e′11 = −e12 e
t,

e′12 = −
1

2
e12 + e11 − e21 +

1

2
e22,

e′21 = (e11 − e21) e
t,

e′22 = −
1

2
(e12 + e22)e

t.

(4.1)

Using the isomorphism between the graphs and the matrices, the fore mentioned graph
differential equation can be written as the matrix differential equation given by

[
x1 x2
x3 x4

]′
=

[
−etx2 − 1

2
x2 + x1 − x3 +

1

2
x4

(x1 − x3)e
t − 1

2
(x2 + x4)e

t

]
, (4.2)

where x1, x2, x3, x4 represent the weighted edges e11, e13, e13, e14 respectively. Thus

E =

[
x1 x2
x3 x4

]
.

Now we define the Lyapunov function V (t, E) = (x22 + x24)e
t + (x1 − x3)

2 and

h(t, E) =
√
x21 + x24, h0(t, E) =

√
x21 + x22 + x23 + x24.

Then clearly

[h(t, E)]2 ≤ V (t, E) ≤ [h0(t, E)]2, D+V (t, E) ≤ −2(x1−x3)
2 et ≤ 0, (t, E) ∈ R+×R

2×2.

Hence by Theorem 3.1, the matrix differential equation (4.2) equistable, which in turn
yields on using Theorem 3.4, that the graph differential equation (4.1) is also equistable.

Example 4.2 Consider a graph differential equation associated with two vertices V1
and V2 and weighted edge function ei,j(t), i, j = 1, 2 given by the following equations





e′11 = −e22,

e′12 = − e21 + (1− e212 − e221) e12 e
−t,

e′21 = e12 + (1− e212 − e221) e21 sin2 x,

e′22 = e11.

(4.3)

Associated with the above graph differential equation (4.3), we can write the matrix
differential equation, where x1, x2, x3, x4 represent the e11, e12, e21, e22 respectively
as

E′ =

[
x1 x2
x3 x4

]′
=

[
−x4 −x3 + (1− x22 − x23)x2e

−t

x2 + (1 − x2 − x23) x3 sin
2 x2 x1

]
,

(4.4)
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where E ∈ R
2×2. Let V (E) = (x21 + x24 − 1)2 + (x22 + x23 − 1)2 and

h(E) =
√
(x22 + x23 − 1)2, h0(E) =

√
(x21 + x24 − 1)2 + (x22 + x23 − 1)2.

Then clearly [h(E)]2 ≤ V (E) ≤ [h0(E)]2, E ∈ R
2×2 and

D+V (E) = (−4) (x22 + x23 − 1)2 (x22e
−t + x23 sin

2 x) ≤ 0, (t, E) ∈ R+ × R
2×2.

The (h0, h)−uniform stability follows from Theorem 3.2. Observe that
[
x1(t) x2(t)
x3(t) x4(t)

]
=

[
sin t cos t
sin t cos t

]

and has components (x1(t), x4(t)) = (cos t, sin t) and (x2(t), x3(t)) = (sin t, cos t) which
are periodic, hence the system in pairs (x1(t), x4(t)) and (x2(t), x3(t)) is uniformly
orbitally stable. It now follows that the considered graph differential equation is also
(h0 − h)-uniformly stable.

The following example will illustrate Theorem 3.3.
Consider a graph having two vertices V1 and V2. Suppose a graph differential equation

is defined on this graph, where the edges satisfy the relations




e′11 = 2e12 − e11 e
t − e22,

e′12 = −e12(1 + sin2 e21)− 2e11e
−t − e22,

e′21 = −e12 e
−t + e11 cos t+ e21 sin t,

e′22 = −(e12 + e11)e
−t − e22.

(4.5)

Then we construct the adjacency matrix by replacing e11, e12, e21, e22 by x1, x2, x3, x4
respectively and obtain the matrix differential equation

E′ =

[
x1 x2
x3 x4

]′
=

[
2x2 − x1 e

t − x4 −x2(1 + sin2 x3)− 2x2e−t + x4)
−x2e

−t + x1 cos t+ x3 sin t −x2 + x1e
−t − x4

]
,

(4.6)
where E ∈ R

2×2. Define

A = {

[
x1 x2
x3 x4

]
∈ R

2×2 : x1 = x2 = x4 = 0}, B = {

[
x1 x2
x3 x4

]
∈ R

2×2 : x1 = x4 = 0}

and V (t, E) = x21 + x22e
−t + x24. For E1 = (cij)2×2 and E2 = (dij)2×2, we define

d(E1, E2) =

√√√√
2∑

i,j=1

(cij − dij)2

and consider h(t, E) = d(E,B) and h0(t, E) = d(E,A). Then

h0(t, E) =
√
x21 + x22 + x24, h(t, E) =

√
x21 + x24

which yield A ⊂ B and

[h(t, E)]2 ≤ V (t, E) ≤ [h0(t, E)]2.

Also
D+V (t, E) ≤ (−2)[h0(t, E)]2.

An application of Theorem 3.3 yields that the matrix differential equation (4.6) is (h0−h)
uniformly asymptotically stable. From which we can make the same conclusion for the
graph differential equation (4.5) using the isomorphism between matrices and graphs.
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5 Comparison Technique

It is well known that a Lyapunov function can be considered as a vehicle to transform a
given complicated differential system into a relatively simpler scalar differential equation.
Thus using the concept of a Lyapunov function and theory of differential inequalities we
obtain a very general comparison principle in terms of two measures. In order to achive
our goal we need the following results from [4,15].

Consider the scalar differential equation given by

u′ = g(t, u), u(t0) = u0 ≥ 0, (5.1)

where g ∈ C[R+ × R,R] and g(t0) = 0.

Definition 5.1 Let r(t) be a solution of (5.1) existing on some interval I = [t0, t0 +
α], 0 < α <∞. Then r(t) is said to be a maximal solution of (5.1) if for every solution
u(t) = u(t, t0, u0) of (5.1) existing on J, the following inequality holds

u(t) ≤ r(t), t ∈ J. (5.2)

Lemma 5.1 Let g ∈ C[R+ × R,R] and r(t) = r(t, t0, u0) be the maximal solution of
(5.1) existing on J. Suppose that m ∈ C[R+,R+] and Dm(t) ≤ g(t,m(t)), t ∈ J, where
D is any fixed Dini derivative. Then m(t0) ≤ u0 implies m(t) ≤ r(t), t ∈ J.

We now formulate a basic comparison theorem in terms of Lyapunov function V for
MDE (3.1).

Theorem 5.1 Let V ∈ C[R+× R
N×N , R+] and V (t, E) be locally Lipschitzian in E

for each t ∈ R+. Assume further that

D+V (t, E) ≤ g(t, V (t, E)), (t, E) ∈ R+ × R
N×N , (5.3)

where g ∈ C[R+× R, R]. Let r(t) = r(t, t0, u0) be the maximal solution of (5.1) existing
on J. Then, for any solution E(t) = E(t, t0, E0) of (3.1) existing on J, V (t0, E0) ≤ u0
implies

V (t, E(t)) ≤ r(t), t ∈ J. (5.4)

Proof. Let E(t) = E(t, t0, E0) be a solution of (3.1). Set m(t) = V (t, E(t))
such that V (t0, E0) ≤ u0. Using the fact that V (t, E) is locally Lipschitzian in E,
the definition of Dini derivative and the relation (5.3) we arrive at the inequality
D+m(t) ≤ g(t, V (t,m(t))), m(t0) ≤ u0, t ∈ J From Lemma 5.1, we conclude that
V (t, E(t)) ≤ r(t), t ∈ J, completing the proof.

For the sake of completeness, we define the stability concept for the trivial solution
of the comparision equation (5.1). We give here the definition of equistability only.

Definition 5.2 Let u(t, t0, u0) be any solution of (5.1). The trivial solution u(t) ≡ 0
of (5.1) is said to be equistable if for any ǫ > 0 and t0 ∈ R+, there exists a δ = δ(t0, ǫ) > 0
that is continuous in to for each ǫ such that u0 < δ implies u(t, t0, u0) < ǫ, t ≥ t0.

We will now state and prove the following theorem which gives sufficient conditions
for the (h0, h)-stability properties of the differential system.
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Theorem 5.2 Assume that
(i) h0, h ∈ Γ and h0 is uniformly finer than h;
(ii) V ∈ C[R+ × R

N×N , R+], V (t, E) is locally Lipshitzian in E, V is
h− positive definite and h0−decrescent;

(iii) g ∈ C[R+ × R, R] and g(t, 0) ≡ 0;
(iv) D+V (t, E) ≤ g(t, V (t, E)), (t, E) ∈ S(h, ρ), where

S(h, ρ) = {(t, E) ∈ R+ × R
N×N : h(t, E) < ρ, ρ > 0}.

Then, the stability properties of the trivial solution of (4.2) imply the corresponding
(h0, h)− stability properties of MDE (3.1).

Proof. As the proofs of various stability properties are similar, we shall only prove
the (h0, h)− equiasymptotic stability property of (3.1). In order to do so, we begin by
proving (h0, h)− stability.

Since V is h− positive definite, there exist a λ ∈ (0, ρ] and a b ∈ K such that

b(h(t, E)) ≤ V (t, E), (t, E) ∈ S(h, λ). (5.5)

Let 0 < ǫ < λ and t0 ∈ R+ be given and assume that the trivial solution of (5.1) is
equistable. Then, given b(ǫ) > 0 and t0 ∈ R+, there exists a positive function δ1 =
δ1(t0, ǫ) such that

u0 < δ implies u(t, t0, u0) < b(ǫ), t ≥ t0, (5.6)

where u(t, t0, u0) is any solution of (5.1). Set u0 = V (t0, E0). Using hypotheses (i) and
(ii) (i.e., h0 is finer than h and V is h0− decrescent) we find that there exist a λ0 > 0
and a function a ∈ K such that for (t0, E0) ∈ S(h0, λ0)

h(t0, E0) < λ and V (t0, E0) ≤ a(h(t0, E0)). (5.7)

The above relation (5.7) along with the relation (5.5) yields

b(h(t0, E0)) ≤ V (t0, E0) ≤ a(h0(t0, E0)), (t0, E0) ∈ S(h0, λ0). (5.8)

Next choose a positive δ = δ(t0, ǫ) such that δ ∈ (0, λ0], a(δ) < δ1 and let h0(t0, E0) < δ.
Then from relations (5.8) we get, on using the fact that δ1 < b(ǫ), h(t0, E0) < b(ǫ).
Now for any solution E(t) = E(t, t0, E0) claim that h(t, E(t)) < ǫ, t ≥ t0, whenever
h(t0, E0)) < δ.

If possible, suppose our claim is incorrect. Then there exist a t1 > t0 and a solution
E(t) of (3.1) such that

h(t1, E(t1)) = ǫ and h(t, E(t)) < ǫ, t0 ≤ t ≤ t1, (5.9)

since h(t0, E0) < ǫ whenever h0(t0, E0) < δ. From this we deduce that

h(t, E(t)) ∈ S(h, λ)

for t0 ≤ t ≤ t1 and thus by Theorem (5.1), we conclude

V (t, E(t)) ≤ r(t, t0, u0), t0 ≤ t ≤ t1, (5.10)

where r(t, t0, E0) is the maximal solution of (5.1).
On using the relations (5.5), (5.6), (5.7) and (5.10) we arrive at

b(ǫ) < V (t1, E(t1)) ≤ r(t, t0, E0) < b(ǫ),
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which is a contraduction, proving h0, h−equistability of (3.1).

Next, we assume that the trivial solution of (5.1) is equiattractive. Since the equation
(5.1) is (h0, h)-stable, we set ǫ = λ which implies that

δ̂0 = δ(t0, λ).

Let 0 < η < λ. Then since the equation (5.1) is equiattractive, given b(η) > 0 and
t0 ∈ R+, there exist δ∗1 = δ∗1(t0) > 0 and T = T (t0, η) > 0 such that

u0 < δ∗1 implies u(t, t0, u0) < b(η), t ≥ t0 + T. (5.11)

Choose u0 = V (t0, E0) and working as before, we find a δ∗0 = δ∗0(t0) > 0 such that

δ∗0 ∈ (0, λ0] and a(δ
∗
0) < δ∗1 . Let δ0 = min(δ∗0 , δ̂0) and h(t0, E(t0)) < δ0, which implies

that h(t, ...E(t)) < λ, t ≥ t0, and hence the relation (5.10) holds for all t ≥ t0. Now
suppose that the system (5.1) is not (h0, h)− equialtractive then there exists a sequence
{tk}, tk ≥ t0 + T, tk → ∞ as k → ∞ such that ηk < h(tk, E(tk)), where E(t) is any
solution of (3.1) such that h0(t0, E0) < δ0. Then using the above inequality along with
relations (5.10) and (5.1), we obtain

b(ηk) < b(h(tk, E(tk))) ≤ V (tk, E(tk)) < r(t, t0, E0) < b(η),

which is a contradiction. Hence the system (3.1) is (h0, h)− asymptotically stable and
hence the proof.

Theorem 5.3 Supose that the function G ∈ C[R+×DN , DN ] in (3.16) is isomorphic
to a function F ∈ C[R+ × R

N×N ,RN×N ]. Let E(t) be the solution associated with the
system (3.1) corresponding to the F obtained above. If the hypothesis of Theorem 5.2 is
satisfied then the trivial solution or the null graph of GDE (3.16) has all the stability
properties that the associated MDE possesses.

Proof. Corresponding to the given graph function G(t,D), we construct the matrix
function F (t, E). Owing to the isomorphism that exists between graphs and matrices
F (t, E) is continuous. Now from hypothesis, E(t) is any solution of MDE (3.1). Also
since the hypothesis of Theorem 5.2 is satisfied, we obtain that the zero solution of MDE
(3.1) possesses all the stability properties of the comparison equation (5.1). Hence by the
isomorphism that exists between graphs and matrices, we have that the zero solution, a
null graph function of the GDE (3.16) has all the stability properties that the comparison
equation (5.1) possesses. The proof is complete.

6 Conclusion

In this paper we have considered a MDE in terms of two measures and studied its stability
properties using the basic Lyapunov theorems and the comparison methods. Using the
isomorphism that exists between the graphs and matrices, we have extended these results
to study the stability properties in terms of two measures, for the GDEs. We have also
given examples to verify the stability properties of graph differential equations and its
associated matrix differential equations using suitable Lyapunov functions.
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