
Nonlinear Dynamics and Systems Theory, 16 (2) (2016) 206–220

Reduced Order Bilinear Time Invariant System by

Means of Error Transfer Function Least Upper Bounds

Solikhatun 1,3∗, R. Saragih 1 and E. Joelianto 2

1 Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural
Sciences, Institut Teknologi Bandung, Indonesia

2 Instrumentation and Control Research Group, Faculty of Industrial Technology, Institut
Teknologi Bandung, Indonesia

3 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas
Gadjah Mada, Indonesia

Received: June 1, 2015; Revised: March 31, 2016

Abstract: The order selection problem of the reduced bilinear time invariant systems
is considered in this paper. The r-th order reduced bilinear time invariant systems
are chosen by using the least upper bound of the difference bilinear system in the
proposed H2-norm. The H2-norm of the difference bilinear system is computed by
the H2-norm of the error transfer function between the full order and the reduced
order of a bilinear time invariant system. The reduced bilinear systems are obtained
by using the balanced truncation and the singular perturbation methods. The H2-
norm of the difference bilinear systems is a function of controllability gramian or
observability gramian of the difference bilinear system. The simulation results in
the example confirm the proposed method for obtaining the reduced bilinear system
which is similar to the full order bilinear system.

Keywords: bilinear systems; controllability and observability gramians; H2-norm;
reduced order bilinear systems; balanced truncation; singular perturbation.

Mathematics Subject Classification (2010): 93B20, 93C10.

∗ Corresponding author: mailto:solikhatunugm@gmail.com

c© 2016 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua206

mailto: solikhatunugm@gmail.com
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (2) (2016) 206–220 207

1 Introduction

In this paper, a criteria for selecting order of a reduced order model of bilinear time
invariant systems based on the value alteration of the least upper bounds of a transfer
function of difference bilinear systems in the proposed H2-norm is considered. The
order selection based on the value alteration of the singular Hankel values, see [3], is
not apparent because the decision is influenced by knowledge of the decision makers.
The measurement of the model reduction, which is calculated by using the H2-norm is
able to characterize the virtue of the reduced order model. The definition of the H2-
norm based on transfer function of the bilinear time invariant system which includes the
controllability gramian or the observability gramian is then proposed.

The least upper bounds of the error transfer function between the full order and the
reduced order model of the bilinear systems in the H2-norm become a tool for modern
controller design. The least upper bounds of the error transfer function between full
order and reduced order model for the linear systems in the H2-norm have been discussed
in [10] and [13]. Therefore, the least upper bounds of the bilinear time invariant systems
discussed in [23, 24] are important in model order reduction.

The reduced order bilinear systems are obtained by using the balanced truncation [3]
and the singular perturbation methods [22]. Two methods are used because they preserve
the dominant state of the original bilinear systems which are based on the controllability
or observability gramians. These methods result in the reduced bilinear systems which
are nearly optimal for a given least upper bound. The comparison of the least upper
bounds of the difference bilinear system using two methods is investigated in the paper.
Another method, for example, the moment-matching method is very efficient and numer-
ically robust, but the reduced bilinear systems are not guaranteed as an optimal reduced
bilinear system.

In the high order of the bilinear systems, the bottleneck of the balanced truncation
and singular perturbation methods can occur in the calculation of controllability or ob-
servability gramians. The controllability or observability gramians can be approximated
in the frequency domain to reduce the computational cost. Therefore, it is suggested to
use the Poor man’s truncated balanced realization of the bilinear systems. This approach
uses frequency-weighted finite summation to approximate the infinite integration. This
method approximates the gramian in the frequency domain without solving the Lya-
punov equations [20]. The reduced bilinear systems will be accurate when the bilinear
systems have finite bandwidth inputs.

A class of nonlinear system which is linear in inputs and linear in states with a non-
linearity in a product of states and inputs is known as bilinear systems [3]. Mathematical
modeling and control design of bilinear systems were discussed in [1] and [8]. The iden-
tification of time-invariant bilinear system models in the error-in-variables framework
has been discussed in [16]. The error-in-variables framework is dedicated to problem of
dynamic system identification in the presence of noise corrupting both input and output
measurements. The bilinear control systems have been discussed by using the Lie groups
approach in [9] and [19], whereas in [14] it has been discussed how to stabilize the ho-
mogeneous bilinear system by sliding mode control. The bilinear systems are naturally
found in science and technology problems, for example induction motor drives in [1], pa-
per making machines in [1], quantum mechanics in [19], power systems in [3], suspension
systems in [26], circuit electricity in [17], and immunity problems in [18].

The control design problem of a bilinear system is to seek a controller that stabilizes
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and satisfies a given norm of the closed loop of the bilinear system. Many problems in
science and technology are usually formulated in terms of a high order bilinear system.
In fact, the order of robust control design is always higher than the order of the system
so a reduced-order controller is necessary for application in real problems. Hence, model
order reduction and reduced order controller are an important part in the high order
control system design.

Model reduction for linear time invariant (LTI) and linear time varying (LTV) sys-
tems has been discussed in [2], whereas the model reduction for bilinear systems has been
developed by many researchers in [3–7,12,15,21,22,25,27]. Model order reduction meth-
ods for nonlinear model have been discussed in [11]. Balanced truncation [3] and singular
perturbation [22] methods are used to obtain the reduced order bilinear time invariant
systems. In the balanced truncation method, the original bilinear system is transformed
to the balanced system. The characterizations of the original bilinear system and the
balanced system are the same. In the singular perturbation method, the original bilinear
system is transformed into a balanced system which is then divided into two subsystems,
i.e. slow and fast mode systems. After that, the reduced bilinear systems are obtained
by defining that the velocity of fast mode is zero.

The paper is organized as follows. Section 2 presents the least upper bounds of the
transfer function of the bilinear time invariant systems in the H2-norm. Section 3 reviews
the balanced truncation and singular perturbation methods for bilinear systems. Section
4 gives the main result that is the least upper bounds of the difference bilinear system.
In Section 5, the procedure of selecting the reduced order bilinear system is presented.
Section 6 shows the simulation results which illustrate the performance of the proposed
algorithm and Section 7 gives conclusions.

2 The Least Upper Bounds of Bilinear Systems

Consider a bilinear time invariant system B characterized by the following differential
equations

B :
ẋ(t) = Ax(t) +

m
∑

i=1

Niui(t)x(t) +Bu(t),

y(t) = Cx(t) +Du(t),

(1)

where x(t) ∈ ℜn is the state vector, u(t) ∈ ℜm is the control input, ui(t) is the i−th
element of u(t), y ∈ ℜq is the output system, A ∈ ℜnxn, Ni ∈ ℜnxn, i = 1, 2, . . . ,m,B ∈
ℜnxm, C ∈ ℜqxn, and D ∈ ℜqxm. Suppose the bilinear system (1) is locally stable, (A,B)
is controllable, and (A,C) is observable. The bilinear system is called locally stable if
the real parts of all eigenvalues of A are negative. The relation of inputs and outputs of
the bilinear system (1) can be expressed by the following Volterra series [18]

y(t) =

∞
∑

i=1

∫ t

i=0

∫ t1

i=0

. . .

∫ tk−1

i=0

m
∑

i1,i2,...,ik=1

h
(i1,i2,...,ik)
k (t1, t2, ..., tk)

ui1(t− tk) . . . uik(t−
i
∑

k=1

tk)dt1 . . . dtk.

The regular Volterra kernel hk can be expressed as [18]

h
(i1,i2,...,ik)
k (t1, t2, ..., tk) = CeAtkNi1e

Atk−1 . . . Nik−1e
At1bik ,
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where bik denotes the ik−th column of B matrix. For the sake of simplicity,

h
(i1,...,ik)
k (t1, t2, ..., tk) is denoted by hk. The notation hT

k denotes transpose of the hk.

To deal with the least upper bounds problem, the paper treats the controllability and
the observability gramians defined in [3] as follows

Definition 2.1 The controllability gramian matrix P is defined by

P =

∞
∑

i=1

∫

∞

0

. . .

∫

∞

0

PiP
T
i dt1 . . . dti,

where P1(t1) = eAt1B, and Pi(t1, . . . , ti) = eAti
[

N1Pi−1 . . . NmPi−1

]

, i = 2, 3, . . ..
Analogously, observability gramian matrix Q is defined by

Q =

∞
∑

i=1

∫

∞

0

. . .

∫

∞

0

QT
i Qidt1 . . . dti,

where Q1(t1) = CeAt1 , and Qi(t1, . . . , ti) =









Qi−1N1

Qi−1N2

. . .

Qi−1Nm









eAti , i = 2, 3, . . . .

The existence and properties of the controllability gramian P and the observability
gramian Q which satisfy the generalized Lyapunov equations are presented in [27]. The
generalized Lyapunov equations are given by the following equations

AP + PAT +

m
∑

i=1

NiPNT
i +BBT = 0, (2)

ATQ+QA+
m
∑

i=1

NT
i QNi + CTC = 0. (3)

If the equation (2) is taken vec on two sides then
(

A⊗ I + I ⊗A+
m
∑

i=1

Ni ⊗Ni

)

vec(P ) = −vec(BBT ).

Therefore, if A⊗ I+ I⊗A+
∑m

i=1 Ni⊗Ni is a nonsingular matrix, then a single solution
P will be found. If P is a nonnegative matrix then P is called the controllability gramian.
The observability gramian Q is obtained by using the similar manner and properties to
the equation (3) [27].

Let us introduce a definition of H2-norm of the bilinear system B in [23, 24].

Definition 2.2 Consider the bilinear system (1). TheH2-norm of the bilinear system
B is defined by

‖B‖2 =

√

√

√

√

√λmax





∞
∑

k=1

∫

∞

0

. . .

∫

∞

0

m
∑

i1,...,ik=1

hkh
T
k dt1...dtk



,

where λmax(.) denotes the maximum of (.) eigenvalues and hk is the regular Voltera
kernel.
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Definition 2.2 is an extended form of the Euclidian-induced norm of matrix M which
is equivalent to the square root of the maximum eigenvalue of MTM over a time interval
of integration from t = 0 to t = ∞. It is clear that hkh

T
k is a symmetry and a semi

definite positive matrix because hk is k−variate impulse response. The following lemma
is obtained from Definition 2.2.

Lemma 2.1 [23,24] Suppose the bilinear system (1) is locally stable. If there exists
the controllability gramian P of bilinear system (1) then ‖B‖2 =

√

λmax(CPCT ). If there

exists the observability gramian Q of bilinear system (1) then ‖B‖2 =
√

λmax(BTQB).

Proof. Suppose that

J2
k =

∫

∞

0

∫

∞

0

. . .

∫

∞

0

m
∑

i1,...,ik=1

hkh
T
k dt1 . . . dtk.

When k = 1 then J2
1 =

∫

∞

0

∑m
i1=1 CeAt1bi1b

T
i1e

AT t1CTdt1 = C
∫

∞

0 P1P
T
1 dt1C

T . When

k = 2 then J2
2 =

∫

∞

0

∫

∞

0

∑m
i1=1 φφ

T dt1dt2 = C
∫

∞

0

∫

∞

0
P2P

T
2 dt1dt2C

T , where
φ = CeAt2N1e

At1bi1, bi1 denotes the i1-th column of the matrix B, and generally
J2
k = C

∫

∞

0
. . .
∫

∞

0
PkP

T
k dt1 . . . dtkC

T , i = 2, 3, . . . . Therefore, the following result will
be obtained by taking the sum from k = 1 to infinite

∞
∑

k=1

J2
k = C

∞
∑

k=1

∫

∞

0

. . .

∫

∞

0

PkP
T
k dt1 . . . dtkC

T = CPCT .

Hence, the H2 norm can also be computed by using

‖B‖2 =

√

√

√

√λmax

(

∞
∑

k=1

J2
k

)

=
√

λmax(CPCT ),

where P is the controllability gramian of bilinear system (1). Similar reasoning holds for
the second case. ✷

The least upper bounds of H2-norm of the transfer function of the bilinear system
are determined as a function of the controllability gramian (the observability gramian)
of the bilinear system.

Lemma 2.2 [23, 24] Suppose the bilinear system (1) is locally stable. If
there exists the controllability gramian P of bilinear system (1) then ‖B‖2 <
√

λmax(P )
√

λmax(CTC). If there exists the observability gramian Q of bilinear system

(1) then ‖B‖2 ≤
√

λmax(Q)
√

λmax(BBT ).

Proof. We shall furnish the proof for the controllability gramian P , having the same
arguments for the observability gramian Q. As the controllability gramian P exists,
then P is a positive definite matrix. Furthermore, CTC is a positive semidefinite matrix.
According to Lemma 2.1 and properties of the eigenvalues of positive semidefinite matrix,
it holds that ‖B‖2 =

√

λmax (CPCT ) ≤
√

λmax (P )
√

λmax (CTC). ✷
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3 Balanced Truncation and Singular Perturbation Methods

According to [3], balanced realization of the bilinear system (1) can be obtained by
applying the state space balancing transformation xb(t) = T−1x(t) to (1). Hence, the
new presentation will be obtained as follows

Bb :
ẋb(t) = Abxb(t) +

m
∑

i=1

Nbiui(t)xb(t) +Bbu(t),

y(t) = Cbxb(t),

(4)

where Ab = T−1AT,Nbi = T−1NiT,Bb = T−1B,Cb = CT. The controllability and the
observability gramians of the balanced system are Pb = T−1PT−T and Qb = T TQT.

Furthermore, the system (4) is denoted by (Ab, Bb, Nbi, Cb, Dd), i = 1, ...,m.

Definition 3.1 The system (Ab, Bb, Nbi, Cb, Db), i = 1, ...,m is called the balanced
realization of the bilinear system (1) if

Pb = Qb = Σ = diag(σ1, σ2, ..., σn), σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0,

where Pb and Qb are the controllability gramian and the observability gramian, respec-
tively. Furthermore, σk =

√

λk(PbQb), k = 1, ..., n is called Hankel singular value of the
balanced system, where λk(PbQb) denotes the k-th eigenvalue of the matrix PbQb.

The balanced system (4) can be partitioned as follows

[

ẋb1

ẋb2

]

=

[

Ab11 Ab12

Ab21 Ab22

] [

xb1

xb2

]

+

m
∑

i=1

[

Nb11i
Nb12i

Nb21i
Nb22i

] [

xb1

xb2

]

ui +

[

Bb1

Bb2

]

u,

y =
[

Cb1 Cb2

]

[

xb1

xb2

]

,

where ẋb1 is the velocity of slow mode and ẋb2 is the velocity of fast mode. In the balanced
truncation method, the system of the slow mode is selected as the reduced bilinear
system. The system which is obtained by the balanced truncation method can preserve
the stability, but this method gives high error at low frequencies. Let Σ be partitioned

as Σ =

[

Σ1 0
0 Σ2

]

, where Σ1 = diag[σ1, σ2, ..., σr] and Σ2 = diag[σr+1, σr+2, ..., σn].

According to [3], the order selection of the slow mode is based on the ratio of Hankel
singular values that is σr

σr+1
≫ 1, then, the reduced bilinear system where order r is

chosen. Furthermore, the balanced truncation method for bilinear systems has been
developed to the singular perturbation method for bilinear systems in [22]. Denote

K = Ab12 +

m
∑

i=1

Nb12i
ui(t), L = Ab22 +

m
∑

i=1

Nb22i
ui(t),M = Ab21 +

m
∑

i=1

Nb21i
ui(t),

and assume that the velocity of the fast mode is zero, then
xb2(t) = −L−1Mxb1(t)−L−1Bb2u(t). Therefore, the reduced bilinear system is given by

ẋb1(t) = (Ab11 −KL−1M)xb1 +

m
∑

i=1

Nb11i
xb1(t)ui(t) + (Bb1 −KL−1)u(t),
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y(t) = (Cb1 − Cb2L
−1M)xb1 (t).

The reduced order bilinear system using the balanced truncation or the singular pertur-
bation methods can be presented by

Br :
ẋr(t) = Arxr(t) +

m
∑

i=1

Nriui(t)xr(t) + Bru(t),

yr(t) = Crxr(t),

(5)

where xr ∈ ℜr, r < n, yr ∈ ℜp, Ar is stable, (Ar , Br) is controllable and r is order of the
reduced bilinear systems.

4 The Least Upper Bounds of the Difference Bilinear Systems

Consider the full order model (1) and the reduced order model (5) of the bilinear system.
The difference bilinear system is defined as a system in which the transfer function is the
difference of transfer function between the full order system (1) and the reduced order
system (5) of a bilinear system. The difference of the transfer matrix k-variate of the full
order model and the reduced order model of the bilinear system is obtained as follows:

hi1,...,ik(t1, . . . , tk)− hri1,...,rik(t1, . . . , tk) =
[

C −Cr

]

e





A 0
0 Ar



tk

[

Ni1 0
0 Nri1

]

e





A 0
0 Ar



tk−1
[

Ni2 0
0 Nri2

]

. . .

[

Nik−1 0
0 Nrik−1

]

e





A 0
0 Ar



t1 [
bik
brik

]

.

The difference of the transfer matrix k-variate leads to the difference bilinear system
given by

Bd :

[

ẋ

ẋr

]

=

[

A 0
0 Ar

] [

x

xr

]

+

m
∑

i=1

[

Ni 0
0 Nri

] [

x

xr

]

ui +

[

B

Br

]

u,

y − yr =
[

C −Cr

]

[

x

xr

]

.

(6)

Suppose P̄ and Q̄ are the controllability gramian and the observability gramian of the
difference bilinear system (6), respectively. Therefore, P̄ and Q̄ are nonnegative matrices
and the two following generalized Lyapunov equations are satisfied

FP̄ + P̄FT +

m
∑

i=1

HiP̄HT
i + S = 0, (7)

FT Q̄+ Q̄F +

m
∑

i=1

HT
i Q̄Hi +M = 0, (8)
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where F =

[

A 0
0 Ar

]

, Hi =

[

Ni 0
0 Nri

]

, S =

[

BBT BBT
r

BrB
T BrB

T
r

]

, and

M =

[

CTC −CTCr

−CT
r C CT

r Cr

]

.

Furthermore, the least upper bounds of the error transfer function between the full
order (1) and the reduced order (5) of the bilinear time invariant systems in the H2-norm
are given by the following theorem.

Theorem 4.1 Consider the order of the bilinear system (1) is n and the order of the
reduced bilinear system (5) is r, r = 1, 2, ..., n− 1. Suppose A and Ar are locally stable.
If there exists the controllability gramian P̄ of the difference bilinear system (6) then

‖B−Br‖2 ≤
√

λmax(P̄ )
√

λmax(M), ∀r.

If there exist the observability gramian Q̄ of the difference bilinear system (6) then

‖B−Br‖2 ≤
√

λmax(Q̄)
√

λmax(S), ∀r.

Proof. BecauseA and Ar are locally stable then F =

[

A 0
0 Ar

]

is locally stable. By

using Lemma 2.2 and the controllability gramian P̄ of the difference bilinear system (6)
(the observability gramian Q̄ of the difference bilinear system (6)), the least upper bounds
as on the right hand side are obtained. ✷

The results for the linear time invariant systems (LTIS) as a special case of the bilinear
time invariant systems when Ni = 0, ∀i is given by the following

Corollary 4.1 If Ni = 0, ∀i, then (1) will become the linear time invariant system
(LTIS). The least upper bound of the transfer function of the LTIS in the H2-norm is

√

λmax(P )
√

λmax(CTC),

where P is the controllability gramian of the LTIS. The least upper bound of the H2-norm
of the difference of the transfer function for the difference of LTIS is

√

λmax(P̄ )
√

λmax(M),

where P̄ is the controllability gramian of the difference of LTIS.

5 Procedure to Select the Reduced Order Bilinear System

The following algorithm is used to show that the least upper bounds of the H2-norm of
the transfer function of the difference bilinear systems are valid. The algorithm can also
be used to choose the reduced order bilinear system which is similar to the full order
bilinear system. The input of the algorithm is a bilinear system (1), where A,B,Ni, C, i =
1, 2, 3, ...,m are matrices of suitable dimensions and the order of the bilinear system is n.

• Step 1: Choose the method to obtain the reduced order bilinear system.

1. Reduce the bilinear system (1) by using the balance truncation method.
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2. Reduce the bilinear system (1) by using the singular perturbation method.

• Step 2: Calculate the H2-norm and the least upper bounds of the difference bilinear
system.

1. Suppose βrBT = ‖B − Br‖2 denotes H2-norm of the transfer function of
the difference bilinear systems with the reduced r-th order bilinear systems,
r = 1, 2, ..., n − 1 using the balanced truncation method. Calculate βrBT

by Lemma 2.1 where the gramian matrix P̄ satisfies (7). Next, calculate
the least upper bounds γrBT by using Theorem 4.1. It is clear that
βrBT < γrBT , ∀r = 1, 2, ..., n − 1. The index BT denotes the balanced
truncation method.

2. Suppose γrBT denotes the least upper bound of the difference bilinear systems
with the reduced r-th order bilinear system which is reduced by using the
balanced truncation method. Suppose the index SP denotes the singular
perturbation method. Calculate βrSP by Lemma 2.1, where the gramian
matrix P̄ satisfies (8). Next, calculate the least upper bounds γrSP by using
Theorem 4.1. It is also clear that βrSP < γrSP , ∀r.

• Step 3: Choose the smallest r of the reduced order bilinear systems Br such that
γ(r−1)BT

γrBT
≈ 1, or

γ(r−1)SP

γrSP
≈ 1, where γrBT is the least upper bound of the transfer

function of the difference of the bilinear systems with the reduced r-th order bilinear
system using the balanced truncation method, γ(r−1)BT for order r− 1. The index
SP is for the singular perturbation method.

6 Simulation Results

Consider the circuit bilinear time invariant system as in [17] as follows

B :

ẋ(t) =















−5 2 0 . . . 0
2 −5 2 . . . 0
...

. . .
. . .

. . .
...

0 0 2 −5 2
0 0 0 2 −5















+















0 −3 0 . . . 0
3 0 −3 . . . 0
...

. . .
. . .

. . .
...

0 0 3 0 −3
0 0 0 3 0















u1(t)x(t)

+















1 3 0 . . . 0
−3 1 3 . . . 0
...

. . .
. . .

. . .
...

0 0 −3 1 3
0 0 0 −3 1















u2(t)x(t) +











0 1
0 1
...

...
0 1











u(t),

y(t) =





1 1 . . . 1
1 1 . . . 1
1 1 . . . 1



x(t).

Furthermore, the simulation of circuit bilinear system with order 25 and 15 is pre-
sented. The H2-norm and the least upper bounds of the difference bilinear system with
order 25 and 15 are obtained by using the proposed algorithm as shown in Figures 1
and 2. It is found that βrBT < γrBT for each r. When the order of the reduced bilinear
system is increased, the value of ‖B−Br‖2 is decreased and the least upper bounds of



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (2) (2016) 206–220 215

the difference of bilinear system are increased. According to Definition 3.1, the Hankel
singular values of the circuit bilinear system and the ratio of the Hankel singular values
are presented in Table 1. The ratio of the Hankel singular value of each order of the
reduced bilinear system from 2 up to 14 is near to 1. Therefore, the order of the reduced
bilinear system is not easy to be determined because it depends on knowledge of the
decision makers.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

r−th order

→ β
BT

→ γ
BT

γ
SP

 ←

β
SP

 ←

Figure 1: The H2-norm β and least upper bound γ of the difference bilinear system.

For the order of the circuit system is 25, the order of the reduced bilinear systems can
be chosen to the 10-th order when the balance truncation method is used to obtain the
reduced bilinear system and to the 13-th order when the singular perturbation method is
used. The output of the circuit bilinear system is presented in Figures 3 and 4. For the
11-th order reduced bilinear system, the response of the reduced bilinear system is not
similar to that of the full order, so it is not recommended as the reduced order model.

The reduced circuit system by using the two methods will have nearly the same
response when the order of the reduced bilinear system is 13. For the order of the circuit
system is 15, the order of the reduced bilinear systems can be chosen to the 4-th order
when the balanced truncation method is used to obtain the reduced bilinear system.
The reduced circuit system by using the two methods will have nearly the same response
when the order of the reduced bilinear system is 8. The outputs of the circuit bilinear
system are shown in Figure 5 for the 4-th order reduced circuit bilinear system.

7 Conclusions

The least upper bounds of the difference bilinear time invariant systems were derived by
defining the H2-norm of the bilinear systems in terms of the error transfer function. The
least upper bounds of the difference bilinear system were presented by the controllability
gramian or the observability gramian of the difference bilinear system. The results were
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Figure 2: The H2-norm β and least upper bound γ of the difference bilinear system.

Order σi, i = 1, 2, ..., n = 25 Rk, k = 1, 2, ..., 24 σi, i = 1, 2, ..., n = 15 Rk, k = 1, 2, ..., 14
1 4.5536 5.8207 3.4232 4.3639
2 0.7823 1.9669 0.7844 1.9817
3 0.3977 1.0126 0.3958 1.0977
4 0.3928 1.3096 0.3606 1.1909
5 0.2999 1.2173 0.3028 1.2161
6 0.2464 1.3369 0.2490 1.3118
7 0.1843 1.2429 0.1898 1.2736
8 0.1483 1.1669 0.1490 1.3711
9 0.1271 1.3048 0.1087 1.6485
10 0.0974 1.3010 0.0659 1.8538
11 0.0749 1.2387 0.0356 2.0791
12 0.0604 1.1717 0.0171 2.3844
13 0.0516 1.1419 0.0072 2.8787
14 0.0452 1.4572 0.0025 3.9790
15 0.0310 1.6138 0.0006
16 0.0192 1.7376
17 0.0111 1.8585
18 0.0059 1.9983
19 0.0030 2.1563
20 0.0014 2.3551
21 0.0006 2.6129
22 0.0002 2.9861
23 0.0001 3.6031
24 0.0000 5.0032
25 0.0000

Table 1: Hankel singular value σi, i = 1, 2, ..., n for the circuit bilinear system and its ratios
Rk = σk

σk+1
, k = 1, 2, ..., n− 1.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (2) (2016) 206–220 217

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

t (sec)

y

 

 

25th order

10th order by BT

10thorder by SP

Figure 3: The output of the circuit bilinear system, BT: balanced truncation, SP: singular
perturbation.
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Figure 4: The output of the circuit bilinear system, BT: balanced truncation, SP: singular
perturbation.
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Figure 5: The output of the circuit bilinear system, BT: balanced truncation, SP: singular
perturbation.

also valid for the linear time invariant systems as a special case. The value of the
‖B −Br‖2 decreased as the order of the reduced bilinear system was closer to the full
order bilinear system.

The order selection of the reduced bilinear system was based on the alteration value of
the least upper bounds or the value alteration of ‖B−Br‖2. The proposed method was
easier than using the alteration of the singular Hankel values. The least upper bounds of
the transfer function of the bilinear system inH2-norm are a function of the controllability
gramian or the observability gramian of the bilinear system. The simulation result showed
that the balanced truncation method was better than the singular perturbation method
when the system frequency is low and vice versa. Therefore, the order of the reduced
bilinear system can be chosen to be smaller when using the balanced truncation method
although H2-norm of difference bilinear system was greater when using the singular
perturbation method.
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