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Abstract: This paper addresses the stability problem for a set of switched nonlinear
difference equations with parametric uncertainties. For the corresponding family
of subsystems, a regularization procedure is suggested, and a multiple Lyapunov
function is constructed. With the aid of the Lyapunov function, classes of switching
signals are determined for which the asymptotic stability of a stationary solution of a
given set of equations may be guaranteed. An application of the proposed approach
to the stability analysis of multiconnected switched difference systems by nonlinear
approximation is presented. An example is given to illustrate our results.
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1 Introduction

A general outline of the theory of set equations is presented in the monograph [18], where
it is shown that classical results of qualitative theory of equations under an appropriate
adaptation can be applied to the analysis of equations in metric spaces. The most effective
methods are the method of integral inequalities [19], the Lyapunov direct method [22,
28] and the comparison method based on the use of scalar [11, 12], vector [25] and
matrix-valued Lyapunov functions [22].

Difference equations are of great interest due to their wide applications in the model-
ing of real world processes in which states of systems are measured not continuously but
at some fixed instants of time [1, 3, 16, 20]. Sets of difference equations with switching are
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a new subject for research designed to describe more accurately situations where the phe-
nomena under study possess variable structure. This paper focuses on the development
of methods for analysis of such systems.

The stability problem of a stationary solution for a set of nonlinear switched difference
equations with parametric uncertainties is studied. First, for the corresponding family
of subsystems, a regularization procedure and an approach for finding partial Lyapunov
functions are proposed. Next, with the aid of these partial functions, a multiple Lyapunov
function [10] is constructed for the original set of switched equations. On the basis
of a development of dwell-time approach [2, 10, 29], restrictions on the switching law
are determined under which the asymptotic stability of the stationary solution can be
guaranteed.

Furthermore, it is shown that the proposed approaches can be applied to the stability
analysis of multiconnected switched difference systems describing interaction of essen-
tially nonlinear homogeneous subsystems, and, for these systems, sufficient conditions of
the asymptotic stability by nonlinear approximation can be obtained.

2 Preliminaries

Further we shall need the following notions and results, see [18] and the references cited
therein.

Let KC(R
q) denote a family of all nonempty compact and convex subsets in the

Euclidean space R
q; K(Rq) contain all nonempty compact subsets in R

q, and C(Rq) be
a subset of all nonempty closed subsets in R

q. The distance between nonempty closed
subsets A and B of the space R

q is specified by the formula

D[A,B] = max {dH(A,B), dH(B,A)} ,

where dH(B,A) = sup {d(b, A) : b ∈ B} is a Hausdorff separation of the sets A and B,
and d(b, A) = inf{‖b− a‖ : a ∈ A} is a distance from the point b to the set A, ‖ · ‖ is
the Euclidean norm of a vector.

The following operations can be defined on KC(R
q):

A+B = {a+ b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A},

where A,B ∈ KC(R
q), and λ is an arbitrary nonnegative number.

The pair (C(Rq), D) is a complete separable metric space, where K(Rq) and KC(R
q)

are closed subsets.
The set W ∈ KC(R

q) is called the Hukuhara difference for the sets A,B ∈ KC(R
q),

if A = B +W .
Let F be a mapping of the domain Q of the space R

q into the metric space
(KC(R

q), D), i.e., F : Q→ KC(R
q), which is equivalent to the inclusion F (t) ∈ KC(R

q)
for all t ∈ Q. Such mappings are called the multivalued mappings of Q into R

q.
Let R

q
+ be the nonnegative cone of Rq; N denote a set of positive integers, N+ =

N ∪ {0}, and we designate by Nn0 the set

Nn0 = {n0, n0 + 1, . . . , n0 + k, . . .},

where k ∈ N and n0 ∈ N+.
Next, let us introduce the concept of homogeneity, see [27, 30], for the following

analysis.
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Definition 2.1 A function f(x) : Rq → R is called homogeneous of the order ν with
respect to the dilation (m1, . . . ,mq), where ν,m1, . . . ,mq are positive rationals with the
odd denominators, if

f(λm1x1, . . . , λ
mqxq) = λνf(x) (1)

for all λ ∈ R and x ∈ R
q. In the case when ν,m1, . . . ,mq are positive real numbers, and

equality (1) holds for λ ≥ 0 and x ∈ R
q, the function f(x) is called positive homogeneous

of the order ν with respect to the dilation (m1, . . . ,mq).

Definition 2.2 A vector field F(x) = (f1(x), . . . , fq(x))
T : Rq → R

q is called positive
homogeneous of the order µ with respect to the dilation (m1, . . . ,mq), where mi > 0 and
µ+mi > 0, i = 1, . . . , q, if fi(λ

m1x1, . . . , λ
mqxq) = λµ+mifi(x1, . . . , xq), i = 1, . . . , q, for

all λ ≥ 0 and x ∈ R
q.

Let the system of differential equations

ẋ(t) = F(x(t)) (2)

be given, where x(t) ∈ R
q is the state vector, and components of the vector F(x) are

continuous for all x ∈ R
q.

Definition 2.3 System (2) is called positive homogeneous if its vector field F(x) is
positive homogeneous.

Moreover, we will use the following lemmas, see [6] and [14] respectively.

Lemma 2.1 If a sequence {vn} satisfies the condition 0 ≤ vn+1 ≤ vn − αv1+ξ
n ,

n ∈ N+, with α > 0, ξ > 0, v0 ≥ 0, and α(1 + ξ)vξ0 ≤ 1, then

vn ≤ v0

(

1 + αξvξ0n
)− 1

ξ

for n ∈ N+.

Lemma 2.2 For any positive numbers x, y and ζ the estimate

(x + y)ζ ≥ 2ω
(

xζ + yζ
)

holds, where ω = min{ζ − 1; 0}.

3 Statement of the Problem

Consider a set of switched difference equations

Xn+1 = F (σ)(n,Xn, α) (3)

with initial conditions Xn0 = X0, where Xn ∈ KC(R
q) for all n ≥ n0; the function σ =

σ(n), with σ(n) ∈ {1, . . . , S}, defines the switching law; α ∈ ℑ ⊂ R
d is the uncertainty

parameter; the mappings F (s) : N+ × KC(R
q) × ℑ → KC(R

q) are continuous with
respect to Xn for every n ∈ N+ and α ∈ ℑ.

Thus, we assume that the system under consideration depends on an uncertain param-
eter. Moreover, while operating, the system switches between several operation modes,
and, for every n ≥ n0, one of the subsystems

Xn+1 = F (s)(n,Xn, α), s = 1, . . . , S, (4)

is active.
Let Xn(n0, X0) be the solution of (3) satisfying the condition Xn0 = X0.
For the set of equations (3) we introduce the following assumptions:
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H1. For equations (3) there exists a set of stationary solutions Θ0 ∈ KC(R
q), i.e.,

F (s)(n,Θ0, α) = Θ0 for all n ∈ N+, α ∈ ℑ, s = 1, . . . , S.
H2. For any X0 ∈ KC(R

q) and Y0 ∈ KC(R
q) there exists the Hukuhara difference

W0 ∈ KC(R
q).

Definition 3.1 The stationary solution Θ0 of the set of equations (3) is

(i) stable, if for any n0 ∈ N+ and ε > 0 there exists a δ = δ(n0, ε) > 0 such that
the inequality D[W0,Θ0] < δ implies the estimate D[Xn,Θ0] < ε for all n ≥ n0,
where W0 = X0 − Y0, X0 ∈ KC(R

q), Y0 ∈ KC(R
q), and Xn = Xn(n0, X0 − Y0) =

Xn(n0,W0) is the solution of (3);
(ii) attractive, if for any n0 ∈ N+ there exists δ̃(n0) > 0, and for any ξ > 0 there exists

τ(n0,W0, ξ) ∈ N+ such that the inequality D[W0,Θ0] < δ̃(n0) implies the estimate
D[Xn,Θ0] < ξ for any n ≥ n0 + τ(n0,W0, ξ);

(iii) asymptotically stable, if it is both stable and attractive.

We will look for stability conditions for a stationary solution Θ0 of the set of switched
systems of difference equations (3).

It should be noted that the general stability theory of classical difference equations is
well-developed, see [1, 3, 8, 15–17, 20] and references cited therein, whereas the stability
theory of a set of difference equations is in a primitive state.

In particular, in [9] and [18] an extension of some results obtained for a set of contin-
uous systems with Hukuhara derivative was proposed for a set of difference equations.
Unsolved problem is that of constructing an appropriate Lyapunov function satisfying
special properties providing the stability of a stationary solution.

In [4], an approach to the stability analysis for sets of difference equations of the form
(3) has been developed in the case of absence of switching. In the present paper, we will
extend this approach to the set of switched difference equations.

4 Construction of Matrix Lyapunov Functions and Comparison Equations

Let the symbol co mean the closure of convex shell of the corresponding set.
Together with subsystems (4) we will consider the following families of sets of differ-

ence equations

Xn+1 = F
(s)
M (n,Xn), s = 1, . . . , S, (5)

where F
(s)
M (n,Xn) = co

⋃

α∈ℑ

F (s)(n,Xn, α);

Xn+1 = F (s)
m (n,Xn), s = 1, . . . , S, (6)

where F
(s)
m (n,Xn) = co

⋂

α∈ℑ

F (s)(n,Xn, α);

Xn+1 = F
(s)
β (n,Xn), s = 1, . . . , S, (7)

where F
(s)
β (n,Xn) = F

(s)
M (n,Xn)β + F

(s)
m (n,Xn)(1 − β), β ∈ [0, 1].

In what follows it is assumed that F
(s)
m , F

(s)
M and F

(s)
β ∈ Kc(R

q).
For every s ∈ {1, . . . , S}, we introduce an auxiliary matrix function, see [4],

U(s)(n, β,Xn) = [U
(s)
ij (n, β,Xn)], i, j = 1, 2, (8)
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where the element U
(s)
11 (n,Xn) is associated with the s-th set from the family (5),

U
(s)
22 (n,Xn) is associated with the s-th set from the family (6), U

(s)
12 (n, β,Xn) =

U
(s)
21 (n, β,Xn) is associated with the s-th set from the family (7).
In terms of function (8) we construct a scalar function [22]

Vs(n,Xn, β, θs) = θTs U
(s)(n, β,Xn)θs, θs ∈ R

2
+, (9)

and assume that Vs : N+ ×KC(R
q)× [0, 1]× R

2
+ → R+.

Function (9) is a partial Lyapunov function for the s-th subsystem from (4) if, together
with the first difference

∆Vs(n,Xn, β, θs) = Vs(n+ 1, Xn+1, β, θs)− Vs(n,Xn, β, θs),

it solves the problem of stability of the stationary solution Θ0 for the s-th subsystem.
Let the following assumptions be fulfilled.

H3. For every s ∈ {1, . . . , S}, there exists θ̃s ∈ R
2
+ such that for the function

Vs(n,Xn, β, θ̃s) and for its first difference along trajectories of the s-th set of equa-
tions from (4) the estimates

as(D[Xn,Θ0]) ≤ Vs(n,Xn, β, θ̃s) ≤ bs(D[Xn,Θ0]), (10)

∆Vs ≤ w(s)(n, Vs) (11)

are valid for n ∈ N+, Xn ∈ S(ρ), β ∈ [0, 1]. Here ρ = const > 0; S(ρ) = {X ∈
Kc(R

q) : D[X,Θ0] < ρ}; a(·) and b(·) are class K (in the sense of Hahn) functions
[28]; functions w(s)(n, r) are continuous with respect to r ∈ [0, ρ̃] for every value of
n ∈ N+, and w

(s)(n, r)/r → 0 as r → 0; ρ̃ = const > 0.
H4. The zero solutions of the equations

un+1 = un + w(s)(n, un), s = 1, . . . , S, (12)

are asymptotically stable.

Equations (12) are comparison ones for subsystems from the family (4). It is known,
see [4], that under assumptions H3 and H4 the stationary solution Θ0 of each subsystem
is asymptotically stable.

To obtain stability conditions for the set of switched systems of difference equations
(3), we will use multiple Lyapunov functions and the dwell-time approach.

5 Dwell Time Stability Analysis

Let us impose additional restrictions on the Lyapunov functions (9) and on the compar-
ison equations (12).

H5. There exist positive numbers csl such that

Vs(n,Xn, β, θ̃s) ≤ cslVl(n,Xn, β, θ̃l) (13)

for n ∈ N+, Xn ∈ S(ρ), β ∈ [0, 1]; s, l = 1, . . . , S.
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H6. Let equations (12) be of the form

un+1 = un − α(s)u1+ξ(s)

n , s = 1, . . . , S, (14)

where α(s) and ξ(s) are positive constants.

Remark 5.1 Equations (14) can be considered as equations of the nonlinear approx-
imation for (12).

Remark 5.2 The case where ξ(s) = 0, s = 1, . . . , S, is well-investigated, see, for
instance, [10, 13, 21]. Therefore, in this section we assume that ξ(s) > 0, s = 1, . . . , S,
i.e., the switched comparison equations (14) are essentially nonlinear.

Remark 5.3 Using Lemma 2.1 and taking into account Assumptions H3, H4 and
H6, one can obtain estimates for solutions of subsystems (4).

Without loss of generality, we assume that the interval (0,+∞) contains an infinite
number of switching instants. Let τi, i ∈ N, be the switching times, 0 < τ1 < τ2 < . . .,
and τ0 = 0.

Denote, for brevity, ξ̂i = ξ(σ(τi)), α̂i = α(σ(τi)), i ∈ N+; ĉi = cσ(τi)σ(τi−1), i ∈ N.
For every m ∈ N and Lm ∈ R+, define a sequence χn(Lm,m) by the formulae

χ0(Lm,m) = Lm,

χn(Lm,m) = ĉ
−ξ̂m+n−1

m+n−1 (χn−1(Lm,m))
ξ̂m+n−1/ξ̂m+n−2 + α̂m+n−1ξ̂m+n−1Tm+n

for n ∈ N, where Ti = τi − τi−1, i ∈ N.

Theorem 5.1 Let Assumptions H1–H6 be fulfilled. If there exists a positive constant

L such that

χn(L, 1) → +∞ as n→ +∞, (15)

then the stationary solution Θ0 of the set of equations (3) is asymptotically stable.

Proof. Using partial Lyapunov functions V1(n,Xn, β, θ̃1), . . . , VS(n,Xn, β, θ̃S), con-
struct a multiple Lyapunov function Vσ(n)(n,Xn, β, θ̃σ(n)) corresponding to the switching
law σ(n).

Choose a number ε such that 0 < ε < ρ, and

α(s)
(

1 + ξ(s)
)

V ξ(s)

s (n,Xn, β, θ̃s) ≤ 1, s = 1, . . . , S,

for n ∈ N+, Xn ∈ S(ε), β ∈ [0, 1].
Consider the solution Xn of (3) satisfying the condition Xn0 = W0, where n0 ∈ N+,

W0 ∈ S(ε). Find a positive integer m such that n0 ∈ [τm−1, τm). Let Xn ∈ S(ε) for
n = n0, . . . , ñ.

If n0 < ñ ≤ τm, then applying Lemma 2.1 to the σ(τm−1)-th inequality from (11), we
obtain that

V
−ξ̂m−1

σ(τm−1)

(

ñ, Xñ, β, θ̃σ(τm−1)

)

≥ V
−ξ̂m−1

σ(τm−1)

(

n0,W0, β, θ̃σ(τm−1)

)

+ α̂m−1ξ̂m−1(ñ− n0)

≥ V
−ξ̂m−1

σ(τm−1)

(

n0,W0, β, θ̃σ(τm−1)

)

. (16)
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In the case of ñ > τm, there exists a positive integer p satisfying the condition
τm+p−1 < ñ ≤ τm+p. It should be noted that p → +∞ as ñ → +∞. Applying succes-
sively Lemma 2.1 to the corresponding inequalities from (11) and taking into account
estimates (13), we obtain

V
−ξ̂m+p−1

σ(τm+p−1)

(

ñ, Xñ, β, θ̃σ(τm+p−1)

)

≥ V
−ξ̂m+p−1

σ(τm+p−1)

(

τm+p−1, Xτm+p−1, β, θ̃σ(τm+p−1)

)

+α̂m+p−1ξ̂m+p−1(ñ− τm+p−1)

≥ ĉ
−ξ̂m+p−1

m+p−1

(

V
−ξ̂m+p−2

σ(τm+p−2)

(

τm+p−1, Xτm+p−1, β, θ̃σ(τm+p−2)

))ξ̂m+p−1/ξ̂m+p−2

≥ . . . ≥ ĉ
−ξ̂m+p−1

m+p−1

(

χp−1

(

V
−ξ̂m−1

σ(τm−1)

(

n0,W0, β, θ̃σ(τm−1)

)

,m
))ξ̂m+p−1/ξ̂m+p−2

. (17)

From (10), (16) and (17), it follows that

D[Xñ,Θ0] ≤ max
s=1,...,S

a(−1)
s (bs (D[W0,Θ0])) (18)

for ñ = n0, . . . , τm, and

D[Xñ,Θ0] ≤ max
s,k,j=1,...,S

a(−1)
s

(

csk

(

χp−1

(

b−ξ(j)

j (D[W0,Θ0]) ,m
))−1/ξ(k)

)

(19)

for ñ = τm+p−1 + 1, . . . , τm+p and p ≥ 1. Here a
(−1)
s (·) is inverse of the function as(·),

s = 1, . . . , S.
Let there exist a positive constant L such that condition (15) is fulfilled. It is easy to

check that if Lm = χm−1(L, 1), then χn(Lm,m) = χn+m−1(L, 1). Hence, χn(Lm,m) →
+∞ as n→ +∞.

Find a number δ1 such that 0 < δ1 < ε, and b−ξ(j)

j (D[W0,Θ0]) ≥ Lm for W0 ∈ S(δ1),
j = 1, . . . , S. Using estimate (19), one can choose a positive integer p0 satisfying the
following condition: if W0 ∈ S(δ1) and p ≥ p0, then Xñ ∈ S(ε).

From (17) it follows that

D[Xñ,Θ0] ≤ max
s,j=1,...,S

a(−1)
s (c̄pbj (D[W0,Θ0])) (20)

for ñ = τm+p−1 + 1, . . . , τm+p and p ≥ 1. Here c̄ = max
s,k=1,...,S

csk. Taking into account

(18) and (20), one can find a number δ2, 0 < δ2 < ε, such that if W0 ∈ S(δ2) and p < p0,
then Xñ ∈ S(ε).

Let δ = min{δ1; δ2}. We obtain that D[W0,Θ0] < δ implies the estimate D[Xn,Θ0] <
ε for all n ≥ n0.

Moreover, from (19) it follows that D[Xn,Θ0] → 0 as n→ +∞. Thus, the stationary
solution Θ0 of the set of equations (3) is asymptotically stable. This completes the proof.

Corollary 5.1 Let Assumptions H1–H6 be fulfilled. If there exists a positive constant

L such that χn(L,m) → +∞ as n → +∞ uniformly with respect to m ∈ N, then the

stationary solution Θ0 of the set of equations (3) is uniformly asymptotically stable.

Corollary 5.2 Let Assumptions H1–H6 be fulfilled. If Ti → +∞ as i → +∞, then

the stationary solution Θ0 of the set of equations (3) is uniformly asymptotically stable.
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Next, let us show that the use of Lemma 2.2 permits us to replace condition (15) in
Theorem 5.1 by a condition though more conservative but more convenient for applica-
tions.

Construct a sequence ψn by the formulae ψ1 = α̂1ξ̂1T2,

ψn = α̂nξ̂nTn+1 +

n−1
∑

i=1

2ωn,n−1+...+ωn,n−i (ĉn . . . ĉn−i+1)
−ξ̂n

(

α̂n−iξ̂n−iTn−i+1

)ξ̂n/ξ̂n−i

for n = 2, 3, . . ., where ωn,j = min{ξ̂n/ξ̂j − 1; 0}, j = 1, . . . , n− 1.

Corollary 5.3 Let Assumptions H1–H6 be fulfilled. If

ψn → +∞ as n→ +∞, (21)

then the stationary solution Θ0 of the set of equations (3) is asymptotically stable.

Proof. With the aid of Lemma 2.2, it is easy to check that χn(L, 1) ≥ ψn for any
L > 0 and for any n ∈ N.

Really, χ0(L, 1) = L > 0,

χ1(L, 1) = ĉ−ξ̂1
1 (χ0(L, 1))

ξ̂1/ξ̂0 + α̂1ξ̂1T2 = ĉ−ξ̂1
1 Lξ̂1/ξ̂0 + ψ1 ≥ ψ1,

and, for n > 1, we obtain

χn(L, 1) = ĉ−ξ̂n
n (χn−1(L, 1))

ξ̂n/ξ̂n−1 + α̂nξ̂nTn+1

= ĉ−ξ̂n
n

(

ĉ
−ξ̂n−1

n−1 (χn−2(L, 1))
ξ̂n−1/ξ̂n−2 + α̂n−1ξ̂n−1Tn

)ξ̂n/ξ̂n−1

+ α̂nξ̂nTn+1

≥ 2ωn,n−1 (ĉnĉn−1)
−ξ̂n (χn−2(L, 1))

ξ̂n/ξ̂n−2 + 2ωn,n−1 ĉ−ξ̂n
n

(

α̂n−1ξ̂n−1Tn

)ξ̂n/ξ̂n−1

+α̂nξ̂nTn+1 ≥ . . . ≥ 2ωn,n−1+...+ωn,1 (ĉn . . . ĉ1)
−ξ̂n Lξ̂n/ξ̂0 + ψn ≥ ψn.

Hence, from (21) follows the fulfilment of condition (15). This completes the proof.

Remark 5.4 The results of the present section can be extended to the case where
Assumtion H5 is replaced by the following one:

H′
5. There exist positive numbers csl and νsl such that

Vs(n,Xn, β, θ̃s) ≤ cslV
νsl
l (n,Xn, β, θ̃l)

for n ∈ N+, Xn ∈ S(ρ), β ∈ [0, 1]; s, l = 1, . . . , S.

6 Stability Analysis of Multiconnected Switched Systems

Consider the system

xi(n+ 1) = xi(n) + F
(σ)
i (xi(n)) +

k
∑

j=1

Ψ
(σ)
ij (n,x(n)), i = 1, . . . , k, (22)
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which describes the dynamics of a complex system composed of k interconnected systems
[19, 22]. Here xi(n) = (xi1(n), . . . , xiqi(n))

T
, x(n) = (xT

1 (n), . . . ,x
T
k (n))

T ; n ∈ N+;
function σ = σ(n), with σ(n) ∈ {1, . . . , S}, defines the switching law; vector fields

F
(s)
i (xi) are continuous for xi ∈ R

qi and positive homogeneous of the order µ
(s)
i with

respect to the dilation (mi1, . . . ,miqi), where µ
(s)
i ,mi1, . . . ,miqi are positive numbers;

vector functions Ψ
(s)
ij (n,x) =

(

Ψ
(s)
ij1(n,x), . . . ,Ψ

(s)
ijqi

(n,x)
)T

are defined for n ∈ N+,

‖x‖ < H , 0 < H ≤ +∞, and continuous with respect to x for every fixed n; i, j =
1, . . . , k; s = 1, . . . , S. We assume that the estimates

|Ψ
(s)
ijg(n,x)| ≤ c

(s)
ijgr

α
(s)
ijg

j (xj)

hold for n ∈ N+, ‖x‖ < H , where rj (xj) =
qj
∑

p=1
|xjp|

1/mjp , c
(s)
ijg ≥ 0, α

(s)
ijg > 0, g =

1, . . . , qi; i, j = 1, . . . , k; s = 1, . . . , S.
Thus, at each time instant, one of the subsystems

xi(n+ 1) = xi(n) + F
(s)
i (xi(n)) +

k
∑

j=1

Ψ
(s)
ij (n,x(n)), i = 1, . . . , k, s = 1, . . . , S, (23)

is active.
From the properties of the right-hand sides of (22) it follows that the system admits

the zero solution. We will look for conditions of asymptotic stability of the solution.
For every i ∈ {1, . . . , k}, consider the family of isolated difference subsystems

xi(n+ 1) = xi(n) + F
(s)
i (xi(n)), s = 1, . . . , S, (24)

and the corresponding family of subsystems of differential equations

żi(t) = F
(s)
i (zi(t)), s = 1, . . . , S. (25)

Let us impose some additional conditions on the right-hand sides of (22).

H7. There exist numbers h1, . . . , hk such that hi ≥ 2max{mi1, . . . ,miqi}, i = 1, . . . , k,
and, for every s ∈ {1, . . . , S}, the inequalities

α
(s)
ijg

hj + µ
(s)
j

≥
µ
(s)
i +mig

hi + µ
(s)
i

for c
(s)
ijg 6= 0, g = 1, . . . , qi, i, j = 1, . . . , k, (26)

hold.

Remark 6.1 Assumption H7 means that the orders of the right-hand sides of the
isolated subsystems (24) are, in a certain sense, less than or equal to the orders of
functions characterizing interconnections between the subsystems.

H8. For every i ∈ {1, . . . , k}, the zero solutions of all subsystems (25) are asymptotically
stable.

Remark 6.2 It is known, see [7, 26], that the fulfilment of Assumption H8 implies
that the zero solutions of all difference subsystems (24) are asymptotically stable as well.
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H9. For every i ∈ {1, . . . , k}, for the family of subsystems (25), Lyapunov functions
vi1(zi), . . . , viS(zi) are constructed so that vis(zi) is twice continuously differ-
entiable for zi ∈ R

qi positive definite and positive homogeneous of the order
γi ≥ 2max{mi1, . . . ,miqi} with respect to the dilation (mi1, . . . ,miqi) function,
and the derivative of vis(zi) with respect to the s-th subsystem from the family
(25) is negative definite, s = 1, . . . , S.

Remark 6.3 In [27, 30], it was proved that the fulfilment of Assumption H8 implies
the existence of the required Lyapunov functions.

Remark 6.4 In view of homogeneous functions properties, see [30], the estimates

a
(s)
1i r

γi

i (zi) ≤ vis(zi) ≤ a
(s)
2i r

γi

i (zi) ,

∣

∣

∣

∣

∂vis(zi)

∂zig

∣

∣

∣

∣

≤ a
(s)
3igr

γi−mig

i (zi) ,

(

∂vis(zi)

∂zi

)T

F
(s)
i (zi) ≤ −a

(s)
4i r

γi+µ
(s)
i

i (zi)

hold for zi ∈ R
qi , where a

(s)
1i , a

(s)
2i , a

(s)
3ig, a

(s)
4i , s = 1, . . . , S, are positive constants depend-

ing on chosen Lyapunov functions; g = 1, . . . , qi; i = 1, . . . , k.

In what follows, we will assume, without loss of generality, that γi = hi, i = 1, . . . , k,
where numbers h1, . . . , hk satisfy the conditions specified in Assumption H7.

H10. For every s ∈ {1, . . . , S}, the inequality system

−a
(s)
4i ξ

γi+µ
(s)
i

i +

qi
∑

g=1

a
(s)
3igξ

γi−mig

i

k
∑

j=1

c
(s)
ijgξ

α
(s)
ijg

j < 0, i = 1, . . . , k, (27)

admits a positive solution.

Remark 6.5 Assumption H10 is the Martynyuk-Obolenskii condition [23, 24] of
asymptotic stability for the zero solutions of the corresponding Wazewskij systems

żi(t) = −a
(s)
4i z

γi+µ
(s)
i

i (t) +

qi
∑

g=1

a
(s)
3igz

γi−mig

i (t)

k
∑

j=1

c
(s)
ijgz

α
(s)
ijg

j (t), i = 1, . . . , k, s = 1, . . . , S.

From the results of [5] it follows that if Assumptions H7–H10 are fulfilled, then, for

every s ∈ {1, . . . , S}, one can find positive numbers ζ
(s)
1 , . . . , ζ

(s)
k for which the first

difference of the function

Vs(z) =

k
∑

i=1

ζ
(s)
i vis(zi) (28)

with respect to solutions of the corresponding subsystem from family (23) will be negative
definite.

It is easy to show the existence of positive numbers β(1), . . . , β(S), α(1), . . . , α(S) and
H̄ such that H̄ ∈ (0, H), and for the first difference of Vs(z) with respect to solutions of
the s-th subsystem from (23) the inequalities

∆Vs
∣

∣

(s)
≤ −β(s)

k
∑

i=1

r
γi+µ

(s)
i

i (xi(n)) ≤ −α(s)V 1+ξ(s)

s (x(n))
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hold for ‖x(n)‖ < H̄ . Here ξ(s) = max
i=1,...,k

µ
(s)
i /γi, s = 1, . . . , S.

Thus, for subsystems (23) we obtain comparison equations of the form (14). Hence,
for the subsequent stability analysis of (22) one can use the results of Section 5.

7 Example

Let system (22) be of the form















x1(n+ 1) = x1(n) + x2(n),

x2(n+ 1) = x2(n)− aσx
3
1(n)− bσ|x2(n)|

1/2 x2(n) + ψ
(σ)
1 (x3(n)),

x3(n+ 1) = x3(n)− dσx
λσ

3 (n) + ψ
(σ)
2 (x2(n)).

(29)

Here x1(n), x2(n), x3(n) are scalar variables; σ = σ(n) ∈ {1, 2}; a1 = b2 = 2, a2 = b1 = 1,

d1 = 8, d2 = 4, λ1 = 3, λ2 = 5; functions ψ
(s)
1 (z3) and ψ

(s)
2 (z2) are continuous for |z3| < H

and |z2| < H respectively and satisfy the conditions

|ψ
(s)
1 (z3)| ≤ cs|z3|

αs , |ψ
(s)
2 (z2)| ≤ es|z2|

βs , s = 1, 2,

where α1 = 12/5, α2 = 4, β1 = 15/8, β2 = 31/8, and c1, c2, e1, e2 are positive parameters.
Thus, switching in (29) occurs between the subsystems















x1(n+ 1) = x1(n) + x2(n),

x2(n+ 1) = x2(n)− 2x31(n)− |x2(n)|
1/2 x2(n) + ψ

(1)
1 (x3(n)),

x3(n+ 1) = x3(n)− 8x33(n) + ψ
(1)
2 (x2(n)),

(30)

and














x1(n+ 1) = x1(n) + x2(n),

x2(n+ 1) = x2(n)− x31(n)− 2|x2(n)|
1/2 x2(n) + ψ

(2)
1 (x3(n)),

x3(n+ 1) = x3(n)− 4x53(n) + ψ
(2)
2 (x2(n)).

(31)

System (29) can be treated as a complex system describing the interaction of two
(k = 2) systems

{

x1(n+ 1) = x1(n) + x2(n),

x2(n+ 1) = x2(n)− aσx
3
1(n)− bσ|x2(n)|

1/2 x2(n),

and
x3(n+ 1) = x3(n)− dσx

λσ

3 (n).

The differential systems

{

ż1 = z2,

ż2 = −asz
3
1 − bs|z2|

1/2 z2, s = 1, 2,
(32)

are homogeneous ones of the order 1/2 with respect to the dilation (1/2, 1), and the
differential equations

ż3 = −dsz
λs

3 , s = 1, 2, (33)
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are homogeneous ones of the orders 2 and 4 with respect to the dilation 1.
Construct inequalities (26) corresponding to complex system (29). We obtain

max

{

8

5(h2 + 2)
;

5

3(h2 + 4)

}

≤
2

2h1 + 1
≤ min

{

8

5(h2 + 2)
;

8

3(h2 + 4)

}

.

These inequalities admit positive solutions. For example, one can choose h1 = h2 = 2.
Hence, Assumption H7 is fulfilled.

Lyapunov functions for systems (32) and equations (33) can be constructed in the
forms

v1s(z1, z2) =
as
4
z41 +

1

2
z22 +

1

10
|z1| z1z2, s = 1, 2,

and

v2s(z3) =
1

2
z23 , s = 1, 2,

respectively. Thus, Assumptions H8 and H9 are fulfilled as well.
In the present case inequalities (27) take the form

−0.1ξ
5/2
1 + c1ξ1ξ

12/5
2 < 0, −8ξ42 + e1ξ2ξ

15/8
1 < 0 (34)

for s = 1, and

−0.06ξ
5/2
1 + c2ξ1ξ

4
2 < 0, −4ξ62 + e2ξ2ξ

3
1 < 0 (35)

for s = 2. System (34) admits a positive solution if and only if

c1e
4/5
1 < 84/5/10 ≈ 0.52, (36)

whereas system (35) admits a positive solution for any positive values of c2 and e2.
Assume that inequality (36) is valid. Let, for instance, c1 = e2 = 1/2, c2 = e1 = 2/3.

Thus, Assumption H10 is fulfilled.
It is easy to check that if

Vs(z) =
as
4
z41 +

1

2
z22 +

1

10
|z1| z1z2 +

1

4
z23 , s = 1, 2,

then there exists H̄ > 0 such that

∆V1
∣

∣

(30)
≤ −0.004V 2

1 (x(n)), ∆V2
∣

∣

(31)
≤ −0.32V 3

2 (x(n))

for ‖x(n)‖ < H̄. Here z = (z1, z2, z3)
T , x(n) = (x1(n), x2(n), x3(n))

T .
Moreover, the estimates V1(z) ≤ 2V2(z), V2(z) ≤ V1(z) hold for all z ∈ R

3.
Next, with the aid of the results of Section 5, it easy to derive sufficient conditions of

asymptotic stability of the zero solution of system (29).
Assume, for definiteness, that subsystem (30) is active for n = τ2i, . . . , τ2i+1 − 1,

whereas subsystem (31) is active for n = τ2i+1, . . . , τ2i+2 − 1; i ∈ N+.
Consider the sequence χ0 = L = const > 0,

χ2i+1 = (χ2i)
2
+ 0.64T2i+2, χ2i+2 =

1

2
(χ2i+1)

1/2
+ 0.004T2i+3, i ∈ N+.

If there exists L > 0 such that

χn → +∞ as n→ +∞, (37)
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then, by Theorem 5.1, the zero solution of system (29) is asymptotically stable.
For instance, condition (37) is fulfilled in the case when

T 2
1 + 0.64T2 ≥ 4 p21, (pi + 0.004T2i+1)

2 + 0.64T2i+2 ≥ 4 p2i+1, i ∈ N,

where {pi}
+∞

i=1 is a sequence of positive numbers, such that pi → +∞ as i→ +∞.

8 Conclusion

In the present paper, for a set of switched difference equations, a regularization procedure
with respect to the uncertainty parameter of the original system is developed. On the
basis of the procedure, an approach to constructing Lyapunov functions and compari-
son systems for the corresponding family of subsystems is suggested. By means of the
multiple Lyapunov function method, classes of switching law are determined for which
the asymptotic stability of a stationary solution of the set of switched equations can be
guaranteed. The developed approaches are applied to the stability analysis of a nonlinear
multiconnected switched difference system.

An interesting problem for further research is that of estimating attraction domains
of stationary solutions and finding restrictions on switching laws providing preassigned
estimates.
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