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1 Introduction

In a few decades, fractional differential equations have received much attention of re-
searchers mainly due to their extensive interesting applications in physics, mechanics
and engineering such as electrochemistry, control theory, signal and image processing,
porous media, electromagnetism etc.(see [23], [24], [29]). The fact, that fractional deriva-
tive (integral) is an operator which includes integer order derivatives (integrals) as special
case and describes the hereditary properties and memory effects of various materials, is
the reason why fractional differential equations are more precise in the modeling of many
phenomena. Many physical phenomena such as seepage flow in porous media and in fluid
dynamic traffic models [20] and nonlinear oscillations of earthquakes [21] can be described

∗ Corresponding author: mailto:rrenu94@gmail.com

c© 2016 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua235

mailto: rrenu94@gmail.com
http://e-ndst.kiev.ua


236 RENU CHAUDHARY AND DWIJENDRA N. PANDEY

by the fractional differential equations. For a good introduction and applications to frac-
tional differential equations we refer the reader to [25], [30] and [33]. Recently, boundary
value problems for nonlinear fractional differential equations have been investigated by
many researchers, see [1]- [5], [26]- [28], [34] and [36].

The Sobolev type fractional differential equations can be considered as an abstract
formulation of partial differential equations which occurs in various applications such as
the flow of fluid through fissured rocks [6], thermodynamics [14], and shear in second order
fluids [22], [35]. There are many papers dealing with the investigation on the existence
of solutions for Sobolev type differential equations in Banach spaces see [7]- [11].

In [18] Hernàndez et al. talked about an error in some papers regarding the problem of
existence of a solution for abstract fractional differential equation and proposed a different
approach to treat a general class of abstract fractional differential equation based on the
theory of resolvent operators. But the results in [18] were not relevant for the problems
with nonlocal conditions. Then in [19] Hernàndez et al. studied the theory of abstract
fractional differential equations with nonlocal conditions and proved the existence results
using resolvent operators. In [10], [11] Balachandran et al. studied the existence of mild
solution for fractional integro-differential equation with nonlocal conditions and abstract
fractional integro-differential equation of Sobolev type respectively by using the theory
of resolvent operator. In [12] Belmekki et al. established the sufficient conditions for
existence and uniqueness results for semilinear fractional differential equations with finite
delay via resolvent operators. In [13] Belmekki et al. extended the results given in [12]
to cover the case of infinite delay. Recently in [16] Chadha et al. discussed the existence
results of history valued neutral fractional differential equation with the help of the theory
of resolvent operators. For more details on resolvent operators see [15], [17], [31].

Up to now, to the best of our knowledge, there is a little gap in the literature on the
Sobolev type fractional differential equation of order 1 < β 6 2 with nonlocal integral
boundary condition using resolvent operators. Motivated by the above papers, to fill this
gap, in this paper we consider the following Sobolev type fractional differential equation
with nonlocal integral boundary conditions

{

CDβ [Bx(t)] = Ax(t) + F(t, x(t)), 1 < β 6 2, t ∈ (0, 1),

x(0) = 0, x(ε) = c
∫ 1

η
x(s)ds, 0 < ε < η < 1,

(1)

where CDβ is the Caputo fractional derivative of order β. A is a closed linear unbounded
operator, B is linear operator. F : [0, 1]×X → X is continuous function. c is a positive

real constant. The nonlocal integral boundary condition x(ε) = c
∫ 1

η x(s)ds shows that

the value of the unknown function at a nonlocal point ε ∈ (0, 1) with 0 < ε < η < 1 is
proportional to the integration over a sub-strip (η, 1) of an unknown function.

2 Preliminaries

In this segment, we have some basic notations, definitions, theorems and lemmas of
fractional calculus and resolvent operators which will be used in the further sections. Let
(X, ‖.‖) be a Banach space and C = C([0, 1], X) be the Banach space of all continuous
functions from [0, 1] to X equipped with the norm ‖x‖ = sup

t∈[0,1]

‖x(t)‖X . XH denotes the

domain of H := B−1A endowed with the graph norm ‖x‖H = ‖x‖+ ‖Hx‖. Let Lp(J,X)
be the Banach space of all Bochner measurable functions x : J → X such that ‖x(t)‖pX
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is integrable equipped with the norm

‖x‖Lp(J,X) =

(
∫

J

‖x(s)‖pXds

)1/p

.

Definition 2.1 [33] The fractional integral of order β for a function F ∈ L1(R+) is
defined by

Iβ0+F(t) =
1

Γ(β)

∫ t

0

(t− s)β−1F(s)ds, t > 0, β > 0.

Definition 2.2 [24] The Caputo fractional derivative of order β for a function F ∈
Cm−1(R+) ∩ L1(R+) is defined by

cDβ
0+F(t) =

1

Γ(m− β)

∫ t

0

(t− s)m−β−1Fm(s)ds,

where m− 1 < β < m, m = [β] + 1 and [β] denotes the integral part of the real number
β.

Lemma 2.1 [30] Let q > 0, then

D−βDβF(t) = F(t) + C1t
β−1 + C2t

β−2 + . . .+ Cnt
β−1,

for some Ci ∈ R, i = 1, 2, . . . , n, n = [β] + 1.

To prove the existence results we admit the following hypotheses:

(H1) The linear unbounded operator A : D(A) ⊂ X → X and linear bijective operator
B : D(B) ⊂ D(A) ⊂ X → X are closed linear operators.

(H2) B−1 : X → D(B) is a continuous operator.

(H3) The function F : [0, 1]×X → X is a continuous function such that

‖F(t, x)−F(t, y)‖ 6 L‖x− y‖, (2)

for all x, y ∈ X , t ∈ [0, 1] and L is a positive constant.

Lemma 2.2 For any functions F ∈ C([0, 1] × X,X), the solution of Sobolev type
fractional boundary value problem

{

CDβ [Bx(t)] = Ax(t) + F(t, x(t)), 1 < β 6 2, t ∈ (0, 1),

x(0) = 0, x(ε) = c
∫ 1

η
x(s)ds, 0 < ε < η < 1,

(3)

is given by

x(t) = C1t+
1

Γβ

∫ t

0

(t− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ, (4)

where

C1 =
1

Λ

{

c

Γβ

∫ 1

η

[
∫ s

0

(s− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ

]

ds

−
1

Γβ

∫ ε

0

(ε− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ

}

(5)

with Λ = ε− c
2 (1− η2) 6= 0.
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Proof. Using Lemma 2.1, the solution x of (3) can be written as

x(t) = C1t+ C2 +
1

Γβ

∫ t

0

(t− τ)β−1B−1Ax(τ)dτ +
1

Γβ

∫ t

0

(t− τ)β−1B−1F(τ, x(τ))dτ,

for some constants C1, C2 ∈ R.
On applying boundary conditions, we get C2 = 0 and

C1 =
1

Λ

{

c

Γβ

∫ 1

η

[
∫ s

0

(s− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ

]

ds

−
1

Γβ

∫ ε

0

(ε− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ))dτ

}

.

Equation (4) can also be written as

x(t) = k(t) +
1

Γβ

∫ t

0

(t− τ)β−1B−1Ax(τ)dτ, (6)

where k(t) = C1t+
1
Γβ

∫ t

0
(t− τ)β−1B−1F(τ, x(τ))dτ .

Let B−1A = H . To demonstrate existence results, let us assume that integral equation
(6) has an associated resolvent operator {S(t), t > 0} on X .

Definition 2.3 [31] A one parameter family of bounded linear operators {S(t), t >
0} on X is called a resolvent operator for (6) if the following conditions are satisfied.

1. S(t) is strongly continuous on R+ and S(0) = I,

2. S(t)D(H) ⊂ D(H) and HS(t)x = S(t)Hx ∀x ∈ D(H) and t > 0,

3. for every x ∈ D(H) and t > 0,

S(t)x = x+
1

Γβ

∫ t

0

(t− τ)β−1HS(τ)xdτ. (7)

Definition 2.4 [31] A resolvent operator {S(t), t > 0} for (6) is called differentiable
if S(.)x ∈ W 1,1

loc (R
+, X) (W 1,1

loc (R
+, X) is the space of all functions having distributional

derivatives)for all x ∈ D(H) and there exists φH ∈ L1
loc(R

+) such that ‖S ′(t)x‖ 6

φH(t)‖x‖XH
∀x ∈ D(H).

Definition 2.5 [31] A resolvent operator {S(t), t > 0} for (6) is called analytic if the
operator S(t) : (0,∞) → L(X) (L(X) denotes the space of all bounded linear operators
from X to X) admits an analytic extension to a sector Σ0,θ = {λ ∈ C : |arg(λ)| < θ0}
for some 0 < θ0 6 π/2.

Definition 2.6 A function x ∈ C is called a mild solution of the integral equation
(6) if

∫ t

0
(t− τ)β−1x(τ)dτ ∈ D(H) for all t ∈ [0, 1], k(t) ∈ C and

x(t) = k(t) +
H

Γβ

∫ t

0

(t− τ)β−1x(τ)dτ. (8)

Lemma 2.3 [31] If S(t) is the resolvent operator for (6).
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(i) If x is a solution of (6) on [0, 1], then the function t →
∫ t

0
S(t− s)k(s)ds is continu-

ously differential on [0, 1] and

x(t) =
d

dt

∫ t

0

S(t− s)k(s)ds, ∀t ∈ [0, 1]. (9)

(ii) If S(t) is analytic and k ∈ Cα([0, 1], X) for some α ∈ (0, 1), then the function defined
by

x(t) = S(t)(k(t) − k(0)) +

∫ t

0

S ′(t− s)[k(s)− k(t)]ds+ S(t)k(0), ∀t ∈ [0, 1], (10)

is a mild solution of (6).

(iii) If S(t) is differentiable and k ∈ C([0, 1], XH), then the function x : [0, 1] → X given
by

x(t) = k(t) +

∫ t

0

S ′(t− s)k(s)ds, ∀t ∈ [0, 1], (11)

is a mild solution of (6).

3 Existence of Mild Solution

In this segment, we discuss the existence of mild solution for boundary value problem
(1). Throughout this paper, we assume that the resolvent operator {S(t), t > 0} is a
differential operator and function F is continuous in XH .

By the help of Lemma (2.3)(iii), we introduce the mild solution of (6) given by

x(t) = C1t+
1

Γβ

∫ t

0

(t− τ)β−1B−1F(τ, x(τ))dτ

+

∫ t

0

S ′(t− s)

(

C1s+
1

Γβ

∫ s

0

(s− τ)β−1B−1F(τ, x(τ))dτ

)

ds. (12)

For simplification, let N = max
t∈[0,1]

F(t, 0), R = ‖B−1‖, P = ‖B−1A‖.

Theorem 3.1 Let (H1)− (H4) hold with

δ = (1 + ‖φH‖L1)
(LR+ P )

|Λ|

[

c(1− ηβ+1)

Γ(β + 2)
−

εβ

Γ(β + 1)

]

< 1. (13)

Then there exists a mild solution of (1) on [0, 1].

Proof. Let Br = {x ∈ C : ‖x‖ 6 r} such that

r > (1 + ‖φH‖L1)

[

(Pr +R(Lr +N))

|Λ|

{

c(1− η1+β)

Γ(β + 2)
−

εβ

Γ(β + 1)

}

+
R(Lr +N)

Γ(β + 1)

]

. (14)

Introduce the map Φ : C → C by

Φx(t) = C1t+
1

Γβ

∫ t

0

(t− τ)β−1B−1F(τ, x(τ))dτ

+

∫ t

0

S ′(t− s)

(

C1s+
1

Γβ

∫ s

0

(s− τ)β−1B−1F(τ, x(τ))dτ

)

ds. (15)
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Decompose the map Φ into Φ1 and Φ2 on Br for t ∈ [0, 1] such that

Φ1x(t) =
t

Λ

{

c

Γβ

∫ 1

η

(

∫ s

0

(s− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ)ds

−
1

Γβ

∫ ε

0

(ε− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ

}

+

∫ t

0

S ′(t−s)

[

s

Λ

{

c

Γβ

∫ 1

η

(

∫ v

0

(v−τ)β−1(B−1Ax(τ)+B−1F(τ, x(τ)))dτ)dv

−
1

Γβ

∫ ε

0

(ε− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ

}]

ds.

Φ2x(t) =
1

Γβ

∫ t

0

(t− τ)β−1B−1F(τ, x(τ))dτ

+

∫ t

0

S ′(t− s)

(

1

Γβ

∫ s

0

(s− τ)β−1B−1F(τ, x(τ))dτ

)

ds.

Step 1. We show that Φ1x+Φ2y ∈ Br for every x, y ∈ Br, we have

‖Φ1x+Φ2y‖ 6 sup
t∈[0,1]

{

t

|Λ|

{

c

Γβ

∫ 1

η

(

∫ s

0

(s− τ)β−1(‖B−1A‖‖x(τ)‖

+‖B−1‖‖F(τ, x(τ)) −F(τ, 0) + F(τ, 0)‖)dτ)ds

−
1

Γβ

∫ ε

0

(ε− τ)β−1(‖B−1A‖‖x(τ)‖

+‖B−1‖‖F(τ, x(τ)) −F(τ, 0) + F(τ, 0)‖)dτ

}

+

∫ t

0

S ′(t− s)

[

s

|Λ|

{

c

Γβ

∫ 1

η

(

∫ v

0

(v − τ)β−1(‖B−1A‖‖x(τ)‖

+‖B−1‖F(τ, x(τ)) −F(τ, 0) + F(τ, 0)‖)dτ)dv

−
1

Γβ

∫ ε

0

(ε− τ)β−1(‖B−1A‖‖x(τ)‖

+‖B−1‖‖F(τ, x(τ)) −F(τ, 0) + F(τ, 0)‖)dτ

}]

ds

+
‖B−1‖

Γβ

∫ t

0

(t− τ)β−1‖F(τ, y(τ))−F(τ, 0) + F(τ, 0)‖dτ

+

∫ t

0

‖S ′(t− s)‖

(

‖B−1‖

Γβ

∫ s

0

(s− τ)β−1

‖F(τ, y(τ))−F(τ, 0) + F(τ, 0)‖dτ

)

ds

}

6 (1 + ‖φH‖L1)

[

(Pr +R(Lr +N))

|Λ|

{

c(1 − ηβ+1)

Γ(β + 2)
−

εβ

Γ(β + 1)

}

+
R(Lr +N)

Γ(β + 1)

]

6 r.

Thus Φ1x+Φ2y ∈ Br.
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Step 2. We show that Φ1 is a contraction. For x, y ∈ Br and t ∈ [0, 1], we have

‖Φ1x− Φ1y‖ 6 sup
t∈[0,1]

{

t

|Λ|

{

c

Γβ

∫ 1

η

(

∫ s

0

(s− τ)β−1(‖B−1A‖‖x(τ)− y(τ)‖

+‖B−1‖‖F(τ, x(τ)) −F(τ, y(τ))‖)dτ)ds

−
1

Γβ

∫ ε

0

(ε− τ)β−1(‖B−1A‖‖x(τ) − y(τ)‖

+‖B−1‖‖F(τ, x(τ)) −F(τ, y(τ))‖)dτ

}

+

∫ t

0

S ′(t− s)

[

s

|Λ|

{

c

Γβ

∫ 1

η

(

∫ v

0

(v − τ)β−1(‖B−1A‖‖x(τ)− y(τ)‖

+‖B−1‖F(τ, x(τ)) −F(τ, y(τ))‖)dτ)dv

−
1

Γβ

∫ ε

0

(ε− τ)β−1(‖B−1A‖‖x(τ) − y(τ)‖

+‖B−1‖‖F(τ, x(τ)) −F(τ, y(τ))‖)dτ

}]

ds

}

6 (1 + ‖φH‖L1)
(P +RL)

|Λ|

(

c(1− ηβ+1)

Γ(β + 2)
−

εβ

Γ(β + 1)

)

‖x− y‖

6 δ‖x− y‖.

By assumption, δ < 1 and therefore Φ1 is a contraction.
Step 3. Next, we prove that Φ2 is continuous and compact. The continuity of map Φ2

can be obtained from the continuity of F . Also for t ∈ [0, 1]

‖Φ2‖ 6 sup
t∈[0,1]

(

1

Γβ

∫ t

0

(t− τ)β−1‖B−1‖‖F(τ, x(τ))‖dτ

+

∫ t

0

‖S′(t− s)‖

(

1

Γβ

∫ s

0

(s− τ)β−1‖B−1‖‖F(τ, x(τ))‖dτ

)

ds

)

6 (1 + ‖φH‖L1)
R(Lr +N)

Γ(β + 1)
.

i.e. Φ2 is uniformly bounded Br. Now we show that the set {Φ2x(t) : x ∈ Br} is relatively
compact in Y for all t ∈ [0, 1]. Clearly the set {Φ2x(0) : x ∈ Br} is compact. Fix t ∈ (0, 1],
let δ be a real number satisfying 0 < δ < 1. For x ∈ Br, define the operator Φδ

2 by

Φδ
2x(t) =

1

Γβ

∫ t−δ

0

(t− τ)β−1B−1F(τ, x(τ))dτ

+

∫ t−δ

0

S′(t− s)

(

1

Γβ

∫ s

0

(s− τ)β−1B−1F(τ, x(τ))dτ

)

ds.

By assumption (H4), F is completely continuous, the set {Φδ
2x(t) : x ∈ Br} is precompact

in X , for every δ ∈ (0, 1]. Furthermore, for every x ∈ Br, we have

‖Φ2x(t)− Φδ
2x(t)‖ 6

1

Γβ

∫ t

t−δ

(t− τ)β−1‖B−1‖‖F(τ, x(τ))‖dτ

+

∫ t

t−δ

S ′(t− s)

(

1

Γβ

∫ s

0

(s− τ)β−1‖B−1‖‖F(τ, x(τ))‖dτ

)

ds.
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It shows that the precompact sets {Φδ
2x(t) : x ∈ Br} are arbitrary close to the set

{Φ2x(t) : x ∈ Br}. Hence the set {Φ2x(t) : x ∈ Br} is precompact in X .
Step 4. Now, we show that {Φ2x(t) : x ∈ Br} is equicontinuous. Clearly {Φ2x(t) : x ∈
Br} are equicontinuous at t = 0. For t < t+ h 6 1, h > 0, we have

‖Φ2x(t+ h)− Φ2x(t)‖ 6
1

Γβ

∥

∥

∥

∥

∫ t+h

0

(t+ h− τ)β−1B−1F(τ, x(τ))dτ

−

∫ t

0

(t− τ)β−1B−1F(τ, x(τ))dτ

∥

∥

∥

∥

+
1

Γβ

∥

∥

∥

∥

∫ t+h

0

S ′(t+ h− s)

∫ s

0

(s− τ)β−1B−1F(τ, x(τ))dτds

−

∫ t

0

S ′(t− s)

∫ s

0

(s− τ)β−1B−1F(τ, x(τ))dτds

∥

∥

∥

∥

6
1

Γβ

∫ t

0

[

(t+ h− τ)β−1 − (t− τ)β−1

]

‖B−1‖‖F(τ, x(τ))‖dτ

+
1

Γβ

∫ t+h

t

(t+ h− τ)β−1‖B−1‖‖F(τ, x(τ))‖dτ

+

∫ h

0

‖S ′(t+h−s)‖
1

Γβ

∫ s

0

(s−τ)β−1‖B−1‖‖F(τ, x(τ))‖dτds

+

∫ t

0

‖S ′(t− s)‖
‖B−1‖

Γβ

∥

∥

∥

∥

∫ s+h

0

(s+ h− τ)β−1F(τ, x(τ))dτ

−

∫ s

0

(s− τ)β−1F(τ, x(τ))dτ

∥

∥

∥

∥

ds.

Which tends to zero as h → 0, therefore the set {Φ2x(t) : x ∈ Br} is equicontinuous.
Thus Φ2 is relatively compact for t ∈ [0, 1]. By Arzela-Ascoli’s theorem Φ2 is compact.
Hence by Krasnoselskii fixed point theorem [32] there exists a fixed point x ∈ C such that
Φx = x which is a mild solution of the boundary value problem (1).

4 Example

Let X = L2(0, π), 1 < β 6 2 and t ∈ [0, 1]. Consider the following partial differential
equation with fractional derivative















∂β

∂tβ

(

w(t, x) − ∂2

∂x2w(t, x)

)

= ∂2

∂x2w(t, x) +
w(t,x)

1+w(t,x) ,

w(t, 0) = w(t, π) = 0,

w(0, x) = 0, w(ε, x) = c
∫ 1

η
w(t, s)ds.

(16)

Define the operators A : D(A) ⊂ X → X and B : D(B) ⊂ X → X by

Aw = w′′, Bw = w − w′′,

where

D(A) = D(B) = {w ∈ X,w,w′are absolutely continuous, w′′ ∈ X,w(0) = w(π) = 0}.
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Then A and B can be written as

Aw =

∞
∑

n=1

n2(w,wn)wn, w ∈ D(A),

Bw =
∞
∑

n=1

(1 + n2)(w,wn)wn, w ∈ D(B),

where wn(x) =
√

2/π sinnx, n = 1, 2, . . ., is the original set of vectors A. Moreover, we
have

B−1w =

∞
∑

n=1

1

1 + n2
(w,wn)wn,

Hw = B−1Aw =

∞
∑

n=1

−n2

1 + n2
(w,wn)wn.

The equation (16) can be reformulated as the following Sobolev type fractional differential
equation with nonlocal integral boundary condition

{

Dβ(Bw(t)) = Aw(t) + F(t, w(t)), 1 < β 6 2, t ∈ (0, 1),

w(0) = 0, w(ε) = c
∫ 1

η
w(s)ds, 0 < ε < η < 1.

(17)

Clearly all the assumptions (H1)− (H4) are satisfied.

Theorem 4.1 Suppose (H1) − (H4) hold and A generates a differential resolvent
operator {S(t)} with

δ = (1 + ‖φH‖L1)
(LR+ P )

|Λ|

[

c(1− ηβ+1)

Γ(β + 2)
−

εβ

Γ(β + 1)

]

< 1.

Then the problem (17) has a solution.
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