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Abstract: In this paper we are going to introduce the theory of capacity in Musielak-
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Introduction

The theory of capacity and non-linear potential in the Lebesgue space Lp studied by
Maz’ya and Khavin in [10] and Meyers in [11] introduced the concept of capacity and
non-linear potential in these spaces and provided very rich applications in functional
analysis, harmonic analysis and the theory of partial differential equations. The previous
concept was generalised by N. Aissaoui and A. Benkirane in [2] and [3], by replacing Lp

by Orlicz space.
The main purpose of this paper is to study the theory of capacity and non-linear

potential in Musielak-Orlicz space. Our results generalize those of N. Aissaoui and A.
Benkirane in the case of Orlicz spaces [see [3] and [2]]. Let us note that this gener-
alization was touched upon by Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno and
Tetsu Shimomura in [9] [see the third paragraph], but we are going to deal with another
method.
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The present paper is organized as follows. In the first section, we recall the main
results for the Musielak-Orlicz spaces and Radon measure spaces. In the second section,
we define the capacity Ck,ϕ in the Musielak-Orlicz spaces, give some of its properties,
introduce a Dk,ϕ capacity in terms of Radon measures and give its relations with Ck,ϕ.
In the third section, we introduce the theory of the non-linear potential and give some
of its properties.

1 Preliminaries

1.1 Musielak-Orlicz function

Let Ω be an open set in R
N and let ϕ be a real-valued function defined in Ω × R

+ and
satisfying the following conditions:
a) ϕ(x, .) is an N-function [convex, increasing, continuous, ϕ(x, 0) = 0, ϕ(x, t) > 0 ∀t > 0
ϕ(x, t)

t
→ 0 as t→ 0,

ϕ(x, t)

t
→ ∞ as t→ ∞].

b) ϕ(., t) is a measurable function.
A function ϕ(x, t), which satisfies the conditions a) and b) is called a Musielak-Orlicz

function. Equivalently, ϕ admits the representation:

ϕ(y, t) =

∫ t

0

a(y, τ)dτ , for all y ∈ Ω and t > 0, where a(y, .) : R+ → R
+ is non-

decreasing, right continuous, for all y ∈ Ω: a(y, 0) = 0,
a(y, t) > 0 for t¿0 and lim

t→+∞
a(y, t) = +∞.

The function a(y, .) is called the derivative of ϕ(y, .). The Musielak-Orlicz function
ϕ is said to satisfy the ∆2-condition if there exists K > 2 such that

ϕ(y, 2t) 6 Kϕ(y, t), for all y ∈ Ω and t > 0.

The smallest K is called the ∆2-constant of ϕ. When the last inequality holds only for
t > some t0 > 0 then ϕ is said to satisfy the ∆2-condition near infinity.

1.2 Musielak-Orlicz spaces

Let ϕ be a Musielak-Orlicz function, we define the functional

̺ϕ,Ω (u) =

∫
Ω

ϕ(x, |u(x)|)dx,

where u : Ω 7→ R is a Lebesgue measurable function.
In the following the measurability of a function u : Ω 7→ R means the Lebesgue

measurability.
The set

Kϕ(Ω) = {u : Ω 7→ R, measurable/̺ϕ,Ω (u) <∞}

is called the Musielak-Orlicz class.
The Musielak-Orlicz space Lϕ(Ω) is the vector space generated by Kϕ(Ω), that is

Lϕ(Ω) is the smallest linear space containing the set Kϕ(Ω). Equivalently:

Lϕ(Ω) = {u : Ω 7→ R, measurable/̺ϕ,Ω (
u

λ
) < +∞ for some λ > 0}.

Kϕ(Ω) is a convex subset of Lϕ(Ω). If Ω = R
N then Lϕ(R

N ) is denoted by Lϕ.
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Let
ψ(x, s) = sup{st− ϕ(x, t) /t > 0}.

That is, ψ is the Musielak-Orlicz function complementary to ϕ(x, t) in the sense of Young
with respect to the variable s. For two complementary Musielak-Orlicz functions ϕ and
ψ the following inequality is called the Young inequality [12]

t.s 6 ϕ(x, t) + ψ(x, s) for all s, t > 0 , x ∈ Ω. (1)

If s = a(x, t) then

t.a(x, t) = ϕ(x, t) + ψ(x, a(x, t)) for all t > 0 , x ∈ Ω. (2)

In the space Lϕ(Ω) we define the following two norms:

||u||ϕ,Ω= inf{λ > 0 : ̺ϕ,Ω(
u

λ
) 6 1}

called the Luxemburg norm and the so-called Orlicz norm by :

|||u|||ϕ,Ω = sup
||v||ψ,Ω61

∫
Ω

|u(x)v(x)|dx,

where ψ is the Musielak-Orlicz function complementary to ϕ. These two norms are
equivalent [12].

For two complementary Musielak-Orlicz functions ϕ and ψ let u ∈ Lϕ(Ω) and v ∈
Lψ(Ω), we have the Hölder inequality [12]

|

∫
Ω

u(x)v(x)dx| 6 ||u||ϕ,Ω |||v|||ψ ,Ω . (3)

In Lϕ(Ω) we have the relation with the norm and the modular:

|||u|||ϕ,Ω6 ̺ϕ,Ω (u) + 1, (4)

||u||ϕ,Ω 6 ̺ϕ,Ω (u) , if ||u||ϕ,Ω> 1, (5)

||u||ϕ,Ω > ̺ϕ,Ω (u) , if ||u||ϕ,Ω6 1. (6)

If Ω = R
N then two norms ||.||ϕ,RN and |||.|||ϕ,RN are denoted respectively by ||.||ϕ. and

|||.|||ϕ.
We say that a sequence of function un ∈ Lϕ(Ω) is modular convergent to u ∈ Lϕ(Ω)

if there exists a constant k ¿ 0 such that

lim
n→+∞

̺ϕ,Ω (
un − u

k
) = 0.

If ϕ satisfies the △2 condition, then modular convergence coincides with norm conver-
gence.

The closure in Lϕ(Ω) of the set of bounded measurable functions with compact sup-
port in Ω̄ is denoted by Eϕ(Ω) and it is a separable space. The equality Kϕ(Ω) =
Eϕ(Ω) = Lϕ(Ω) holds if and only if ϕ satisfies the △2 condition, for all t or for large t,
according to whether Ω has infinite measure or not. The dual of Eϕ(Ω) can be identi-

fied with Lψ(Ω) by means of the pairing

∫
Ω

u(x)v(x)dx and the dual norm on Lψ(Ω) is

equivalent to ||.||ψ . The space Lϕ(Ω) is reflexive if and only if ϕ and ψ satisfy the △2

condition, for all t or for large t according to whether Ω has infinite measure or not.
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Lemma 1.1 [8] Let ϕ be a Musielak-Orlicz function and fn, f, g be measurable func-
tions.
(a) If fn −→ f , almost everywhere , then ̺ϕ,Ω (f) 6 lim inf

n→+∞
̺ϕ,Ω (fn).

(b) If |fn| ր |f |, almost everywhere, then ̺ϕ,Ω (f) = lim
n→+∞

̺ϕ,Ω (fn).

(c) If fn −→ f , almost everywhere, |fn| 6 |g|, almost everywhere and ̺ϕ,Ω (λg) <∞
for every λ > 0, then fn → f strongly in Lϕ(Ω).

Theorem 1.1 [8] Let ϕ be a Musielak-Orlicz function.
(a) ||f ||ϕ,Ω= || |f | ||ϕ,Ω for all f ∈ Lϕ(Ω).
(b) If f ∈ Lϕ(Ω), g is a measurable function, and 0 6 |g| 6 |f | almost everywhere, then:

g ∈ Lϕ(Ω) and ||g||ϕ,Ω6 ||f ||ϕ,Ω .

(c) If fn → f almost everywhere, then: ||f ||ϕ,Ω6 lim inf
n→+∞

||fn||ϕ,Ω .

(d) If |fn| ր |f | almost everywhere with fn ∈ Lϕ(Ω) and sup
n

||fn||ϕ,Ω<∞ then:

f ∈ Lϕ(Ω) and ||fn||ϕ,Ωր ||f ||ϕ,Ω .

Theorem 1.2 [5] Let ϕ and ψ be two complementary Musielak-Orlicz functions.

Assume that there exists a constant A > 0 such that for all x, y ∈ Ω : |x − y| 6
1

2
we

have:
ϕ(x, t)

ϕ(y, t)
6 t

A

log( 1
|x−y|

)
(7)

for all t ≥ 1. If D ⊂ Ω is a bounded measurable set, then

∫
D

ϕ(x, 1)dx <∞.

ψ satisfies the following condition:

∃C > 0 : ψ(x, 1) 6 C, almost everywhere in Ω. (8)

Under the previous conditions, with Ω = R
N ; C∞

0 (RN ) is dense in Lϕ(R
N ) with respect

to the modular topology.

1.3 Measures space

M designates the vector space of Radon measures. M is endowed with the weak topology
for which a sequence (µn) converges weakly to µ, if for any continuous function f with
compact support

lim
n→+∞

∫
fdµn =

∫
fdµ.

M+ is the cone of positive elements of M.
For all measures µ <∞, for all X ⊂ R

N , the variation of µ is defined by:

||µ||(X) = sup{
n∑
1

|µ(Xi)| : (Xi)i=1...n is an X partiton}.

||µ||(RN ) = ||µ|| is called the total variation of µ. M1 designates the Banach space
of measures, endowed with the norm total variation. M+

1 designates the subset of M1

consisting of positive measures.

Definition 1.1 Let µ ∈M+
1 . We say that µ is concentrated on X if µ(Y ) = 0 for all

µ−measurable set Y , such that Y ⊂ Xc.
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2 Capacity in Musielak-Orlicz Space

2.1 Ck,ϕ-capacity

Lemma 2.1 Let Ω be an open set in R
N and ϕ be a Musielak-Orlicz function such

that

ϕ(y, t) =

∫ t

0

a(y, τ)dτ, ∀y ∈ Ω and t > 0.

Let u : Ω → R be measurable function and α > 0, we define a measurable function
g : Ω → R so that

g(y) = a(y,
|u(y)|

2α
), ∀y ∈ Ω.

If (
u

α
) ∈ Kϕ(Ω) then g ∈ Kψ(Ω), where ψ is the Musielak-Orlicz function comple-

mentary to ϕ.

Proof. For all y ∈ Ω and t > O : ϕ(y, 2t) =

∫ 2t

0

a(y, τ)dτ >

∫ 2t

t

a(y, τ)dτ.

Hence ϕ(y, 2t) > ta(y, t), thus for all y ∈ Ω : ϕ(y,
|u(y)|

α
) >

|u(y)|

2α
a(y,

|u(y)|

2α
).

On the other hand, we have:
|u(y)|

2α
a(y,

|u(y)|

2α
)− ϕ(y,

|u(y)|

2α
) = ψ(y, a(y,

|u(y)|

2α
)).

Therefore, ψ(y, a(y,
|u(y)|

2α
)) 6 ϕ(y,

|u(y)|

α
)− ϕ(y,

|u(y)|

2α
), this implies that

∫
Ω

ψ(y, a(y,
|u(y)|

2α
))dy 6

∫
Ω

ϕ(y,
|u(y)|

α
)dy −

∫
Ω

ϕ(y,
|u(y)|

2α
)dy,

then
̺ψ,Ω (g) 6 ̺ϕ,Ω (

u

α
)− ̺ϕ,Ω (

u

2α
).

Since ̺ϕ,Ω (
u

2α
) 6

1

2
̺ϕ,Ω (

u

α
) and ̺ϕ,Ω (

u

α
) <∞, the proof is complete.

Lemma 2.2 If (fn) is a sequence in Lϕ(Ω) such that for all n ∈ N, fn > 0, then

|| sup
n
fn||ϕ,Ω 6 ||

∑
n

fn||ϕ,Ω6
∑
n

||fn||ϕ,Ω .

Proof. Since 0 6 sup
n
fn 6

∑
n

fn, thus || sup
n
fn||ϕ,Ω6 ||

∑
n

fn||ϕ,Ω .

Let gn =

n∑
k=0

fk and f =
∑
n

fn, we have

gn∑
n ||fn||ϕ,Ω

ր
f∑

n ||fn||ϕ,Ω
almost everywhere.

By Lemma 1.1, we obtain

̺ϕ,Ω (
f∑

n ||fn||ϕ,Ω
) = lim

n→+∞
̺ϕ,Ω (

gn∑
n ||fn||ϕ,Ω

) 6 lim
n→+∞

̺ϕ,Ω (
gn

||gn||ϕ,Ω
) 6 1.
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Then

||
f∑

n ||fn||ϕ,Ω
||ϕ,Ω 6 1.

Therefore,

||
∑
n

fn||ϕ,Ω6
∑
n

||fn||ϕ,Ω .

Lemma 2.3 Let ϕ be a Musielak-Orlicz function, which satisfies the △2 condition,
and such that

ϕ(y, t) =

∫ t

0

a(y, τ)dτ, for all y ∈ Ω and t > 0.

Let f ∈ Lϕ(Ω), such that f > 0, and ||f ||ϕ,Ω 6= 0.
We define a measurable function g : Ω → R such that for all y ∈ Ω; g(y) =

a(y,
f(y)

||f ||ϕ,Ω
). Then

∫
f(y)g(y)dy = ||f ||ϕ,Ω |||g|||ψ,Ω .

Proof. By Lemma 2.1, we have g ∈ Lψ(Ω) and by the Hölder inequality we have

∫
Ω

f(x)g(x)dx 6 ||f ||ϕ,Ω |||g|||ψ,Ω .

For the opposite inequality, let h =
f

||f ||ϕ,Ω
, and v ∈ Lϕ(Ω), such that ||v||ϕ,Ω6 1.

For all y ∈ Ω, we have

g(y)h(y) = ϕ(y, h(y)) + ψ(y, g(y))

and
g(y)v(y) 6 ϕ(y, v(y)) + ψ(y, g(y)).

Hence for all y ∈ Ω:

g(y)v(y) 6 g(y)h(y)− ϕ(y, h(y)) + ϕ(y, v(y)).

Then ∫
Ω

g(y)v(y)dy 6

∫
Ω

g(y)h(y)dy −

∫
Ω

ϕ(y, h(y))dy +

∫
Ω

ϕ(y, v(y))dy.

Thus, ∫
Ω

g(y)v(y)dy 6

∫
Ω

g(y)h(y)dy − ̺ϕ,Ω (h) + ̺ϕ,Ω (v).

We have ̺ϕ,Ω (v) 6 1. On the other hand ϕ satisfies the △2 condition, then, ̺ϕ,Ω is
a continuous modular[see [8] Lemma 2.4.3 ]. We have ||h||ϕ,Ω= 1, then ̺ϕ,Ω (h) = 1
[see [8] Lemma 2.1.14].

Thus, ∫
g(y)v(y)dy 6

∫
g(y)h(y)dy

implies

sup
||v||ϕ,Ω61

∫
g(y)v(y)dy 6

∫
g(y)h(y)dy.
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Then

|||g|||ψ,Ω ||f ||ϕ,Ω 6

∫
f(y)g(y)dy.

Definition 2.1 Let T be a class of Borel sets in R
N , and a function C : T → [0,+∞].

1) C is called a capacity if the following axioms are satisfied:
i) C(∅) = 0.
ii) X ⊂ Y ⇒ C(X) 6 C(Y ), for all X and Y in T.
iii) For all sequences (Xn) ⊂ T :

C(
⋃
n

Xn) 6
∑
n

C(Xn).

2) C is called an outer capacity if for all X ∈ T :

C(X) = inf{C(O) : O ⊃ X, O is open}.

3) C is called an interior capacity if for all X ⊂ T :

C(X) = sup{C(K) : K ⊂ X, K is compact}.

4) A property, that holds true except perhaps on a set of zero capacity is said to be true
C-quasi-everywhere, (C-q.e).
5) f and (fn) are real-valued finite functions C-q.e. We say that (fn) converges to f
in C-capacity if:

∀ε > 0, lim
n→+∞

C({x : |fn(x) − f(x)| > ε}) = 0.

6) f and (fn) are real-valued function finite C-q.e. We say that (fn) converges to f
C-quasi- uniformly, (C-q.u) if

(∀ε > 0), (∃ X ∈ T ) : C(X) < ε and (fn) converges to f uniformly on Xc.

Remark 2.1 In the following Ω = R
n, ϕ is a Musielak-Orlicz function, and L+

ϕ =
{ f ∈ Lϕ / f > 0}.

Theorem 2.1 Let k be a positive integrable function on R
N . For all X ⊂ R

N , we
put Ck,ϕ (X) = inf{||f ||ϕ : f ∈ Lϕ and k ∗ f > 1 on X}, where k ∗ f is the convolution
of k and f. Ck,ϕ is an outer capacity.

Remark 2.2 Let Bk,ϕ (X) = inf{||f ||ϕ : f ∈ L+
ϕ and k ∗ f > 1 on X}, then

Ck,ϕ (X) = Bk,ϕ (X).

Indeed, it is obvious that Ck,ϕ (X) 6 Bk,ϕ (X). On the other hand, let f ∈ Lϕ, then
|f | ∈ L+

ϕ and if k ∗ f > 1 on X , then k ∗ |f | > 1 on X. Thus Bk,ϕ (X) 6 ||f ||ϕ; and
therefore Bk,ϕ (X) 6 Ck,ϕ (X).
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Proof of Theorem 2.1. It is obvious that Ck,ϕ (∅) = 0 and Ck,ϕ (X) 6 Ck,ϕ (Y )

if X ⊂ Y. Let (Xn) ⊂ T , so that
∑
i

Ck,ϕ (Xi) < +∞, then (∀i ∈ N) Ck,ϕ (Xi) < +∞.

Thus, (∀i ∈ N)(∀ε > 0), (∃fi ∈ L+
ϕ ) so that k∗fi > 1 on Xi and ||fi||ϕ 6 Ck,ϕ (Xi)+

ε

2i
.

Let f = sup
i

fi. By Lemma 2.2, we have:

||f ||ϕ 6
∑
i

||fi||ϕ.

We can write
||f ||ϕ 6

∑
i

Ck,ϕ (Xi) + ε,

which implies that, f ∈ Lϕ.

Since k ∗ f > 1 on
⋃
i

Xi,

Ck,ϕ (
⋃
i

Xi) 6
∑
i

Ck,ϕ (Xi) + ε, ∀ε > 0.

Hence,

Ck,ϕ (
⋃
i

Xi) 6
∑
i

Ck,ϕ (Xi).

It remains to show that Ck,ϕ is outer. Let X ⊂ R
N , we have:

Ck,ϕ (X) 6 inf{Ck,ϕ (O) : O ⊃ X, O is open}.

For the reverse inequality, if Ck,ϕ (X) = +∞ there is nothing to show.
Assume that Ck,ϕ (X) < +∞, and let 0 < ε < 1, then ∃ g ∈ L+

ϕ so that k∗g > 1 on X
and ||g||ϕ 6 Ck,ϕ (X) + ε.

Let gε =
g

1− ε
and Oε = {x : (k ∗ gε) > 1}, thus Oε is open and

∀x ∈ X ; (k ∗ gε) >
1

1− ε
> 1.

Hence, X ⊂ Oε. On the other hand, we have Ck,ϕ (Oε) 6 ||gε||ϕ, and we deduce that

Ck,ϕ (Oε) 6
1

1− ε
||g||ϕ 6

1

1− ε
[Ck,ϕ (X) + ε].

Therefore,

inf{C(O) : O ⊃ X, O isopen} 6
1

1− ε
[Ck,ϕ (X) + ε], ∀ε > 0.

Thus,
inf{C(O) : O ⊃ X, O isopen} 6 Ck,ϕ (X).
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Theorem 2.2 1) If there exists f ∈ Lϕ such that |k ∗ f | = +∞ on X, then
Ck,ϕ (X) = 0.
2) If Ck,ϕ (X) = 0 then there exists f ∈ L+

ϕ such that k ∗ f = +∞ on X.

Proof. 1) Let f ∈ Lϕ such that |k ∗ f | = +∞ on X , then ∀α > 0, |k ∗ f | > α on X.

Then Ck,ϕ (X) 6
||f ||ϕ
α

, ∀α > 0; this means that Ck,ϕ (X) = 0.

2) If Ck,ϕ (X) = 0 then ∀i ∈ N, ∃fi ∈ L+
ϕ : k ∗ fi > 1 on X and ||fi||ϕ 6 2−i.

Let f =
∑
i

fi. By Lemma 2.2, ||f ||ϕ 6
∑
i

||fi||ϕ, then ||f ||ϕ < +∞.

We deduce that f ∈ L+
ϕ and k ∗ f = +∞ on X.

Theorem 2.3 Consider the following propositions :
i) fn −→ f strongly in Lϕ.
ii) k ∗ fn −→ k ∗ f , Ck,ϕ−capacity.
iii) There is a subsequence (fnj )j such that : k ∗ fnj −→ k ∗ f Ck,ϕ−q.u.
iv) k ∗ fnj −→ k ∗ f in Ck,ϕ−q.e.
We have

i) ⇒ ii) ⇒ iii) ⇒ iv).

Proof. We show i) ⇒ ii).
By Theorem 2.2, we have k ∗ f and k ∗ fn are finite Ck,ϕ−q.e, ∀n.
Let ε > 0; then

Ck,ϕ ({x : |k ∗ fn − k ∗ f |(x) > ε}) 6
||fn − f ||ϕ

ε
.

We show ii) ⇒ iii).
Let ε > 0 ∃ fnj such that

Ck,ϕ ({x : |k ∗ fnj − k ∗ f |(x) > 2−j}) < ε.2−j .

We put

Ej = {x : |k ∗ fnj − k ∗ f |(x) > 2−j} and Gm =
⋃
j>m

Ej .

We have Ck,ϕ (Gm) 6
∑
j>m

ε.2−j < ε.

On the other hand :

∀x ∈ (Gm)c, ∀ j > m : |k ∗ fnj − k ∗ f |(x) 6 2−j.

Thus k ∗ fnj −→ k ∗ f Ck,ϕ−q.u.

We show iii) ⇒ iv). We have ∀j ∈ N, ∃Xj : Ck,ϕ (Xj) 6
1

j
and k ∗ fnj −→

k ∗ f on (Xj)
c. We put X =

⋂
j

Xj , then Ck,ϕ (X) = 0 and k ∗ fnj −→ k ∗ f on Xc.

Theorem 2.4 Let ϕ be a Musielak-Orlicz function that satisfies the △2 condition,

and (fn) be a sequence in Lϕ such that
∑
n

|fn| ∈ Lϕ. Then,

∑
n

(k ∗ fn) = k ∗ (
∑
n

fn) Ck,ϕ−q.e.
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Proof. First step: Assume that fn > 0 ∀n ∈ N, and let gn =
n∑
i=1

fi and f =
∑
n

fn.

We have gn → f almost everywhere and gn 6 f. On the other hand, ̺ϕ(λf) <
∞ ∀λ > 0 because f ∈ Lϕ and ϕ satisfies the △2 condition [see [8] paragraph 2.5].

By (c) of Lemma 1.1 we have

gn → f strongly in Lϕ.

Theorem 2.3 implies that there is a subsequence (gni) such that k ∗gni → k ∗f , Ck,ϕ-q.e.
Since fn > 0, ∀n ∈ N k ∗ gn → k ∗ f , Ck,ϕ-q.e.

Second step: If fn has any sign, then
∑
n

f+
n and

∑
n

f−
n are in Lϕ because

|
∑
n

f+
n | 6

∑
n

|fn| , |
∑
n

f−
n | 6

∑
n

|fn| and
∑
n

|fn| ∈ Lϕ.

By the first step the result follows.

Theorem 2.5 Let (Kn) be a decreasing sequence of compact and K =
⋂
n

Kn. Then

lim
n→+∞

Ck,ϕ (Kn) = Ck,ϕ (K).

Proof. First, we observe that Ck,ϕ (K) 6 lim
n→+∞

Ck,ϕ (Kn). On the other hand, let

O be an open set containing K. By the compactness of K, Ki ⊂ O for all sufficiently
large i. Therefore lim

n→+∞
Ck,ϕ (Kn) 6 Ck,ϕ (O), and since Ck,ϕ is an outer capacity, we

obtain the claim by taking infimum over open set O containing K.

Theorem 2.6 Let ϕ be a Musielak-Orlicz function, uniformly convex that satisfies
the △2 condition. If fn , f ∈ Lϕ such that fn ⇀ f weakly in Lϕ, then:

lim inf(k ∗ fn) 6 (k ∗ f) 6 lim sup(k ∗ fn) Ck,ϕ−q.e.

Proof. (Lϕ , ||.||) is uniformly convex therefore reflexive. By the Banach-Saks
theorem, there is a subsequence denoted again by (fn) such that the sequence

gn =
1

n

n∑
i=1

fi converges to f strongly in Lϕ. By Theorem 2.3, there is a subsequence of

(gn) denoted again by (gn) such that

lim
n→+∞

(k ∗ gn) = (k ∗ f) Ck,ϕ−q.e.

On the other hand,
lim inf(k ∗ fn) 6 lim

n→+∞
(k ∗ gn) .

Therefore,
lim

n→+∞
(k ∗ fn) 6 (k ∗ f) Ck,ϕ−q.e.

For the second inequality, it suffices to replace fn by (−fn) in the first inequality.

Theorem 2.7 Let ϕ be a Musielak-Orlicz function, uniformly convex that satisfies

the △2 condition, (Xn) be an increasing sequence of sets and X =
⋃
n

Xn. Then

lim
n→+∞

Ck,ϕ (Xn) = Ck,ϕ (X).
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Proof. We have lim
n→+∞

Ck,ϕ (Xn) 6 Ck,ϕ (X). For the reverse inequality, if

Ck,ϕ (X) = +∞, there is nothing to show.

Assuming that Ck,ϕ (X) < +∞, we have

∀n ∈ N, ∃fn ∈ L+
ϕ : k ∗ fn > 1 on Xn and ||fn||ϕ 6 Ck,ϕ (Xn) +

1

n
.

Thus, (fn) is a bounded sequence in Lϕ.

On the other hand, Lϕ is uniformly convex, then it is reflexive because ϕ is uniformly
convex and satisfies the △2 condition, [see [8] Remark 2.4.15]. Hence there exists a
subsequence which is denoted again by (fn), and converges weakly to a function f ∈ Lϕ.
Then by Theorem 2.6,

∀n ∈ N : k ∗ f > 1 on Xn, Ck,ϕ−q.e.

Therefore,

k ∗ f > 1 on X, Ck,ϕ−q.e.

Let Y be a subset of X where k ∗ f > 1, then Ck,ϕ (X) = Ck,ϕ (Y ). On the other
hand we know that

ϕ(y, t) =

∫ t

0

a(y, τ)dτ, for all y ∈ RN and t > 0.

Let the function g : RN → R be defined by g(y) = a(y,
|f(y)|

||f ||ϕ
) for all y ∈ R

N .

By Lemma 2.1, g ∈ Lψ, and since ϕ satisfies the △2 condition, we have Lψ = (Lϕ)
∗.

Thus, ∫
fn(y)g(y)dy →

∫
f(y)g(y)dy.

By Lemma 2.3, we have ∫
f(y)g(y)dy = ||f ||ϕ|||g|||ψ.

By the Hölder inequality we have:

∫
fn(y)g(y)dy ≤ ||fn||ϕ|||g|||ψ.

Therefore,

||f ||ϕ 6 lim
n→+∞

||fn||ϕ 6 lim
n→+∞

(Ck,ϕ (Xn) +
1

n
).

Thus,

Ck,ϕ (X) 6 lim
n→+∞

Ck,ϕ (Xn).

Corollary 2.1 Let ϕ be a Musielak-Orlicz function, uniformly convex, that satisfies
the △2 condition. Let En ⊂ R

N , then Ck,ϕ (lim inf En) 6 lim inf Ck,ϕ (En).
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Proof. Let E = lim inf En , we have E =
⋃
n

(
⋂
i>n

Ei).

We putGn =
⋂
i>n

Ei. Thus a sequence (Gn) is increasing and by Theorem 2.7, Ck,ϕ (E) =

lim
n
Ck,ϕ (Gn). On the other hand, Ck,ϕ is increasing, then Ck,ϕ (Gn) 6 Ck,ϕ (En); there-

fore
Ck,ϕ (E) 6 lim inf Ck,ϕ (En).

Theorem 2.8 Let ϕ be a Musielak-Orlicz function which satisfies the assumptions
of Theorem 1.2. If ϕ satisfies the △2 condition, then for each f ∈ Lϕ, there is a Ck,ϕ-
quasicontinuous function g ∈ Lϕ such that k ∗ f = g Ck,ϕ−q.e.

Proof. Let f ∈ Lϕ, by Theorem 1.2, there exists a sequence (fn) in C
∞
0 (RN ) such

that fn −→ f in Lϕ. By Theorem 2.3, there exists a subsequence of (fn) denoted again
by (fn) such that

k ∗ fn −→ k ∗ f Cϕ − q.u.

Since k is integrable function and fn is continuous ∀n, then k ∗ fn is continuous. Thus,
the proof is complete.

Definition 2.2 In the terminology of Choquet, C is called a capacity if it satisfies
the following four properties:
i) C(∅) = 0.
ii) C is increasing.

iii) If (En) is an increasing sequence of sets, then sup
n
C(Xn) = C(

⋃
n

Xn).

iv) If (Kn) is a decreasing sequence of compacts, then inf
n
C(Kn) = C(

⋂
n

Kn).

Remark 2.3 Let ϕ be a Musielak-Orlicz function, uniformly convex, that satisfies
the △2 condition. By Theorems 2.1, 2.5 and 2.7 Ck,ϕ is a capacity, in the sense of
Choquet.

Definition 2.3 Let C be a capacity in the sense of Choquet, and X ⊂ R
N .

X is called capacitable if

C(X) = sup{C(K) : K ⊂ X, K iscompact}.

Theorem 2.9 Let ϕ be a Musielak-Orlicz function, uniformly convex that satisfies
the △2 condition. Then all analytic sets are Ck,ϕ- capacitable .

Proof. It is an immediate consequence of Choquet theorem [7].

2.2 Capacity in terms of measure

Theorem 2.10 Let ϕ be a Musielak-Orlicz function, k be a positive integrable func-
tion on R, and X be a µ-measurable set, for all positive measures µ. We put
Dk,ϕ (X) = sup{||µ|| : µ ∈M+

1 , µ is concentrated on X and ||k ∗ µ||ψ 6 1}

where (k ∗ µ)(x) =

∫
k(x− y)dµ(y). Then, Dk,ϕ is an interior capacity.
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Proof. It is clear that Dk,ϕ (∅) = 0 and Dk,ϕ (X) 6 Dk,ϕ (Y ) if X ⊂ Y.
Let µ ∈ M+

1 , (Xn) be a sequence of µ-measurable sets and µn = µ|Xn be defined by

µn(Y ) = µ(Xn ∩ Y ), for all µ−measurable set Y.

First we assume that the Xn are pairwise disjoint, then

µ(
⋃
n

Xn) =
∑
n

µ(Xn).

If µ is concentrated on
⋃
n

Xn and ||k∗µ||ψ 6 1, then ∀n; µn ∈M+
1 ; µn is concentrated

on Xn and ||k ∗ µn||ψ 6 1.
On the other hand, we have

||µ|| =
∑
n

||µn|| 6
∑
n

Dk,ϕ (Xn).

Thus,

Dk,ϕ (
⋃
n

Xn) 6
∑
n

Dk,ϕ (Xn).

If the Xn are not pairwise disjoint, then by the first case and the fact that Dk,ϕ is
increasing, we have

Dk,ϕ (
⋃
n

Xn) 6
∑
n

Dk,ϕ (Xn).

It remains to show that Dk,ϕ is interior.
By monotonicity we have

sup{Dk,ϕ (K) : K ⊂ X, K compact} 6 Dk,ϕ (X).

Let µ ∈M+
1 andX be a µ-measurable set such that µ is concentrated on X and ||k∗µ||ψ 6

1.
Let a compact K be such that K ⊂ X, then µ|K ∈ M+

1 , µ|K is concentrated on K and
||k ∗ µ|K ||ψ 6 1. Therefore,

||µ|K ||ψ 6 Dk,ϕ (K).

On the other hand,

sup{||µ \K || : K ⊂ X, K is compact} = ||µ||.

Thus,
Dk,ϕ (X) 6 sup{Dk,ϕ (K) : K ⊂ X, K iscompact}.

Theorem 2.11 1) D∗
k,ϕ is the outer capacity associated with Dk,ϕ, defined by:

D∗
k,ϕ (X) = inf{ Dk,ϕ (O) : O isopen and X ⊂ O}.

Then,
D∗
k,ϕ (X) = Ck,ϕ (X).

2) If ϕ is a Musielak-Orlicz function, uniformly convex that satisfies the △2 condition,
then for all analytic set X we have:

Dk,ϕ (X) = Ck,ϕ (X).
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Proof. It is the same as that given in [2], Theorem 11.

Theorem 2.12 Let ϕ be a Musielak-Orlicz function.
Let K be a compact of RN . The following assertions are equivalents.
1)Ck,ϕ (K) = ∞.
2) D∗

k,ϕ (K) = ∞.
3) Dk,ϕ (K) = ∞.
4) There exists x0 ∈ K such that k(x0 − y) = 0 almost everywhere.

Proof. It is the same as that given in [3], Theorem 5.

3 Non-linear Potential in Musielak-Orlicz Space

Let ϕ be a Musielak-Orlicz function. In this section, we propose to study the following
variational problem: let X be a subset of RN such that Ck,ϕ (X) < ∞. There exists
f0 ∈ L+

ϕ such that k ∗ f0 > 1 Ck,ϕ−q.e on X, and

||f0||ϕ = inf{||f ||ϕ : f ∈ L+
ϕ and k ∗ f > 1 Ck,ϕ−q.e on X}.

If f0 exists, it will be called a distribution function of X, and k ∗ f0 is called a potential
of X for the Ck,ϕ capacity.

Theorem 3.1 Let ϕ be a Musielak-Orlicz function and X be a subset of RN such
that Ck,ϕ (X) < ∞. ΩX = {f ∈ L+

ϕ : k ∗ f > 1 Ck,ϕ−q.e on X}, and Cl∗(ΩX) is the
closure of ΩX for the topology σ(Lϕ;Eψ). Then:
1) There exists a unique f0 ∈ L+

ϕ such that:

||f0||ϕ = inf{||f ||ϕ : f ∈ Cl∗(ΩX)}.

2) If ϕ and ψ satisfy the △2 condition, then there exits a unique f ∈ L+
ϕ such that:

i) k ∗ f > 1 on X and ||f ||ϕ = Ck,ϕ (X).
ii) If Ck,ϕ (X) > 0, then for all g ∈ Lϕ such that k ∗ g > 0 on X:

∫
a(x,

f(x)

||f ||ϕ
)g(x)dx > 0,

where the function a(x,.) is the derivative of the function ϕ(x, .).

Proof. 1) Let the function θ : Lϕ −→]−∞; +∞] be defined by θ(f) = ||f ||ϕ ; ∀f ∈ Lϕ.
θ is lower semi continuous on Lϕ, for topology σ(Lϕ;Eψ) and coercive. Then, there exists
a unique f0 ∈ L+

ϕ such that

||f0||ϕ = inf{||f ||ϕ : f ∈ Cl∗(ΩX)}.

2) i) Since ϕ and ψ satisfy the △2 condition, then the space Lϕ is reflexive. By Theorem
2.3, ΩX is strongly closed in Lϕ. On the other hand, ΩX is convex, then there exists a
unique f ∈ Lϕ such that:

||f ||ϕ = inf{||g||ϕ : g ∈ ΩX}.

Let Y be a subset of X where k ∗ f < 1. Then, Ck,ϕ (X) = Ck,ϕ (X −Y ). Since k ∗ f > 1
on X-Y, Ck,ϕ (X − Y ) 6 ||f ||ϕ.
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On the other hand, we have {g ∈ L+
ϕ : k ∗ g > 1 on X} ⊂ ΩX ; then ||f ||ϕ 6 Ck,ϕ (X).

ii) Let g ∈ Lϕ such that k ∗ g > 0 on X. Then for all t > 0:

k ∗ (f + tg) > 1 Ck,ϕ−q.e on X and (f + tg) ∈ Lϕ.

Then,

||f + tg||ϕ > ||f ||ϕ.

Therefore,

||
1

||f ||ϕ
(f + tg)||ϕ > 1.

Thus,

̺ϕ(
1

||f ||ϕ
(f + tg)) > 1.

On the other hand,

̺ϕ(
1

||f ||ϕ
f) 6 1.

Then, for all t > 0

∫
1

t
[ϕ(x,

|f + tg|(x)

||f ||ϕ
)− ϕ(x,

|f(x)|

||f ||ϕ
)]dx > 0.

Let c(x, t) = ϕ(x,
|f + tg|(x)

||f ||ϕ
). Then, the function x 7−→ c(x, t) is in L1 for all t ∈ R.

On the other hand,

∂c

∂t
(x, t) = a(x,

|f + tg|(x)

||f ||ϕ
).(

g(x)

||f ||ϕ
).sng(f + tg)(x).

For 0 < t < 1 we have:

|
∂c

∂t
(x, t)| 6 a(x,

|f + g|(x)

||f ||ϕ
).(

g(x)

||f ||ϕ
).

By Lemma 2.1, the function: x −→ a(x,
|f + g|(x)

||f ||ϕ
) is in Lψ.

Then the function: x 7→ a(x,
|f + g|(x)

||f ||ϕ
).(

g(x)

||f ||ϕ
) is in L1.

By Lebesgue’s theorem

lim
t→0+

∫
1

t
[ϕ(x,

|f + tg|(x)

||f ||ϕ
)− ϕ(x,

|f(x)|

||f ||ϕ
)]dx =

1

||f ||ϕ

∫
a(x,

|f(x)|

||f ||ϕ
)dx > 0.

Remark 3.1 Under the assumptions of Theorem 3.1, 2) ii), if Ck,ϕ (X) > 0, then
for all g ∈ Lϕ such that k ∗ g = 0 on X:

∫
a(x,

f(x)

||f ||ϕ
)g(x)dx = 0.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (3) (2016) 276–293 291

Theorem 3.2 Let ϕ be a Musielak-Orlicz function such that ϕ and ψ satisfy the △2

condition. Let X ⊂ R
N such that 0 < Ck,ϕ (X) < ∞ and f be the distribution function

of X for the Ck,ϕ capacity. For all g ∈ Lϕ

|

∫
a(x,

f(x)

||f ||ϕ
)g(x)dx| 6 Kϕ sup

x∈X
|(k ∗ g)(x)|.||f ||ϕ,

where Kϕ is a constant that depends only on ϕ.

Proof. The inequality is obvious if sup
x∈X

|(k ∗ g)(x)| = +∞.

On the other hand, if sup
x∈X

|(k ∗ g)(x)| = 0, then by Remark 3.1 we have

∫
a(x,

f(x)

||f ||ϕ
).g(x)dx = 0.

If 0 < α = sup
x∈X

|(k ∗ g)(x)| < +∞, then k ∗ (f −
g

α
)(x) > 0 for all x ∈ X .

By Theorem 3.1, we have:

∫
a(x,

f(x)

||f ||ϕ
).(f −

g

α
)(x)dx > 0.

Thus, ∫
a(x,

f(x)

||f ||ϕ
).g(x)dx 6 α

∫
a(x,

f(x)

||f ||ϕ
).f(x)dx.

On the other hand, we have for all x ∈ R
N and t > 0 :

ϕ(x, t) =

∫ t

0

a(x, t)dt >

∫ t

t
2

a(x, t)dt > (
t

2
)a(x,

t

2
).

Then,

a(x,
f(x)

||f ||ϕ
).
f(x)

||f ||ϕ
6 ϕ(x, 2

f(x)

||f ||ϕ
) 6 K ′

ϕϕ(x,
f(x)

||f ||ϕ
)

because ϕ satisfies the △2 condition.
Therefore, ∫

a(x,
f(x)

||f ||ϕ
).g(x)dx 6 α.K ′

ϕ.̺ϕ(
f

||f ||ϕ
).

Since ̺ϕ(
f

||f ||ϕ
) 6 1, the proof is complete.

Theorem 3.3 Let ϕ be a Musielak-Orlicz function, uniformly convex which satisfies
the △2 condition. Let (Xi)i ⊂ R

N . For each i, fi is the distribution function of Xi for
the Ck,ϕ capacity. Let X ⊂ R

N and f be its distribution function for the Ck,ϕ capacity.
If X ⊂ lim inf Xi and limCk,ϕ (Xi) = Ck,ϕ (X) then, fi −→ f in Lϕ.

We have the same result, particularly if (Xi)i is increasing and X =
⋃
i

Xi or (Xi)i is a

decreasing sequence of compacts and X =
⋂
i

Xi.
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Proof. (fi)i is bounded in Lϕ. Since the space Lϕ is reflexive, there exists a subse-
quence denoted again by (fi)i which converges weakly in L+

ϕ to a function g in Lϕ.
By Theorem 2.6, k ∗ g > 1 on X Ck,ϕ−q.e. Therefore,

Ck,ϕ (X) 6 ||g||ϕ.

On the other hand for all h ∈ Lψ
∫
fi(x)h(x)dx −→

∫
g(x)h(x)dx.

ByHölder inequality, we have:

∫
fi(x)h(x)dx 6 ||fi||ϕ|||h|||ψ .

Thus,

∫
g(x)h(x)dx 6 lim inf ||fi||ϕ|||h|||ψ 6 ||f ||ϕ|||h|||ψ .

Let the function h : x −→ a(x,
g(x)

||g||ϕ
) for all x ∈ R

N .

By Lemma 2.1, h ∈ Lψ, and by Lemma 2.3

||g||ϕ|||h|||ψ =

∫
g(x)h(x)dx 6 ||f ||ϕ|||h|||ψ.

Then,
||g||ϕ 6 Ck,ϕ (X).

Thus,
||g||ϕ = Ck,ϕ (X) and therefore f = g.

On the other hand, f is the unique adhesion value of the sequence (fi)i for the topology
σ(Lϕ, Lψ). Then, fi −→ f weakly in Lϕ. Since Lϕ is uniformly convex, we have fi −→ f
strongly in Lϕ.

Theorem 3.4 Let ϕ be a Musielak-Orlicz function. Let F be a closed subset of RN

such that Dk,ϕ (F ) <∞. For all r ∈ R
∗
+: Fr = F ∩ {x ∈ R

N : |x| > r}.
If lim

r→+∞
Dk,ϕ (Fr) = 0 then there exists a measure µ ∈ M+

1 such that µ is concentrated

on F ; ||k ∗ µ||ψ 6 1 and Dk,ϕ (F ) = ||µ||, where µ is called a distribution measure of F
for Dk,ϕ. Particularly, if K is a compact such that Dk,ϕ (K) < ∞ then K possesses a
distribution measure for Dk,ϕ.

Proof. It is the same as that given in [3], Theorem 4.
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