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Abstract: In this paper we are going to introduce the theory of capacity in Musielak-
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properties, and establish relationship between C,, and Dy,,. We shall introduce the
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Introduction

The theory of capacity and non-linear potential in the Lebesgue space LP studied by
Maz’ya and Khavin in [10] and Meyers in [I1] introduced the concept of capacity and
non-linear potential in these spaces and provided very rich applications in functional
analysis, harmonic analysis and the theory of partial differential equations. The previous
concept was generalised by N. Aissaoui and A. Benkirane in [2] and [3], by replacing L
by Orlicz space.

The main purpose of this paper is to study the theory of capacity and non-linear
potential in Musielak-Orlicz space. Our results generalize those of N. Aissaoui and A.
Benkirane in the case of Orlicz spaces [see [3] and [2]]. Let us note that this gener-
alization was touched upon by Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno and
Tetsu Shimomura in [9] [see the third paragraph], but we are going to deal with another
method.
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The present paper is organized as follows. In the first section, we recall the main
results for the Musielak-Orlicz spaces and Radon measure spaces. In the second section,
we define the capacity Cy,, in the Musielak-Orlicz spaces, give some of its properties,
introduce a Dy, capacity in terms of Radon measures and give its relations with C,.
In the third section, we introduce the theory of the non-linear potential and give some
of its properties.

1 Preliminaries

1.1 Musielak-Orlicz function

Let © be an open set in RY and let ¢ be a real-valued function defined in © x RT and
satisfying the following conditions:
a) ¢(x,.) is an N-function [convex, increasing, continuous, ¢(z,0) = 0, p(z,t) > 0Vt > 0

t t
M%O ast — 0, @%ooast%oo].

b) ¢(.,t) is a measurable function.
A function ¢(z,t), which satisfies the conditions a) and b) is called a Musielak-Orlicz
function. Equivalently, ¢ admits the representation:

t
o(y,t) = / a(y,7)dr, for all y € Q and t > 0, where a(y,.) : R" — R* is non-

0
decreasing, right continuous, for all y € Q: a(y,0) =0,
a(y,t) > 0 for t;0 and , 1121 a(y,t) = +oo.
— 100

The function a(y,.) is called the derivative of ¢(y,.). The Musielak-Orlicz function
@ is said to satisfy the As-condition if there exists K > 2 such that

o(y,2t) < Kp(y,t), forallye and t=0.

The smallest K is called the Ag-constant of ¢. When the last inequality holds only for
t > some tg > 0 then ¢ is said to satisfy the As-condition near infinity.

1.2 Musielak-Orlicz spaces

Let ¢ be a Musielak-Orlicz function, we define the functional

0o (1) = / o, [u@)]) e,

where u : Q — R is a Lebesgue measurable function.
In the following the measurability of a function u : Q — R means the Lebesgue
measurability.
The set
K, (Q) = {u:Q— R, measurable/p,,q (u) < oo}

is called the Musielak-Orlicz class.
The Musielak-Orlicz space L,(f2) is the vector space generated by K,(€2), that is
L, () is the smallest linear space containing the set K,(f2). Equivalently:
L,(Q) ={u:Q+— R, measurable/g,,o (%) < +oofor some A > 0}.

K () is a convex subset of Lp(€). If @ = RY then L,(RY) is denoted by L.
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Let
Y(x,s) = sup{st — ¢p(x,t) /t = 0}.
That is, 9 is the Musielak-Orlicz function complementary to ¢(z, t) in the sense of Young

with respect to the variable s. For two complementary Musielak-Orlicz functions ¢ and
¥ the following inequality is called the Young inequality [12]

t.s < oz, t) +(x,s) foralls, t >0,z € Q. (1)
If s = a(z,t) then
t.a(z,t) = o(z,t) + P(x,a(z,t)) for all t > 0,2 € Q. (2)

In the space L, (£2) we define the following two norms:

. u
l[ullpro=1inf{A > 0: Q%Q(X) <1}

called the Luxemburg norm and the so-called Orlicz norm by :

lullon= swp_ [ fua)ota)lds
l[olly, o<1 /0
where 1) is the Musielak-Orlicz function complementary to ¢. These two norms are
equivalent [12].
For two complementary Musielak-Orlicz functions ¢ and 9 let uw € L,(2) and v €
Ly (), we have the Hélder inequality [12]

|/§2U($)U($)d$| < lullgsa lloflly 0 - 3)
In L,(§2) we have the relation with the norm and the modular:
Hulllg0 < 0ps0 (u) + 1, (4)
lullga < 0ps0 (w) S if[[ullp0> 1, (5)
lullgsa 2 0ps0 () S if[[ullp0 < 1. (6)
If @ = R" then two norms ||.||, g~ and [||.|[|, g~ are denoted respectively by ||.||,. and
I-1l]-

We say that a sequence of function w,, € L,(2) is modular convergent to u € L (£2)
if there exists a constant k ; 0 such that

Up — U
If  satisfies the Ay condition, then modular convergence coincides with norm conver-
gence.

The closure in L,(Q2) of the set of bounded measurable functions with compact sup-
port in © is denoted by E,() and it is a separable space. The equality K,(2) =
E,(Q2) = L,(9) holds if and only if ¢ satisfies the Ay condition, for all t or for large t,

according to whether 2 has infinite measure or not. The dual of E,(Q) can be identi-
fied with L, (€2) by means of the pairing / u(z)v(z)dx and the dual norm on L () is

Q
equivalent to ||.||4. The space L, (1) is reflexive if and only if ¢ and 1 satisfy the A
condition, for all ¢ or for large ¢ according to whether ) has infinite measure or not.
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Lemma 1.1 [8§] Let ¢ be a Musielak-Orlicz function and fn, f, g be measurable func-
tions.
(a) If fr, — f, almost everywhere , then 4,0 (f) < limJirnf 00,0 (fn)-
n—-+0oo

(0) If |fal 7 |f1, almost everywhere, then op0(f) = lm op.0 (fa)-
n—r—+00

(c) If fn— f, almost everywhere, |fn| <|g|, almost everywhere and p,,0 (Ag) < 0o
for every A >0, then f, — f strongly in L,(Q).
Theorem 1.1 [8] Let ¢ be a Musielak-Orlicz function.
(@) [[fllooa= I 1| llos2 for all f € Ly(9).
(b) If f € Ly,(Q), gis a measurable function, and 0 < |g| < |f| almost everywhere, then:

9 € Lo(Q) and ||glle.0 <|[fllps-

(c) If fn— f almost everywhere, then: ||fl||,.0 < limJirnf [l frllpa -
n——+00
(d) If |fal S 1f| almost everywhere with fn, € L,(Q2) and sup||fnllp,o < oo then:

felo(Q) and ||fallga 7 | fllgsn-

Theorem 1.2 [5] Let ¢ and ¢ be two complementary Musielak-Orlicz functions.

1
Assume that there exists a constant A > 0 such that for all z,y € Q: |z —y| < 5 we

have:
e(,t)
(y,1)

forallt > 1. If D C Q is a bounded measurable set, then / o(x,1)dx < .
D

Al
A (7)

S

¥ satisfies the following condition:
AC >0 : P(x,1) < C, almost everywhere in Q. (8)

Under the previous conditions, with Q = RN ; C5°(RY) is dense in L,(RY) with respect
to the modular topology.

1.3 Measures space

M designates the vector space of Radon measures. M is endowed with the weak topology
for which a sequence (u,,) converges weakly to pu, if for any continuous function f with

compact support
lim /fdun = /fdu-
n—+oo

M is the cone of positive elements of M.
For all measures p < oo, for all X ¢ R”, the variation of p is defined by:

[le||(X) = sup{z |(X)| s (Xi)iz1..m is an X partiton}.
1

||| |(RY) = ||u|| is called the total variation of . M; designates the Banach space
of measures, endowed with the norm total variation. M;" designates the subset of M;
consisting of positive measures.

Definition 1.1 Let yu € M;". We say that u is concentrated on X if u(Y') = 0 for all
1 — measurable set Y, such that Y C X°.
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2 Capacity in Musielak-Orlicz Space

2.1 Cj,,-capacity

Lemma 2.1 Let  be an open set in RY and ¢ be a Musielak-Orlicz function such
that

t
oy, t) = / a(y,7)dr, Yy € Q and t > 0.
0
Let u : Q — R be measurable function and o > 0, we define a measurable function
g:Q — R so that
lu(y)l

If (E) € K, () then g € Ky(QY), where ¢ is the Musielak-Orlicz function comple-
e

mentary to .

2t 2t
Proof. Forally € Qand t > O : ¢(y,2t) = / a(y, 7)dr > / aly, 7)dr.
t
u u
o !l

0
Hence ¢(y, 2t) > ta(y,t), thus for all y € Q : ¢(y, |u£)éy)| Z =, 5y
lu@)l  |u(y)l |u(y)| u(y)|
TG( W) = 1(y, aly, %0 )-
lu(y)] u(y)|

Y, T) - So(ya
) — (v, 2—), this implies that
«

On the other hand, we have:

Therefore, (y,a(y, @)) < o(y,
a

|lu(y)] @l , [u(y)]
Qw(y,a(y, ))dy</Q o(y, )dy /an(y, )dy,

2c « 2c
then u u
v (9) < e () — o (o)
Since 94,0 (i) < lgw,g (ﬁ) and 0,,0 (ﬁ) < 00, the proof is complete.
2c 2 « «

Lemma 2.2 If (f,) is a sequence in L,(S) such that for alln € N, f, >0, then

[[sup fallgse < 1Y fallos < D falloa-
n
n n

Proof. Since 0 < sup fp, < an, thus || sup frllp,0 < || anH(P,Q.
n n
n n

Let g, = ka and f = an, we have
k=0 n
/

gn
R

Yon lfnllo0
By Lemma [[LT] we obtain

almost everywhere.

gn

f . 9n .
oo (=)= lim oso(=—r7—) < lm opo(——
O fallesn” notee TN fallesn” T nmtee T lgallgnn
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Then
/

D RTA

||‘P7Q < L.

Therefore,

1D fallea <D M allea
n n

Lemma 2.3 Let ¢ be a Musielak-Orlicz function, which satisfies the Ao condition,
and such that

t
oy, t) = / a(y,7)dr, for allyeQ and t>0.
0

Let f € L,(QY), such that f >0, and || fl|4.0 # 0.
We define a measurable function g : Q@ — R such that for all y € Q; g(y) =

aly, %) then [ F)g)ds = e lllglloa

Proof. By Lemma 2] we have g € Ly(2) and by the Hélder inequality we have

/Qf(SC)g(x)dx < I lesa lllglllee -

For the opposite inequality, let h = , and v € L,(Q), such that ||v]],,0 < 1.

o
£ 1les0

For all y € €2, we have

gW)h(y) = ¢y, h(y)) + (v, 9(v))
and

9()v(y) < ey, v(y)) + ¥y, 9(y)).
Hence for all y € Q:

gv(y) < gWh(y) — vy, M(y)) + vy, v(y)).

Then
/Qg(y)v(y)dy</Qg(y)h(y)dy—/Qw(y,h(y))dy+/Q<p(y,v(y))dy-

Thus
/Qg(y)v(y)dy < / 9Wh(y)dy — 0p0 (h) + 0p,0 (v).

Q

We have g,,0 (v) < 1. On the other hand ¢ satisfies the Ay condition, then, g,,q is
a continuous modular[see [§] Lemma 2.4.3 ]. We have ||h||,,0= 1, then g,,0(h) =1
[see [8] Lemma 2.1.14].

Thus,

/g(y)v(y)dy < /g(y)h(y)dy
implies

sup /g(y)v(y)dy < /g(y)h(y)dy-

lvlle,0<1
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Then
olllva 1 F e < / F)a(y)dy.

Definition 2.1 Let T be a class of Borel sets in R, and a function C' : T — [0, +00].
1) C is called a capacity if the following axioms are satisfied:
i) C(0) = 0.
i) X CY=C(X)<C(), forall X and Y in T.
iii) For all sequences (X,) C T

C(JXn) <D C(X).

2) C is called an outer capacity if for all X € T :
C(X)=inf{C(O): 0D X, Ois open}.
3) C is called an interior capacity if for all X C T :
C(X)=sup{C(K): K C X, K iscompact}.
4) A property, that holds true except perhaps on a set of zero capacity is said to be true
C-quasi-everywhere, (C-q.e).
5) f and (f,) are real-valued finite functions C-q.e. We say that (f,) convergesto f

in C-capacity if:
Ves 0. lm C({e: [fale) — f(@)] > ) =0.
6) f and (f,) are real-valued function finite C-q.e. We say that (f,) convergesto f
C-quasi- uniformly, (C-q.u) if
Ve>0),3XeT) : CX)<e and (fn) converges to f uniformly on X¢.

Remark 2.1 In the following @ = R", ¢ is a Musielak-Orlicz function, and L:g =
{fely/ =0}

Theorem 2.1 Let k be a positive integrable function on RY. For all X ¢ RY, we

put Cop (X) =inf{||f|lo : f €L, andkxf>1on X}, wherekx f is the convolution
of kand f. Cy,, is an outer capacity.

Remark 2.2 Let By, (X) = inf{||f|l,: f € L} and kxf>1 on X}, then
Cka«p (X) = Bkag@ (X>
Indeed, it is obvious that Cj,, (X) < Bg,, (X). On the other hand, let f € L, then

|fl € L7 and if k* f >1on X, then k*|f[ > 1 on X. Thus By,, (X) < [|fl],; and
therefore By, (X) < Chyp (X).
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Proof of Theorem 2.1. It is obvious that Cy,, (0) = 0 and Ci,, (X) < Chup (V)
if X CVY.Let (X,)CT, sothat » Ch (X;) < 400, then (Vi € N) Ci,y (X;) < +00.

3

Thus, (Vi € N)(Ve > 0), (3f; € L) sothat kxf; > 1 on X; and ||fi||, < Ch,y (Xl)—i—?

Let f =sup f;. By Lemma 2.2 we have:

11l < 3 1Al

We can write

||f||so < cha<,9 (XZ> + ¢,

which implies that, f € L.
Sincekx f>1 on UX“

Crop (JXi) €D Chp (Xi) +&, Ve >0.

Hence,

Chr,p (U X;) < Z Chyp (Xi).

It remains to show that Cy,, is outer. Let X C RY, we have:

Chryp (X) <inf{Ci,, (0): O D X, O is open}.

For the reverse inequality, if Cj,, (X) = 400 there is nothing to show.
Assume that C,, (X) < 400, andlet 0 <e <1, then3d g€ L:g sothat kxg>1 on X
and [|gl, < Ch.p (X) +&.

Let gsz%ig and O ={z: (k*g.) > 1}, thus O, is open and
1

Hence, X C O.. On the other hand, we have Ck,, (O:) < ||gc/|,, and we deduce that

1 1
Crop (Oe) < 7—llglle < 7

— [Chp (X) + el

Therefore,

1
inf{C(0): 0> X, O isopen} < 1—[C’kw (X)+¢], Ye>0.

— &

Thus,
inf{C(0) : O D X, O isopen} < Cj,, (X).



284 M.C. HASSIB, Y. AKDIM, A. BENKIRANE AND N. AISSAOUI

Theorem 2.2 1) If there exists f € L, such that |k * f| = +oo on X, then
Ck,gg (X) =0.
2) If Cy,, (X) = 0 then there exists f € L such that k* f = 400 on X.

Proof. 1) Let f € L, such that |k f| = 400 on X, then Voo > 0, |k* f| > o on X.
Then C,, (X) < %, Vo > 0; this means that C,, (X) = 0.
2) If Chpp (X)=0thenVieN, 3fi e LT : kxfi>1 on X and ||fill, <27"
Let f=) fi ByLemmaZZ |[|fll, <D |Ifilly, then ||f[|s < +oc.

We deduce that f € LY and k* f=+oo on X.

Theorem 2.3 Consider the following propositions :
i) fn —> f strongly in L.
ii) k* fn — kx* f, Ch,,—capacity.
ii1) There is a subsequence (fn;); such that : kx fn, — k* f Ci,, —q.u.
W) k* frn, — kx [ in Cr,, —q.e.
We have

i) = @) = i) = iv).

Proof. We show i) = ii).
By Theorem 2.2, we have k* f and k x f, are finite Cy,, —g.e, Vn.
Let € > 0; then

Cuo (o 6% fu = 7l(0) > e < L2 Tle,

We show ii) = iii).
Let e >0 3 fp, such that
Crop ({z |k fr, — k= fl(z) >277}) <e277.

We put
Ej={z : |k« fo, —kxfl(z) >277} and G,, = U E;.
jzm
We have Cy,, (Gm) < Z €27 <e.
j=m
On the other hand :

Vo € (Gm), Vizm: |kxfo, —k*fl(x) <277

Thus kx* fr, — k* f Ci,p —q.u.
1
We show iii) = iv). We have Vj € N,3X; : Cp,, (X;) < —~ and k* f,, —
J
kxf on (X;)° Weput X = ﬂXj, then Cy,, (X) =0 and kx* f,, — kxf on X°.
J
Theorem 2.4 Let ¢ be a Musielak-Orlicz function that satisfies the Ao condition,
and (fn) be a sequence in L, such that Z |fn| € Ly. Then,

Z(k * fn) =k * (Z fn) Cryp —q.e.

n
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Proof. First step: Assume that f,, > 0 Vn € N, and let g,, = Z fi and f = Z fn-
i=1 n

We have g, — f almost everywhere and g, < f. On the other hand, 0o(Af) <
oo YA >0 because f € L, and ¢ satisfies the Ay condition [see [§] paragraph 2.5].
By (c) of Lemma [[I] we have

gn — f strongly in L.

Theorem 23] implies that there is a subsequence (gy,) such that k* g,, = k* f, Ci,o-q.e.
Since f, 20, Yn €N kx*g, = kx* f, Cy,p-q.e.

Second step: If f,, has any sign, then Z fF and Z fn are in L, because

YLD Ul 1D f I <D | ful and D | ful € Lo

n n n n
By the first step the result follows.

n

Theorem 2.5 Let (K,) be a decreasing sequence of compact and K = ﬂKn Then

n

lim Ck;’(,p (Kn) = Ckal,a (K)

n—-+o0o
Proof. First, we observe that C,, (K) < hIJIrl Clyp (K5). On the other hand, let
n—-+0oo
O be an open set containing K. By the compactness of K, K; C O for all sufficiently
large 7. Therefore lirJIrl Clyp (Kp) < Ciyp (0), and since Cy,, is an outer capacity, we
n—-+0oo

obtain the claim by taking infimum over open set O containing K.

Theorem 2.6 Let ¢ be a Musielak-Orlicz function, uniformly convex that satisfies
the Ay condition. If f, ,f € L, such that f, — f weakly in L, then:

liminf(k % f,) < (k= f) <limsup(k = f,) Chk,p —g.e.

Proof. (L, , ||.||) is uniformly convex therefore reflexive. By the Banach-Saks
theorem, there is a subsequence denoted again by (f,) such that the sequence

1 n
Gn = — Z fi converges to f strongly in L,. By Theorem [Z3] there is a subsequence of
n
i=1
(g9n) denoted again by (gn) such that
lim (k*gn) = (kxf) Cryp—q.e.

n—-+o0o

On the other hand,
liminf(k % f,) < lim (kx*gy,) .

n—-+o0o

Therefore,

n—-+o0o

For the second inequality, it suffices to replace f,, by (—f,) in the first inequality.

Theorem 2.7 Let ¢ be a Musielak-Orlicz function, uniformly convex that satisfies
the Ay condition, (X,,) be an increasing sequence of sets and X = UX"' Then
n

lim Ck,g; (Xn) = Ckacp (X)

n—-+oo
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Proof. We have HEIEOO Ch.p (Xn) < Ciyp (X). For the reverse inequality, if

Ch,p (X) = +00, there is nothing to show.
Assuming that Cy,, (X) < 400, we have

1
Vn € N, Efneng ckxf,>1o0n X, and ||fn||¢<Ck,¢(Xn)+ﬁ.

Thus, (f,) is a bounded sequence in L.

On the other hand, L, is uniformly convex, then it is reflexive because ¢ is uniformly
convex and satisfies the Ay condition, [see [§] Remark 2.4.15]. Hence there exists a
subsequence which is denoted again by (f,), and converges weakly to a function f € L.
Then by Theorem [2.6]

VneN :kxf2>21 on X,, Cg,—q.e.

Therefore,
kxf>1 on X, Cg,, —q.e.

Let Y be a subset of X where k* f > 1, then Cj,, (X) = Cj,, (Y). On the other
hand we know that

t
o(y,t) = / a(y,7)dr, forall y€ RN andt>0.
0

/(W)

Y,
I1f1le
By Lemma [21] g € Ly, and since ¢ satisfies the Ay condition, we have Ly = (Ly)*.

Thus,

Let the function ¢:RY — R be defined by g(y) = a( ) forall y € RV,

/ Ful0)g(w)dy — / F@)9(v)dy.
By Lemma 23] we have
/ F)g@)dy = 111Nl

By the Holder inequality we have:

/ Fu@)g@)dy < [|fall gl

Therefore,

1

< i < i ).
171l < T [1fullo < T (Crop (Xa) + )

Thus,
Crip (X) < lim Ch,e (Xn).

n—-+o0o

Corollary 2.1 Let ¢ be a Musielak-Orlicz function, uniformly convex, that satisfies
the Ny condition. Let E, C RN then Ci,p (liminf E,,) <liminf Cy,, (Ey,).
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Proof. Let F =liminf E,, , we have E = U(ﬂ E;).
n o izn
We put G,, = ﬂ E;. Thus a sequence (G,,) is increasing and by Theorem[27, Cy,, (E) =
izn
lim C,, (G ). On the other hand, C,, is increasing, then Cy,, (Gp) < Ci,p (Ey); there-

fore
Ckalp (E) < lim inf Ckalp (En)

Theorem 2.8 Let ¢ be a Musielak-Orlicz function which satisfies the assumptions
of Theorem [L2. If ¢ satisfies the Ny condition, then for each f € L, there is a Ci,p-
quasicontinuous function g € L, such that kx f =g Ci,,—q.c.

Proof. Let f € Ly, by Theorem [[L2], there exists a sequence (fy,) in C§° (RY) such
that f, — f in L,. By Theorem 23] there exists a subsequence of (f,) denoted again
by (fn) such that

kxfn—Fkxf C,—qu.

Since k is integrable function and f,, is continuous Vn, then k * f, is continuous. Thus,
the proof is complete.

Definition 2.2 In the terminology of Choquet, C is called a capacity if it satisfies
the following four properties:
i) C(0) = 0.
ii) C is increasing.
iii) If (E,) is an increasing sequence of sets, then sup C'(X,,) = C’(U Xn)-

iv) If (K,,) is a decreasing sequence of compacts, then inf C(K,) = C(ﬂ Kp,).

Remark 2.3 Let ¢ be a Musielak-Orlicz function, uniformly convex, that satisfies
the Ay condition. By Theorems 2.1] and 27 Cy,, is a capacity, in the sense of
Choquet.

Definition 2.3 Let C be a capacity in the sense of Choquet, and X ¢ RV,
X is called capacitable if

C(X)=sup{C(K): K C X, K iscompact}.

Theorem 2.9 Let ¢ be a Musielak-Orlicz function, uniformly convex that satisfies
the Ay condition. Then all analytic sets are Cl,,- capacitable .

Proof. 1t is an immediate consequence of Choquet theorem [7].

2.2 Capacity in terms of measure

Theorem 2.10 Let ¢ be a Musielak-Orlicz function, k be a positive integrable func-
tion on R, and X be a p-measurable set, for all positive measures p. We put
Diyy (X) =sup{||u|| : p€ M;",puis concentrated on X and ||k * p|ly <1}

where (k* p)(x) = /k:(x —y)du(y). Then, Dy,, is an interior capacity.
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Proof. Tt is clear that Dy, () = 0 and Dy, (X) < D, (V) if X CY.
Let 4 € M, (X,) be a sequence of y-measurable sets and p,, = p|x, be defined by

n(Y) = (X, NY), forall pu— measurable set Y.

First we assume that the X,, are pairwise disjoint, then
M(U Xn) = Z :U’(Xn)
n n

If 14 is concentrated on U X, and ||k*p||y <1, then Vn; p, € M{; p, is concentrated

n
on X, and ||k * pn ||y < 1.
On the other hand, we have

il = S il € 37 D (Xa).

Thus,
Dkw (U XN) < ZDIWP (Xn)

If the X,, are not pairwise disjoint, then by the first case and the fact that Dy,, is
increasing, we have

Dkw (U Xn) < ZDkw (Xn>

It remains to show that Dy, is interior.
By monotonicity we have

sup{Dg,, (K) : K C X, K compact} < Dy, (X).

Let u € M;" and X be a y-measurable set such that p is concentrated on X and ||k*pu||y <
1.
Let a compact K be such that K C X, then u|x € M;", u|x is concentrated on K and
[|k % p|k ||y < 1. Therefore,

il lly < Dryp (K).

On the other hand,
sup{||u \r || : K C X, K is compact} = ||ul|.

Thus,
Dp, (X) < sup{Dg,, (K): K C X, K iscompact}.

Theorem 2.11 1) Dy, is the outer capacity associated with Dy,,, defined by:
D, (X) =inf{ Dy, (O) : O isopen and X C O}.
Then,
Dltw (X) = CkNP (X)

2) If v is a Musielak-Orlicz function, uniformly convex that satisfies the Ao condition,
then for all analytic set X we have:

Diyp (X) = Chiyp (X).
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Proof. It is the same as that given in [2], Theorem 11.

Theorem 2.12 Let ¢ be a Musielak-Orlicz function.
Let K be a compact of RN. The following assertions are equivalents.
1)C,yp (K) = 0.
2) Di,,p (K) = o0.
3) Dy, (K) = 00.
4) There exists xg € K such that k(xo —y) = 0 almost everywhere.

Proof. 1t is the same as that given in [3], Theorem 5.

3 Non-linear Potential in Musielak-Orlicz Space

Let ¢ be a Musielak-Orlicz function. In this section, we propose to study the following
variational problem: let X be a subset of RY such that Cj,, (X) < co. There exists
foe€ L;r such that kx fo > 1 Cy,, —g.e on X, and

[l folle =inf{l||flle: f € L: and k+f>1Cy,p—qeon X}

If fo exists, it will be called a distribution function of X, and k * fy is called a potential
of X for the Cy,, capacity.

Theorem 3.1 Let ¢ be a Musielak-Orlicz function and X be a subset of RY such
that C,p (X) < 00. Qx ={f € L 1 kx f 21 Cr,p—q.e on X}, and Cl*(Qx) is the
closure of Qx for the topology o(Ly,; Ey). Then:

1) There exists a unique fo € L; such that:

I folle = inf{llfllo = f e Cl(Qx)}.

2) If ¢ and ¢ satisfy the As condition, then there exits a unique f € L;r such that:
i)kxf>1onX and ||f|l, = Ch,e (X).
ii) If Ci,p (X) > 0, then for all g € L, such that k+g >0 on X:

f(z)
/a(ac, ||f||w)g(x)dx >0,

where the function a(z,.) is the derivative of the function ¢(x,.).

Proof. 1) Let the function 6 : L, —]—00; +00] be defined by 0(f) = || f||¢ ; Vf € L.
6 is lower semi continuous on Ly, for topology o(L,; Ey) and coercive. Then, there exists
a unique fy € L:g such that

folle = inf{llflle : f € CU(2x)}

2) i) Since ¢ and ® satisfy the Ay condition, then the space L, is reflexive. By Theorem
23] Qx is strongly closed in L,. On the other hand, Qx is convex, then there exists a
unique f € L, such that:

Iflle = inf{llglle - g € Qx}

Let Y be a subset of X where kx f < 1. Then, Ci,, (X) = Ci,p (X =Y). Since kx f > 1
on X-Y, i (X =Y) <[]
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On the other hand, we have {g € L] : k+g>1on X} C Qx; then [|f||, < Ch,p (X).
ii) Let g € L, such that k* g > 0 on X. Then for all ¢ > 0:

Ex(f+tg) =21 Crp—qe on X and (f +tg) € L.

Then,

1f +tglle = 11£1le-
Therefore,

1
| (f +t9)llp > 1.

I1f1le ’

Thus,
1
7]

On the other hand,
1
op(7rr ) < 1.
Al

Then, for all £ > 0

Lo e, @)
| jle 7, )~ @i, e >0
f + tol(@)

Let ¢(z,t) = p(x, T
@

On the other hand,

). Then, the function 2 — ¢(x,t) is in L' for all ¢t € R.

e f +tgl(=)

90— ale g(x)
g = 1) = al@

£ 1le

)-(T)-sng (f + tg) ().

For 0 <t < 1 we have:

9 e ST 9l@) 9(z)
(0 < ale, S =G,

ot
|f +9l(x)
11l

g(z) is in L1
i) S

By Lemma 2] the function: @ — a(z,

|f +9l(x)
1£1le

) isin Ly.

Then the function: z +— a(z,

)-(

By Lebesgue’s theorem

Lo L T tgl(@), L@y, 1 |f(2)]
el Sy, ) e = e [ at )

lim
t—0+ t

a\x
Il

= U.

oz,
1F1le

Remark 3.1 Under the assumptions of Theorem B} 2) ii), if Ck,, (X) > 0, then
for all g € L, such that k* g =0 on X:

f(x) _
/a(z, ||f||¢)g(:c)dx =0
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Theorem 3.2 Let ¢ be a Musielak-Orlicz function such that ¢ and i satisfy the Ao
condition. Let X C RY such that 0 < Cj,, (X) < 0o and f be the distribution function
of X for the Cy,, capacity. For all g € L,

[ ate. L@z < K, sup k<@L

where K, is a constant that depends only on ¢.

Proof. The inequality is obvious if sup [(k * g)(x)| = +o0.
On the other hand, if sup |[(k x g)(z)| = 0 then by Remark B.1] we have
reX

f(z) _
/a(:z:, ||f||¢).g($)d$ =

If 0 < a=sup |(kxg)(x)] < +oo, thenk*(f—g)(x) >0 for all z € X.
reX «@
By Theorem B.I] we have:

F@ e 9y de
/“@wum”” 9) () > 0.

Thus,

f(x) f(x)
/a(:z:, ||f||¢).g($)d$ < a/a(m, ||f||¢)f($)d$

On the other hand, we have for all z € RY and t > 0 :

o(z,t) :/0 a(z, t)dt 2[ a(x,t)dt > (%)a(m, %)

t
2

Then,

flz) | f(=z) f(z) / f(x)

Al 111l 11l P e
because ¢ satisfies the Ay condition.
Therefore,

f(x) / f
a(z, ).g(x)dr < a. K .00(—).

| e e # 2T,

Since Qw(ﬁ) < 1, the proof is complete.
%)

Theorem 3.3 Let ¢ be a Musielak-Orlicz function, uniformly convex which satisfies
the Ao condition. Let (X;); C RN, For each i, f; is the distribution function of X; for
the Ci,, capacity. Let X C RY and f be its distribution function for the Chyp capacity.
If X C liminf X; and lim Cy,,, (X;) = C,p (X) then, fi — f in Ly,.

We have the same result, particularly if (X;); is increasing and X = UXi or (X;); is a
decreasing sequence of compacts and X = ﬂ X;.

%
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Proof. (fi)i is bounded in L. Since the space L, is reflexive, there exists a subse-
quence denoted again by (f;); which converges weakly in L;’j to a function g in L.
By Theorem 2.0] k£ * g > 1 on X C},, —q.e. Therefore,

Clrp (X) < |[g]le-
On the other hand for all h € Ly,
/fl(x)h(z)dz — /g(z)h(x)d:c.

ByHolder inequality, we have:

/fi(x)h(z)dw < il 1Al -

Thus, /g(w)h(w)dw < liminf || fillo[[[A[l[y < [1F 1A

, 9() ) for all z € RY.
llglle

By Lemma 2.1l h € Ly, and by Lemma 23]

Let the function h: 2 — a(z

lgllo[lAllly = /g(:v)h(w)dw < A1l Al

Then,
||g||<,a < Ckazp (X)
Thus,
19l = Ch,p (X) and therefore f = g.

On the other hand, f is the unique adhesion value of the sequence (f;); for the topology
o(Ly, Ly). Then, f; — f weakly in L. Since L, is uniformly convex, we have f; — f
strongly in L.

Theorem 3.4 Let ¢ be a Musielak-Orlicz function. Let F be a closed subset of RY
such that Dy,, (F) < 00. For allr € R%.: F, = Fn{z e RY : |z| > r}.
If lirf Dy, (F) = 0 then there exists a measure p € Myt such that p is concentrated
T—>100

on F; ||k *p|ly <1 and Dy,, (F) = ||u||, where p is called a distribution measure of F
for Dy,,. Particularly, if K is a compact such that Dy, (K) < oo then K possesses a
distribution measure for Dy,,.

Proof. 1t is the same as that given in [3], Theorem 4.
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