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Introduction

The averaging technique developed in the framework of nonlinear mechanics is a pow-
erful tool widely used for the analysis of nonlinear systems found in various applied
investigations (see [1–3] and bibliography therein).

The differential equation with Hukuhara derivative was first considered in [4], where
its solution was shown to be a multivalued mapping. In the following papers a lot of au-
thors (see [5, 6] and bibliography therein) established conditions for existence, uniqueness
and convergence of successive approximate solutions and many other results. Moreover,
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new estimates of solutions were given and a principle of comparison with the matrix Lya-
punov function was presented (see [7, 8]). Also, theorems on stability and boundedness
of sets of trajectories of the equations of this type were proved [9].

The present paper deals with the sets of generalized standard systems of equations
with Hukuhara derivative (see [6] and bibliography therein) and treats some problems of
qualitative behaviour of set of trajectories of averaged equations.

The paper is arranged as follows. In Section 2 the problem for a set of standard
systems of differential equations with Hukuhara derivative is stated. In Section 3 an
estimate of distance between the set of solutions to the initial and the averaged system
is found. In Section 4 the application of Theorem 1 to the analysis of set of solutions to
quasilinear equations is considered. In Section 5 an estimate of deviation of the set of
solutions to the averaged system from the equilibrium state is obtained. In Section 6 an
estimate of deviation of the set of solutions to the affine system from zero is given. In
Section 7 concluding remarks are presented and problems for further investigations are
discussed.

1 Designations and Definitions

We shall recall designations and definition needed for further presentation of results (see
[5] and bibliography therein).

Let E be a real Banach space with the norm ‖ ·‖ and 2E be a totality of all nonempty
bounded subsets of the space E with a Hausdorff pseudometric

D[A,B] = max
{

sup
x∈B

d(x,A), sup
y∈A

d(y,B)
}

, (1)

where A,B ∈ 2E, d(x,A) = inf[d(x, y) : y ∈ A], d(x,B) = inf[d(y, x) : x ∈ B].
We designate by K(E), (Kc(E)) a totality of all nonempty compact (convex) sub-

sets of E which are considered as subspaces 2E . Note that on K(E) and (Kc(E)) the
topology of the space 2E is induced by the Hausdorff pseudometric (1). Besides, K(E)
and (Kc(E)) are complete and separable metric spaces if E is separable.

Let A,B ∈ Kc(E). The set C ∈ Kc(E) satisfying the relation A = B + C is a
Hukuhara difference of the sets A and B. The mapping F : [0, a] → Kc(E) possesses
the Hukuhara derivative DHF (t0) at the point t0 ∈ J = [0, ∗], a > 0, if there exists
DHF (t0) ∈ KC(E) such that the limits

lim
{

[F (t0 + τ) − F (t0)]τ
−1 : τ → 0+

}

and lim
{

[F (t0)− F (t0 − τ)]τ−1 : τ → 0+
}

(2)

exist in the topology of the space KC(E) and the both limits are equal to DHF (t0).
It is known (see [4]) that if

F (t) = X0 +

t
∫

0

Φ(s) ds, X0 ∈ KC(E), (3)

where Φ: JKC(E) is an integrable function in the Bohner sense, then DHF (t0) exists
almost everywhere on J and

DHF (t) = Φ(t) almost everywhere on J. (4)
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Recall that the Hausdorff pseudometric (1) satisfies the following relations

D[U +W,V +W ] = D[U, V ],

D[λU, λV ] = λD[U, V ],

D[U, V ] ≤ D[U,W ] +D[W,V ]

for all U, V,W ∈ Kc(E) and λ ∈ R+. Besides, for U ∈ Kc(E) we admit that D[U,Θ0] =
‖U‖ = sup

{

‖u‖; u ∈ U
}

, where Θ0 is a zero element in E.

2 Statement of the Problem

The set of systems of differential equations

DHX = µF (t,X), X(t0) = X0 ∈ Kc(E), (5)

where F ∈ C(R × KC(E),Kc(E)), and µ ∈ (0, 1] is a small parameter, is called a
generalized standard system. Together with equation (5) we shall consider a partially
averaged differential equation (see [6])

DHY = µG(t, Y ), Y (t0) = Y0 ∈ Kc(E), (6)

for which

lim
T→∞

1

T
D

[ T
∫

0

F (s,X)ds,

T
∫

0

G(s, Y )ds

]

= 0, (7)

for X,Y ∈ D∗ ⊂ Kc(E).
We assume on the families of equations (5) and (6) as follows.

H1. There exists a function M(t, ·) > 0, integrable on J , for all t ∈ J such that

µD[G(t,X), G(t, Y )] ≤ M(t, µ)D[X,Y ]

for all 0 < µ < µ1 ∈ (0, 1];

H2. There exist a function f(t, ·) > 0, integrable on J , lim f(t, µ) = 0 as t → ∞, and
α > 1 such that

µD[F (t,X), G(t, Y )] ≤ f(t, µ)Dα[X,Y ]

for all (X,Y ) ∈ D∗ ⊆ Kc(E) and 0 < µ < µ1 ∈ (0, 1].

This paper is aimed to obtain estimate of deviation between solutions to the family
of equations (5) and (6) and deviation of solutions to averaged equations (6) from the
equilibrium state Θ0 ∈ Kc(E).

3 Estimate of the Distance Between Sets of Solutions

We shall estimate deviations between the sets of solutions to the families of equations
(5) and (6). Let us show that the following result holds true.

Theorem 1 In the domain Q = {(t,X) : t ≥ t0 ≥ 0, X ∈ D∗ ⊆ Kc(E)} let the
following conditions be satisfied:
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(1) solution X(t) of the initial problem for the family of equations (5) exists for all
t ≥ t0 and 0 < µ < µ1, µ1 ∈ (0, 1];

(2) solution Y (t) of the family of equations (6) with the initial condition Y0 ∈ D∗ ⊂ D

exists for all t ≥ t0 and 0 < µ < µ2, µ2 ∈ (0, 1];

(3) limit (7) exists uniformly with respect to X ∈ D;

(4) conditions of hypotheses H1 and H2 are satisfied;

(5) for all t ∈ J and 0 < µ < µ0 the inequality

1− (α − 1)Dα−1[X0, Y0]

t
∫

0

f(s, µ) exp
(

2(α− 1)

s
∫

0

M(τ, µ)dτ
)

ds > 0.

is valid.

Then the deviation between the sets of solutions to equations (5) and (6) is estimated as

D[X(t), Y (t)] ≤

≤

D[X0, Y0] exp
( t
∫

0

M(s, µ)ds
)

(

1− (α− 1)Dα−1[X0, Y0]
t
∫

0

f(s, µ) exp
(

2(α− 1)
s
∫

0

M(τ, µ)dτ
)

ds
)

1

α−1

(8)

for all t ∈ J and 0 < µ < µ0, µ0 = min(µ1, µ2).

Proof. We represent the families of equations (5) and (6) in the equivalent form

X(t) = X0 + µ

t
∫

0

F (s,X(s)) ds, X0 ∈ D ⊂ Kc(E),

and

Y (t) = Y0 + µ

t
∫

0

G(s, Y (s)) ds, Y0 ∈ D∗ ⊂ D,

and assume that D[X0, Y0] 6= 0 for all X0 and Y0 in the domain of their values. It is
easy to get the following estimates

D[X(t),Y (t)] = D

[

X0 + µ

t
∫

0

F (s,X(s))ds, Y0 + µ

t
∫

0

G(s, Y (s))ds

]

= D[X0, Y0] + µD

[ t
∫

0

F (s,X(s))ds,

t
∫

0

G(s, Y (s))ds

]

≤ D[X0, Y0] + µD

[ t
∫

0

F (s,X(s))ds,

t
∫

0

G(s, Y (s))ds

]

+ µD

[ t
∫

0

G(s,X(s))ds,

t
∫

0

G(s, Y (s))ds

]
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≤ D[X0, Y0] + µ

t
∫

0

D[F (s,X(s)), G(s, Y (s))]ds

+ µ

t
∫

0

D[G(s,X(s)), G(s, Y (s))]ds.

(9)

In view of

D[F (t,X), G(t,X)] ≤ D[F (t,X), G(t, Y )] +D[G(t, Y ), G(t,X)],

under hypotheses H1 and H2 we get from estimate (9) that

D[X(t), Y (t)] ≤ D[X0, Y0] + 2

t
∫

0

M(s, µ)D[X(t), Y (t)] ds+

t
∫

0

f(s, µ)Dα[X(s), Y (s)] ds,

(10)
where 0 < µ < µ0, µ0 = min(µ1, µ2).

We designate D[X(t), Y (t)] = m(t) and represent inequality (10) as

m(t) ≤ m(t0) + 2

t
∫

0

M(s, µ)m(s) ds+

t
∫

0

f(s, µ)mα(s) ds, (11)

where 0 < µ < µ0, µ0 = min(µ1, µ2), and t ∈ J . Inequality (11) is rewritten in the
pseudo-linear form

m(t) ≤ m(t0) +

t
∫

0

(2M(s, µ)m(s) ds+ f(s, µ)mα−1(s))m(s) ds

for all t ∈ J . Applying to this inequality the summand estimation technique from [10, 11]
we get

m(t) ≤

m(t0) exp
(

2
t
∫

0

M(s, µ)ds
)

(

1− (α− 1)mα−1(t0)
t
∫

0

f(s, µ) exp
(

2(α− 1)
s
∫

0

M(τ, µ)dτ
)

ds
)

1

α−1

(12)

under condition (5) of Theorem 1. Estimate (12) yields the assertion of Theorem 1.

Estimate (8) allows one to establish sufficient conditions for the presence of (A, λ)-
estimate of approximate integration of the family of equations (5) in the sense of the
definition below.

Definition 1 The set of solutions Y (t) of the family of differential equations (6)
satisfies (A, λ)-estimate of approximate integration of the family of equations (5) if,
given the values λ and A (0 < λ < A), the condition D[X0, Y0] < λ implies that
D[X(t), Y (t)] < A for 0 < µ < µ0 on the common existence interval of solutions X(t)
and Y (t).
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Corollary 1 Let all conditions of Theorem 1 be satisfied and for given values λ and
A the inequality

exp
(

2
t
∫

0

M(s, µ)ds
)

(

1− (α − 1)λα−1

t
∫

0

f(s, µ) exp
(

2(α− 1)
s
∫

0

M(τ, µ)dτ
)

ds
)

1

α−1

<
A

λ

holds true for all 0 < µ < µ0 and all t ∈ J .
Then for the set of solutions X(t) of the family of equations (5) the (A, λ)-estimate

of approximate integration takes place.

The assertion of Corollary 1 follows immediately from the estimate (8) and Defini-
tion 1.

Further we consider the quasilinear equation

DHX = A(t)X + µF (t,X), X(0) = X0 ⊂ D∗, (13)

where A(t) is a bounded operator on R+, F (t,X) is a mapping containing X in power
higher than 2.

The solution of problem (13) is the mapping X(t) = X(t, t0, X0) satisfying the family
of equations (13) almost everywhere on J .

Together with the family of equations (13) we consider a family of averaged equations

DHY = A(t)Y + µG(t, Y ), Y (t0) = Y0 ⊂ D∗, (14)

where

A = lim
T→∞

1

T

T
∫

0

A(s) ds (15)

and G(t, Y ) satisfies relation (7). We assume on the family of equations (14) as follows.

H3. There exists an integrable function b(t) > 0 for all t ∈ J such that

‖A(t)−A‖ ≤ b(t).

We find the estimate of deviation of the set of solutions to the averaged equation (14)
from the solutions to the initial equations (13).

Theorem 2 In the domain Q = {(t,X) : t ≥ 0 and X ∈ D ⊂ Kc(E)} and let the
following conditions be satisfied:

(1) there exists a limit (15) and the correlation (7) holds;

(2) the conditions of hypotheses H1 and H3 are satisfied;

(3) for Y0 ∈ D∗ the solution of averaged equations (14) is defined for all t ≥ 0 and
0 < µ < µ0;

(4) for all t ∈ J and 0 < µ < µ0 the inequality

2(α− 1)mα−1(t0)

t
∫

0

M(s, µ) exp

(

(α− 1)

s
∫

0

(b(τ) + f(τ, µ))dτ

)

ds < 1

is true.
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Then the deviation between the sets of solutions to equations (13) and (14) is estimated
as

D[X(t), Y (t)] ≤

≤

D[X0, Y0] exp
( t
∫

0

(b(s) + 2M(s, µ))ds
)

[

1− 2(α− 1)mα−1(0)
t
∫

0

M(s, µ) exp
(

(α − 1)
s
∫

0

(b(τ) + f(τ, µ))dτ
)

ds
]

1

α−1

(16)

for all t ∈ J and 0 < µ < µ0.

Proof. The relations

X(t) = X0 +

t
∫

0

(A(s)X(s) + µF (s,X(s))) ds,

Y (t) = Y0 +

t
∫

0

(A(s)Y (s) + µG(s, Y (s))) ds

(17)

for D[X0, Y0] 6= 0 yield

D[X(t), Y (t)]

= D

[

X0 +

t
∫

0

(A(s)X(s) + µF (s,X(s)))ds, Y0 +

t
∫

0

(A(s)Y (s) + µG(s, Y (s)))ds

]

≤ D[X0, Y0] +D

[ t
∫

0

A(s)X(s)ds,

t
∫

0

A(s)Y (s)ds

]

+ µD

[ t
∫

0

F (s,X(s))ds,

t
∫

0

G(s, Y (s))ds

]

≤ D[X0, Y0] +

t
∫

0

(A(s)−A)D[X(s), Y (s)]ds+ µ

t
∫

0

D[F (s,X(s)), G(s,X(s))]ds

+ µ

t
∫

0

D[F (s,X(s)), G(s, Y (s))]ds.

Hence, according to hypotheses H1 and H3 it follows that

D[X(t), Y (t)] ≤ D[X0, Y0] +

t
∫

0

(b(s) + 2M(s, µ))D[X(s), Y (s)] ds

+

t
∫

0

f(s, µ)Dα[X(s), Y (s)] ds

(18)
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for all t > t0 and 0 < µ < µ0. Inequality (18) is rewritten as

m(t) ≤ m(t0) +

t
∫

0

[(b(s) + 2M(s, µ))m(s) + f(s, µ)mα(s)] ds

and further

m(t) ≤ m(t0) +

t
∫

0

[(b(s) + 2M(s, µ)) + f(s, µ)mα−1(s)]m(s) ds. (19)

As in the analysis of inequality (11), we get from estimate (19) the inequality

m(t) ≤

m(t0) exp
( t
∫

0

(b(s) + 2M(s, µ))ds
)

[

1− (α − 1)(0)
t
∫

0

f(s, µ) exp
(

(α− 1)
s
∫

0

(b(τ) + 2M(τ, µ))dτ
)

ds
]

1

α−1

(20)

provided that condition (4) of Theorem 2 is satisfied for all t ∈ J and 0 < µ < µ0. In
view of the designation m(t) = D[X(t), Y (t)], for all t ∈ J estimate (20) completes the
proof of Theorem 2.

Corollary 2 Let all conditions of Theorem 2 be satisfied and for the given estimates
of the values λ and A the inequality

exp
( t
∫

0

(b(s) + 2M(s, µ))ds
)

1− 2(α− 1)mα−1(0)
t
∫

0

M(s, µ) exp
(

(α− 1)
s
∫

0

(b(τ) + f(τ, µ))dτ
)

ds

<
A

λ

holds for all t > t0 and 0 < µ < µ0. Then for the set of solutions X(t) of the family of
equations (13) the (A, λ)-estimate of approximate integration takes place.

The assertion of Corollary 2 follows from estimate (16) and Definition 1.

4 Conditions of (λ,A, J)-stability of Averaged Equation

Further we shall consider a family of averaged equations (13).
Assume that the following conditions are satisfied.

H4. There exists a constant a > 0 such that

‖A‖ < a, a = const > 0.

H5. There exists a function N(∗, t) > 0, which is integrable on J, such that

µD[G(t, Y ),Θ0] ≤ N(µ, t)Dα[Y,Θ0]

for all t ∈ J and 0 < µ < µ0 in the domain of values Y ⊂ D∗.
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We shall show that the following result is valid.

Theorem 3 In the domain Q = {(t, Y ) : t ≥ 0, Y ∈ D∗ ⊂ Kc(E)} let the following
conditions be satisfied.

(1) there exists a solution Y (t) = Y (t, t0, Y0) of the averaged equation (14) for all
t ≥ 0 and Y ∗ ∈ D∗;

(2) the conditions of hypotheses H4 and H5 be satisfied.

Then the deviation of the set of solutions Y (t) from the equilibrium state is estimated
as

D[Y (t),Θ0] ≤

n(0) exp
t
∫

0

‖A‖ds

[

1− (α− 1)nα−1(0)
t
∫

0

N(µ, s) exp
(

(α− 1)
s
∫

0

‖A‖dτ
)

ds
]

1

α−1

(21)

for all t ∈ J and 0 < µ < µ0 provided that

(α− 1)nα−1(t0)

t
∫

0

N(µ, s) exp
(

(α− 1)

s
∫

0

‖A‖dτ
)

ds < 1

for all t ∈ J and 0 < µ < µ0.

Proof. For correlation (17) we have

D[Y (t),Θ0] ≤ D[Y0,Θ0] +

t
∫

0

AD[Y (s),Θ0] ds+ µ

t
∫

0

D[G(s, Y (s)),Θ0] ds

≤ D[Y0,Θ0] +

t
∫

0

‖A‖D[Y (s),Θ0] ds+

t
∫

0

N(µ, s)Dα[Y (s),Θ0] ds.

Hence, for the function n(t) = D[Y (t), 0] estimating the deviation of the set of solutions
to the averaged equations from zero in Kc(E), we have the inequality

n(t) ≤ n(t0) +

t
∫

0

‖A‖n(s) ds+

t
∫

0

N(µ, s)nα(s) ds

for all t ∈ J and 0 < µ < µ0. Applying to this inequality the technique used for the
proof of Theorem 1 we arrive at estimate (21). This proves Theorem 3.

Estimate (21) allows one to establish conditions for (λ,A, J)-stability on finite interval
of the set of solutions to equations (14).

Definition 2 For given estimates of the values λ,A, J the set of solutions to the
averaged equations (14) is (λ,A, J)-stable if D[Y (t),Θ0] < A for all t ∈ J , whenever
D[Y0,Θ0] < λ and 0 < µ < µ0.
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Corollary 3 Let all conditions of Theorem 2 be satisfied and for given estimates of
the values λ,A and J the inequality

exp
( t
∫

0

‖A‖ds
)

[

1− (α− 1)λα−1

t
∫

0

N(µ, s) exp
(

(α− 1)
s
∫

0

‖A‖dτ
)

ds
]

1

α−1

<
A

λ

holds true for all t ∈ J and 0 < µ < µ0. Then the set of solutions Y (t) of the family of
equations (14) is (λ,A, J)-stable.

The assertion of Corollary 3 follows from estimate (21) and Definition 2.

5 Boundedness of Trajectories of Standard Affine Systems

Consider a family of affine systems of the form

DHX(t) = µ(f(t,X) + g(t,X)U(t)), (22)

X(t0) = X0 ∈ D ⊂ Kc(R
n), (23)

where f(t,X) : R+×D → Kc(E), g(t,X) is an n×n-matrix, g(t,X) : R+×D∗ → Kc(E),
U(t) ∈ W ⊂ Kc(E) is a control.

Together with the family of equations (22) we consider the averaged equations

DHY (t) = µ(f(t, Y ) + g(t, Y )V (t)),

Y (t0) = Y0 ∈ D ⊂ Kc(R
n),

(24)

where

lim
T→∞

1

T
D

[ T
∫

0

f(s,X(s))ds,

T
∫

0

f(s, Y (s))ds

]

= 0; (25)

lim
T→∞

1

T
D

[ T
∫

0

g(s,X(s))U(s)ds,

T
∫

0

g(s, Y (s))V (s)ds

]

= 0; (26)

for all (U, V ) ∈ W ⊂ Kc(E).
We shall estimate the deviation of solutions to the family of equations (24) from the

state Θ0 ∈ Kc(E). Assume as follows:

H6. There exists a function f1(t, µ) > 0, integrable on J and such that

D[f(t, Y ),Θ0] ≤ f1(t, µ)D[Y,Θ0]

for all Y ∈ D and 0 < µ < µ1.

H7. There exists a function f2(t, µ) > 0, integrable on J and such that

D[g(t, Y )V (t),Θ0] ≤ f2(t, µ)D
2[Y,Θ0]

for all Y ∈ D∗, V (t) ∈ W and 0 < µ < µ1.
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Theorem 4 In the domain Q = {(t, Y ) : t ≥ 0, Y ∈ D∗ ⊂ Kc(E)} for equations
(22) and (24) let

(1) there exist limits (25) and (26);

(2) conditions of hypotheses H6 and H7 be satisfied;

(3) for all t ≥ 0 and 0 < µ < µ0 the inequality

1−D[Y0,Θ0]

t
∫

0

f2(s, µ) exp

( t
∫

0

f1(τ, µ)dτ

)

ds > 0 (27)

hold true.
Then the deviation of the set of solutions to the family of equations (24) from zero is

estimated as

D[Y (t),Θ0] ≤

D[Y0,Θ0] exp
( t
∫

0

f1(s, µ)ds
)

1−D[Y0,Θ0]
t
∫

0

f2(s, µ) exp
( t
∫

0

f1(τ, µ)dτ
)

ds

(28)

for all t ≥ 0, Y ∈ D∗ and 0 < µ < µ0.

Proof. Let the limiting relations (25) and (26) be satisfied. From equation (24) we
have

Y (t) = Y0 + µ

t
∫

0

(

f(s, Y (s)) + g(s, Y (s))V (s)
)

ds

and further

D[Y (t), Y0] ≤ D[Y0,Θ0]+µ

t
∫

0

D[f(s, Y (s)),Θ0] ds+µ

t
∫

0

D[g(s, Y (s))V (s),Θ0] ds. (29)

Under conditions of hypotheses H6 and H7 we find from inequality (29) that

D[Y (t),Θ0] ≤ D[Y0,Θ0] + µ

t
∫

0

f(s, Y (s))D[Y (s),Θ0] + f2(s, µ)D
2[Y (s),Θ0] ds. (30)

Designate n(t) = D[Y (t),Θ0] and from (30) we get

n(t) ≤ n(t0) + µ

t
∫

0

(f1(s, µ) + f2(s, µ)n(s))n(s) ds. (31)

Applying Gronwall-Bellman lemma to inequality (31) we arrive at

n(t) ≤ n(t0) exp

( t
∫

0

(f1(s, µ) + f2(s, µ))n(s) ds

)

.



40 A.A. MARTYNYUK

Hence

−n(t) exp

t
∫

0

(−f2(s, µ))n(s)) ds ≥ n(t0) exp

( t
∫

0

f1(s, µ) ds

)

.

Multiplying both sides of this inequality by f2(t, µ) > 0 we obtain

d

dt

(

exp

(

−

t
∫

0

f2(s, µ)n(s)ds

))

≥ −n(t0)f2(t, µ) exp

( t
∫

0

f1(s, µ)ds

)

. (32)

Integrating this inequality between t0 and t we get

(n(t))−1 exp

( t
∫

0

f1(s, µ)ds

)

≥ 1− n(t0)

t
∫

0

f2(s, µ) exp

( t
∫

0

f1(τ, µ)dτ

)

ds. (33)

Hence follows the estimate of deviation of the family of solutions to equation (24) from
the equilibrium state in the (28) form under condition (27). Theorem 4 is proved.

Estimate (28) allows one to establish boundedness conditions for the set of solutions
to the averaged affine system (24).

Definition 3 The set of solutions to equations (24) is bounded if for any ε > 0 and
t0 ∈ R+ there exists δ(t0, ε) > 0 such that

D[Y (t),Θ0] < ε for all t ≥ t0

and 0 < µ < µ0, whenever D[Y0,Θ0] < δ.
If δ does not depend on t0, the boundedness of the set of solutions Y (t) is uniform

with respect to t0.

Corollary 4 Let all conditions of Theorem 4 be satisfied and for any ε > 0 there
exist δ(ε) > 0 such that

exp
( t
∫

0

f1(s, µ)ds
)

1− δ(ε)
t
∫

0

f2(s, µ) exp
( t
∫

0

f1(τ, µ)dτ
)

ds

<
ε

δ(ε)

for all t ≥ 0 and 0 < µ < µ0. Then the set of solutions of equations (24) is uniformly
bounded.

The assertion of Corollary 4 follows from estimate (28) and Definition 3.

6 Conclusion

A key element of the approach is the use of nonlinear integral inequalities in the problems
of qualitative analysis of the set of trajectories of generalized standard systems. The
resulting estimates of evasion of the set of trajectories of the equilibrium state, and the
estimate of the distance between the sets of initial and averaged solutions to systems
of equations are applicable in many problems of mechanics and applied mathematics in
which processes models are the system of equations (5), (13) and (22).
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