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Abstract: Coupled systems, each one admitting a family of nondegenerate periodic
solutions, are considered. The period of oscillations in the family is supposed to
depend on a unique parameter. Conditions imposed on weak couplings such that
the coupled system admits a family of periodic solutions, which is similar to that of
subsystems, are found. Differential equations of general form, as well as reversible
mechanical systems are investigated. The existence of resonant orbits in the N-planet
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1 Introduction

Investigation of a dynamic model usually implies the consideration of substantial factors.
The influence of other (minor) factors is regarded in the frame of the perturbation theory.
This influence can either slightly change quantitatively dynamical characteristics of the
system, or bring about a new quality. The latter case is usually associated with a
bifurcation.

System perturbations result from weak influence of other systems. Taking this into
account we consider a new model, which is closed one. The non-regarded influence is
modelled by the couplings between the systems to constitute coupled systems. Since the
intensity of non-regarded factors is weak, the couplings are expected to be small.

In [1] the closed model containing coupled subsystems (MCCS) is introduced. This
model posesses dynamical properties (i.e. run-outs, enregy transfer, etc.) that cannot
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be explained in the frame of perturbation theory. Investigation of this model assumes
the two main problem: 1) to find conditions on couplings such that the MCCS inherits
dynamical properties of its subsystems; 2) to find qualitatively new effects resulting from
couplings between subsystems.

In this paper the first problem is considered for coupled systems. Each system is
supposed to admit a family of nondegenerate periodic solutions, where the period depends
on a unique parameter. The goal is to find conditons on weak couplings such that
the coupled system admits a family of periodic solutions, which is similar to that of
subsystems. It is shown that these conditions are always satisfied in the case of symmetric
periodic motions of reversible mechanical system. The N -planet problem with one planet
in a quasi-circular orbit is considered. The existence of resonant orbits in this problem
is proved.

The concept of MCCS arose from the classical perturbation theory. The MCCS de-
scribes the dynamics in various problems of classical and celestial mechanics, radioengi-
neering, population dynamics, mechatronics and robotics, biology, medicine, etc. [1, 2].
MCCS can consist of subsystems of diverse nature, the subsystems being described by
various type equations. Coupled oscillators (see, for example, [3,4]) became the classical
model that illustrates the complexity of behaviour in coupled systems.

In [1] the formal description of the MCCS is given. Since 2003 systematic investiga-
tions concerning the above problems for the MCCS have been carrying out, more than a
dozen of papers have been published.

The autonomous models containing families of periodic solutions in subsystems were
considered in [2]. In particular, for an MCCS consisting of m subsystems the bifurcation
scenario is given. This scenario assumes the bifurcation of the 2m-family of periodic
solutions such that the m-family of periodic solution arises in the MCCS.

Later MCCS with identical subsystems were considered in [5], where the existence
of a family of periodic motions such that the period depends on a unique parameter is
proven. This paper pushes further the investigations of [2, 5] to extend the results of [5]
to MCCS containing different subsystems. It is shown that coupled reversible mechanical
systems inherit completely the dynamic property of the subsystems. Thus the problem
of extending the dynamic property of subsystems to the MCCS is completely solved.

MCCS belongs to the class of complex systems. Among the characteristic features of
the model there are hierarchical and multi-level structure, multi-mode operation, non-
linearity, high order. MCCS is qualified also as a large-scale system. MCCS represents a
network. It can be either autonomous or non-autonomous.

Weakly coupled MCCS is a system with a small parameter. Investigations of such sys-
tems can apply Yu.A. Mitropolsky’s results (cf. [6]), in particular, the single-frequency
approach to study nonlinear oscillations in multi-degree of freedom systems [7].

The present paper is dedicated to the 100-year anniversary of Yu.A. Mitropolsky.

2 The Nondegenerate for a Periodic Solution Case

Consider the smooth equation

ẋ = X(x), x ∈ R. (1)

Denote by x(x01, . . . , x
0
n, t) the general solution of (1). The necessary and sufficient

conditions of the existence of a T -periodic solution are given by

f ≡ x(x01, . . . , x
0
n, T )− x0 = 0, (2)
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where x0 = (x01, . . . , x
0
n) is the initial point at t = 0.

Let equation (2) have a solution x0 = x∗, T = 2π. Calculate the rank Ra of the
functional matrix for the function f at the point (x∗, T ). Since (1) is autonomous,
equation (2) possesses a monoparametric (denote the parameter by γ) family of solutions

x0 = x∗(γ), T = 2π. (3)

Thus we obtain Ra ≤ n− 1.

Definition 2.1 The case of Ra = n−1 is referred to as nondegenerate for a periodic
solution. The very solution is referred to as nondegenerate.

We use later on the following notion.

Definition 2.2 The isolated periodic solution of an autonomous differential equation
is called the cycle.

The following alternative holds [2].

Theorem 2.1 In the nondegenerate for a periodic solution case the following alter-
native takes place: the solution is either a cycle or belongs to a family of periodic solutions
with the period depending on a unique parameter. If this alternative realizes for equation
(1) then the nondegenerate for a periodic solution case takes place.

In this paper the case of family in the alternative is analyzed. According to the
law [8, 9] the period on the family depends on a unique parameter and T = T (h).
For ordinary points of the family dT 6= 0 and for critical points dT = 0 [10]. The
nondegenerate for a periodic solution case excludes the critical point from consideration.
In the case of family the periodic solution is associated with a double zero characteristic
exponent (CE) in the Jordan cell [11]. Since Ra = n− 1, the remaining CE are nonzero.

Note that there always exists (cf. [11]) a particular solution of the form

xs(t) = eλktϕs(t), ϕs(t+ T ) = ϕs(t), s = 1, . . . , n,

for a T -periodic linear system of the n-th degree. Here λk is CE; the total number of CE
(regarding their multiplicity) being equal to n.

3 Extending the Dynamic Property

Consider m smooth coupled systems

ẋs = X(xs) + εX̃s(ε, x1, . . . , xm), s = 1, . . . ,m, xs ∈ Rms . (4)

Here ε is a nonnegative numerical parameter such that (4) breaks up into m independent
systems at ε = 0. Suppose that the s-th system admits a family of periodic solutions

xs = ϕs(hs, t+ γs), s = 1, . . . ,m, (5)

which contains two parameters hs and γs. Here the period Ts = Ts(hs) of (5) depends
on hs and γs and represents the shift of the initial point along the trajectory. The s-
th system at a fixed hs = h∗s admits a periodic solution that depends on γs and given
hs = h∗s, s = 1, . . . ,m, the generating system (i.e. (4) at ε = 0) has an m-family of



98 V.N. TKHAI AND I.N. BARABANOV

conditionally periodic solutions with m frequencies. If Ts(h
∗
s) = T ∗, s = 1, . . . ,m, this

family is the family of T ∗-periodic solutions with the parameter γ = (γ1, . . . , γm). In view
of this the existence conditions of periodic motions for coupled systems are formulated
in terms of γ = (γ1, . . . , γm) that corresponds to a chosen h∗ = (h∗1, ..., h

∗
m), rather than

in terms of hs, as it is the case in [2] where arbitrary systems are considered.
Let

x(ε, x0, t) = (x1(ε, x0, t), . . . , xm(ε, x0, t)) (6)

be the solution of the Cauchy problem of (4) with the initial point x0 at t = 0. Take
the derivative of (6) with respect to ε at ε = 0 when (6) coinsides with the solution
given by (5) at hs = h∗s, s = 1, . . . ,m. This derivative satisfies the following linear
nonhomogenious system with periodic coefficients

d

dt

(

∂xs

∂ε

)

= P s(h∗s, t+ γs)

(

∂xs

∂ε

)

+ X̃s(0, ϕ1(h∗1, t+ γ1), . . . , ϕ
m(h∗m, t+ γm)),

s = 1, . . . ,m,

(7)

where

P s(h∗s, t+ γs) = ‖pskj(h
∗
s , t+ γs)‖

ms

k,j=1, pskj(h
∗
s, t+ γs) =

(

∂Xs
k

∂xsj

)

xs=ϕs(h∗

s
,t+γs)

,

s = 1, . . . ,m.

The homogenious part of (7) splits up into m independent systems of ms-th degree,
each one having a unique T ∗-periodic solution. The appropriate conjugate system splits
up into m subsystems as well. Denote the T ∗-periodic solutions of those subsystems
by ψs(h∗s , t + γs) s = 1, . . . ,m. Consequently, the necessary condition of existence of a
T ∗-periodic solution for (4) can be written as

gh∗(γ1, . . . , γm) = 0, (8)

where the components of g are defined by

gsh∗(γ1, . . . , γm) =

∫ T∗

0

n
∑

k=1

X̃s
k(0, ϕ

1(h∗1, t+ γ1), . . . , ϕ
m(h∗m, t+ γm))ψs

k(h
∗
s , t+ γm)dt,

s = 1, . . . ,m.

Equation (8) determines the class of couplings that admit the existence of periodic
solutions in coupled systems. It will be shown later that (8) turns out to be sufficient
under some conditions.

Note that the equation g = 0 was used earlier [2] to find h∗s of the generating family
with the parameter γ.

Let us formulate the theorem that establishes sufficient conditions of the existence of
periodic solutions in coupled systems.

Theorem 3.1 Let equation (8) have a solution denoted by γ∗, i.e. gh∗(γ∗) = 0. Let
the rank of the functional matrix of the mapping γ → gh∗(γ) at γ∗ be equal to m − 1.
Then (4) has a periodic solution.
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Proof. The solution x(ε, x0, t+ γ), being T ∗-periodic, satisfies equation

F ≡ x(ε, x0, T ∗)− x0 = 0, F = (F 1, . . . , Fm). (9)

Since (4) is autonomous, the solution x0 of (9) depends on a unique parameter δ and
γ = γ(δ).

Hence, the problem is to find the root x0 of (9), which depends on ε such that it
satisfies the system

F s
0 ≡ xs(0, xs0, T ∗)− xs0 = 0, s = 1, . . . ,m, x0 = (x10, . . . , xm0) (10)

at ε = 0. System (10) splits up into m subsistems. The s-th subsystem has a family of
solutions xs0 = xs0(γ∗s (δ)) with the parameter γ∗s (δ).

At a given ε (9) represents a system of m-th degree in m variables, while its solution
x0 = x∗(ε, γ(δ)) depends on ε.

Rearrange (9) as

F s
0 (x

s0, T ∗) + εGs(ε, x0, T ∗) = 0, s = 1, . . . ,m, (11)

where F s
0 (x

s∗(0, γ∗), T ∗) = 0. For (11) take the increments

ysk = xs0k − xs∗k (0, γ∗s ), k = 1, . . . ,ms, s = 1, . . . ,m. (12)

By assumption, the rank Ras of the functional matrix of F s
0 at xs0 = xs∗(0, γ∗s ) is

equal to ms − 1. Consequently, ms − 1 increments ysk of the s-th subsystem can be
expressed as functions of the remaining increment, which we denote, to be specific, by
yss. Substitute the above functions into the equation for yss, then the s-th subsystem
yields a unique equation in yss instead of ms equations. By repeating this procedure for
all m subsystems we obtain a system of m equations

Φs(z, T ∗) + εΨs(ε, z, T ∗) = 0, s = 1, . . . ,m, z = (y11 , . . . , y
m
m).

In this system functions Φs do not contain linear terms. According to (12) components
of z are of the ε-th order. Equations (12) mean the transition along the trajectory of the
generating solution from the point x∗(0, γ∗) to the initial point x∗(0, γ) for a periodic
solution of the system at ε 6= 0. This implies that γ − γ∗ ∼ ε, so we obtain the system

Ψs(0, y11(γ), . . . , y
m
m(γ), T ∗) = 0, s = 1, . . . ,m, (13)

which coinsides with system of amplitude equations (8).
Let the rank of (13) at the point γ = γ∗ be equal to m − 1. Then system (9) has a

solution, which depends on the parameter δ. This means that there exists a T ∗-periodic
solution in (4).

Theorem 3.1 can be valid for an isolated point h∗. Such a point can be found by
deriving an appropriate amplitude equation and by finding its simple roots [2].

Suppose that hs = hs(χ), s = 1, . . . ,m in (5). Then the generating system has an
(m+1)-family of periodic solutions, and the vector h∗(χ) can be regarded as a parameter
in Theorem 3.1.

So the following theorem holds.

Theorem 3.2 Let equation (8) have a solution gh∗(γ∗) = 0. Let the rank of the
functional matrix of the mapping γ → gh∗(γ) at γ∗ be equal to m − 1. Then (4) has a
2-family of periodic solutions with the period depending on a unique parameter.
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Theorem 3.2 solves the problem of extending the property of having a family of
periodic solutions with the period depending on a unique parameter to coupled systems.
This result was announced in [12].

The proof of Theorem 3.2 repeats that of Theorem 3.1 with obvious modifications.

4 Coupled Reversible Mechanical Systems

4.1 Symmetric periodic motions

At first consider a separate system

u̇ = U(u, v), v̇ = V (u, v), (14)

U(u,−v) = −U(u, v), V (u,−v) = V (u, v);u ∈ Rl, v ∈ Rn, l ≥ n. (15)

A series of models in classical and celestial mechanics are described by these equa-
tions [13]. Usually u is the vector of generalized coordinates (quasicoordinates) and v is
the vector of generalized velocities (quasivelocities). System (14), (15) is the particular
case of the reversible dynamical system [14]. It is called the reversible mechanical system.

In what follows the set M = {u, v : v = 0}, which is called the fixed set, is used.

System (14), (15) always possesses a pair of symmetric with respect to M motions
(see Figure 1, a). The solution of (14),(15) that crossesM is called the symmetric motion
(Figure 1, b). A symmetric motion can be periodic (symmetric periodic motion, SPM).
An SPM crosses M at least twice (Figure 1, c).

( )a ( )b (с)

u

v

Figure 1: Motion types in a reversible mechanical system. a: a pair of symmetric with respect
to M motions; b: symmetric motion; c: symmetric periodic motion.

If system (14), (15) is 2π-periodic in some or all components of v, the appropriate
SPM can be either oscillation or rotation. These components take multiple of π values
on the fixed set [15].

Denote the symmetric motion by v(u01, . . . , u
0
l , t), where u

0 is the initial point in M .
Then the necessary and sufficient conditions of existence of a T -periodic SPM are given
by [15]

vs(u
0
1, . . . , u

0
l , T/2) = 0, s = 1, . . . , n. (16)
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Let system (16) admit a solution

u01 = u∗1, . . . , u
0
l = u∗l , T = T ∗ = 2π. (17)

Set up the matrix

A =

∥

∥

∥

∥

∥

∂vs(u
0
1, ..., u

0
l , T/2)

∂u0j

∥

∥

∥

∥

∥

,

where the partial derivatives are taken at the values (17).

Definition 4.1 The case of rankA = n is called nondegenerate for a symmetric
periodic motion; the very SPM is called nondegenerate.

Note that if l > n, a nondegenerate SPM will be degenerate in the sense of Definition
2.1.

A nondegenerate SPM is extended in the phase space over a family of (l − n+ 1)-th
degree. The condition rankA = n means that the SPM with the initial point (17) is
submerged in the family of SPM that depends on arbitrary l − n initial values of the
vector u0 and on the period T (cf. [16]). The law stating that the period depends on
a unique parameter is valid over the family of SPM [8, 9]. If system (14) contains a
numerical parameter µ and an SPM is nondegenerate at µ = 0 then the property of
nondegeneracy is extended for the appropriate SPM over the range µ 6= 0. Given the
existence of the SPM family in the system at µ = 0, conditions of the extension of the
SPM family over the range µ 6= 0 are found [16]. The appropriate property of the SPM
family is called stability with respect to parametric perturbations of the system.

A more general matrix

A1 =

∥

∥

∥

∥

∥

∂vs(u
0
1, ..., u

0
l , T/2)

∂u0j

∂vs(u
0
1, ..., u

0
l , T/2)

∂t

∥

∥

∥

∥

∥

can be used instead of A [17]. If rankA1 = n (generalized nondegeneracy condition) then
the implicit function theorem guarantees the existence of solution of system (16) in the
neighborhood of the point (17).

The case of rankA = n (which implies rankA1 = n) is described above. If rankA =
n− 1 and rankA1 = n then system (14) has a l − n+ 1 family of SPM with the period
depending on l − n+ 1 initial values of u0.

4.2 SPM families in coupled reversible mechanical systems

Consider the model of coupled reversible mechanical systems [17]. The intensity of cou-
pling is characterized by the small numeric parameter ε such that the model decouples
into independent systems of the form (14) at ε = 0. If so, matrices A and A1 depend on ε.

When ε = 0, they are block diagonal with the blocks A(j) (A
(j)
1 )) determined by the j-th

system. The condition of nondegeneracy of SPM in all systems provides the condition of
nondegeneracy of SPM in the coupled model [17]. The nondegeneracy condition for the
SPM in all but one systems and the generalized nondegeneracy condition for the SPM in
the remaining system yield the generalized nondegeneracy condition for the SPM in the
coupled model. So the property of the reversible mechanical system to have SPM can be
extended to coupled system in the following way.
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Theorem 4.1 If the nondegeneracy condition for the SPM is satisfied for all but
one reversible mechanical systems, while either the nondegeneracy condition for the SPM
or the generalized nondegeneracy condition for the SPM is satisfied for the remaining
system, then there exists a family of SPM of degree 2 +

∑

(l − n) in the coupled model
of reversible mechanical systems. Here l and n are dimensions of the vectors u and v in
the systems, respectively.

Remark 4.1 If l = n for all systems then the 2-family of SPM of the system is
extended to 2-family of SPM of the coupled model.

4.3 Coupled reversible mechanical systems with couplings of general form

Reversible mechanical systems, being coupled, may loose the property of reversibility.
This is the case when the couplings are represented by arbitrary functions of u and v such
that conditions (15) are not satisfied for coupled systems. As a result, the coupled model
is described by differential equations of general form. The following particular case can
be distinguished: l = n for all systems, all periodic motions involved are nondegenerate.
In this case Theorem 3.2 can be applied to establish the extension of the property from
the separate system to coupled systems. Besides, the result holds for both symmetric
and non-symmetric periodic motions.

The generalization of Theorem 3.2 turns out to be valid for nondegenerate SPM even
if l 6= n: the property of having a family of SPM is extended to coupled systems. The
accurate statement requires preliminary transformations of coupled systems similar to
those represented in [18]. This statement is beyond the scope of the paper.

5 Resonant Orbits in the N-planet Problem

The motion of N+1 gravitating bodies with one body (the Sun) being vastly superior in
mass to other bodies (the planets) is studied in the frame of the N -planet problem. If the
interaction between planets is neglected, the N -planet problem results in N independent
two-body problems (the Sun and the planet). The interaction between the planets can
be treated as perturbations.

5.1 Parade of planets

In the Solar system the parade of planets phenomenon, where all planets or some of
them line up in a straight line, is observed. In the frame of the N -planet problem this
phenomenon is associated with the existence of symmetric periodic orbits [19].

The N -planet problem belongs to the class of reversible mechanical systems [17].
Elliptic orbits in the two-body problem are symmetric with respect to the major axis,
the radial velocity being zero on the axis. The crossing of the fixed set by the image point
means for the N -planet problem that the planets line up in the straight line (parade of
planets). Since the parade of planets is periodic, this effect is observed on periodic orbits.
Such orbits result in resonances in the planet system.

In the stationary frame of reference the parade of planets is observed on elliptic orbits
(orbits of the second type), while in the rotating frame of reference the parade of planets
takes place on circular orbits (orbits of the first type).

Orbits of the first type were studied in [19,20], the parade of planets on the orbit of the
second type was analyzed in [19]. A simple proof of existence of the orbit of the second
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type is given in [17]. The parade of planets turns out to occur on the (N+1)-parametric
family of orbits close to elliptic, the period depending on a unique parameter (namely,
on the energy integral). When the generating system comprises a two-body system with
a circular orbit and other two-body systems with elliptic orbits, the existence of orbits
of the second type has remained an open problem. The interest to this case is due to the
fact that the eccentricity of Venus’s orbit is 0.007, i.e. the orbit is close to circular. The
solution to this problem is given in the paper.

In terms of the classification of oscillation modes in the model containing coupled
subsystems [1] the above problem falls under the category of modes with a critical point.
According to Theorem 4.1 for reversible mechanical systems the problem of existence of
oscillations in this mode has a solution.

Note that the question on the number of periodic orbits of planet systems in the
rotating frame of reference was raised in [19, 21, 22].

5.2 Two-body problem. Generalized nondegeneracy condition

Periodic orbits of two-body problems play an important role of the generating orbits
in the N -planet problem. Noting that the orbits in the two-body problem are planar,
consider only the planar problem. Write the equations in polar coordinates

ρ̈− ρθ̇2 +
k

ρ2
= 0,

d

dt
(ρ2θ̇) = 0.

Introduce the notation c = ρ2θ̇. Then

ρ̈−
c2

ρ3
+

k

ρ2
= 0, ċ = 0, θ̇ =

c

ρ2
. (18)

System (18) admits a solution with the fixed c = c∗. In this case the first equation
represents a conservative one degree of freedom system. This systems admits a family
of oscillations with respect to ρ, the period T (h) depending monotonically on the energy
integral h. The only exception is the critical point ρ∗ = c∗/k, which corresponds to the
circular orbit; here dT = 0 [10]. The last condition implies that rankA ≤ 1 for the
circular orbits

ρ = ρ∗, ρ̇ = 0, c = c∗, θ = (c∗/ρ
2
∗)t. (19)

Let us prove that rankA = 1.
Derive the equations in variations for the circular orbit:

δρ̈+
k

ρ3∗
δρ = 0, δċ = 0, δθ̇ =

δc

ρ2∗
−

2c∗
ρ3∗
δρ. (20)

It is obvious that the first equation can be integrated independently. This equation has
periodic solution δρ = cos(k/ρ3∗)t, the corresponding Jordan cell in matrix A breaks up
so that rankA ≤ 1.

The other symmetric solution in system (20) is characterized by the initial point
δρ(0) = 0, δρ̇(0) = 0, δc(0) = 1, δθ(0) = 0, so that δρ(t) ≡ 0. At the half-period instant
t = T/2 we have

δθ(T ) = (ρ2∗)
−1T/2 6= 0,

consequently, the second Jordan cell remains intact and rankA = 1.



104 V.N. TKHAI AND I.N. BARABANOV

Accoding to (19)
∂ρ̇(T/2)

∂t
≡ 0,

∂θ(T/2)

∂t
=

c

ρ2∗
6= 0

on the circular orbits at t = T/2, so that the condition rankA1 = 2 holds. This means
that the generalized nondegeneracy condition is satisfied on circular orbits.

5.3 Family of resonant orbits in the N-planet problem

Let us write the equation of motion for the problem in the cylindric coordinates [23, p.
365]

ρ̈s − ρsθ̇
2
s =

∂Ωs

∂ρs
,

d

dt
(ρ2sθ̇s) =

∂Ωs

∂θs
, z̈s =

∂Ωs

∂zs
, s = 1, . . . , N, (21)

where

Ωs =
f(m0 +ms)
√

ρ2s + z2s
+Ωs1,

Ωs1 = f
N
∑

j=1(s6=j)

mj

[

1

∆sj
−
ρsρj cos(θs − θj) + zszj

(ρ2s + z2s)
3/2

]

,

∆2
sj = ρ2s + ρ2j − 2ρsρj cos(θs − θj) + (zs − zj)

2,

m0 is the Sun’s mass, ms are the planets’ masses, m0 ≫ ms, f is the gravitational
constant.

System (21) is invariant with respect to the change of variables

ρ→ ρ, θ → ±θ, z → z(−z), t→ −t

and belongs to the class of reversible mechanical systems. Consider the planar prob-
lem (z ≡ 0). At Ωs1 = 0 (s = 1, . . . , N) the system splits up into N planar two-body
problems, which represent the generating system. Suppose that one planet moves along a
circular orbit, while other planets move along elliptic orbits. Then the reversible mechan-
ical system for the N -planet problem admits an N -family of SPM. The nondegeneracy
condition is satisfied for elliptic orbits of N−1 two-body problems, while the generalized
nondegeneracy condition is satisfied for the circular orbit of the remaining two-body prob-
lem. Perturbations Ωs1 depend only on xs, ys, such that (21) remains reversible. Hence,
Theorem 4.1 can be applied to establish the extension of the family in the generating
system to the N -planet problem.

So we can conclude that in the N -planet problem there exist resonant orbits close to
orbits in two-body problems such that the planets line up in a straight line (parade of
planets). The parade of planets is observed on the N -family of orbits, where the energy
integral h is one of parameters and the period depends only on h.

Let us summarize the above reasoning by

Theorem 5.1 In the N -planet problem there exists an N -family of planar symmetric
resonant periodic orbits close to orbits of the two-body problem, one of the orbits being
circular, and the others being elliptic. The planets in such orbits line up (periodically in
time) in a straight line (parade of planets).
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6 Conclusion

A great interest to coupled and network systems is being observed at present time. There
is a vast variety of the considered models and problem statements. One of the problems
to solve is to extend dynamic properties of a separate system to coupled systems. This
problem is solved in this paper for the smooth autonomous model containing coupled
subsystems. The separate subsystem is supposed to admit a family of periodic solutions
with the period depending on a unique parameter. For coupled systems described by
ordinary differential equations the problem of extending dynamic properties is solved by
finding appropriate couplings. In the case of reversible mechanical systems the dynamic
property is completely extended to coupled systems. The obtained results are applied to
the N -planet problem with one planet in a circular orbit and the other planets in elliptic
orbits. The existence of N -resonant orbits, on which the parade of planets is observed,
is established.
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