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1 Introduction

In the last decades the study of magnetization processes in magnetic materials has been
the focus of considerable research for its application to magnetic recording technology.
In fact, the design of currently widespread magnetic storage devices, such as the hard-
disks, requires the knowledge of the microscopic phenomena occurring within magnetic
media. In this respect, it is known that ferromagnetic materials present spontaneous
magnetization which is the result of spontaneous alignment of the elementary magnetic
moments that constitute the medium. The magnetic recording technology exploits the
magnetization of ferromagnetic media to store information. The first example of mag-
netic storage device was the magnetic core memory prototype, realized by IBM in 1952.
After magnetic core memories, magnetic tapes have been used, but the most widespread
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magnetic storage device is certainly the hard-disk. The progress made by research activ-
ity performed worldwide in this subject has led to exponential decay of magnetic device
dimensions. For more details, we refer for example to [10, 13].

The Landau-Lifshitz (LL) equation [14] and its modification, the Landau-Lifshitz-
Gilbert (LLG) equation [8], are the basic equations for studying the magnetization dy-
namics in ferromagnetic materials. Though these equations are equivalent from the
mathematical point of view [7] (specifically, the LL equation reduces to the LLG one
by a simple rescaling of the gyromagnetic ratio and damping parameter), the latter is
more preferable from the physical point of view and widely used for studying the non-
linear effects in the magnetization dynamics, regimes of forced precession, magnetization
switching, etc.

In this paper, we study the following one-dimensional fractional Landau-Lifshitz-
Gilbert equation

∂tm = γm× ∂tm+ (1 + γ2)m×Heff(m). (1)

The unknown m, the magnetization vector, is an application of Q = (0, T )× Ω (T > 0
and Ω is a bounded set of R) into S2 (the unit sphere of R3), ∂tm denotes its derivative
with respect to time, Heff(m) is the effective field,“×” is the three dimensional cross
product and the magnitude of magnetization (which is constant in space and time) has
been scaled to one

|m(t, x)| = 1. (2)

In (1), the positive constant γ is the damping coefficient, and

Heff(m) = −
∂E

∂m
(3)

is the opposite of the functional derivative of the free energy E . Typical expressions for E
that are usually used in practice take into account several different physical phenomena,
and can be found in [10] for instance. In this work, we will focus on the case where
Heff(m) is given by

Heff(m) = aΛ2αm+ bm× Λ2αm, (4)

when α ∈ (12 , 1) and a, b > 0. The operator Λ = (−∆)
1

2 denotes the square root of
the Laplacian and called also Zygmund operator which can be defined for example via
Fourier transformation [21].

Equation (1) has broad connections with other well-known equations appearing in
mathematics and physics. When α = 1 and b = 0, equation (1) becomes a standard
LLG equation and global existence of weak solutions and nonuniqueness is proved in [1].
When α ∈ (12 , 1) and b = 0, the existence of weak solutions for (1) is obtained using
Faedo-Galerkin/penalization (FGP) method and fractional calculus for the convergence
of nonlinear terms, see [18]. When α = 1 and b > 0, Eq. (1) becomes a standard LLG
equation with vertical spin stiffness and global existence of weak solutions is proved in [3].

The equation (1) is subject to the periodic boundary and initial conditions

m(0, .) =m0, |m0| = 1 in Ω. (5)

A simplified model can be obtained by assuming that Ω is a subset of R. Specifically, we
consider one dimensional domain Ω = (−π, π) and assume periodic boundary conditions.
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Throughout this paper, for k ∈ N∗, Lk(Ω) = (Lk(Ω))3 and Hk(Ω) = (Hk(Ω))3 are
the usual Hilbert-type Lebesgue and Sobolev spaces, respectively. Ḣα(Ω) denotes the
homogenous Sobolev-Slobodetskii space and H

α(Ω) denotes the inhomogeneous one.

Lemma 1.1 If m is a regular solution of the problem (1)-(5) then we have for all
t ∈ (0, T ) the following energy estimate

γ

∫ t

0

∫

Ω

|∂tm|2 dxdt+
β + γλ

2

∫

Ω

|Λαm(t)|2 dx ≤
β + γλ

2

∫

Ω

|Λαm0|
2 dx,

where β = a(1 + γ2) at λ = b(1 + γ2).

Proof. Using the saturation constraint |m| = 1, the LLG equation (1) can be written
in the following form

γ∂tm+m× ∂tm+ βΛ2αm+ λm× Λ2αm− β(m · Λ2αm)m = 0. (6)

Taking the inner product of (6) by ∂tm and Λ2αm respectively, we get

γ

∫

Ω

|∂tm|2 dx+
β

2

d

dt

∫

Ω

|Λαm|2 dx+ λ

∫

Ω

m× Λ2αm · ∂tm dx = 0 (7)

and
γ

2

d

dt

∫

Ω

|Λαm|2 dx+

∫

Ω

m× ∂tm · Λ2αm dx+ β

∫

Ω

|Λ2αm|2 dx

−β

∫

Ω

(m · Λ2αm)2 dx = 0.
(8)

Adding (7) and (8) multiplied by λ, we obtain

γ

∫

Ω

|∂tm|2 dx+
β + γλ

2

d

dt

∫

Ω

|Λαm|2 dx+ λβ

∫

Ω

|Λ2αm|2 dx

= λβ

∫

Ω

(m · Λ2αm)2 dx.

Since
∫

Ω

(m · Λ2αm)2 dx ≤

∫

Ω

|Λ2αm|2 dx,

and integrating from 0 to t, we obtain

γ

∫ t

0

∫

Ω

|∂tm|2 dxdt+
β + γλ

2

∫

Ω

|Λαm(t)|2 dx ≤
β + γλ

2

∫

Ω

|Λαm0|
2 dx

for all t ∈ (0, T ). ✷

In this work, we are mainly interested in studying the global existence of weak solu-
tions for (1)-(5). To this end, we first give the definition of weak solutions.

Definition 1.1 Letm0 ∈ Hα(Ω) with |m0| = 1 a.e., we say that a three dimensional
vector m is a weak solution of the problem (1)-(5) if

• for all T > 0, m ∈ L∞(0, T,Hα(Ω)) and ∂tm ∈ L2(Q) with |m| = 1 a.e.;
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• For all φ ∈ C∞(Q), such that φ(0, .) = φ(T, .)

∫

Q

∂tm · φ dxdt− γ

∫

Q

m× ∂tm · φ dxdt

= −β

∫

Q

Λαm · Λα(m× φ) dxdt− λ

∫

Q

(m× Λ2αm) · (m× φ) dxdt.
(9)

• m(0, x) =m0(x) in the trace sense.

• For all t ∈ (0, T )

γ

∫ t

0

∫

Ω

|∂tm|2 dxdt+
β + γλ

2

∫

Ω

|Λαm(t)|2 dx ≤
β + γλ

2

∫

Ω

|Λαm0|
2 dx. (10)

Remark 1.1 We will show in subsect.2.2 thatm×Λ2αm makes sense in L2(Q), and
for this reason, it will be clear that (9) makes sense.

The rest of the paper is organized as follows. In the next section, we prove a global
existence of weak solutions result by using Faedo-Galerkin/penalization method. Section
3 is devoted to revealing the relationships between the fractional LLG equation we have
studied in this paper, and the classical fractional LLG equation (i.e., in the case b = 0).
The last section concludes the paper and provides future directions for this work.

2 Global Existence of Weak Solutions

The purpose of the present section is to prove the following result

Theorem 2.1 Letm0 ∈ Hα(Ω) with |m0| = 1 a.e., then there exists a weak solution
of the problem (1)-(5) in the sense of Definition 1.1.

To prove Theorem 2.1, we proceed as in [1, 5, 18, 23].

2.1 The penalty problem

Let ε > 0. We introduce the following penalty problem. For an initial datum m0 ∈
Hα(Ω), and for each positive number T , find a vector field mε such as to satisfy the
equation

γ∂tm
ε +mε × ∂tm

ε + βΛ2αmε + λmε × Λ2αmε +
1

ε
(|mε|2 − 1)mε = 0. (11)

subject to the periodic boundary and initial conditions

mε(0, .) =m0, |m0| = 1 in Ω. (12)

The last term of equation (11) was introduced at the end to represent the constraint
|m| = 1.

We have the following result.
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Proposition 2.1 For each fixed positive ε, there is a weak solution mε of problem
(11)-(12) such that

γ

∫

Q

∂tm
ε · ϕ dxdt+

∫

Q

(mε × ∂tm
ε) · ϕ dxdt+ β

∫

Q

Λαmε · Λαϕ dxdt

−λ

∫

Q

Λαmε · Λα(mε ×ϕ) dxdt+
1

ε

∫

Q

(

|mε|2 − 1
)

mε ·ϕ dxdt = 0

for any ϕ in L2(0, T,Hα(Ω)). Moreover, the following energy estimate holds

γ

∫ t

0

∫

Ω

|∂tm
ε|2 dxdt+

β + γλ

2

∫

Ω

|Λαmε(t)|2 dxdt

+
1

4ε
(1 +

γλ

β
)

∫

Ω

(|mε|2 − 1)2(t) dx ≤
β + γλ

2

∫

Ω

|Λαm0|
2 dx

for all t ∈ (0, T ).

Proof. We show the existence of solutions for the penalty problem by using Faedo-
Galerkin method. Let {χi}i∈N be a complete orthonormal basis of L2(Ω) consisting of
eigenfunctions of Λ2α

Λ2αχi = λiχi, i = 1, 2, . . . (13)

under periodic boundary conditions. The existence of such a basis can be proved as in
Temam [22]. For fixed ε > 0, we seek approximate solutions mε,N for equation (11) of
the form

mε,N (t, x) =

N
∑

i=1

ai(t)χi(x),

where ai(t) are R3-valued vectors. We obtain the following approached problem

γ∂tm
ε,N +mε,N × ∂tm

ε,N + βΛ2αmε,N + λmε,N × Λ2αmε,N

+
1

ε

(

|mε,N |2 − 1
)

mε,N = 0
(14)

with the following initial conditions

mε,N (0, .) =mN (0, .) in Ω

and
∫

Ω

mN (0, .)χi dx =

∫

Ω

m0(0, .)χi dx.

Multiplying the equation (14) by χi and integrating over Ω, we get an ordinary
differential system.

Note that

γ∂tm
ε,N +mε,N × ∂tm

ε,N = A(mε,N )∂tm
ε,N ,

where

A(mε,N ) =





γ −mε,N
3 m

ε,N
2

m
ε,N
3 γ −mε,N

1

−mε,N
2 m

ε,N
1 γ



 .
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We can write equation (14) in the form

A(mε,N )∂tm
ε,N = −βΛ2αmε,N − λmε,N × Λ2αmε,N −

1

ε

(

|mε,N |2 − 1
)

mε,N .

Since A(mε,N ) is invertible, then the resulting system is locally Lipschitz. There
exists a unique local solution for the approximate problem that can extend on [0, T ]
using a priori estimate. To get bounds on the solutions, we multiply equation (14) by
∂tm

ε,N and Λ2αmε,N respectively and integrate over Ω. We obtain

γ

∫

Ω

|∂tm
ε,N |2 dx+

β

2

d

dt

∫

Ω

|Λαmε,N |2 dx

+λ

∫

Ω

mε,N × Λ2αmε,N · ∂tm
ε,N dx+

1

4ε

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx = 0,
(15)

and
∫

Ω

mε,N × ∂tm
ε,N · Λ2αmε,N dx+ β

∫

Ω

|Λ2αmε,N |2 dx

+
γ

2

d

dt

∫

Ω

|Λαmε,N |2 dx+
1

ε

∫

Ω

(|mε,N |2 − 1) · Λ2αmε,N dx = 0.

(16)

Multiplying (16) by λ and make the sum with (15), we obtain

γ

∫

Ω

|∂tm
ε,N |2 dx+

β

2

d

dt

∫

Ω

|Λαmε,N |2 dx+
1

4ε

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx

+λβ

∫

Ω

|Λ2αmε,N |2 dx+
λγ

2

d

dt

∫

Ω

|Λαmε,N |2 dx

= −
λ

ε

∫

Ω

(|mε,N |2 − 1)mε,N · Λ2αmε,N dx.

(17)

On the other hand, Young’s inequality gives

−
λ

ε

∫

Ω

(|mε,N |2 − 1)mε,N · Λ2αmε,N dx

≤
λ

2dε2

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx+
λd

2

∫

Ω

|Λ2αmε,N |2 dx

(18)

for any constant d > 0.
We multiply equation (14) by (|mε,N |2 − 1)mε,N and integrate over Ω, we obtain

β

∫

Ω

(|mε,N |2 − 1)mε,N · Λ2αmε,N dx+
γ

4

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx

+
1

ε

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx = 0.

Hence

−
λ

ε

∫

Ω

(|mε,N |2 − 1)mε,N · Λ2αmε,N dx

=
γλ

4βε

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx+
λ

βε2

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx.
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Therefore

γλ

4βε

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx+
λ

βε2

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx

≤
λ

2dε2

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx+
λd

2

∫

Ω

|Λ2αmε,N |2 dx.

That is

γλ

4βε

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx+
λ

ε2
(
1

β
−

1

2d
)

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx

≤
λd

2

∫

Ω

|Λ2αmε,N |2 dx.

So for d > β
2

λ

2dβε2

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx

≤
λd

2(2d− β)

∫

Ω

|Λ2αmε,N |2 dx−
γλ

4βε(2d− β)

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx.

Therefore from (18)

−
λ

ε

∫

Ω

(|mε,N |2 − 1)mε,N · Λ2αmε,N dx

≤
λd

2
(1 +

β

2d− β
)

∫

Ω

|Λ2αmε,N |2 dx−
γλ

4ε(2d− β)

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx.

Then from (17)

γ

∫

Ω

|∂tm
ε,N |2 dx+

β + γλ

2

d

dt

∫

Ω

|Λαmε,N |2 dx

+λ(β −
d2

2d− β
)

∫

Ω

|Λ2αmε,N |2 dx+
1

4ε
(1 +

γλ

2d− β
)
d

dt

∫

Ω

(|mε,N |2 − 1)2 dx ≤ 0.

Choose d = β, we get β − d2

2d−β
= 0 and therefore

γ

∫

Ω

|∂tm
ε,N |2 dx+

β + γλ

2

d

dt

∫

Ω

|Λαmε,N |2 dx

+
1

4ε
(1 +

γλ

β
)
d

dt

∫

Ω

(|mε,N |2 − 1)2 dx ≤ 0.

We integrate from 0 to t and we get

γ

∫ t

0

∫

Ω

|∂tm
ε,N |2 dxdt +

β + γλ

2

∫

Ω

|Λαmε,N (t)|2 dx

+
1

4ε
(1 +

γλ

β
)

∫

Ω

(|mε,N |2 − 1)2(t) dx ≤
β + γλ

2

∫

Ω

|ΛαmN |2(0) dx

+
1

4ε
(1 +

γλ

β
)

∫

Ω

(|mN |2 − 1)2(0) dx.

(19)
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The right-hand side is uniformly bounded. Indeed Hα(Ω) →֒ L4(Ω) with continuous
embedding, therefore

∫

Ω

(|mε,N |2 − 1)2(0) dx =

∫

Ω

|mN (0)|4 dx− 2

∫

Ω

|mN (0)|2 dx+meas(Ω)

≤ ‖mN (0)‖4
L4(Ω) +meas(Ω)

≤ C1‖m
N (0)‖4

Hα(Ω) + C2,

where C1 and C2 are two constants independent of ε and N . Furthermore, note that
mε,N (0) =mN (0), and sincemN (0) has the same components asm0 in the basis {χi}i∈N

and m0 ∈ Hα(Ω), we have ‖m0‖Hα(Ω) ≤ C3 with C3 being a constant independent of ε
and N . Hence

‖mN (0)‖Hα(Ω) ≤ C3.

Therefore,
‖ΛαmN (0)‖L2(Ω) ≤ C3.

Thus for ε fixed, we have

(|mε,N |2 − 1)N is bounded in L∞(0, T,L2(Ω)),

(Λαmε,N )N is bounded in L∞(0, T,L2(Ω)).

By Young’s inequality

∫

Ω

|mε,N |2 dx ≤ C +

∫

Ω

(|mε,N |2 − 1)2 dx,

with C being a constant which does not depend on N . Therefore,

(mε,N )N is bounded in L∞(0, T,Hα(Ω)),

(∂tm
ε,N )N is bounded in L2(0, T,L2(Ω)) := L

2(Q),

and we will need a compactness lemma due to Simon [20].

Lemma 2.1 Assume B0, B,B1 are three Banach spaces and satisfy B0 ⊂ B ⊂ B1

with compact embedding B0 →֒ B. LetW be bounded in L∞(0, T ;B0) and Wt := {wt;w ∈
W} be bounded in Lq(0, T ;B1) where q > 1. Then W is relatively compact in C([0, T ];B).

The proof can be found in Simon [20]. Then we have the following convergences to a
subsequence further notes that mε,N for any (1 < p <∞)

mε,N ⇀mε weakly in Lp(0, T,Hα(Ω)), (20)

mε,N →mε strongly in C([0, T ],Hδ(Ω)) and a.e for 0 ≤ δ < α, (21)

∂tm
ε,N ⇀ ∂tm

ε weakly in L
2(Q), (22)

|mε,N |2 − 1⇀ ζ weakly in Lp(0, T,L2(Ω)). (23)

The convergence (21) is a consequence of (20) and by compactness embedding of
L2(0, T,Hα(Ω)) in L2(0, T,L2(Ω)). On the other hand ζ = |mε|2 − 1. This is provided
by the following lemma.
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Lemma 2.2 Let Θ be a bounded open subset of Rd
x × Rt, hn and h are functions of

Lq(Θ) with 1 < q <∞ such as ‖hn‖Lq(Θ) ≤ C, hn → h a.e in Θ then hn ⇀ h weakly in
Lq(Θ).

The proof of Lemma 2.2 can be found in [15]. In our case Θ = Q, hN = |mε,N |2 − 1,
h = |mε|2 − 1 and q = 2 and from (21) |mε,N |2 − 1 −→ |mε|2 − 1 a.e, and we have in
particular |mε,N |2 − 1 ∈ L2(Θ), |mε|2 − 1 ∈ L2(Θ) and

∥

∥|mε|2 − 1
∥

∥

L2(Θ)
≤ C.

Now, we pass to the limit as N → ∞. Multiplying the equation (14) by ϕ ∈ C∞(Q)
and integrating on Q yield

γ

∫

Q

∂tm
ε,N · ϕ dxdt+

∫

Q

mε,N × ∂tm
ε,N ·ϕdxdt+ β

∫

Q

Λαmε,N · Λαϕ dxdt

−λ

∫

Q

Λαmε,N · Λα(mε,N ×ϕ) dxdt+
1

ε

∫

Q

(

|mε,N |2 − 1
)

mε,N ·ϕ dxdt = 0.
(24)

We have
mε,N →mε strongly in L

2(Q).

Furthermore
∂tm

ε,N ⇀ ∂tm
ε weakly in L

2(Q).

Thus
∫

Q

(mε,N × ∂tm
ε,N ) · ϕ dxdt →

∫

Q

(mε × ∂tm
ε) ·ϕ dxdt.

On the other hand
Λαmε,N ⇀ Λαmε weakly in L

2(Q).

Therefore
∫

Q

Λαmε,N · Λαϕ dxdt →

∫

Q

Λαmε · Λαϕ dxdt,

and
∫

Q

∂tm
ε,N ·ϕ dxdt →

∫

Q

∂tm
ε · ϕ dxdt.

Taking into account (23), we obtain
∫

Q

(

|mε,N |2 − 1
)

mε,N · ϕ dxdt →

∫

Q

(

|mε|2 − 1
)

mε ·ϕ dxdt.

For the third term of (24) we set

DN =

∫

Q

(mε,N × Λ2αmε,N ) · ϕ dxdt and D =

∫

Q

(mε × Λ2αmε) ·ϕ dxdt.

We have

DN = −

∫

Q

Λ2αmε,N · (mε,N ×ϕ) dxdt = −

∫

Q

Λαmε,N · Λα(mε,N ×ϕ) dxdt.

Then we define the commutator

[Λα,ϕ]m := Λα(ϕ×m)−ϕ× Λαm.

Since Λα is a nonlocal operator, the following fractional calculus inequality will play a
critical role in the convergence of approximate solutions, see [6] for the proof.
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Lemma 2.3 Suppose that s > 0 and p ∈ (1,+∞). Then

‖Λs(fg)− fΛsg‖Lp ≤ C(‖∇f‖Lp1‖g‖Ḣs−1,p2
+ ‖f‖Ḣs,p3

‖g‖Lp4 )

and

‖Λs(fg)‖Lp ≤ C(‖f‖Lp1‖g‖Ḣs,p2 + ‖f‖Ḣs,p3‖g‖Lp4 )

with p2, p3 ∈ (1,+∞) such that

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
,

and f, g are such that the right-hand side terms make sense.

We have

∥

∥

∥

∥

[Λα,ϕ](mε,N −mε)

∥

∥

∥

∥

L2(Ω)

≤ C

(

‖∇ϕ‖Lp1(Ω)‖m
ε,N −mε‖Ẇα−1,p2 (Ω) + ‖ϕ‖Ẇα,p3(Ω)‖m

ε,N −mε‖Lp4(Ω)

)

.

We choose p1 = 1
1−α

, p2 = 2
2α−1 and p3, p4 ∈ (2,+∞). This is justified by the fact that

Ẇ k,p →֒ Lq for 0 ≤ k < n
p
and 1

q
= 1

p
− k

n
, in our case n = 1 and k = 1 − α and we

want Ẇ k,p →֒ L2. Therefore it is sufficient that 1
2 = 1

p
− (1− α) that is 1

p
= 3

2 − α = 1
p∗

2

where 1
p2

+ 1
p∗

2

= 1 and therefore Ẇ
s,p∗

2

0 →֒ L2 = (L2)
′

→֒ (Ẇ k,p
0 )

′

→֒ Ẇ−k,p2 . Thus for

δ = 1
2 − 1

p4

< 1
2 < α

∥

∥

∥

∥

[Λα,ϕ](mε,N −mε)

∥

∥

∥

∥

L2(Ω)

≤ C

(

‖∇ϕ‖Lp1(Ω)‖m
ε,N −mε‖L2(Ω) + ‖ϕ‖Ẇα,p3(Ω)‖m

ε,N −mε‖Hδ(Ω)

)

≤ C

(

‖∇ϕ‖2
Lp1(Ω)‖m

ε,N −mε‖2
L2(Ω) + ‖ϕ‖2

Ẇα,p3(Ω)
‖mε,N −mε‖2

Hδ(Ω)

)

.

Therefore,

∥

∥

∥

∥

[Λα,ϕ](mε,N −mε)

∥

∥

∥

∥

L2(Q)

≤ C

(

‖∇ϕ‖2
L∞(0,T,Lp1(Ω))‖m

ε,N −mε‖2
L2(Q)

+‖ϕ‖2
L∞(0,T,Ẇα,p3(Ω))

‖mε,N −mε‖2L2(0,T,Hδ(Ω))

)

.

The right-hand side of the last inequality tends to 0 due to strong convergence ofmε,N →
mε in L2(Q) and in L2(0, T,Hδ(Ω)). Moreover by the preceding lemma [Λα,ϕ]mε ∈
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L2(Q). Thus

|DN −D| =

∣

∣

∣

∣

∫

Q

Λαmε,N · [Λα,ϕ]mε,N dxdt−

∫

Q

Λαmε · [Λα,ϕ]mε dxdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Q

Λαmε,N · [Λα,ϕ](mε,N −mε) dxdt+

∫

Q

Λα(mε,N −mε) · [Λα,ϕ]mε dxdt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Q

Λαmε,N · [Λα,ϕ](mε,N −mε) dxdt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Q

Λα(mε,N −mε) · [Λα,ϕ]mε dxdt

∣

∣

∣

∣

≤ ‖Λαmε,N‖L2(Q)

∥

∥

∥

∥

[Λα,ϕ](mε,N −mε)

∥

∥

∥

∥

L2(Q)

+

∣

∣

∣

∣

∫

Q

Λα(mε,N −mε) · [Λα,ϕ]mε dxdt

∣

∣

∣

∣

≤ ‖mε,N‖L2(0,T,Hα(Ω))

∥

∥

∥

∥

[Λα,ϕ](mε,N −mε)

∥

∥

∥

∥

L2(Q)

+

∣

∣

∣

∣

∫

Q

Λα(mε,N −mε) · [Λα,ϕ]mε dxdt

∣

∣

∣

∣

.

Since ‖mε,N‖L2(0,T,Hα(Ω)) ≤ C and

∥

∥

∥

∥

[Λα,ϕ](mε,N −mε)

∥

∥

∥

∥

L2(Q)

→ 0,
∣

∣

∣

∣

∫

Q

Λα(mε,N −mε) · [Λα,ϕ]mε dxdt

∣

∣

∣

∣

→ 0,

this implies that
DN → D. (25)

Using the previous convergences and passing to the limit (N → ∞) in (24), we get

γ

∫

Q

∂tm
ε ·ϕ dxdt+

∫

Q

mε × ∂tm
ε · ϕ dxdt + β

∫

Q

Λαmε · Λαϕ dxdt

−λ

∫

Q

Λαmε · Λα(mε ×ϕ) dxdt+
1

ε

∫

Q

(

|mε|2 − 1
)

mε ·ϕ dxdt = 0
(26)

for all ϕ in L2(0, T,Hα(Ω)) by density of C∞(Q) in L2(0, T,Hα(Ω)).
Now back to (19) and taking into account the previous convergences in N and using

Fatou lemma, we get

γ

∫ t

0

∫

Ω

|∂tm
ε|2 dxdt+

β + γλ

2

∫

Ω

|Λαmε(t)|2 dxdt

+
1

4ε
(1 +

γλ

β
)

∫

Ω

(|mε|2 − 1)2(t) dx ≤
β + γλ

2

∫

Ω

|Λαm0|
2 dx

(27)

for all t ∈ (0, T ).✷
We are now in a position to prove Theorem 2.1.

2.2 Convergence of the approximate solutions

To pass to the limit in ε (ε→ 0), we need estimate (19) and the following result
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Lemma 2.4 If mε satisfies (26) then |mε| ≤ 1 a.e. on Q.

Proof. We choose ϕ = ψBm
ε with B = {|mε| > 1} and ψB is the indicator function

of the set B. We have ϕ in L2(0, T,Hα(Ω)), and replacing ϕ by ψBm
ε in (26), we obtain

γ

∫ t

0

∫

B

∂tm
ε ·mε dxdt+ β

∫ t

0

∫

B

|Λαmε|2 dxdt+
1

ε

∫ t

0

∫

B

(

|mε|2 − 1
)

|mε|2 dxdt = 0.

Then
γ

2

∫ t

0

d

dt

∫

B

(

|mε|2 − 1
)

dxdt+ β

∫ t

0

∫

B

|Λαmε|2 dxdt

+
1

ε

∫ t

0

∫

B

(

|mε|2 − 1
)

|mε|2 dxdt = 0.

Hence
γ

2

∫ t

0

d

dt

∫

B

(

|mε|2 − 1
)

dxdt ≤ 0.

We integrate from 0 to t, we get

∫

B

(

|mε(t)|2 − 1
)

dx ≤

∫

B

(

|mε(0)|2 − 1
)

dx = 0.

Hence |mε| ≤ 1 a.e. on Q. ✷

Now we will look for an estimate of the term mε × Λ2αmε. Multiplying equation
(11) by mε × ∂tm

ε and integrating over Ω we obtain

∫

Ω

|mε × ∂tm
ε |2 dx+ β

∫

Ω

Λ2αmε ·mε × ∂tm
ε dx

+λ

∫

Ω

mε × Λ2αmε ·mε × ∂tm
ε dx = 0.

(28)

Multiply this time equation (11) by mε × Λ2αmε and integrating over Ω, we get

γ

∫

Ω

mε × Λ2αmε · ∂tm
ε dx+

∫

Ω

mε × Λ2αmε ·mε × ∂tm
ε dx

+λ

∫

Ω

|mε × Λ2αmε |2 dx = 0.

(29)

Multiplying equation (29) by λ and making the sum with (28), we get

∫

Ω

|mε × ∂tm
ε |2 dx+ (β + γλ)

∫

Ω

Λ2αmε ·mε × ∂tm
ε dx

−λ2
∫

Ω

|mε × Λ2αmε |2 dx = 0.

Then

λ2
∫

Ω

|mε × Λ2αmε |2 dx =

∫

Ω

|mε × ∂tm
ε |2 dx

+(β + γλ)

∫

Ω

Λ2αmε ·mε × ∂tm
ε dx.

(30)
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Multiplying (11) by ∂tm
ε, integrating over Ω, replacing

∫

Ω

Λ2αmε ·mε × ∂tm
ε dx by

its value in (30) and using Lemma 2.4, we obtain

λ2
∫

Ω

|mε × Λ2αmε|2 dx =

∫

Ω

|mε × ∂tm
ε|2 dx+

γ(β + γλ)

λ

∫

Ω

|∂tm
ε|2 dx

+
β(β + γλ)

2λ

d

dt

∫

Ω

|Λαmε|2 dx+
(β + γλ)

4ελ

d

dt

∫

Ω

(|mε|2 − 1)2 dx

≤

∫

Ω

|mε|2|∂tm
ε|2 dx+

γ(β + γλ)

λ

∫

Ω

|∂tm
ε|2 dx+

β(β + γλ)

2λ

d

dt

∫

Ω

|Λαmε|2 dx

+
(β + γλ)

4ελ

d

dt

∫

Ω

(|mε|2 − 1)2 dx

≤ (1 +
γ(β + γλ)

λ
)

∫

Ω

|∂tm
ε|2 dx+

β(β + γλ)

2λ

d

dt

∫

Ω

|Λαmε|2 dx

+
(β + γλ)

4ελ

d

dt

∫

Ω

(|mε|2 − 1)2 dx.

We integrate from 0 to t, and using the previous lemma, we get

λ2
∫ t

0

∫

Ω

|mε × Λ2αmε |2 dxdt ≤ C, (31)

where C is a constant independent of ε. Hence

(mε × Λ2αmε)ε is bounded in L
2(Q). (32)

Consequently,
mε × Λ2αmε ⇀ Φ weakly in L

2(Q). (33)

By (27), we have
(∂tm

ε)ε is bounded in L
2(Q),

(|mε |2 −1)ε is bounded in L∞(0, T ;L2(Ω)),

(mε)ε is bounded in L∞(0, T ;Hα(Ω)).

Then we have the following convergences to a subsequence further notes that (mε)ε for
(1 < p <∞):

mε ⇀m weakly in Lp(0, T ;Hα(Ω)),

∂tm
ε ⇀ ∂tm weakly in L

2(Q),

|mε |2 −1 → 0 strongly in L2(0, T ;L2(Ω)) and |m |= 1 a.e.

By compactness embedding of Hα(Q) into L4(Q), we have

mε →m strongly in L
4(Q). (34)

In the following, we show that

m× Λ2αm = Φ ∈ L
2(Q). (35)

Let ϕ ∈ Hα(Ω). We have
∫

Q

mε × Λ2αmε · ϕ dxdt = −

∫

Q

Λαmε · Λα(mε ×ϕ) dxdt.
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On the other hand, using commutator estimate together with the same reasonings that
lead to (25), we have

∫

Q

Λαmε · Λα(mε ×ϕ) dxdt →

∫

Q

Λαm · Λα(m×ϕ) dxdt

= −

∫

Q

(m× Λ2αm) ·ϕ dxdt,

and therefore (35) is proved. In particular, we have

mε × Λ2αmε ⇀m× Λ2αm weakly in L
2(Q).

Now back to (26) and taking ϕ =mε × φ with φ ∈ C∞(Q), we have

γ

∫

Q

∂tm
ε ·mε × φ dxdt+

∫

Q

mε × ∂tm
ε ·mε × φ dxdt

+β

∫

Q

Λαmε · Λα(mε × φ) dxdt+ λ

∫

Q

mε × Λ2αmε ·mε × φ dxdt = 0.
(36)

For the first term of (36), we set Θε =

∫

Q

mε × ∂tm
ε ·mε × φ dxdt.

We have

Θε =

∫

Q

|mε |2 ∂tm
ε · φ dxdt−

∫

Q

(mε · φ)mε · ∂tm
ε dxdt.

On the one hand
∫

Q

|mε|2∂tm
ε · φ dxdt =

∫

Q

(|mε|2 − 1)∂tm
ε · φ dxdt+

∫

Q

∂tm
ε · φ dxdt

→

∫

Q

∂tm · φ dxdt.

On the other hand
∫

Q

(mε · φ)mε · ∂tm
ε dxdt =

1

2

∫

Q

∂t(|m
ε |2 −1)mε · φ dxdt

=
1

2

[ ∫

Ω

(|mε |2 −1)mε · φ dx

]T

0

−
1

2

∫

Q

(|mε |2 −1)∂t(m
ε · φ) dxdt.

Now choose φ so that φ = 0 in t = 0 and t = T . Then
[ ∫

Ω

(|mε |2 −1)mε · φ dx

]T

0

= 0.

Therefore,
∫

Q

(mε · φ)mε · ∂tm
ε dxdt = −

1

2

∫

Q

(|mε |2 −1)∂t(m
ε · φ) dxdt

= −
1

2

∫

Q

(|mε |2 −1)∂tm
ε · φ dxdt

−
1

2

∫

Q

(|mε |2 −1)mε · ∂tφ dxdt→ 0.
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Hence

Θε →

∫

Q

∂tm · φ dxdt.

For the second term of (36)

β

∫

Q

Λαmε · Λα(mε × φ) dxdt → β

∫

Q

Λαm · Λα(m× φ) dxdt.

For the third term of (36)

λ

∫

Q

mε × Λ2αmε ·mε × φ dxdt → λ

∫

Q

m× Λ2αm ·m× φ dxdt.

For the last term of (36)

γ

∫

Q

∂tm
ε ·mε × φ dxdt → γ

∫

Q

∂tm ·m× φ dxdt.

Let ε tends to 0 in (36), we obtain

∫

Q

∂tm · φ dxdt− γ

∫

Q

m× ∂tm · φ dxdt

+β

∫

Q

Λαm · Λα(m× φ) dxdt + λ

∫

Q

m× Λ2αm ·m× φ dxdt = 0

for all φ ∈ C∞(Q). Furthermore, the inequality (10) follows from (27) and we finish the
proof of Theorem 2.1.

3 The Limit as b→ 0

The main purpose of this section is to reveal to relationships between the fractional LLG
equation we have studied in this paper, and the classical fractional LLG equation (i.e.,
in the case b = 0). We will prove the following result.

Proposition 3.1 Let b → 0. The weak solution mb obtained in section 2 weakly
converges, up to a subsequence, to a solution of the classical fractional LLG equation in
the following sense.

For all φ ∈ C∞(Q) with φ(0, .) = φ(T, .) = 0,

∫

Q

∂tm · φ dxdt− γ

∫

Q

m× ∂tm · φ dxdt = −β

∫

Q

Λαm · Λα(m× φ) dxdt.

Proof. Using the fact that |mb| = 1 a.e in Q and estimate (10), we deduce that

(mb)b is bounded in L∞(0, T,Hα(Ω)),

and

(∂tm
b)b is bounded in L

2(Q).
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Hence, up to a subsequence, we have

mb ⇀m weakly in Lp(0, T,Hα(Ω)) for 1 < p <∞,

mb →m strongly in C([0, T ],Hδ(Ω)) and a.e for 0 ≤ δ < α,

∂tm
b ⇀ ∂tm weakly in L2(Q).

Then |m| = 1 a.e in Q. On the other hand, we have

γ∂tm
b +mb × ∂tm

b + βΛ2αmb + λmb × Λ2αmb − β(Λ2αmb ·mb)mb = 0 a.e. in Q.

Multiplying this equation by ∂tm
b and mb × Λ2αmb respectively and integrating over

Ω, we get

γ

∫

Ω

| ∂tm
b |2 dx+

β

2

d

dt

∫

Ω

| Λαmb |2 dx+ λ

∫

Ω

mb × Λ2αmb · ∂tm
b dx = 0 (37)

and

λ

∫

Ω

|mb × Λ2αmb|2 dx+
1

2

d

dt

∫

Ω

|Λαmb|2 dx = −γ

∫

Ω

mb × Λ2αmb · ∂tm
b dx. (38)

The equalities (37), (38) allow to get

λ2
∫

Ω

|mb × Λ2αmb|2 dx = γ2
∫

Ω

|∂tm
b|2 dx+

(γβ − λ

2

) d

dt

∫

Ω

|Λαmb|2 dx.

We integrate from 0 to t to get

λ2
∫ t

0

∫

Ω

|mb × Λ2αmb|2 dxdt+
(γβ − λ

2

)

∫

Ω

|Λαm0|
2 dx

= γ2
∫ t

0

∫

Ω

|∂tm
b|2 dxdt+

(γβ − λ

2

)

∫

Ω

|Λαmb|2 dx

(39)

for all t ∈ (0, T ).
Recall that

β = a(1 + γ2) and λ = b(1 + γ2).

Since b is small enough, we assume that b < aγ i.e., λ < γβ. Using estimate (10), we
have

∫

Ω

|Λαmb|2 dx ≤

∫

Ω

|Λαm0|
2 dx

and

γ2
∫ t

0

∫

Ω

|∂tm
b|2 dxdt ≤

γβ(1 + γ2)

2

∫

Ω

|Λαm0|
2 dx.

Then, (39) implies that

b2
∫ t

0

∫

Ω

|mb × Λ2αmb|2 dxdt ≤
γa

2

∫

Ω

|Λαm0|
2 dx.

Hence
(bmb × Λ2αmb)b is bounded in L

2(Q).
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Therefore,

bmb × Λ2αmb ⇀ ξ weakly in L
2(Q).

Let ψ ∈ Hα(Q). We have

∫

Q

bmb × Λ2αmb · ψ dxdt = −b

∫

Q

Λαmb · Λα(mb × φ) dxdt,

which tends to zero as b goes to zero. We conclude that ξ = 0.

Now, we can pass to the limit as b→ 0 in the weak formulation

∫

Q

∂tm
b · φ dxdt− γ

∫

Q

mb × ∂tm
b · φ dxdt

= −β

∫

Q

Λαmb · Λα(mb × φ) dxdt− (1 + α2)

∫

Q

bmb × Λ2αmb ·mb × φ dxdt.

We obtain

∫

Q

∂tm · φ dxdt− α

∫

Q

m× ∂tm · φ dxdt = −β

∫

Q

Λαm · Λα(m× φ) dxdt.

Then Proposition 3.1 is proved. ✷

4 Concluding Remarks

In this paper, global existence of weak solutions to a modified fractional LLG equation
is proved. The modification lies in the presence in the effective field of the term b m×
Λ2αm describing fractional vertical spin stiffness. Due to nonlocal nonlinearities in the
model, special structures of the equation, the commutator estimate and some calculus
inequalities of fractional order are exploited to get the convergence of the approximating
solutions. The relationship between the model and the classical fractional LLG equation
is also revealed by discussing the limit of the obtained solutions when the vertical spin
stiffness parameter b tends to zero.

Let us mention that important progress has been made in the design of schemes con-
structing weak solutions to classical LLG equation. Several schemes were proposed, and
their convergence to weak solutions was proved (see for examples [2, 4]). An interesting
direction of future research is to propose numerical scheme for the fractional LLG equa-
tion. This will be helpful to give a strategy for efficient computer implementation which
may reflect the true nature of the augmentation of the LLG model considered in this
paper.
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