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Abstract: The domination number is an important vulnerability parameter that
it has become one of the most widely studied topics in graph theory, and also the
bondage number which is related by domination number the most often studied prop-
erty of vulnerability of communication networks. Recently, Dankelmann et al. defined
the exponential domination number denoted by γe(G) in [17]. In 2016, the exponen-
tial bondage number, denoted by bexp(G), is defined by bexp(G) = min{|Be| : Be ⊆
E(G), γe(G − Be) > γe(G)}, where γe(G) is the exponential domination number of
G [24]. In this paper, the above mentioned parameters is has been examined. Then
exact formulas are obtained for the families of cyclic structures tend to have grace-
ful subfamilies such as helm graph, windmill graph, circular necklace and friendship
graph.
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1 Introduction

Graph theory plays vital role in various fields. One of the important areas in graph
theory is graph labeling. Interest in graph labeling began in mid-1960s with a conjecture
by Kotzig-Ringel and a paper by Rosa [5]. In 1967, Rosa published a pioneering paper
on graph labeling problems. Graph labeling is powerful tool that makes things ease in
various fields of networking. Graph labeling is very important major areas of computer
science like data mining image processing, cryptography, software testing, information
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security, communication network etc. Also, there are many applications of graph labelling
in the literature such as coding theory, radar, astronomy, circuit design, missile guidance,
communication network addressing, xray crystallography, data base management [5,13].

We begin by recalling some standard definitions that we need throughout this paper.
Let G = (V,E) be a simple undirected graph of order n. For any vertex v ∈ V , the
open neighborhood of v is NG(v) = {u ∈ V |uv ∈ E} and closed neighborhood of v is
NG[v] = NG(v) ∪ {v}. The degree of v in G denoted by deg(v), is the size of its open
neighborhood. A vertex v is said to be pendant vertex if deg(v) = 1 [7, 18]. A vertex
u is called support vertex if u is adjacent to a pendant vertex. The graph G is called
r-regular graph if deg(v) = r for every vertex v ∈ V . The distance d(u, v) between two
vertices u and v in G is the length of a shortest path between them [7, 18].

Given a graph G = (V,E), the set N of non-negative integers and a commutative
binary operation ∗ : N × N → N , every vertex f : V → N induces an edge function
f∗ : E → Nsuch that f ∗ (uv) = |f(u) − f(v)|, for all uv ∈ E. A function f is called
graceful labeling of a graph G if f : V → 0, 1, 2, ..., q is injective and the induced function
f∗ : E → 1, 2, ..., q is bijective. A graph which admits graceful labeling is called graceful
graph.

A set S ⊆ V is a dominating set if every vertex in V (G) − S is adjacent to at least
one vertex in S. The minimum cardinality taken over all dominating sets of G is called
the domination number of G is denoted by γ(G) [7, 18]. There are different application
of domination problems. For instance, dominating sets in graphs are natural models for
facility location problems in operations research [18] or domination number is the one
of the most important vulnerability parameter for networks [18,23]. When investigating
the domination number of a given graph G, one may want to learn the answer of the
following question: How does the domination number increases in a graph G? or How
many edges need to be added to decrease the domination number of the original graph?
One of the vulnerability parameters known as bondage number in a graph G answers the
former question. The bondage number b(G) was introduced by Fink et al. [12] and is
defined as follows:

b(G) = min{|B| : B ⊆ E, γ(G−B) > γ(G)}.

We call such an edge set B that γ(G−B) > γ(G) the bondage set and the minimum
one the minimum bondage set. If b(G) does not exist, for example empty graphs, then
b(G) = ∞ is defined.

In 2009, Dankelmann introduced the concept of exponential domination [17]. This
new parameter is closely in relation with distance of each pair of vertices. The exponential
domination number is the theoretical vulnerability parameters for a network that is
represented by a graph [1, 17]. An exponential dominating set of graph G is a kind

of distance domination subset S ⊆ V (G) such that
∑

v∈S(1/2)
d(u,v)−1 ≥ 1, ∀v ∈ V ,

where d(u, v) is the length of a shortest path in 〈V − (S − {u})〉 if such a path exist,
and ∞ otherwise. The minimum exponential domination number, γe(G) is the smallest
cardinality of an exponential dominating set. We call such an edge set is a minimum
exponential set which is denoted by γe-set.

Aytac et al. has defined exponential bondage number [24]. It is defined as follows:

bexp(G) = min{|Be| : Be ⊆ E, γe(G−Be) > γe(G)},

where γe(G) is the exponential domination number of the graph G. We call such an edge
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set Be that γe(G − Be) > γe(G) the exponential bondage set and the minimum one the
minimum exponential bondage set.

There are many advantages of creating a communications network that is analogous
a graceful graph. One advantage is that if a link goes out, a simple algorithm could
detect which two centers are no longer linked, since each connection is labeled with
the difference between the two communication centers. Another advantage is that this
network also would have all the same properties as a graceful graph; such as having
cyclic decompositions [5,13]. Many structures that have been studied in recent years are
structures that involve cycles. One reason for this is that Rosa proved that all cycles
that are of lengths n ≡ 0, 3(mod4) are graceful. Hence, many families of cyclic structures
tend to have graceful subfamilies. We will now investigate some of these structures such
as: helm graph, windmill graph, circular necklace and friendship graph.

Calculation of exponential domination and bondage numbers for simple cyclic graph
types is important because if one can break a more complex network into smaller net-
works, then under some conditions the solutions for the optimization problem on the
smaller networks can be combined to a solution for the optimization problem on the
larger network.

In Section 2, some well-known basic results are given for exponential domination and
bondage numbers. In Section 3, examples of the exponential dominating and the expo-
nential bondage sets of a graph are are given. In Section 4, the exponential domination
numbers have been computed for helm graph, windmill graph, circular necklace and
friendship graph. In Section 5, the exponential bondage numbers have been calculated
for same structures.

2 Basic Results

In this section some well-known basic results are given with regard to exponential dom-
ination number and bondage number.

Theorem 2.1 [17] The exponential domination number of

a) the path graph Pn of order n ≥ 2 is γe(Pn) = ⌈n+1
4 ⌉.

b) the cycle graph Cn of order n ≥ 4 is γe(Cn) =

{

2 , if n = 4;
⌈n
4 ⌉ , if n 6= 4.

}

Theorem 2.2 [17] For every graph G, γe(G) ≤ γ(G), and also γe(G) = 1 if and
only if γ(G) = 1.

Theorem 2.3 Let G be any connected graph with n vertices and ∃v ∈ V (G) such
that deg(v) = n− 1. Then γe(G) = 1.

Theorem 2.4 [12] If G is a connected graph of order n ≥ 2, then b(G) ≤ n−γ(G)+1.

Theorem 2.5 [12] The bondage number of

a) the path graph Pn of order n ≥ 2 is b(Pn) =

{

2, if n ≡ 1(mod 3);
1, otherwise.

b) the cycle graph Cn of order n ≥ 3 is b(Cn) =

{

3, if n ≡ 1(mod 3);
2, otherwise.
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c) the complete graph Kn of order n ≥ 2 is b(Kn) = ⌈n
2 ⌉.

d) the star graph Sn of order n ≥ 3 is b(Sn) = 1.

Theorem 2.6 [22] If G is a nonempty graph with a unique minimum dominating
set, then b(G) = 1.

Theorem 2.7 [24] Let G be a connected graph of order n. If G includes only one
pendant vertex, then bexp(G) = 1.

3 Example

a) Let’s find the exponential dominating sets of the given graph in Figure 1.

Figure 1: Graph G.

• For the set S1 = {v1, v3, v7, v5} ⊆ V (G), Table 1 is obtained.

Table 1: The weight values of S1 at v.
v v1 v2 v3 v4 v5 v6 v7 v8
wS1

(v) 2 3 2 2 2 3 2 2

From Table 1, it is easy to see that wS1
(v) ≥ 1. Hence, the set S1 ⊆ V (G) is an

exponential dominating set of the graph G.

• For the set S2 = {v2, v6, v8} ⊆ V (G), Table 2 is obtained.

Table 2: The weight values of S2 at v.
v v1 v2 v3 v4 v5 v6 v7 v8
wS2

(v) 2 2 2 1 5/4 2 3 2

From Table 2, it is easy to see that wS2
(v) ≥ 1. Hence, the set S2 ⊆ V (G) is an

exponential dominating set of the graph G.

• For the set S3 = {v1, v5} ⊆ V (G), Table 3 is obtained.

From Table 3, it is easy to see that wS3
(v) ≥ 1. Hence, the set S3 ⊆ V (G) is an

exponential dominating set of the graph G.
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Table 3: The weight values of S3 at v.
v v1 v2 v3 v4 v5 v6 v7 v8
wS3

(v) 2 5/4 1 5/4 2 5/4 1 5/4

Among some of the exponential dominating sets discussed above, the set having min-
imum element is the set S3. There is not a set that is exponential dominating and
|S| < |S3| of the graph G. Namely ∃S ⊆ V (G) can not be found. In this case,
exponential domination number of the graph G is γe (G) = |S3| = 2.

b) Let’s find the exponential bondage sets of the given graph in Figure 1.

• Let’s consider the set B1
e = {e1} ⊆ E (G) . In this case, we examine exponential

domination number of the E (G) − B1
e graph. Here, it is easy to see that S =

{v1, v8} ⊆ E (G)−B1
e is a member of any minimum exponential dominating set.

B1
e is not an exponential bondage set because γe

(

E (G)−B1
e

)

= γe (G) = 2.

• Let’s consider the set B2
e = {e3, e6} ⊆ E (G) . In this way, we examine exponen-

tial domination number of the E (G)−B2
e graph. Here, it can be easily seen that

the set S = {v1, v3, v5} ⊆ E (G)−B2
e is a minimum exponential dominating set.

B2
e is an exponential bondage set because γe

(

E (G)−B2
e

)

= 3 > γe (G) = 2.

• Let’s consider the set B3
e = {e2, e6} ⊆ E (G) . The E (G)−B3

e graph consists of
two components. In this case, we examine exponential domination number of the
E (G)−B3

e graph. Here, it can be easily seen that the set S = {v1, v3, v5, v7} ⊆
E (G)− B3

e is a member of any minimum exponential dominating set. B3
e is an

exponential bondage set because γe
(

E (G)−B3
e

)

= 4 > γe (G) = 2.

• Let’s consider the set B4
e = {e3, e5, e10} ⊆ E (G) . The E (G)−B4

e graph consists
of two components. In this case, we examine exponential domination number of
the E (G)−B4

e graph. Here, it can be easily seen that the set S = {v1, v7, v4} ⊆
E (G)− B4

e is a member of any minimum exponential dominating set. B4
e is an

exponential bondage set because γe
(

E (G)−B4
e

)

= 3 > γe (G) = 2.

Among some of the exponential bondage sets discussed above, the set having minimum
element is the set B2

e . There is not a set that is exponential bondage and |Be| <
∣

∣B2
e

∣

∣

of the graph G. Namely ∃Be ⊆ E (G) can not be found. In this case, exponential
bondage number of the graph G is bexp (G) =

∣

∣B2
e

∣

∣ = 2.

4 The Exponential Domination Number of Some Graceful Cyclic Structure

In this section, we give definition of well-known graceful cyclic structure. Then we
calculate the exponential domination number of them.

Definition 4.1 [15] A helm graph is denoted byHn is a graph obtained by attaching
a single edge and vertex of the outer circuit of a wheel graph Wn. The number of vertices
of Hn is 2n+ 1 and the number of edges is 3n. We display the graph H4 in Figure 2.

Theorem 4.1 If Hn is a helm graph, then γe(Hn) = 4.
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Figure 2: The Helm Graph H4.

Proof. The Helm Hn consist of the vertex set V (Hn) = {vi|0 ≤ i ≤ n− 1}∪ {ai|0 ≤
i ≤ n−1}∪{c}. Let c be the central vertex of Hn. The degree of central vertex is n. The
vertices of Hn \ {c} are two kinds: vertices of degree four and one, respectively. Clearly,
deg(vi) = 4 and deg(ai) = 1.

Let S be γe-set of Hn. If S consists of only one central vertex c, then this vertex is
exponentially dominated all vertices except that the pendant vertices ai. Therefore, the
vertices vi must be added to S.

If c ∈ S and vi is not adjacent ai, then d(vi, ai) ≥ 2. If c /∈ S and vi is not adjacent
ai, then d(vi, ai) = 2 or d(vi, ai) = 3.

Due to distance between ai and vi and because S is γe-set, S must not contain
the central vertex c. In this case, the set S must consist only of the vertices vi. The
geodesic(shortest) distances from the vertices vi to the other vertices ofHn are as follows:
d(vi, ai) ≤ 3, d(vi, vi) ≤ 3 and d(vi, c) = 1.

Accordingly, any vertex x ∈ V (Hn) is at most 3 distance away from the vertex vi ∈ S.
Initially, let’s assume that S is only one vertex vi. Let x be the vertex in V (Hn) \ S

such that d(vi, x) = 3. To dominate the exponentially the vertex x by set S, the number
of vertices that must be in S is

ws(x) =
∑

vi∈S

1

2d(vi,x)
≥ 1,

m

22
≥ 1 ⇒ m ≥ 4,

where m = |S|.

Thus, there must be at least 4 for vertices vi in the set S. Consequently, the expo-
nential domination of Hn is γe(Hn) = 4. The proof is completed. ✷

Definition 4.2 [11] The windmill graph Wd(k, n) can be constructed by joining n
copies of the complete graph Kk with a common vertex. It has (k− 1)n+1 vertices and
nk(k − 1)/2 edges. We display the graph Wd(5, 4) in Figure 3.

Theorem 4.2 If Wd(k, n) is a windmill graph, then γe(Wd(k, n)) = 1.

Proof. By the Theorem 2.3, the proof is clear. ✷
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Figure 3: The Windmill graph Wd(5, 4).

Definition 4.3 [11] Let Km and Kti be complete graphs on m(say v1, v2, ..., vm)
and ti vertices, respectively. Let ti = 2ri , 1 ≤ i ≤ m, and r1 = r2, ri+1 = ri + 1 for all
2 ≤ i ≤ m − 1 such that Km ⊎ Kti has just vi as a cut vertex, where ri is an integer
and 1 ≤ i ≤ m. The resultant graph Km ⊎ (∪m

i=1Kti) is a circular necklace denoted by
CN(Km;Kt1 ,Kt2 , ...,Ktm). We display the graph CN(Km;Kt1 ,Kt2 , ...,Ktm) in Figure
4.

Figure 4: The Circular Necklace CN(Km;Kt1 ,Kt2 , ..., Ktm).

Theorem 4.3 If G is a circular necklace graph, then γe(G) = 2.

Proof. By the definition of circular necklace graph, both Km and Kti are complete
graphs. Any vertex exponentially dominates all the remaining vertices in complete graph.
Let v1, v2,..., vm be vertices of Km. Let S be γe- set of the graph G. If S consists of
exactly one vertex vx of Km, where 1 ≤ x ≤ m. Then all vertices of Km and Ktx in G are
exponentially dominated. For the all remaining vertices u ∈ V (G − V (Km) − V (Ktx)),
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we get d(vx, u) = 2. Thus, the vertex vx contributes 1/2 to ws(u). To exponentially
dominate all the remaining vertices u, only one vertex vi of Km, also must be added to
S. Hence, we get γe(G) = 2. The proof is completed.✷

Definition 4.4 [15] The friendship graph Fn can be constructed by joining n copies
of the cycle graph C3 with a common vertex. We display the graph F4 in Figure 5.

Figure 5: The Friendship graph F4.

Theorem 4.4 If Fn is a friendship graph, then γe(Fn) = 1.

Proof. By the Theorem 2.3, the proof is clear.✷

5 The Exponential Bondage Number of Some Graceful Cyclic Structure

In this section, we calculate the exponential bondage number of well-known graceful
cyclic structure.

Theorem 5.1 If Hn is a helm graph, then bexp(Hn) = 1.

Proof. The proof is easy to see by the Theorem 2.7. ✷

Theorem 5.2 If Wd(k, n) is a windmill graph, then bexp(Wd(k, n)) = 1.

Proof. Let c be the central vertex of Wd(k, n). Clearly, deg(c) = n(k − 1). The
removal of an edge e which is incident to c leaves a graph H . The graph H is connected
graph with (k − 1)n + 1- vertices. It is easy to see that |V (Wd(k, n))| = |V (H)| and
deg(c) = n(k − 1) − 1 in the graph H . Now, we determine the exponential domination
number of H . Let D be a γe- set of the graph H . If D = {c}, then D exponentially dom-
inates (k− 1)n vertices. Thus, there remains only one vertex v exponentially dominated
by D. The vertex v is the end vertex of removed edge. The vertex c contributes 1/2 to
wD(v). Therefore, the vertex v or any vertex at 1/2 distance to the vertex v must be in
D. Then we get γe(H) = 2.

Since γe(H) > γe(Wd(k, n)), the exponential bondage number of the windmill graph
is bexp(Wd(k, n)) = 1. The proof is completed.✷

Theorem 5.3 If G is a circular necklace graph, then

bexp(G) =

{

2r1 − 1, if m > 2r1;
m− 1, otherwise.
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Proof. By the definition of a circular necklace graph, Km and Kti are complete
graphs and r1 = r2, where 1 ≤ i ≤ m. It is the graph Kt1 or Kt2 which has the
least vertices on the graph G. Let r1 = r2 be an integer value of r. Thus, |V (Kt1)| =
|V (Kt2)| = 2r and |V (Km)| = m. Let v1, v2,..., vm and vi = ui1, ui2, ..., ui2r be vertices
of graphs Km and Kti , where 1 ≤ i ≤ m, respectively. For every v ∈ V (Km), we
have deg(v) = m − 1 in the graph Km. Similarly, for every u1j ∈ V (Kt1), we have
deg(u1j) = 2r − 1 in the graph Kt1 , where 1 ≤ j ≤ 2r. There are two cases depending
on the degrees of the vertices of v and u1j.

Case 1. degKm
(v) > degKti

(u1j) ⇒ m > 2r.
The removal of all edge incident to the vertex u1j inG leaves a graphH consisting
of two components. One of these is an isolated vertex and the other is connected
graph CN(Km;Kt1−1,Kt2 , ...,Km). Thus by the Theorem 4.3 we get

γe(H) = γe(CN(Km;Kt1−1,Kt2 , ...,Km) + 1 = 2 + 1 > γe(G).

Since γe(H) > γe(G) is obtained, we have bexp(G) = 2r − 1.

Case 2. degKm
(v) < degKti

(u1j) ⇒ m < 2r.
The removal of all edge incident to vertex v in G leaves a graph H consisting of
Kt1 and CN(Km−1;Kt1 ,Kt2 , ...,Ktm). Thus by the Theorem 4.3 and 2.3 we get

γe(H) = γe(CN(Km−1;Kt1 ,Kt2 , ...,Ktm) + γe(Kt1) = 2 + 1 > γe(G).

Since γe(H) > γe(G) is obtained, we have bexp(G) = m− 1.

By combining these two cases, the exponential domination number of the circular
necklace graph is

bexp(G) =

{

2r1 − 1, if m > 2r1 ;
m− 1, otherwise.

The proof is completed. ✷

Theorem 5.4 If Fn is a friendship graph, then bexp(Fn) = 1.

Proof. The vertices of Fn are two kinds. Let u and vi be vertices of Fn, where
i ∈ {1, ..., 2n}. Since deg(u) = 2n in Fn, the vertex u is the central vertex of Fn.
Furthermore, deg(vi) = 2 for every vi ∈ V (Fn). If we remove the only one edge euvi
incident with the vertex u, then remaining graph is H .

Now we determine the exponential domination number of H . In the graph H ,
degH(u) = 2n − 1. Let D be a γe- set of the graph H . If D = {u}, then the set D
exponentially dominates (2n− 1)- vertices. Thus, the remains only one vertex exponen-
tially dominated by D. The vertex vi is the end vertex of removed edge euvi . The vertex
u contributes 1/2 to wD(vi). Therefore, the vertex vi or the vertex in N(vi)− {u} must
be in D. Then we get γe(H) = 2.

Since γe(H) > γe(Fn) is obtained, the exponential bondage number of the friendship
graph is bexp(Fn) = 1. The proof is completed.✷
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6 Conclusion

In this paper we determine the exact values of exponential domination and bondage
numbers of a wheel helm graph, windmill graph, circular necklace and friendship graph.
The problem of finding the exponential domination and bondage numbers of architecture
such as Pyramid networks, Circulant networks are under investigation.
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