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Abstract: In this paper, we obtain two new results on the Hyers-Ulam stability of
the linear partial differential equation of second order with constant coefficients

Azxx + (A+B)zxy +Bzyy + Azx +Bzy = 0

and the partial Euler differential equation of the form

x
2
zxx + 2xyzxy + y

2
zyy +mxzx +myzy −mz = 0.

Our findings make a contribution to the topic and complete those in the relevant
literature.
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1 Introduction

The stability theory is an important research area in the qualitative analysis of differential
equations and partial differential equations. It follows from the relevant literature that
the investigation of the Hyers-Ulam and Hyers-Ulam-Rassias stability of equations with
partial derivatives started recently. We should mention the earliest results on the topic
or some results obtained for the linear partial differential equations of first or second
order by Alsina and Ger [1], Cimpean and Popa [2], Gordji et al. [3], Hyers [4], Jung ([5],
[6], [7], [8]), Li and Huang [9], Liu and Zhao [10], Lungu and Popa ([11], [12]), Rassias
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[13], Tunç and Biçer [14], Ulam [15] and the references therein. We shall now give the
details of some works done on the topic. In 2009, Jung [8] investigated the Hyers-Ulam
stability of linear partial differential equations of first order

aux(x, y) + buy(x, y) + g(y)u(x, y) + h(y) = 0

and

aux(x, y) + buy(x, y) + g(x)u(x, y) + h(x) = 0,

in the cases of a ≤ 0, b > 0 and a > 0 ,b ≤ 0, (a, b ∈ ℜ), respectively.
Later, in 2011, Gordji et al. [3] proved the Hyers-Ulam-Rassias stability of the fol-

lowing nonlinear partial differential equations

γx(x, t) = f(x, t, γ(x, t)),

aγx(x, t) + bγt(x, t) = f(x, t, γ(x, t)),

p(x, t)γxx(x, t) + q(x, t)γx(x, t) = f(x, t, γ(x, t))

and

p(x, t)γxt(x, t) + q(x, t)γt(x, t) + pt(x, t)γx(x, t) − px(x, t)γt(x, t) = f(x, t, γ(x, t)),

respectively, by using Banach’s contraction mapping principle.
After that, in 2012, Lungu and Popa [11] discussed the Hyers-Ulam stability of first

order partial differential equation of the form

p(x, y)
∂u

∂x
+ q(x, y)

∂u

∂y
= p(x, y)r(x)u + f(x, y).

Finally, in 2014, Li and Huang [9] proved the Hyers-Ulam stability of the first order
linear partial differential equations in n-dimensional space of the form

n
∑

i=1

aixxi
(x1, x2, ..., xn) + g(xj)u(x1, x2, ..., xn) + h(xj) = 0,

where ai ∈ ℜ are arbitrarily given constants.
In this paper, we investigate the Hyers-Ulam stability of the partial differential equa-

tion of second order with constant coefficients

Azxx + (A+ B)zxy +Bzyy +Azx +Bzy = 0 (1)

and the partial Euler differential equation

x2zxx + 2xyzxy + y2zyy +mxzx +myzy −mz = 0, (2)

where z = z(x, y) (x, y) ∈ D, D = [a, b) × ℜ, D is a subset of ℜ2 and A,B,m are
real constants with m > 0 and A > 0. Let ε > 0 be a given number. Equation (1) is
said to be stable in Hyers-Ulam sense if there exists K > 0 such that for every function
z : [a, b]×ℜ → C satisfying

|Azxx + (A+B)zxy +Bzyy +Azx +Bzy| < ε
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for all (x, y) ∈ D there exists a solution z0 : [a, b]×ℜ → C of Eq. (1) with the property

|z(x, y)− z0(x, y)| ≤ Kε.

This work has been inspired basically by the papers of Gordji et al. [3], Jung [8], Li and
Huang [9], Lungu and Popa [11], Vlasov [16], Vasundhara Devi [1] and those listed above.
The results obtained here are different from those in the literature, new and original, and
they have simple forms. They can be easily checked and applicable, and complete the
previous ones in the literature. Hence the novelty and originality of the present paper.

2 Hyers-Ulam Stability

In this section, we give two theorems and two examples to show the Hyers-Ulam stability
of equation (1) and equation (2).Our first Hyers-Ulam stability result is the following
theorem.

Theorem 1. Let ε be a positive constant. If the function z satisfies the differential
inequality

|Azxx + (A+B)zxy +Bzyy +Azx +Bzy| < ε (3)

for all (x, y) ∈ D, then there exists a solution z0 : D → ℜ of equation (1) such that

|z(x, y)− z0(x, y)| ≤ Kε,K > 0,K ∈ ℜ.

Proof. Let u(x, y) = Azx +Bzy for any (x, y) ∈ D. Then, it follows that

|ux + uy + u| = |Azxx + (A+B)zxy +Bzyy +Azx +Bzy|

so that
|ux + uy + u| ≤ ε.

Consider the change of coordinates

ζ = x,

η = y − x.

Then, we have
|ux + uy + u| = |uζ + u| < ε. (4)

It is clear from (4) that
−ε ≤ uζ + u ≤ ε.

Multiplying the above estimate by the function exp(ζ − a), we have

−εeζ−a ≤ uζe
ζ−a + ueζ−a ≤ εeζ−a.

Let c ∈ [a, b]. For any ζ ∈ [a, b] integrating the above inequality from c to ζ, we obtain

∫ ζ

c

−εes−ads ≤

∫ ζ

c

∂

∂s
[u(s, η)es−a]ds ≤

∫ ζ

c

εes−ads.

Then
−εeζ−a ≤ u(ζ, η)eζ−a − (u(c, η) + ε)ec−a + f(η) ≤ εeζ−a.
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Hence, it is clear that

−ε ≤ u(ζ, η)− (u(c, η) + ε)ec−ζ + f(η)e−(ζ−a) ≤ ε.

Let

v(ζ, η) = (u(c, η) + ε)ec−ζ − f(η)e−(ζ−a).

Then v(ζ, η) satisfies vζ + v = 0 and |u(ζ, η)− v(ζ, η)| ≤ ε, respectively.
Taking into account the change of coordinates, we can write

|u(x, y)− v(x, y)| ≤ ε.

Since u(x, y) = Azx +Bzy, we have

−ε ≤ Azx +Bzy − v(x, y) ≤ ε.

Consider the change of coordinates

r = x,

s = Ay −Bx.

Hence

Azx +Bzy − v(x, y) = Azr − v(r, s).

From this, it follows that

−ε ≤ Azr − v(r, s) ≤ ε.

Multiplying the above estimate by 1
A
, (A 6= 0), we obtain

−
ε

A
≤ zr −

v(r, s)

A
≤

ε

A
.

Select k ∈ [a, b]. For any r ∈ [k, b] with r > 2k, integrating the above inequality from k

to r, we have

−
ε

A
(r − k) ≤ z(r, s)− z(k, s)−

∫ r

k

v(u, s)

A
du ≤

ε

A
(r − k).

Then, it follows that

−
ε

A
r ≤ z(r, s)− z(k, s)−

∫ r

k

v(u, s)

A
du−

εk

A
≤

ε

A
(r − 2k)

so that

−
ε

A
r ≤ z(r, s)− z(k, s)−

∫ r

k

v(u, s)

A
du−

εk

A
≤

ε

A
r.

Let

z0(r, s) = z(k, s) +

∫ r

k

v(u, s)

A
du+

εk

A
.

Then v(ζ, η) satisfies

A(z0)r − v(r, s) = 0.
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Hence, we can conclude that

|z(r, s)− z0(r, s)| ≤
εr

A
,K =

r

A
,A 6= 0.

This result completes the proof of Theorem 1.
Our second and last Hyers-Ulam stability result is the following theorem.

Theorem 2. Let ε be a positive constant. If the function z satisfies the differential
inequality

|x2zxx + 2xyzxy + y2zyy +mxzx +myzy −mz(x, y)| ≤ ε (5)

for all (x, y) ∈ D, then there exists a solution z0 : D → ℜ of equation (2) such that

|z(x, y)− z0(x, y)| ≤
ε

m
M, (m > 0,M > 0).

Proof. For any (x, y) ∈ D let

g(x, y) = xzx + yzy +mz.

Then

xgx(x, y) + ygy(x, y)− g(x, y) = x2zxx + 2xyzxy + y2zyy +mxzx +myzy −mz.

Therefore, inequality (5) implies

|xgx(x, y) + ygy(x, y)− g(x, y)| ≤ ε.

Consider the change of coordinates

ζ = x,

η =
y

x
, x 6= 0.

Then we have
|ζgζ − g| ≤ ε.

Assume that ζ > 0. Making use of the former inequality, we arrive at

−ε ≤ ζgζ − g ≤ ε.

Multiplying the above estimate by a
ζ2 , we have

−
εa

ζ2
≤

a

ζ
gζ −

a

ζ2
g ≤

εa

ζ2
.

Select c1 ∈ [a, b]. For any ζ ∈ [c1, b], c1 > 0, integrating the above inequality from c1 to
ζ, we can write

∫ ζ

c1

−
εa

s2
ds ≤

∫ ζ

c1

∂

∂s
[
a

s
g(s, η)]ds ≤

∫ ζ

c1

εa

s2
ds.

Hence
ε

ζ
−

ε

c1
≤

1

ζ
g(ζ, η)−

1

c1
g(c1, η) + f(η) ≤ −

ε

ζ
+

ε

c1
.
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From this, it is clear that

−ε

c1
≤

1

ζ
g(ζ, η)−

1

c1
g(c1, η) + f(η)−

ε

ζ
≤

ε

c1
.

Since ζ > 0, if we multiply the above inequality by ζ, we get

−
ε

c1
ζ ≤ g(ζ, η)−

ζ

c1
g(c1, η) + ζf(η)− ε ≤

ε

c1
ζ.

Let

v(ζ, η) =
ζ

c1
g(c1, η)− ζf(n) + ε.

Thus v(ζ, η) satisfies the following equation

ζvζ − v = 0

and the inequality

|g(ζ, η)− v(ζ, η)| ≤ Mε,

where M = ζ
c1
. In view of the fact that

g(x, y) = xzx + yzy +mzy,

it is clear that

−εM ≤ xzx + yzy +mz(x, y)− v(x, y) ≤ Mε.

Consider the change of coordinates

r = x,

n =
y

x
, x 6= 0.

Then, from the previous inequality, we have

−εM ≤ rzr +mz − v ≤ Mε.

Multiplying the above estimate by the function rm−1

am , (r > 0, ( r
a
)m > 0), we get

−εM
rm−1

am
≤

rm

am
zr +m

rm−1

am
z −

rm−1

am
v ≤ εM

rm−1

am
.

Select k ∈ [a, b]. For any r ∈ [k, b] with km

mam > 0, integrating above inequality from k to
r, we obtain

−ε(
rm

mam
−

km

mam
)M ≤

rm

am
z(r, n)−

km

am
z(k, n)−

∫ r

k

sm−1

am
v(s, n)ds ≤ ε(

rm

mam
−

km

mam
)M.

From the last inequality, it may be seen that

−εM
rm

mam
≤

rm

am
z(r, n)−

km

am
z(k, n)−

∫ r

k

sm−1

am
v(s, n)ds− ε

km

mam
≤ εM

rm

mam
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so that

−
ε

m
M ≤ z(r, n)−

km

rm
z(k, n)− r−m

∫ r

k

sm−1v(s, n)ds− ε
km

mrm
≤

ε

m
M.

Let

z0(r, η) =
km

rm
z(k, n) + r−m

∫ r

k

sm−1v(s, n)ds+ ε
km

mrm
.

Then
|z(r, s)− z0(r, s)| ≤

ε

m
M.

This completes the proof of Theorem 2.

Example 1. We consider the following linear partial differential equation of second
order with constant coefficients

zxx + 2zxy + zyy + zx + zy = 0.

Let s = y− x and f(s) > 0. It can be seen that z(x, y) = (e−x − 1)f(y− x) is a solution
of this equation and

|zxx + 2zxy + zyy + zx + zy| ≤ ε.

Let [a, b] = [0,∞) and k = 0, c = 2, r = 5
2 . Then, from Theorem 1, we have

|z − z0| ≤
5

2
ε

and

z0(r, s) = z(k, s) +

∫ r

k

v(u, s)

A
du+

εk

A
.

Thus, we can write

z0(r, s) =

∫ r

0

v(u, s)du =

∫ r

0

[(u(c, s) + ε)ec−m − f(s)e−(m−a)]dm

= −(u(c, s) + ε)ec−r + (u(c, s) + ε)ec + f(s)(e−r − 1).

At the end, we can conclude that |z − z0| ≤ εr. This inequality shows that the result of
Theorem 1 is true.

Example 2. Consider the partial Euler differential equation of the form

x2zxx + 2xyzxy + y2zyy + xzx + yzy − z = 0.

Then, it may be followed that

z(x, y) = xf

(

y

2x

)

+
x

2
g

(

y

x

)

is a solution of the former equation, and we can find

|x2zxx + 2xyzxy + y2zyy + xzx + yzy − z| ≤ ε.

For k = 0, from Theorem 2, we have

z0 =
1

r

∫ r

0

(
s

c1
g(c1, n)− sf(n) + ε)ds =

r

2c1
g(c1, n)−

r

2
f(n) +

ε

m

and
|z − z0| ≤

ε

m
.

Hence, we can conclude that the result of Theorem 2 is correct.
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3 Conclusion

We consider a linear partial differential equation of second order with constant coefficients
and a partial Euler differential equation of second order. We study the Hyers-Ulam
stability of these equations. We give two examples to verify the obtained results and for
illustrations. Our results are contributions to the topic and the related literature.
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[14] Tunç, C. and Biçer, E. Hyers-Ulam-Rassias stability for a first order functional differential
equation. J. Math. Fundam. Sci. 47 (2) (2015) 143–153.

[15] Ulam, S.M. Problems in Modern Mathematics. Science Editions John Wiley Sons. Inc., New
York, 1964.

[16] Vlasov, V. Asymptotic behavior and stability of the solutions of functional differential
equations in Hilbert space. Nonlinear Dyn. Syst. Theory 2 (2) (2002) 215–232.

[17] Vasundhara D.J. Stability in terms of two measures for matrix differential equations and
graph differential equations. Nonlinear Dyn. Syst. Theory 16 (2) (2016) 179–191.


	Introduction
	Hyers-Ulam Stability
	Conclusion

