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1 Introduction

Consider the following Hamiltonian system with unbounded nonlinearities

{

ü(t) +Au(t)−∇F (t, u(t)) = e(t), a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

(HS)

where A is a (N×N)-symmetric matrix, e ∈ L1(0, T ;RN), T > 0, and F : R×R
N −→ R

is a continuous function, T -periodic in the first variable and differentiable with respect
to the second variable with continuous derivative ∇F (t, x) = ∂F

∂x
(t, x).

The study of the existence and multiplicity of periodic solutions of Hamiltonian sys-
tems plays a very important role to solve many problems of natural sciences such as
chemistry, biology and physics. For physics problem, we can cite planetry systems and
fluid dynamic problem.
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When A = 0 and e(t) = 0 for all t ∈ R, problem (HS) is just the following second
order Hamiltonian system

{

ü(t) = ∇F (t, u(t)), a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0.

(1)

During the last decades, many authors studied the existence and multiplicity of periodic
solutions for system (1) via critical point theory and variational methods, we refer the
readers to [1]- [21] and references therein. Many solvability conditions are given such
as the coercive condition (see [2]), the periodicity condition (see [18]), the convexity
condition (see [4]) and the subadditive condition (see [13]).

For the case A 6= 0 and e 6= 0, Mawhin and Willem [5] proved that problem (HS)
has at least one solution by using the saddle point theorem under the following bounded
conditions: There exists g ∈ L1(0, T ;R+) such that

|F (t, u)| ≤ g(t), |∇F (t, u)| ≤ g(t), ∀u ∈ R
N , a.e. t ∈ [0, T ]. (2)

Precisely they obtained the following result.

Theorem 1.1 ( [5], Theorem 4.9) Suppose F satisfies (2) and the following as-
sumptions:
(C1) dimN(A) = m ≥ 1 and A has no eigenvalue of the form k2w2 (k ∈ N

∗), where
w = 2π

T
,

(C2)

∫ T

0

(e(t), αj)dt = 0 (1 ≤ j ≤ m) where (α1, α2, ......, αm) is a basis of N(A).

(F̃0) There exists Tj > 0 such that F (t, u + Tjαj) = F (t, u) (1 ≤ j ≤ m), ∀u ∈
R

N , a.e. t ∈ [0, T ].
Then problem (HS) has at least one solution.

In 2006, Feng and Han [6] generalized Mawhin and Willem’s result as follows:

Theorem 1.2 ( [6], Theorem 2.1) Suppose F satisfies (C1), (C2), (F̃0) and the
following conditions: There exist a, b ∈ L1(0, T ;R+), 0 ≤ α < 1 such that

|∇F (t, x)| ≤ a(t)|x|α + b(t), ∀x ∈ R
N , a.e. t ∈ [0, T ]. (3)

Then problem (HS) has at least one solution.

Theorem 1.3 ( [6], Theorem 2.2) Suppose F satisfies (C1), (C2), (3) and

|u|−2α

∫ T

0

F (t, u)dt→ +∞ as |u| → ∞, u ∈ N(A), (4)

or

|u|−2α

∫ T

0

F (t, u)dt→ −∞ as |u| → ∞, u ∈ N(A). (5)

Then problem (HS) has at least one solution.

Theorem 1.4 ( [6], Theorem 2.3) Suppose F satisfies (C1), (C2), (3)
(F0) and

|u|−2α

∫ T

0

F (t, u)dt → +∞ as |u| → ∞, u ∈ N(A)⊖ span(α1, ...., αr), (6)
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or

|u|−2α

∫ T

0

F (t, u)dt → −∞ as |u| → ∞, u ∈ N(A)⊖ span(α1, ...., αr). (7)

Then problem (HS) has at least r + 1 solutions in H1
T .

In 2012, Li Xiao [8] generalized Theorem 1.3. Precisely he proved that problem (HS)
possesses at least one solution when the nonlinearity ∇F (t, u) may grow slightly slower
than a control function h(|u|) instead of |u|α.

A natural question is whether there exists a result which contains the corresponding
results in [5], [6], [8] as a special case.

Motivated by [6] and [8], we give this question a positive answer by the minimax
methods in critical point theory and we obtain some results ( Theorems 1.5 and 1.6),
unify and generalize Theorems 1.2, 1.3 and 1.4 in [6], and Theorems 1.4 and 1.5 in [8].

Our basic hypotheses on A and F are the following:
(C1) dimN(A) = m ≥ 1 and A has no eigenvalue of the form k2w2 (k ∈ N

∗), where
w = 2π

T
,

(C2)

∫ T

0

(e(t), αj)dt = 0 (1 ≤ j ≤ m) where (α1, α2, ..., αm) is a basis of N(A).

(F0) There exists 0 ≤ r ≤ m, Tj > 0 such that F (t, u + Tjαj) = F (t, u)
(1 ≤ j ≤ r) ∀u ∈ R

N , a.e. t ∈ [0, T ].
(F1) There exist constants C0 ≥ 0, K1 > 0, K2 > 0, α ∈ [0, 1[, a ∈ L1(0, T ;R+), b ∈
L1(0, T ;R+) and a function h ∈ C(R+,R+) with the properties:
(i) h(s) ≤ h(t) ∀s ≤ t, s, t ∈ R

+,
(ii) h(s+ t) ≤ C0(h(t) + h(s)) ∀s, t ∈ R

+,
(iii) 0 ≤ h(t) ≤ K1t

α + k2 ∀t ∈ R
+,

(iv) h(t) → +∞ as t→ +∞,
such that

|∇F (t, x)| ≤ a(t)h(|x|) + b(t)

for all x ∈ R
N and a.e. t ∈ [0, T ],

(F ′
1) There exist constants C∗

0 ≥ 0, C∗ > 0 and a function h∗ ∈ C(R+,R+) with the
properties:
(i) h∗(s) ≤ h∗(t) + C∗

0 ∀s ≤ t, s, t ∈ R
+,

(ii) h∗(s+ t) ≤ C∗(h∗(t) + h∗(s)) ∀s, t ∈ R
+,

(iii) th∗(t) − 2H∗(t) → −∞ as t→ +∞,

(iv) H∗(t)
t2

→ 0 as t→ +∞,

where H∗(t) =

∫ t

0

h∗(s)ds. Moreover, there exist f ∈ L1(0, T ;R+) and g ∈ L1(0, T ;R+)

such that

|∇F (t, x)| ≤ f(t)h∗(|x|) + g(t)

for all x ∈ R
N and a.e. t ∈ [0, T ].

Now we state our main results.
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Theorem 1.5 Suppose that conditions (C1), (C2), (F0), (F1) and the following as-
sumption hold
(F2)

(i) lim
|x|→+∞

1

h2(|x|)

∫ T

0

F (t, x)dt = −∞, x ∈ N(A)⊖ span(α1, ...., αr),

or

(ii) lim
|x|→+∞

1

h2(|x|)

∫ T

0

F (t, x)dt = +∞, x ∈ N(A)⊖ span(α1, ...., αr),

then problem (HS) has at least r + 1 T-periodic solutions in H1
T .

Theorem 1.6 Suppose that conditions (C1), (C2), (F0), (F
′
1) and the following as-

sumption hold
(F ′

2)

(i) lim
|x|→+∞

1

H∗(|x|)

∫ T

0

F (t, x)dt = −∞, x ∈ N(A)⊖ span(α1, ...., αr),

or

(ii) lim
|x|→+∞

1

H∗(|x|)

∫ T

0

F (t, x)dt = +∞, x ∈ N(A)⊖ span(α1, ...., αr),

then problem (HS) has at least r + 1 T-periodic solutions in H1
T .

Example 1.1 Let

A =





1 0 0
0 0 0
0 0 0



 .

Then dimN(A) = 2 and N(A)=span{α1, α2}, where α1 = (0, 1, 0), α2 = (0, 0, 1). So
(C1) holds.

Let

F (t, x) = (0.4T − t) ln
3
2 [98 + x21 + sin2(x2) + cos2(x3)]

+ d(t) ln[100 + x21 + sin2(x2) + cos2(x3)] (8)

for all x = (x1, x2, x3) ∈ R
3, t ∈ [0, T ], where d ∈ C([0, T ];R+). We have

F (t, x+ παj) = F (t, x), j = 1, 2.

Let e satisfy

∫ T

0

e(t)dt = 0, then

∫ T

0

(e(t), αj)dt = 0, j = 1, 2 and

|∇F (t, x)| ≤ 3|0.4T − t| ln
1
2 (100 + |x|2) + d(t).

Let h(t) = ln
1
2 (100 + |t|2). Similar to the argument in [17], we know that (F1) holds.

Moreover,

lim
|x|→+∞

1

h2(|x|)

∫ T

0

F (t, x)dt = −∞.
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Hence, (F2)i) holds and then by Theorem 1.5 , problem (HS) has at least three solutions.
On the other hand, for any α ∈ (0, 1),

lim
|x|→+∞

1

|x|
2α

∫ T

0

F (t, x)dt = 0,

so (8) does not satisfy Theorem 1.3 in [6].

Example 1.2 Consider the function
F (t, x) = (23T − t) ln(100 + |x|2) + l(t)

√

100 + |x|2, where l ∈ C([0, T ],R+).

It is easy to see that |∇F (t, x)| ≤ 2
∣

∣

2
3T − t

∣

∣

|x|

100+|x|2
+l(t) for all x ∈ R

3 and t ∈ [0, T ]. Let

h∗(t) = t
100+t2

, H∗(t) =
∫ t

0
s

100+s2
ds, C∗

0 = 2, C∗ = 1, f(t) = 2
∣

∣

2
3T − t

∣

∣ and g(t) = l(t),
we infer
(i) h∗(s) ≤ h∗(t) + 2 ∀s ≤ t, s, t ∈ R

+,
(ii) h∗(s+ t) = s+t

100+(s+t)2 ≤ (h∗(t) + h∗(s)) ∀s, t ∈ R
+,

(iii) th∗(t) − 2H∗(t) = t2

100+t2
− 2

[

1
2 ln(100 + t2)− 1

2 ln(100)
]

→ −∞ as t→ +∞,

(iv) H∗(t)
t2

=

∫
t

0

s

100+s2
ds

t2
→ 0 as t→ +∞.

Let e satisfy

∫ T

0

e(t)dt = 0, then

∫ T

0

(e(t), αj)dt = 0, j = 1, 2, we have

lim
|x|→+∞

1

H∗(|x|)

∫ T

0

F (t, x)dt → +∞. So, by Theorem 1.6, problem (HS) has at least

one solution in H1
T .

Remark 1.1 Unlike the control functions in (F1), where h(t) is nondecreasing, here
control function h∗(t) = t

100+t2
is bounded but not increasing.

Remark 1.2 (i) Theorem 1.5. is a generalization of the main results in [ [15],
Theorems 2 and 3] and in [ [6], Theorems 2.1, 2.2, 2.3]. Obviously , our theorems, as
r = m, contain Theorems 1.4 and 1.5 in [8].
(ii) If we let h(t) = tα, it is easy to see that (F1) generalizes (3).

2 Preliminaries.

Let
H1

T =
{

u : R → R
N/ u is absolutely continuous, u(t) = u(t+ T ), u̇ ∈ L2(0, T ;RN)

}

.
Then H1

T is a Hilbert space with the inner product

< u, v >=

∫ T

0

[(u(t), v(t)) + (u̇(t), v̇(t))] dt

and the associated norm

‖u‖ =

(

∫ T

0

[

|u(t)|2 + |u̇(t)|2
]

dt

)
1
2

for each u, v ∈ H1
T . Let

ū =
1

T

∫ T

0

u(t)dt, ũ(t) = u(t)− ū.
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Then one has
∫ T

0

|ũ(t)|2dt ≤
T 2

4π2

∫ T

0

|u̇(t)|2dt , (Wirtinger′s inequality)

and

‖ũ‖
2
∞ ≤

T

12

∫ T

0

|u̇(t)|2dt , (Sobolev′s inequality).

(see Proposition 1.3 in [5]) which implies that

‖u‖∞ ≤ C ‖u‖ (9)

for some C > 0 and all u ∈ H1
T , where ‖u‖∞ = max

t∈[0,T ]
|u(t)|. It is well known that the

functional ϕ defined on H1
T by

ϕ(u) =
1

2

∫ T

0

|u̇|
2
dt−

1

2

∫ T

0

(A(t)u(t), u(t))dt +

∫ T

0

F (t, u(t))dt+

∫ T

0

(e(t), u(t))dt

is continuously differentiable and its critical points are the solutions of problem (HS).
Moreover, one has

< ϕ′(u), v >=

∫ T

0

[(u̇(t), v̇(t))− (A(t)u(t), v(t)) + (∇F (t, u(t)), v(t)) + (e(t), v(t)]dt

for u, v ∈ H1
T . Let

q(u) =
1

2

∫ T

0

(

|u̇|
2
− (A(t)u(t), u(t))

)

dt.

It is easy to see that

q(u) =
1

2
‖u‖2 −

1

2

∫ T

0

((A(t) + I)u(t), u(t))dt =
1

2
< (I −K)u, u >,

where K : H1
T → H1

T is the self-adjoint operator defined, using Riesz representation
theorem, by

∫ T

0

((A(t) + I)u(t), v(t))dt =< (Ku, v) >, ∀u, v ∈ H1
T .

The compact embedding of H1
T into C(0, T ;RN) implies that K is compact. By classical

spectral theory, we can decompose H1
T into the orthogonal sum of invariant subspaces

for I −K
H1

T = H− ⊕H0 ⊕H+,

where H0 = Ker(I −K) and H−, H+ are such that, for some δ > 0,

q(u) ≤ −
δ

2
‖u‖2 if u ∈ H−, (10)

q(u) ≥
δ

2
‖u‖

2
if u ∈ H+. (11)

Moreover, by (C1), it is well known that H0 = Ker(I −K) = N(A) (see [5]).
In the proofs, we mainly use the following generalized saddle point theorem from [9].
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Theorem 2.1 Let X be a Banach space and have a decomposition: X = W + Z
where W and Z are two subspaces of X with dimZ < +∞. Let V be a finite-dimensional,
compact C2-manifold without boundary. Let f : X×V → R be a C1-function and satisfy
the (PS) condition. Suppose that f satisfies
inf

u∈W×X
f(u) ≥ α, sup

u∈S×X

f(u) ≤ β < α, where S = ∂D,D = {u ∈ Z / ‖u‖ ≤ R} and

R, α, β are constants. Then the function f has at least cuplength(V )+1 critical points.

Let PH0 = span(α1, ...., αr), QH
0 = N(A) ⊖ PH0 = span(αr+1, ...., αm). Then

u = u−+u++Pu0+Qu0, where Pu0 =

r
∑

j=1

cjαj . Let G = {

r
∑

j=1

kjTjαj/ kj ∈ N}. Use the

canonical mapping π : H1
T → H1

T /G. Let H
1
T /G = X×V = (W⊕Z)×V ,W = H+, Z =

H− ⊕QH0, V = PH0/G. It is easy to see that dimZ < +∞, dimV < +∞, and V is a
compact C2-manifold without boundary as it is diffeomorphic to the r-torus T r. Element

in V can be represented as P û0 =
r
∑

j=1

ĉjαj , where ĉj = cj − kjTj (0 ≤ ĉj < Tj).

Let u = u−+u++P û0+Qu0. Define the functional ψ on H1
T /G by ψ(π(u)) = ϕ(u).

As F (t, u + Tjαj) = F (t, u) (1 ≤ j ≤ r), we can see that ψ is well-defined, and ψ is
continuously differentiable on H1

T /G.

3 Proof of the Main Results.

Proof of Theorem 1.5.

For the sake of convenience, we will denote various positive constants as Ci, i = 1, 2, ...
We only prove the case where (F2)(i) holds. The other case can be similarly given.

Lemma 3.1 [Lemma 3.1, [8]] Assume that (F1) holds. Then for any (PS) sequence
(un) ⊂ H1

T of the functional ϕ, we have

‖ũn‖
2
≤ C1h

2(
∣

∣u0n
∣

∣) + C1, (12)

where un = u+n + u−n + u0n and ũn = u+n + u−n .

Lemma 3.2 Suppose that (F1) and (F2)(i) hold, Then every (PS) sequence (un) ⊂
H1

T such that (Pu0n) is bounded contains a convergent subsequence.

Proof. By (12), we have

‖ũn‖
2

≤ C1h
2(
∣

∣u0n
∣

∣) + C1.

As (Pu0n) is bounded, we have the inequality

‖ũn‖
2
≤ C2h

2(
∣

∣Qu0n
∣

∣) + C2. (13)

It follows from (9), (F1), (13), the mean value theorem and Young’s inequality that
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∣

∣

∣

∣

∣

∫ T

0

(

F (t, un(t))− F (t, Qu0n)
)

dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

(

∇F (t, Qu0n + s(ũn(t) + Pu0n), ũn(t) + Pu0n
)

dsdt

∣

∣

∣

∣

∣

≤

∫ T

0

∫ 1

0

∣

∣∇F (t, Qu0n + s(ũn(t) + Pu0n)
∣

∣

∣

∣ũn(t) + Pu0n
∣

∣ dsdt

≤

∫ T

0

∫ 1

0

(

a(t)h(
∣

∣Qu0n + s(ũn(t) + Pu0n)
∣

∣) + b(t)
) ∣

∣ũn(t) + Pu0n
∣

∣ dsdt

≤

∫ T

0

[

C0(C0 + 1)a(t)
(

h(|Qu0n|) + h(‖ũn‖∞) + h(|Pu0n|)
)] (

‖ũn‖∞ + |Pu0n|
)

dt

+

∫ T

0

b(t)
(

‖ũn‖∞ + |Pu0n|
)

dt

≤ C3‖ũn‖∞h(‖ũn‖∞) + C3‖ũn‖∞h(|Qu
0
n|) + C4‖ũn‖∞ + C5h(|Qu

0
n|)

+ C5h(‖ũn‖∞) + C6

≤ C3 ‖ũn‖∞ (K1 ‖ũn‖
α

∞ +K2) + C3 ‖ũn‖∞ h(
∣

∣Qu0n
∣

∣) + C4‖ũn‖∞

+ C5h(|Qu
0
n|) + C5 (K1 ‖ũn‖

α

∞ +K2) + C6

≤ C7 ‖ũn‖
α+1 + C8 ‖ũn‖

α + C9 ‖ũn‖

+ C10 ‖ũn‖h(|Qu
0
n|) + C5h(|Qu

0
n|) + C11

≤ C12 ‖ũn‖
2
+ C13h

2(
∣

∣Qu0n
∣

∣) + C14

≤ C15h
2(
∣

∣Qu0n
∣

∣) + C16. (14)

Hence, by (14) and the boundedness of ϕ(un) we obtain

−C17 ≤ ϕ(un) =
1

2
((I −K)un, un) +

∫ T

0

(

F (t, un(t))− F (t, Qu0n)
)

dt

+

∫ T

0

F (t, Qu0n)dt+

∫ T

0

(e(t), un(t))dt

≤ C18 ‖ũn‖
2 + C15h

2(
∣

∣Qu0n
∣

∣) + C16 +

∫ T

0

F (t, Qu0n)dt+ C19 ‖ũn‖

≤ C20h
2(
∣

∣Qu0n
∣

∣) +

∫ T

0

F (t, Qu0n)dt+ C21

= h2(|Qu0n|)

(

C20 +
1

h2(|Qu0n|)

∫ T

0

F (t, Qu0n)dt

)

+ C21. (15)

It follows from (F2)(i) and (15) that (Qu0n) is bounded. Combining (13) and the bound-
edness of (Pu0n), we obtain that (un) is bounded. Arguing as in [Proposition 4.1, [5]] we
conclude that (un) contains a convergent subsequence. Thus we complete the proof.

Now we are ready to prove Theorem 1.5. First, we prove that ψ satisfies the (PS)
condition. Let (un) ⊂ H1

T be a (PS) sequence of ψ, that is (ψ(π(un))) is bounded and
ψ′(π(un)) → 0.

We have q(u) = 1
2 ((I −K)u, u) so q′(u) = (I−K)u and since uk− ûk =

r
∑

j=1

kjTjαj ∈



166 K. FATHI

N(I −K), we obtain that q(un) = q(ûn) and q
′(un) = q′(ûn). Moreover, by conditions

(F0) and (C2), we have F (t, un(t)) = F (t, ûn(t) +
r
∑

j=1

kjTjαj) = F (t, ûn(t) and

∫ T

0

(e(t), un(t))dt =

∫ T

0

(e(t), ûn(t) +
r
∑

j=1

kjTiαj)dt =

∫ T

0

(e(t), ûn(t))dt.

Hence, we obtain that ϕ(un) = ϕ(ûn). Consequently ψ(π(un)) = ψ(π(ûn)). It follows
from (F0) that ∇F (t, u + Tjαj) = ∇F (t, u) (1 ≤ j ≤ r). Hence ϕ′(un) = ϕ′(ûn),
namely, ψ′(π(un)) = ψ′(π(ûn)). As (P ûn) is bounded, we obtain by Lemma 3.2 that
(ûn) contains a convergent subsequence: ûnk

→ û. Then

lim
k→+∞

ψ(π(unk
)) = lim

k→+∞
ψ(π(ûnk

)) = ψ(π(û)),

lim
k→+∞

ψ′(π(unk
)) = lim

k→+∞
ψ′(π(ûnk

)) = ψ′(π(û)).

Hence ψ satisfies the (PS) condition.

In order to use the generalized saddle point theorem we only need to verify the
following conditions:

(ψ1) ψ(π(u)) → +∞, as ‖u‖ → +∞ in W × V,

(ψ2) ψ(π(u)) → −∞, as ‖u‖ → +∞ in Z × V.

By (9), (F1), the mean value theorem and the boundedness of (P ûn), we have ∀π(u) ∈
W × V, u = u+ + Pu0,
∫ T

0

(F (t, û(t))− F (t, 0)) dt

=

∫ T

0

∫ 1

0

(

∇F (t, s(u+(t) + P û0), u+(t) + P û0
)

dsdt

≤

∫ T

0

∫ 1

0

∣

∣∇F (t, s(u+(t) + P û0)
∣

∣

∣

∣u+(t) + P û0
∣

∣ dsdt

≤

∫ T

0

∫ 1

0

(

a(t)h(
∣

∣u+(t) + P û0
∣

∣) + b(t)
) ∣

∣u+(t) + P û0
∣

∣ dsdt

≤

∫ T

0

[

C0a(t)
(

h(‖u+‖∞) + h(|P û0|)
)

+ b(t)
] (

‖u+‖∞ + |P û0|
)

dt

≤
(

‖u+‖∞ + |P û0|
)

(

C0K1‖u
+‖α∞

∫ T

0

a(t)dt+ C0K2

∫ T

0

a(t)dt

)

+
(

‖u+‖∞ + |P û0|
)

h(|P û0|)C0

∫ T

0

a(t)dt+
(

‖u+‖∞ + |P û0|
)

∫ T

0

b(t)dt

≤ C22

∥

∥u+
∥

∥

α+1

∞
+ C23

∥

∥u+
∥

∥

α

∞
+ C24

∥

∥u+
∥

∥

∞
+ C25

≤ C26

∥

∥u+
∥

∥

α+1
+ C27

∥

∥u+
∥

∥

α
+ C28

∥

∥u+
∥

∥+ C25. (16)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 17 (2) (2017) 158–174 167

It follows from (11) and (16) that

ψ(π(u)) = ϕ(u) = ϕ(û)

=
1

2

(

(I −K)u+, u+
)

+

∫ T

0

(F (t, û(t))− F (t, 0)) dt

+

∫ T

0

F (t, 0)dt+

∫ T

0

(e(t), û(t))dt

≥
δ

2
‖u+‖2 − C26

∥

∥u+
∥

∥

α+1
− C27

∥

∥u+
∥

∥

α
− C29

∥

∥u+
∥

∥− C30. (17)

Since α+ 1 < 2, then by (17), (ψ1) is verified.
On the other hand, by (9), (F1), the mean value theorem, the boundedness of (P ûn) and
Young’s inequality we obtain for π(u) ∈ Z × V, u = u− +Qu0 + Pu0,
∫ T

0

(

F (t, û(t))− F (t, Qu0)
)

dt

=

∫ T

0

∫ 1

0

(

∇F (t, Qu0 + s(u−(t) + P û0), u−(t) + P û0
)

dsdt

≤

∫ T

0

∫ 1

0

∣

∣∇F (t, Qu0 + s(u−(t) + P û0)
∣

∣

∣

∣u−(t) + P û0
∣

∣ dsdt

≤

∫ T

0

∫ 1

0

(

a(t)h(
∣

∣Qu0 + s(u−(t) + P û0)
∣

∣) + b(t)
) ∣

∣u−(t) + P û0
∣

∣ dsdt

≤

∫ T

0

C0(C0 + 1)a(t)
(

h(|Qu0|) + h(‖u−‖∞) + h(|P û0|)
) (

‖u−‖∞ + |P û0|
)

dt

+

∫ T

0

b(t)
(

‖u−‖∞ + |P û0|
)

dt

≤ C31‖u
−‖∞h(‖u

−‖∞) + C31‖u
−‖∞h(|Qu

0|)

+ C32h(‖u
−‖∞) + C32h(|Qu

0|) + C33‖u
−‖∞ + C34

≤ C31

∥

∥u−
∥

∥

∞

(

K1

∥

∥u−
∥

∥

α

∞
+K2

)

+ C31

∥

∥u−
∥

∥

∞
h(
∣

∣Qu0
∣

∣) + C33‖u
−‖∞

+ C32h(|Qu
0|) + C32

(

K1

∥

∥u−
∥

∥

α

∞
+K2

)

+ C34

≤ C35

∥

∥u−
∥

∥

α+1

∞
+ C36

∥

∥u−
∥

∥

α

∞
+ C37

∥

∥u−
∥

∥

∞

+ C31

∥

∥u−
∥

∥

∞
h(|Qu0|) + C32h(|Qu

0|) + C38

≤ C39

∥

∥u−
∥

∥

α+1
+ C40

∥

∥u−
∥

∥

α
+ C41

∥

∥u−
∥

∥

+ C42

∥

∥u−
∥

∥h(|Qu0|) + C32h(|Qu
0|) + C38

≤ ε
∥

∥u−
∥

∥

2
+ C39

∥

∥u−
∥

∥

α+1
+ C40

∥

∥u−
∥

∥

α

+ C41

∥

∥u−
∥

∥+ C43h
2(
∣

∣Qu0
∣

∣) + C44 (18)
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for any ε > 0. Hence, by (10) and (18) we obtain

ψ(π(u)) = ϕ(u) = ϕ(û)

=
1

2

(

(I −K)u−, u−
)

+

∫ T

0

(

F (t, u(t))− F (t, Qu0)
)

dt

+

∫ T

0

F (t, Qu0)dt+

∫ T

0

(e(t), u−(t))dt

≤
−δ

2
‖u−‖2 + ε

∥

∥u−
∥

∥

2
+ C39

∥

∥u−
∥

∥

α+1

+ C40

∥

∥u−
∥

∥

α
+ C45

∥

∥u−
∥

∥+ C43h
2(|Qu0|) +

∫ T

0

F (t, Qu0)dt+ C44

= (
−δ

2
+ ε)

∥

∥u−
∥

∥

2
+ C39

∥

∥u−
∥

∥

α+1
+ C40

∥

∥u−
∥

∥

α
+ C45

∥

∥u−
∥

∥

+ h2(|Qu0|)

(

C43 +
1

h2(|Qu0|)

∫ T

0

F (t, Qu0)dt

)

+ C44. (19)

Fixing ε < δ
2 , by (19), (F2)(i) and since α+ 1 < 2, we obtain ϕ(u) → −∞ as ‖u‖ →

+∞ in Z × V . Thus (ψ2) is verified. The proof is completed. �

Proof of Theorem 1.6.
We only prove the case where (F ′

2)(i) holds. The other case can be similarly given.

Lemma 3.3 (Lemma 2.1, [19]) Suppose that there exists a positive function h∗

satisfying the conditions (i), (ii), (iv) of (F ′
1), then we have the following estimates:

(1) 0 < h∗(t) < εt+ C0 for any ε > 0, C0 > 0, t ∈ R
+,

(2) h∗2(t)
H∗(t) −→ 0 as t→ +∞,

(3) H∗(t) −→ +∞ as t→ +∞.

Lemma 3.4 Assume that (F ′
1) holds. Then for any (PS) sequence (un) ⊂ H1

T of the
functional ϕ, we have

‖ũn‖
2 ≤ C45h

∗2(
∣

∣u0n
∣

∣) + C45, (20)

where un = u+n + u−n + u0n and ũn = u+n + u−n .

Proof. Assume that (un) ⊂ H1
T is a (PS) sequence for ϕ. Then

|ϕ(un)| ≤ C46, |ϕ′(un)| ≤ C46, ∀n ∈ N.

It follows from (F ′
1), (9), Lemma 3.3 and Young’s inequality that
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∣

∣

∣

∣

∣

∫ T

0

∇F (t, un(t)), u
+
n (t)− u−n (t))dt

∣

∣

∣

∣

∣

≤

∫ T

0

|∇F (t, un(t))|
∣

∣u+n (t)− u−n (t)
∣

∣ dt

≤

∫ T

0

f(t)h∗(
∣

∣u0n + ũn(t)
∣

∣)
∣

∣u+n (t)− u−n (t)
∣

∣ dt+

∫ T

0

g(t)
∣

∣u+n (t)− u−n (t)
∣

∣ dt

≤
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

f(t)[C∗
0 + h∗(

∣

∣u0n
∣

∣+ ‖ũn‖∞)]dt+
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

g(t)dt

=
∥

∥u+n − u−n
∥

∥

∞
h∗(
∣

∣u0n
∣

∣+ ‖ũn‖∞)

∫ T

0

f(t)dt+
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

(C∗
0f(t) + g(t))dt

≤ C∗
∥

∥u+n − u−n
∥

∥

∞
h∗(‖ũn‖∞)

∫ T

0

f(t)dt+ C∗
∥

∥u+n − u−n
∥

∥

∞
h∗(
∣

∣u0n
∣

∣)

∫ T

0

f(t)dt

+
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

(C∗
0f(t) + g(t))dt

≤ εC∗
∥

∥u+n − u−n
∥

∥

∞
‖ũn‖∞

∫ T

0

f(t)dt+ C0C
∗
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

f(t)dt

+ C∗
∥

∥u+n − u−n
∥

∥

∞
h∗(
∣

∣u0n
∣

∣)

∫ T

0

f(t)dt+
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

(C∗
0f(t) + g(t))dt

≤ εC47 ‖ũn‖
2
+ C48h

∗(
∣

∣u0n
∣

∣) ‖ũn‖+ C49 ‖ũn‖

≤ 3εC47 ‖ũn‖
2
+ C50(ε)h

∗2(
∣

∣u0n
∣

∣) + C51(ε) (21)

for any ε > 0.
Thus, we have

C46

∥

∥u+n − u−n
∥

∥ = C46 ‖ũn‖

≥
(

ϕ′(un), u
+
n − u−n

)

=
(

(I −K)un, u
+
n − u−n

)

+

∫ T

0

(

∇F (t, un(t)) + e(t), u+n (t)− u−n (t)
)

dt

≥ δ ‖ũn‖
2 − 3εC47 ‖ũn‖

2 − C50(ε)h
∗2(
∣

∣u0n
∣

∣)− C51(ε)

−
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

|e(t)| dt

≥ (δ − 3εC47) ‖ũn‖
2
− C50(ε)h

∗2(
∣

∣u0n
∣

∣)− C51(ε)− C52 ‖ũn‖ .

Hence, we obtain

(δ − 5εC47) ‖ũn‖
2
≤ C50h

∗2(
∣

∣u0n
∣

∣) + C53, (22)

if we fix ε < δ
5C47

, then by (22) we have

‖ũn‖
2
≤ C54h

∗2(
∣

∣u0n
∣

∣) + C55.

Take C45 = max {C54, C55}, the proof is complete.
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Lemma 3.5 Suppose that (F ′
1) and (F ′

2)(i) hold, Then every (PS) sequence (un) ⊂
H1

T such that (Pu0n) is bounded contains a convergent subsequence.

Proof. By (20), we have

‖ũn‖
2 ≤ C45h

∗2(
∣

∣u0n
∣

∣) + C45.

As (Pu0n) is bounded, we have the inequality

‖ũn‖
2
≤ C56h

∗2(
∣

∣Qu0n
∣

∣) + C56. (23)

It follows from (9), (F ′
1), (23), the mean value theorem and Young’s inequality that

∣

∣

∣

∫ T

0

(

F (t, un(t))− F (t, Qu0n)
)

dt
∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

(

∇F (t, Qu0n + s(ũn(t) + P û0n), ũn(t) + P û0n
)

dsdt

∣

∣

∣

∣

∣

≤

∫ T

0

∫ 1

0

∣

∣∇F (t, Qu0n + s(ũn(t) + P û0n)
∣

∣

∣

∣ũn(t) + P û0n
∣

∣ dsdt

≤

∫ T

0

∫ 1

0

(

f(t)h∗(
∣

∣Qu0n + s(ũn(t) + P û0n)
∣

∣) + g(t)
) ∣

∣ũn(t) + P û0n
∣

∣ dsdt

≤

∫ T

0

[

f(t)
(

h∗(|Qu0n|+ ‖ũn‖∞ + |P û0n|) + C∗
0

)

+ g(t)
] (

|ũn(t)|+ |P û0n|
)

dt

≤ C∗(C∗ + 1)
(

h∗(|Qu0n|) + h∗(‖ũn‖∞) + h∗(|P û0n|)
) (

‖ũn‖∞ + |P û0n|
)

∫ T

0

f(t)dt

+
(

‖ũn‖∞ + |P û0n|
)

∫ T

0

(g(t) + C∗
0f(t))dt

≤ C57‖ũn‖∞h
∗(‖ũn‖∞) + C58‖ũn‖∞h

∗(|Qu0n|) + C59‖ũn‖∞ + C60h
∗(|Qu0n|)

+ C61h(‖ũn‖∞) + C62

≤ C63h
∗2(
∣

∣Qu0n
∣

∣) + C64. (24)

It follows from the boundedness of ϕ(un) and (24) that

−C65 ≤ ϕ(un)

=
1

2
((I −K)un, un) +

∫ T

0

(

F (t, un(t))− F (t, Qu0n)
)

dt

+

∫ T

0

F (t, Qu0n)dt+

∫ T

0

(e(t), un(t))dt

≤ C66 ‖ũn‖
2 + C63h

∗2(
∣

∣Qu0n
∣

∣) + C64 +

∫ T

0

F (t, Qu0n)dt+ C67 ‖ũn‖

≤ C68h
∗2(
∣

∣Qu0n
∣

∣) +

∫ T

0

F (t, Qu0n)dt+ C69

= H∗(|Qu0n|)

(

C68h
∗2(
∣

∣Qu0n
∣

∣)

H∗(|Qu0n|)
+

1

H∗(|Qu0n|)

∫ T

0

F (t, Qu0n)dt

)

+ C69. (25)
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Hence, by (F ′
2)(i), (25) and Lemma 3.3 we deduce that (Qu0n) is bounded. Combining

(20) and the boundedness of (Pu0n), we obtain that (un) is bounded. Arguing as in
[Proposition 4.1, [5]] we conclude that (un) contains a convergent subsequence. We
complete the proof.

Now we are ready to prove Theorem 1.6. First, we prove that ψ satisfies the (PS)
condition. Let (un) ⊂ H1

T be a (PS) sequence of ψ, that is (ψ(π(un))) is bounded
and ψ′(π(un)) → 0. We have q(u) = 1

2 ((I −K)u, u) so q′(u) = (I − K)u and since

uk − ûk =

r
∑

j=1

kjTjαj ∈ N(I −K), we obtain that q(un) = q(ûn) and q′(un) = q′(ûn).

Therefore, by conditions (F0) and (C2), we have

F (t, un(t)) = F (t, ûn(t) +
r
∑

j=1

kjTjαj) = F (t, ûn(t),

∫ T

0

(e(t), un(t))dt =

∫ T

0

(e(t), ûn(t) +

r
∑

j=1

kjTiαj)dt =

∫ T

0

(e(t), ûn(t))dt.

Hence, we obtain that ϕ(un) = ϕ(ûn). Consequently ψ(π(un)) = ψ(π(ûn)). It follows
from (F1) that ∇F (t, u + Tjαj) = ∇F (t, u) (1 ≤ j ≤ r). Hence ϕ′(un) = ϕ′(ûn),
namely, ψ′(π(un)) = ψ′(π(ûn)). As (P ûn) is bounded, we obtain by Lemma 3.5 that
(ûn) contains a convergent subsequence. Let ûnk

→ û.
Then

lim
k→+∞

ψ(π(unk
)) = lim

k→+∞
ψ(π(ûnk

)) = ψ(π(û)),

lim
k→+∞

ψ′(π(unk
)) = lim

k→+∞
ψ′(π(ûnk

)) = ψ′(π(û)).

It implies that ψ satisfies the (PS) condition.
In order to use the generalized saddle point theorem we only need to verify the

following conditions:
(ψ1) There exists α ∈ R such that ψ(π(u)) ≥ α, on W × V ,

(ψ2) There exists β < α such that ψ(π(u)) ≤ β, on Z × V .
It follows from (9), (F ′

1), the mean value theorem and the boundedness of (P ûn), that
∀π(u) ∈W × V, u = u+ + Pu0,
∫ T

0

(F (t, û(t))− F (t, 0)) dt

=

∫ T

0

∫ 1

0

(

∇F (t, s(u+(t) + P û0), u+(t) + P û0
)

dsdt

≤

∫ T

0

∫ 1

0

∣

∣∇F (t, s(u+(t) + P û0)
∣

∣

∣

∣u+(t) + P û0
∣

∣ dsdt

≤

∫ T

0

∫ 1

0

(

f(t)h∗(
∣

∣s(u+(t) + P û0)
∣

∣) + g(t)
) ∣

∣u+(t) + P û0
∣

∣ dsdt

≤

∫ T

0

[

f(t)
(

h∗(‖u+‖∞ + |P û0|) + C∗
0

)

+ g(t)
] (

‖u+‖∞ + |P û0|
)

dt

≤ C∗
(

‖u+‖∞ + |P û0|
) (

h∗(‖u+‖∞) + h∗(|P û0|)
)

∫ T

0

f(t)dt
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+
(

‖u+‖∞ + |P û0|
)

∫ T

0

(g(t) + C∗
0f(t))dt

≤ εC70

∥

∥u+
∥

∥

∞
h∗(
∥

∥u+
∥

∥

∞
) + C71h

∗(
∥

∥u+
∥

∥

∞
) + C72

∥

∥u+
∥

∥

∞
+ C73

≤ εC70

∥

∥u+
∥

∥

2

∞
+ C74

∥

∥u+
∥

∥

∞
+ C75

≤ εC76

∥

∥u+
∥

∥

2
+ C77

∥

∥u+
∥

∥+ C75 (26)

for any ε > 0.
Hence, we deduce from (11) and (26) that

ψ(π(u)) = ϕ(u) = ϕ(û)

=
1

2

(

(I −K)u+, u+
)

+

∫ T

0

(F (t, û(t))− F (t, 0)) dt

+

∫ T

0

F (t, 0)dt+

∫ T

0

(e(t), û(t))dt

≥ (
δ

2
− εC76)

∥

∥u+
∥

∥

2
− C80

∥

∥u+
∥

∥− C81. (27)

Choosing ε < δ
2C76

, by (27) ψ is bounded below on W × V , and (ψ1) is verified.
On the other hand, by (9), (F ′

1), the mean value theorem, the boundedness of (P ûn)
and Young’s inequality we have
∀π(u) ∈ Z × V, u = u− +Qu0 + Pu0,

∫ T

0

(

F (t, û(t))− F (t, Qu0)
)

dt

=

∫ T

0

∫ 1

0

(

∇F (t, Qu0 + s(u−(t) + P û0), u−(t) + P û0
)

dsdt

≤

∫ T

0

∫ 1

0

∣

∣∇F (t, Qu0 + s(u−(t) + P û0)
∣

∣

∣

∣u−(t) + P û0
∣

∣ dsdt

≤

∫ T

0

∫ 1

0

[

f(t)h∗(
∣

∣Qu0 + s(u−(t) + P û0)
∣

∣) + g(t)
] ∣

∣u−(t) + P û0
∣

∣ dsdt

≤

∫ T

0

f(t)
(

h∗(|Qu0|+ ‖u−‖∞ + |P û0|) + C∗
0

) (

‖u−‖∞ + |P û0|
)

dt

+
(

‖u−‖∞ + |P û0|
)

∫ T

0

g(t)dt

≤ C∗(C∗ + 1)
(

h∗(|Qu0|) + h∗(‖u−‖∞) + h∗(|P û0|)
) (

‖u−‖∞ + |P û0|
)

∫ T

0

f(t)dt

+
(

‖u−‖∞ + |P û0|
)

∫ T

0

(g(t) + C∗
0f(t))dt

≤ C82‖u
−‖∞h

∗(‖u−‖∞) + C82‖u
−‖∞h

∗(|Qu0|)

+ C83h
∗(‖u−‖∞) + C83h

∗(|Qu0|) + C84‖u
−|∞ + C85

≤ C86‖u
−‖2∞ + C86h

∗2(|Qu0|) + C87‖u
−‖∞ + C88

≤ C89‖u
−‖2∞ + C90h

∗(|Qu0|) + C91‖u
−‖∞ + C88

≤ C91h
∗2(
∣

∣Qu0
∣

∣) + C92. (28)
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Hence, by (10) and (28) we obtain

ψ(π(u)) = ϕ(u) = ϕ(û)

=
1

2

(

(I −K)u−, u−
)

+

∫ T

0

(

F (t, u(t))− F (t, Qu0)
)

dt

+

∫ T

0

F (t, Qu0)dt+

∫ T

0

(e(t), u−(t))dt

≤
−δ

2
‖u−‖2 + C91h

∗2(
∣

∣Qu0
∣

∣) + C92 + C93‖u
−‖+

∫ T

0

F (t, Qu0)dt

= H∗(|Qu0|)

(

C91h
∗2(
∣

∣Qu0
∣

∣)

H∗(|Qu0|)
+

1

H∗(|Qu0|)

∫ T

0

F (t, Qu0)dt

)

+
−δ

2

∥

∥u−
∥

∥

2
+ C93

∥

∥u−
∥

∥+ C92. (29)

Hence, by (29), (F ′
2)(i) we obtain that ϕ(u) → −∞ as ‖u‖ → +∞ in Z × V .

Thus, (ψ2) is verified and we complete the proof.
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