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Abstract: The second section of this paper is devoted to the study of the capac-
ity theory in Musielak—Orlicz—Sobolev space, we study basic’s properties, including
monotonicity, countable subadditivity and several convergence results, we prove that
each Musielak-Orlicz-Sobolev function has a quasi-continuous representative. In the
third section, we generalize the Theorem of H. Brezis and F.E. Browder in the setting
of Musielak—Orlicz—Sobolev space W™ L (2), which extends the previous result of H.
Brezis and F.E. Browder [I0]. In the fourth section, we make an application to an
unilateral problem.
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1 Introduction

The theory of capacity and non-linear potential in the classical Lebesgue space LP(2),
was mainly studied by Maz’ya and Khavin in [I7] and Meyers in [2I]. These authors in
their previous works have introduced the concept of capacity and non-linear potential in
these spaces and provided very rich applications in functional analysis, harmonic analysis
and in the theory of partial differential equations.

When we replace the spaces LP(2) by the general one L4(€2) generated by an N-
function, some fundamental properties are not satisfied, in particular, the reflexivity of
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spaces (obviously for an N-function which doses not satisfying the Ay condition). In this
case, we found some works, in particular In [3] and [4].

When we replace A(t) by some Musielak—Orlicz function ¢(z,t), the situation belong
more difficult and the Musielak-Orlicz spaces obtained is L, (€2) which has lost many
interest functional properties. In this case, we refer the reader [13] and [18].

Thus, the first goal of this paper is to extend the theory of capacity in the setting
of Musielak-Orlicz-Sobolev spaces W™ L, (€2). Moreover, we generalize the Theorem 1
of [1], in the setting of Musielak—Orlicz-Sobolev spaces W™ L (), this generalisation is
an extension of the corresponding result of H.Brezis and F.E.Browder(see [10] and [15]).

Now, let give and comment the following theorem:

Theorem 1.1 Let Q be an open subset of RN, m € N and 1 < p,p’ < +o0, such

1 1 !

that — + — = 1. Consider w in Wy"*(Q), u > 0 a.e in Q and T in Wy ™" (Q), such
p p

that T = p+ h, where p is a positive Radon measure and h an Llloc(ﬂ) function; Assume

moreover that
h(z)u(z) = —|®(x)| ae x€Q, for some ® in L'(Q).

Then:
hu € LY(Q), v e LY(Q,du) and < T,u >= / ud/L+/ hudzx. (1)
Q Q

This result is proved by L. Boccardo, D. Giachetti and F. Murat in [15], and extends
previous Theorem of H. Brezis and F. Browder in [10], who considered the cases where
either 4 = 0 or h = 0. the main tool in order to prove these results is the Hedberg’s
approximation (in Wi"?(2) norm) of function u € W;"?(Q) by a sequence of functions
(un)r which belong to L>(Q)NW;""(€2), have compact support in  and satisfy u,u > 0,
|un] <u  a.e. in .

Note that an application of the previous theorem to study the following nonlinear
variational inequality:

u € Kg, g(., u) € LYQ), ug(. , u) € L*(Q),

< Au,v—u > +/ gl u)(v—u)dr =2< fv—u>, Yv € K¢ N LP(N), (2)
Q

where A is a pseudo-monotone operator acting on W;"*(Q), f € W (Q), Kg = {v:

veW"P(Q),v >V aein Q}, ¥eWP(Q)NL>(Q) and g satisfies the sign condition

sg(x, s) = 0 but no growth restriction with respect to s.

Let us mention that a generalization of the Theorem{I. Tl and the problem ([2]) in the
setting of Orlicz-Sobolev space W™ L 4(2) is studied by A.Benkirane in [IJ.

Hence, our second purpose is to extend the above Theoren{IT]in the general setting
of Musielak-Orlicz—Sobolev space W™ L, () and also, we give an application of this
generalized result in order to study the previous unilateral problem (2] in the Musielak—
Orlicz—Sobolev space W™ L, (£2).

2 Preliminary

2.1 Musielak—Orlicz function

Let Q be a bounded Lipschitz domain in RY, and let ¢ be a real-valued function defined
in Q x R" and satisfying the following conditions:
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a) ¢(z,.) is an N-function [convex; increasing; continuous; ¢(z,0) = 0; (V& >
t t
0) w(z.t) > 0 ; w(ﬂ? ) w(ﬂ? )

b) (., t) is a measurable function.
A function ¢(z,t), which satisfies the conditions a) and b) is called a Musielak-Orlicz

—0 ast—0; — 00 as t — o0].

t
function. Equivalently, ¢ admits the representation: ¢(y,t) = / a(y,7)dr, for ally € Q
0

and t > 0, where a(y,.) : R — RT is non-decreasing, right continuous, with for all
y € Q2 a(y,0) = 0,a(y,t) > 0 for ¢t > 0 and tli+m a(y,t) = 4o0. The function a(y , .)
—+00

is called the derivative of ¢(y,.). The Musielak—Orlicz function ¢ is said to satisfy the
As-condition if there exists K > 2 such that
o(y,2t) < Kp(y,t), forallye and t>0.

The smallest K is called the As-constant of ¢. When the last inequality holds only for
t > some tg > 0 then ¢ is said to satisfy the As-condition near infinity.

2.2 Musielak—Orlicz spaces

Let ¢ be a Musielak—Orlicz function, we define the functional

0o () = /Q (. Ju() ),

where u : 0 — R a Lebesgue measurable function. In the following the measurability of
a function u :  — R means the Lebesgue measurability.
The set
K, () = {u:Q— R, measurable/p,,q (u) < oo}

is called the Musielak—Orlicz class. The Musielak—Orlicz spaces L, (2) is the vector space
generated by K,(Q), that is L, (£2) is the smallest linear space containing the set K ().
Equivalently:

L,(Q2) ={u:Q~— R, measurable/g,,o (g) < 400, for some A > 0}.

Kp(Q) is a convex subset of Lp(2). If Q = RY then L, (RY) is denoted by L.
Let

©*(z,8) = sup{st — p(z,t) /t > 0}.

That is, ¢* is the Musielak—Orlicz function complementary to ¢ in the sense of Young
with respect to the variable s. For two complementary Musielak—Orlicz functions ¢ and
©" the following inequality is called the Young inequality [20]

t.s < p(z,t) + " (z,s) forall s, t >0,z € Q. (3)
If s = a(z,t), then
t.a(z,t) = @z, t) + " (z,a(zx,t)) forall t > 0,2 € Q. 4)

In the space L, (£2) we define the following two norms:

. u
[ullero = inf{A >0 0p0(3) <1}
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which is called the Luxemburg norm and the so-called Orlicz norm by:
lalllon = sw [ Ju)ota)ds
[ollpx,0<1/Q

where ¢* is the Musielak—Orlicz function complementary to . These two norms are
equivalent [20].

For two complementary Musielak-Orlicz functions ¢ and ¢* let u € L,(2) and v €
L,-(§2), we have the Holder inequality [20]

I/QU(z)v(z)dzl < Hullgsa [llvfllex - (5)

In L,(€2) we have the relation with the norm and the modular:

ulllgse < 0pr0 (u) +1, (6)

||u||tp79< QL,@)Q (’LL) 51f||u||§079> 17 (7)

lullpssr > 200 () i Jullgunr < 1. 5)

If Q@ = RY then |jul|, g~ , [||lu]||l,ry and o, gy (u) are denoted respectively by ||u||,

[llullle and o4 (u) (Vu € Ly).
We say that a sequence of function w,, € L,(2) is modular convergent to u € L (£2)
if there exists a constant & > 0 such that

. Up — U,
oA eesa (——) = 0.
If ¢ satisfies the Ay condition, then modular convergence coincides with norm conver-
gence. The closure in L,(2) of the set of bounded measurable functions with com-
pact support in  is denoted by E,(2) and it is a separable space. The equality
K,(Q) = E,(Q) = L,(Q2) holds if and only if ¢ satisfies the Ay condition, for all ¢

or for large ¢ according to whether © has infinite measure or not. The dual of E, ()
can be identified with L-(£2) by means of the pairing / u(z)v(x)dz and the dual norm
Q

on Ly« () is equivalent to [|.|[,-.o. The space L,(f2) is reflexive if and only if ¢ and
o™ satisfies the Ay condition, for all ¢ or for large ¢t according to whether Q has infinite
measure or not.

Lemma 2.1 [I2] Let ¢ be a Musielak-Orlicz function and f,, f,g are measurable
functions.

(a) If fr, —> f almost everywhere, then g,,0 (f) < limJirnf 04,0 (fn)-
n——+00

(b) If | fn| /| f| almost everywhere,then 04,0 (f) = 11}1;1_1 00,0 (fn)-

(¢)If fnn —> f almost everywhere, |fn| < |g| almost everywhere,and 04,0 (Ag) <
oo for every A > 0, then f, — f strongly in L, ().

Theorem 2.1 [72] Let ¢ be a Musielak-Orlicz function.

(@) [[flleo= I 1l o2 for all f € Ly(S).
(b) If f € L,(R), g a measurable function, and 0 < |g| < |f| almost everywhere,
then:

9 € Lo(Q) and ||glle.0 <|[fllps-
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(¢) If fn— f almost everywhere, then: ||fl|s.0 < liglJiranang,,Q.
(d) If |ful 7 |f| almost everywhere, with f, € L,(2) and sup||fn]lp.0 < 0o then:

feLo(Q) and ||fallga 7 | fllgs-

2.3 Musielak—Orlicz—Sobolev spaces
For any fixed non-negative integer m we define
WML, () ={u € L,(Q) : V |a| < m, D*u € L,(Q)},

where a = (@1, ag, ....., o) with non-negative integer «;, |a| = |aq| + |az2| + ....|ay| and
oled
D%y = EITa denote the distributional derivatives of u. The W™ L,(12) is called
7t xn"

the Musielak—Orlicz—Sobolev space.
For w € W™L,(Q) let:

ol (u)= > 040 (D)

laf<m

and

. _ u
lullglq = inf{A>0: 040 (5) < 1}

These functionals are a convex modular and a norm on W™ L, (2), respectively, and the
pair (W™ Ly (Q),||ull3,,) is a Banach space if ¢ satisfies the following condition [20]:

(Fc>0): ;Ielg o(x,1) > c. (9)

We say that a sequence of functions u, € W™L,(2) is modular convergent to u €
W™ L,(R2) if there exists a constant k > 0 such that:

A
If @ = RY then W™L,(Q), 0, »a (u) and ||u[[3), are denoted respectively by W™ L, ,

¥,
0 (u) and |[[u|[3', Vu € W™ L.

Theorem 2.2 [7] Let ¢ and ¢* be two complementary Musielak—Orlicz functions
such that ¢ satisfies the conditions (@) and there exists a constant A > 0 such that for

alz,ye Q: |z —y| < 5 we have:

A

1

forallt > 1. If D C Q is a bounded measurable set, then / o(z,1)dx < 0o. ¢* satisfies
D
the following condition :

AC >0 : ¢*(x,1) < C almost everywhere in . (11)

Under the previous conditions, D(SY) is dense in W™ L, () with respect to the modular
topology.
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Theorem 2.3 [7] Let ¢ be a Musielak—Orlicz functions which satisfies the assump-
tions of theoremlZ2, with Q = RN. Then D(RY) is dense in W™ L,(R™) with respect to
the modular topology.

2.4 Capacity

Definition 2.1 Let T the classe of Borel sets in RY, and a function C' : T — [0, +00].
1) C is called capacity if the following axioms are satisfied:

i) C(0) =0.

i) X CY = C(X) < C(Y), for all X and Y in T.

iii) For all sequences (X,,) C T

cJxn) <D CX).

2) C is called outer capacity if for all X € T":
C(X)=inf{C(0): 0D X, O is open}.
3) C is called an interior capacity if for all X C T :
C(X)=sup{C(K): K C X, K iscompact}.

4) A property, that holds true except perhaps on a set of capacity zero, is said to be
true C-quasi-everywhere, ( abbreviated C-q.e).

5) fand (f,) are real-valued finite functions C-q.e. We say that (f,) converges to
f in C-capacity if:

Ve > 0, ngr—ir-loo C{z: |fu(z) = f(z)| >e}) =0.

6) f and (f,) arereal-valued function finite C-q.e. We say that (f,) converges to
f C-quasi- uniformly, (abbreviated C-q.u) if

(Ve>0),(3XeT) : C(X)<e and (f,) converges to f uniformly on X°.

3 The Main Results

3.1 Preliminary lemma
Lemma 3.1 Let ¢ be a Musielak-Orlicz function which satisfies the condition (9). If
u, v € WML,(Q), then max{u,v} and min{u,v} are in W™ L,(Q2) with ¥ |a| < m:

o [ D%u(z), for almost every x € {u > v};
D% maxiu, v}(z) = { D%v(z), for almost every xz € {v > u};

and
o | D%u(z), for almost every x € {u < v};
D% min{u, v}(z) = { D%v(zx), for almost every x € {v < u}.

In particular, |u| belongs to W™ L, (£2).
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Proof. Tt suffices to prove the assertions for max{u,v} since min{u,v} =
—max{—u,—v} . We have max{u,v} < J|u| + |v| almost everywhere in €, and
(Ju|l + |v|) € Ly(£2), then by Theorem [Z1] we obtain max{u,v} € L,(2).

On the other hand we have |D max(u,v)| < |D%u|+ |D%v| almost everywhere in €2,
and (|D%u| + |D“v|) € L, (), then by Theorem [ZT] we obtain D max{u,v} € L,(Q).

Thus

max{u,v} € W™L,(Q).

For |u| € W™L, () it suffices to note that |u| = max{u,0} — min{u, 0}.

3.2 Capacity in Musielak—Orlicz—Sobolev space

In this section, @ = RY and ¢ is a Musielak-Orlicz function which satisfies the condition
@.

Definition 3.1 The Sobolev p-capacity of the set, E C RY is defined by :

Co(B) = inf  pmolu),

where
A (E) ={ue W™L, : u>1 on an open set containing E and u > 0}.

If A (E) = 0 we set C,(E) = co. Functions belonging to A, (E) are called admissible
functions for E.

Remark 3.1 In the definition of the capacity C,, we can restrict ourselves to those
admissible functions u for which, 0 < u < 1. Indeed, if AzP(E) ={u€A,(E) : 0<u<
1}, then A, (E) C A,(E) implies

C,(E)< inf  ppmo(u).
<P( ) ueA;(E)p 790( )

For the reverse inequality, let € > 0 and take u € A, (E) such that
Pm,p(u) < Cyp(E) + .

Then by Lemma B, we have v = maxz (0, min(u, 1)) belongs to A;D (E).
Therefore,

h}f Pm,p(W) < Prm,p(V) < Pmyp(u) < Cp(E) + .
wEA,(E)

Letting ¢ — 0, we obtain

inf  ppo(w) <CL(E).
weA;(E)P ,ap( ) <P( )

This completes the proof.

Theorem 3.1 Let E C RY. If there exists f € W™L, such that f = 400 on E,
then Cy,(E) = 0.
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Proof. If there exists f € W™L, such that f = 400 on E, then f > o onE for all
a > 0. Therefore, Vo >0 : Cu(E) < ﬁm,g,(i).
@
1_ 1_
—Pm,e(f), then 0 < Cy(E) < apmyw(ﬁ-

«

Let @ > 1, we have ﬁmyw(i) <
e
Letting o« — +00, we obtain Cy,(E) = 0.

Theorem 3.2 Let us consider the following propositions:
i) fo—f in WML,.
it) fn—> f in C, — capacity.
i) there is a subsequence (fy,) such that : f., — f, C, — q.u.
w) fn, — . Cyp —qee.
We have i) = ii) = i) = iv).
Proof. Let show that i) = 4i). By Theorem[3Ilwe have f and f,, are finite for every
n; Cp, — q.e.
Let € > 0, we have

fn_f

9

Cg,({x : |fn_f|(-r)>5})<ﬁm,<ﬂ(

Since f, — f in W™L,(Q),

).

(Ve > 0): el

Therefore,

lim C,({z : |fn— fl(z) >e})=0.

n—-+oo

Let show that ii) = iii). Let ¢ > 0 3 f,, such that C,({z : |f,, — fl(x) >277}) <
£.277.

We put
Ej={x : |fo, = fl(z) >277} and G = ] Ej,
jzm
we have C,(Gp,) < Z £277 <e.
jzm
On the other hand,
(V€ (Gu)®) © 1fuy — FI(2) < 279, (%] > m).

Thus
Jn, — f Cp —qu.
1
Let show that i7i) = iv). We have Vj € N,3X; : C,(X;) < -~ and f,, — f on (X;).
J

We put X = ﬂXj, then C,(X) =0 and f,, — f on X°.
J
Theorem 3.3 Let ¢ be a Musielak-Orlicz function, uniformly convex that satisfies
the Ao condition. If fn, f € W™Ly, such that f,, = f weakly in W™L,, then

liminf(f,)(z) < f(z) < limsup fn(z) C, — q.e.
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Proof. (W™L, , ||.]|) is uniformly convex, therefore reflexive. By the Banach—
Saks theorem, there is a subsequence denoted again by (f,) such that the sequence

1 n
Gn =~ Z fi converges to f strongly in W™ L. By Theorem [B.2] there is a subsequence
i=1
of (gn) denoted again (g, ) such that

lim gn(z) = f(z) C, —q.e.

n—-+oo

On the other hand,
liminf f,,(z) < lim g,(x).

n—-+o0o
Therefore,
liminf f,(z) < f(x) Cy, —q.e.

n—-+oo

For the second inequality, it suffices to replace f,, by (—f,) in the first inequality.

Theorem 3.4 Let ¢ be a Musielak—Orlicz function, uniformly conver which satisfies
the Ng condition. Let (X,,) be an increasing sequence of sets and X = UX"' Then

n

lim Cy(X,) = Cy(X).

n—-+o0o

Proof.  We have hI—ilrl Cy(Xn) < C,(X). For the reverse inequality, if
n—-+00
lim C,(X,) = +oo, there is nothing to show.

n—-+o0o
Assuming that lim C,(X,) < 400, we have
n—+oo

1
VneN, 3f, e W"L, : fo21lon X, and Ome(fn) < Cu(Xn)+ o

Now (fy) is a bounded sequence in W™ L, hence there exists a subsequence, which
we denote again by (f,), which converges weakly to a function f € W™ L. Thus

P (f) < limninf Om.p(fn)-
On the other hand by Theorem [B.3], we have
VvneN :f>1 on X, ,C, —q.e.

Therefore, f>1 on X C, —q.e.
Let Y be a subset of X where f > 1, then Cy,(X) = C,(Y). Thus,

o () < H(Cp(X) + ).

Hence
Cyu(X) < lm(Cy(Xn).

n

Theorem 3.5 Let ¢ be a Musielak—Orlicz function, uniformly conver which satisfies
the Ay condition. Cy, is an outer capacity.
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Proof. 1t is obvious that Cy(0) =0 and C,(X) < Cu(Y) if X CY.
To prove the countable sub-additivity, suppose that E; , i =1,2,..., subsets of RV,
let € > 0. We may assume that Z Ch,y (X;) < 400, then

Chlsp (X;) < 4o00; VieN.
Next we choose u; € A, (E;) so that

ﬁm,ap(ui> < C@(E1> + 5.2_i; Vi € N.

k
Let ke Nand v, = lmaxk u;. By Lemma B.J] we have vy, € AW(U E;).
AN =
Thus,
k k k
o (V08) Y B (i) <Y (Cu(Bi) +227) <Y Co(Br) + (e(1— (5)7)
i=1 1=1 =1
Then,

CaUB) < Y 0o+

i=1 i=1
Letting ¢ — 0, we obtain

k k oo
AU E) <Y CoE) <Y ClED

=1

k 00
Since (U E;) increase to (U E;), by Theorem [B:4] we obtain:

i=1 i=1

C“"(U Ei) < ZCW(E )

It remains to prove that C, is outer. Indeed, by monotonicity we have:

(VECRY) :Cy(F) <inf{C,(0): 0> E, O is open}.

For the reverse inequality, if C,(E) = 400, there is nothing to show.
Assume that C,(E) < 400, let € > 0 and take u € A, (E) such that

ﬁm,w(“) < C@D(E) +e.

Since u € A,(FE), there is an open set O containing E such that v > 1 on O, which
implies that
Co(0) < pmyp(u) < Cp(E) +¢.

The inequality follows by letting ¢ — 0.
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Theorem 3.6 Let (K,,) be a decreasing sequence of compacts and K = ﬂ K.,. Then,

n

lim C,(K,) = Cy,(K).

n—-+oo

Proof. First, we observe that C,,(K) < lir}rl Cy(Ky). On the other hand, let O be
n—-+0o0

an open set containing K. By the compactness of K, K; C O for all sufficiently large
i. Therefore lir}rl Cy(Kr) < Cy(0), and since C,, is an outer capacity, we obtain the
n—-+oo

claim by taking infimum over all open set O containing K.
Theorem 3.7 Let ¢ be a Musielak—Orlicz function.
(Je>0)(VX CRY): |X]| < e.Cu(X),
where | X| is the Lebesque’s measure of X .

Proof. Let u € A,(X), we have u > 1 on X and g, (u) < pm,e(u). But g,(u) =
| et u(w)ldy, then
RN

Q«p(u)>/x@p(ya IU(y)Idy>/X@ga(y,1)dy-

By the inequality (@) there exists a constant ¢ > 0 such that ian ©(y, 1) = c. Therefore,
yEeR
0y (u) = c.|X|. Thus,
C1X| < P ().
The claim follows by passing to inf on u € A,(X).

Corollary 3.1 Let ¢ be a Musielak—Orlicz function. If (fn)n is a sequence which
converges to fin W™ Ly, then there exists a subsequence of (fn)n which converge to f
almost everywhere.

Proof. Tt is an immediate consequence of Theorem and Theorem B.71

Theorem 3.8 Let ¢ be a Musielak—Orlicz function which satisfies the condition Ao
and the assumptions of Theorem[2.2 For each f € W™ L,,, there is a Cy,-quasicontinuous
function g € W™L,, such that f = g almost everywhere.

Proof. Let f € W™L,. By Theorem[23] there exists a sequence (f,,) in D(RY) such
that f,, — f in W™L,. By Theorem B.2] there exists a subsequence of (f,) denoted
again by (fy) such that f, — f C, — ¢q.u. The claim follows by Theorem B.7l

Remark 3.2 By theorem 2.6 in [7], we have the same result if we replace W™ L,
by W™L,(§), where Q is a bounded Lipschitz domain in R".

Theorem 3.9 Let ¢ be a Musielak-Orlicz function, uniformly convex which satisfies
the condition /o
1) If O is an open set of RN and E C RY such that |E| = 0, then

Cy(0) = C,(0 — E).



186 M.C. HASSIB, Y. AKDIM, A. BENKIRANE AND N. AISSAOUI

2) Let u and v are Cy,-quasicontinuous functions in RY, we have
i) if u=w, almost everywhere in an open set O C RY | then

u=v C, — quasieverywhere in O,
it) if , u < v, almost everywhere in an open set O C RY | then
u < v Cyp — quasieverywhere in O.

Proof. 1) It obvious that C,(0) > C,(O — E). Let u € A,(O — E) thus v > 1 in an
open containing O — E. Let the function f define as

{ fz)=u(z), ifrcRYN -F
flx) =1, if € E.

We have f € A,(O) and pp,o(f) = pm,p(u), thus
C@(O) < ﬁm,w(u)v

and by passing to inf we get C,(O) < C,(O — E).
2) Since C,, is an outer capacity we get the results by [16].

Lemma 3.2 Let Q) be a bounded Lipschitz domain in R", ¢ be a Musielak-Orlicz
function which satisfies the condition (@), p and ¢* satisfy the Ny condition and m € N.
Consider T € W™ L+ (Q) N M (), where M(Q) denote the set of Radon measures in
Q. If X C Q is such that Cy,(X) = 0, then X is |T'| -measurable and |T|(X) = 0.

Proof. 1t is the same as in [19] and [10].

3.3 Theorem of H. Brezis and F. Browder type in Musielak—Orlicz—Sobolev
spaces

In this section we generalize the theorem of H. Brezis and F. Browder [10] in the setting
of the Musielak-Orlicz—Sobolev spaces W™ L, ().

Let © be a bounded Lipschitz domain in R and m € N. In this section we study
the following question: let w € WL, () and T € W™ L.+ () such that T' = p + h,
where p lie in MT(Q) (the subset of positive Radon measures) and h lie Lj,.(9Q); find
sufficient conditions on the data in order for w to belong L'(€; du), for hw to belong to
L*(Q) and finally to have:

<T,w >:/wdu+/hwd:c.
Q Q

This question was solved in [I5] in the case of the classical Sobolev spaces, in [5] when
p = 0 in the case of Orlicz—Sobolev spaces and in [I] in the case of Orlicz—Sobolev spaces.

Theorem 3.10 Let ¢ be a Musielak—Orlicz function which satisfies the condition (9),
@ and ¢* satisfy the Ny condition and m € N. Consider w € WL, (), w > 0 a.e in
and T € W™ Ly () such that T = p+ h, where p lie in M (S2) (the subset of positive
Radon measures) and h € L},.(Q), assume that:

hw > —|®| a.ein Q for some ® in L'(). (12)
Then:

hw e LYQ),w € LY(Q;du) and < T,w >=/

wdu—i—/ hwdz. (13)
Q Q
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Remark 3.3 Note that x(X) = 0 for all X C Q such that C,(X) = 0. Indeed by
Lemma [32]

IT|(X) = [n+ hl(X) =0,

but
0 < p(X) < [R|(X) + |p+ h|(X) = 0.

Let prove Theorem
Proof. Let w € Wi" L, (2), the Lemma 2.4 of [9] yields the existence of a sequence

w,, such that:
() wa € WL, (Q) N L=(9),
(ii) supp wy, is compact,
(iii) |wp| < |w| a.e. in Q,
(V) w, — win WL, ().
(vi) wpow =0 ae. in Q.

Following the lines of [I5], it is easy to deduce that

< pu+ h,w, >:/

wndu—i—/ hwydzx. (14)
Q Q

Since wy, — w in WL, (), by using the Theorem B.2] Lemma3.2l and Remark 33|
we have

wy, —w  p.a.e and a.e. in (. (15)

We recall that by Theorem B.9 and Theorem B.7] for any v € W™ L,(2) one has
v=20 ae MOASv>=>0 ge inf.
This equivalence, Remark and the fact (w > 0 a.e. in Q), imply
w, 20 ae , w,>0 pae and 0w, <w a.e. in Q. (16)
On the other hand from hw > —|®| and 0< w, <w a.e. in Q we have

hw, > —|®| a.e.in Q (17)

Since < p+ h,w, > is bounded, (I4] )and (1) imply / hwydx < cst; Similary (I4]) and
Q

@) imply / wpdp < cst.
Q

By using ([I5), ([I8), (I7) and Fatou’s lemma we get hw € L'(Q) and w € L' (; dp).
Using 0 < w, <w p.a.e. in Q and |hw,| < |[hw| a.e. in €, it is now easy to pass to
the limit in (I4)); we use the convergence of w,, to w in WL, (2) for the left hand side
and Lebesgue’s dominated convergence theorem in each term of the right hand side: we

obtain
<T,w >=/wdu+/hwdm.
Q Q
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3.4 Application to unilateral problem

Let Q be a bounded Lipschitz domain in RY and m € N. ¢ be a Musielak-Orlicz function
which satisfies the condition (@), ¢ and ¢* satisfy the Ay condition.
We consider some right hand side f € W™ L-(£2) and the convex set

Ko ={veWj'L,(Q2), v=>® a.ein Q},

where the obstacle ® belong to Wi L,(2) N L>°(12). Let a pseudo-monotone mapping S
from W" L, () into W™ L, (£2). which satisfies the following conditions:

(1) S is continuous from each finite-dimensional subspace of Wy" L, (£2) into W ™" L, (£2)
for the weak™ topology.

(2) S maps bounded sets into bounded sets.

(3) S is coercive, i.e that for some vy in K¢ N L(Q)

< Sw),v—wvy >

— +0 as ||'U||W6’71L<p((z) — +00. (18)
||U||WgnLv,(9)

Consider finally a carathéodory function g : 2 x R — R witch satisfies :
(4) s.g(xz,s) 20,VseR and a.e in Q,
(5) he = supjsi<ilg(z,s)| € L' () vt > 0.

Theorem 3.11 The variational inequality:

u € Ko, g(.,u) € LY(Q), ug(.,u) € L*(Q)

<Su,v—u>+/g(.,u)(v—u)dac> < fiv—u>, Yo e KeNL>®(Q)
Q

has at least one solution.

Proof. First part Approximation and a priori istimates.
Xn(@)g(z,8) if |g(z,s)| <n,

g(z, s)

Define g, (x,s) = X”(x)n|g($, o if lg(z,s)| > n,

where x,, is the characteristic function of the set {x € Q : || < n}
By by using the proposition 1 of [14] we have the approximate problem

Up € K<I>;
< SUp, v — Up > +/ In(un)(v —up)de = < fiv—u, >, Yv € Ko N L>®(Q)
Q
(19)
has at least one solution. Using v = vy as test function in (I9]) we get
< SUp, Uy, — Vg > +/ n (s un)(Uyn —vo)de < < fiu, —vg > . (20)
Q
If (uy,) is not bonded in Wy" L, (£2) then by the assumptions (3) we have
S(Un), un —vo >
(VA > 0)(3no € N) : (Vn = no)(S (tun), un = o > A). (21)

|| |W5"L¢(Q)
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Let B, = {z € Q : up(x) > 0}, by @0 and @I) we have for large n :

Allun|lwer L, ) +/ Gn (s Un) (Un —vo)dw+/ Gn (- un)undx
En, Q_En

</Q . In (s un)vodz + || fllw-mr . llunllwpr, @ + 1 fllw-mr_ . @llvollwp L,

Let G, = {2 € Q : up(x) > v,} and | = sup(|vo|, |P]).
By the assumptions (4) and (5) we have

/ gn(vun)(un - UO)d:C 2 05
E,NG,
/ Gn (- un)undr >0,
E,NG<

/ gn(.,un)vod$</ 1011 e ) V0
E.NGe Q

/ gn('vun)undz 2 05
Q_En,

/ Gn (-5 un)vodx </ 7)1 0 (o) V0 -
Q-E, a2

[unllwy L, ) < C1, ¥R 2 no,

which is impossible, thus (u,) is bounded in W§* L, (£2).
It follows that there exists a subsequence, again denoted by u,, such that

Then we get

Un, —u, weakly in W{'L,(Q2) and a.e. in Q.

Thus
gn (T, un (7)) — g(x,u(x)) a.e. in Q.

From (20) we get

/Q 9n -+ ) (i — v0)d2 < . (22)
We shall prove

[ 19ncn)a — wlde < Ca.
Indeed

|gn('a un)(un - U0)|d$ = /G gn('a un)(un - ’Uo)d$ - / gn('a un)(un - ’Uo)d$

Q Q-G,

= _Q/Q—Gn gn('aun)(un - ’Uo)d$ +/Q gn('a un)(un - ’Uo)d$

/N

Cy + 2/ gn (- un )vodx
Q—Gn

/N

Cy + 2/ |th||Loc'UO|d$ = (s,
Q
(23
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where b = sup(|®|, |vo|)-
In order to prove
In(sun) — g(,u) in Ll(Q)a (24)

let us observe that, for any d > 0,

|9n (@, un(2))] < sup |95 )] + 0lgn (2, un () (un () — vo())],
<6~ +]|vol oo

and there fore, fore any measurable set F in {2 we have

/E|g"("u”)|dx</E|h%+HU0||L<>°|+6C3'

By Vitali’s theorem, we obtain (24]).
Furthermore by (22)) we have

/gn(.,un)und:c < Oy +/ n (-, un)vod.
Q Q

By Fatou’s lemma and 24]), we get

0< / g(., u)udr < Cy +/ g(., u)vodz.
Q Q

Thus
g(.,u)u € L(Q).

Second part : Passing to the limit in {I9)
Let
From (I3) it is clear that wu, € M*(Q2). Since S maps bounded sets of W{"L, (£2) in
to bounded sets of W ™" L.+ (£2), then we can assume for the same sequence that
Sun, = x weakly in W™ Ly~ (Q),
which implies that )
pn —> o in D (),
where
p=x—f+g(u).

Weput w=u—®, h=—g(.,u) and T =pu+h.
The assumptions of theorem are satisfied since T = x — f € W™ L,« () and
h € L'(). Thus

u—® ¢ LYQ;dp),

<x—fu—®>= /Q(u—@)du—/gg(.,u)(u—@)dx. (25)

Using v = ® as test function in (I9) we get

< SUp, Uy > < <Sun,<1>>—<f,<1>—un>+/gn(.,un)(q)—un),
Q
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which gives passing to the limit and then using (25)

limsup, < Sunp,uy, > < <X,<I>>—<f,<I>—u>—|—/g(.,u)(@—u)dm,

« (26)
< <xu> + /(@*U)du < < xu >
Q

since, by theorem [3.9] we have

(P—u)<0 pae in Q. (27)

Using (261 ) and since S is a pseudo-monotone operator, we obtain

x=Su and < Sup,up >—>< Su,u > .

It is now easy to pass to the limit in ([I9) for any fixed v € Ko N L ().
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