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Abstract: This paper mainly concerns with the general methods for the function
projective dual synchronization of a pair of chaotic systems with unknown parame-
ters. The adaptive control law and the parameter update law are derived to make
the states of a pair of chaotic systems asymptotically synchronized up to a desired
scaling function by Lyapunov stability theory. The general approach for function pro-
jective dual synchronization of Lü system and Lorenz system is provided. Numerical
simulation results show that the proposed method is effective and convenient.
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The essence of studying chaotic systems is to understand their structure and behavior.
These systems are deemed important as they reflect and model natural phenomena. One
of the main reasons for studying chaotic systems lies in the interest of controlling chaos.
Many areas have branched from this study due to practical applications in many fields.
The main property of chaotic dynamics is its critical sensitivity to initial conditions which
is responsible for initially neighboring trajectories separating from each other exponen-
tially in the course of time. For many years, this feature made chaos undesirable, insofar
as the sensitivity to initial conditions of chaotic systems reduces their predictability over
long time scales. On the other hand, the capability of chaotic dynamics to amplify small
perturbations improves their utility for reaching specific desired states with very high
flexibility and low energy cost. In contrast, the process of controlling chaos is directed to
improving a desired behavior by making only small time-dependent perturbations in an
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accessible system parameter or dynamical variable. Therefore, understanding the beha-
vior of chaos is crucial in the process of seeking beneficial applications to our lives [1,2,4].

The study of synchronization has been widely explored in a variety of systems includ-
ing physical, chemical and ecological systems. In the broadest sense, synchronization is
often understood as the tendency to undergo resembling evolution in time. Synchroniza-
tion is an important mechanism for creating order in complex systems. Many nonlinear
dynamical systems have been found to show a kind of behavior known as chaos, be-
ing characterized as chaotic systems by their extreme sensitivity to initial conditions
and having noise-like behaviors. Several types of synchronization behaviors have been
demonstrated and identified, such as, complete synchronization [3], phase synchroniza-
tion [5, 6], anti-phase synchronization [7–10], lag synchronization [11, 12], generalized
synchronization [13], projective synchronization [14–21] and so on. Function projective
synchronization, which is the generalization of projective synchronization, is one of the
important synchronization methods that have been widely investigated to obtain faster
communication with its proportional feature. function projective synchronization means
that the drive and response systems could be synchronized up to a scaling function.
Recently, many authors have investigated the function projective synchronization. It is
obvious that the unpredictability of the scaling function in function projective synchro-
nization can additionally improve the security of communication [22–25].

However, the theory of dual synchronization has been intensively reviewed and studied
recently. The first study on dual synchronization of chaotic systems has been reported by
Tsimring and Sushchik in 1996 in [26]. Later, several dual synchronization methods have
been reported, for example, dual synchronization of one dimensional discrete chaotic sys-
tems was undertaken in [27], where the authors achieved dual synchronization via specific
classes of piecewise-linear maps with conditional linear coupling. In [28], the authors ex-
perimentally demonstrated dual synchronization of chaos in two pairs of microchip lasers
in a one-way coupling configuration over one transmission channel. In [29], the authors
demonstrated that dual synchronization of Lorenz and Rössler systems can be obtained
by using the means of Lyapunov stabilization theory. In [30], the authors addressed dual
synchronization via output feedback strategy in two different chaotic systems. In [31], the
authors achieved dual synchronization of modulated time-delayed system by designing
a delay feedback controller. In [32], the author investigated the existence of projective-
dual-anticipating, projective-dual, and projective-dual-lag synchronization in a coupled
time-delayed systems with modulated delay time using Krasovskii–Lyapunov stability
theory. In [33], the authors studied the problem of dual synchronization of two different
fractional-order chaotic systems by a linear controller. Finally, in [34–37], the authors
investigated dual synchronization and dual anti-dual synchronization using nonlinear and
adaptive control. To the best of our knowledge, the function projective dual synchro-
nization of chaotic systems with unknown parameters has not yet been studied by any
researcher. Inspired by the previous works, in this paper we propose a new analytic
treatment of function projective dual synchronization of chaotic systems using adaptive
control method in which a state variable of the drive system dual synchronizes with
the state variable of the response system up to a scaling function. Numerical simula-
tions are carried out for adaptive function projective dual synchronization behavior of
two chaotic systems with uncertain parameters which are depicted through figures for
different particular cases.
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1 Problem Statement

Consider the following two chaotic systems with uncertain parameters as the drive sys-
tem:

{

ẋ1 = f1(x1) + F1(x1)α,
ẏ1 = g1(y1) +G1(y1)β,

(1)

where x1 = (x11, x12, ..., x1n)
T ∈ Rn and y = (y11, y12, ..., y1n)

T ∈ Rn are the state
vectors of the systems, f1 : Rn → Rn and g1 : Rn → Rn are two continuous vector
functions, F1 : Rn → Rn×m, G1 : Rn → Rn×m are two matrix functions and α, β ∈ Rm

are the unknown parameter vectors of the two drive systems. The systems studied in this
paper depend linearly on the parameters and many resemble well-known chaotic systems.
By a linear combination of the drive systems states, a scalar signal is generated in the
form of

εd =

n
∑

i=1

(aix1+biy1) = ATx1 +BT y1 = CTx, (2)

where A = (a1, a2, ..., an)
T and B = (b1, b2, ..., bn)

T are known matrices and C =
(AT BT )T and x = (xT

1 yT1 )
T . This generated scalar signal is fed to the response

systems which are corresponding to the drive systems. The response systems are
{

ẋ2 = f2(x2) + F2(x2)α̂+ u1,

ẏ2 = g2(y2) +G2(y2)β̂ + u2,
(3)

where x2 = (x21, x22, ..., x2n)
T ∈ Rn and y2 = (y21, y22, ..., y2n)

T ∈ Rn are the state
vectors, f2 : Rn → Rn and g2 : Rn → Rn are two continuous vector functions, F2 :
Rn → Rn×m, G2 : Rn → Rn×m are two matrix functions and α̂, β̂ ∈ Rm represent
the estimated vectors of unknown parameter vectors α, β and u = (u1 u2)

T ∈ R2n is
a controller. By the linear combination of the response systems states a scalar signal is
generated in the form of

εr =
n
∑

i=1

(aix2+biy2) = ATx2 +BT y2 = CT y. (4)

Our goal is to obtain the function projective dual synchronization between the drive and
the response systems. Now define the error function between the drive and the response
systems as es = εr −h(t)εd = CT (y−h(t)x), where h(t) = diag(h1(t), h2(t), ..., h2n(t)) is
a scaling matrix. Therefore, for function projective dual synchronization we use adaptive
control method to design the control in such a way that the origin becomes asymptotically
stable equilibrium point of the error dynamics i.e., lim

t→∞

‖e(t)‖ = lim
t→∞

‖x2 − h(t)x1‖ =

0, lim
t→∞

‖e(t)‖ = lim
t→∞

‖y2 − h(t)y1‖ = 0, where the scaling function h(t) ∈ C1 (0,+∞)

and 0 < h(t) < Nh for all t > 0 , (Nh is a positive constant for the function h(t)).

1.1 Adaptive function projective dual synchronization controller design

System (1) can be rewritten in the following form:
(

ẋ1

ẏ1

)

=

(

f1(x1)
g1(y1)

)

+

(

F1(x1) 0
0 G1(y1)

)(

α
β

)

, ẋ = f (x) + F (x)Φ, (5)
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where ẋ =

(

ẋ1

ẏ1

)

∈ R2n, f(x) =

(

f1(x1)
g1(y1)

)

∈ R2n, F (x) =

(

F1(x1) 0
0 G1(y1)

)

:

R2n → R2n×2m and Φ =

(

α
β

)

∈ R2m. Similarly, system (3) can be rewritten in the

following form:

(

ẋ2

ẏ2

)

=

(

f2(x2)
g2(y2)

)

+

(

α̂

β̂

)

+

(

u1

u2

)

, ẏ = g (y) +G (y) Φ̂ + u, (6)

where ẏ =

(

ẋ2

ẏ2

)

∈ R2n, g(y) =

(

f2(x2)
g2(y2)

)

∈ R2n, G(x) =

(

F2(x2) 0
0 G2(y2)

)

:

R2n → R2n×2m and Φ̂ =

(

α̂

β̂

)

∈ R2m and u =

(

u1

u2

)

∈ R2n. Now, define the error

vector as

e = y − h(t)x. (7)

The time derivative of equation (7) is

ė(t) = ẏ − h(t)ẋ − ḣ(t)x (8)

= g(y) +G(y)Φ̂− h(t)f(x)− h(t)F (x)Φ − ḣ(t)x+ u

= h(t)F (x)Φ̃ + F̃ Φ̂ + f̃ − ḣ(t)x + u,

where f̃ = g(y)− h(t)f(x), F̃ = G(y)− h(t)F (x) and Φ̃ = Φ̂−Φ. In practical situation,
the parameters belonging to the drive and the response systems are always unknown.
Therefore, by using adaptive control and the parameters identification techniques, the
controller can be designed as:

u = −f̃ − F̃ Φ̂ + ḣ(t)x − ke− es, (9)

where

es = CT e, (10)

denotes the linear coupling of the drive and response systems and the adaptive parameter
update laws are chosen as

˙̂
Φ = −FT (x)h(t)e. (11)

Definition 1.1 For the drive system (5) and the response system (6), it is said that
the systems (5) and (6) are function projective dual synchronization if there exists a
scaling function h(t), such that lim

t→∞

‖e(t)‖ = 0.

Theorem 1.1 For given synchronization scaling function h(t) and any initial con-
ditions x(0), y(0), the function projective dual synchronization between drive system (5)
and response system (6) will occur by the control law (9) and the parameter update law
(11).
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Proof. Construct dynamical Lyapunov function candidate in the form of:

V =
1

2
[eT e+ Φ̃T Φ̃], (12)

with the choice of the controller (9) and the parameter update law (11), the time deriva-
tive of V along the trajectories of equation (8) is

V̇ = eT ė + ˙̃ΦT Φ̃ = eT [h(t)F (x)Φ̃ − ke− es] + [−F (x)Th(t)e]T Φ̃ = −eTPe < 0. (13)

Suppose we select an appropriate positive definite matrix P such that V̇ < 0, that is, V̇
is negative definite. Then, according to the Lyapunov stability theorem [38], the function
projective dual synchronization of the systems (5) and (6) is achieved under the certain
chosen controller u and parameters update law. This completes the proof.

2 Adaptive Function Projective Dual Synchronization of Chaotic Systems

In this section, we realized the adaptive projective dual synchronization behavior in a
pair of chaotic Lorenz and Lü systems, using proposed the technique. Now, define the
pair of the drive system equations and the pair of the response system equations as

Drive 1: Lü system [40] is given by

ẋ1 = α(y1 − x1), (14)

ẏ1 = −x1z1 + δy1,

ż1 = x1y1 − βz1.

Drive 2: Lorenz system [41] is given by

ẋ2 = σ(y2 − x2), (15)

ẏ2 = ρx2 − x2z2 − y2,

ż2 = x2y2 − γz2.

So the corresponding response systems are as follows:

Response 1:

ẋ3 = α̂(y3 − x3) + u1, (16)

ẏ3 = −x3z3 + δ̂y3 + u2,

ż3 = x3y3 − β̂z3 + u3.

Response 2:

ẋ4 = σ̂(y4 − x4) + u4, (17)

ẏ4 = ρ̂x4 − x4z4 − y4 + u5,

ż4 = x4y4 − γ̂z4 + u6,

where α, δ, β, σ, ρ, γ, are unknown system parameters, α̂, δ̂, β̂, σ̂, ρ̂, γ̂ are the estimates of
α, δ, β, σ, ρ, γ, respectively, and U = (u1, u2, u3, u4, u5, u6)

T is the controller function to
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be determined. The error dynamical system can be written as

ė1 = α̂((y3 − x3)− h1(t)(y1 − x1)) + h1(t)α̃(y1 − x1)− ḣ1(t)x1 + u1, (18)

ė2 = −x3z3 + δ̂(y3 − h2(t)y1) + h2(t)(x1z1 + δ̃y1)− ḣ2(t)y1 + u2,

ė3 = x3y3 − β̂(z3 − h3(t)z1)− h3(t)(x1y1 + β̃z1)− ḣ3(t)z1 + u3,

ė4 = σ̂((y4 − x4)− h4(t)(y2 − x2)) + h4(t)σ̃(y2 − x2)− ḣ4(t)x2 + u4,

ė5 = ρ̂(x4 − h5(t)x2)− x4z4 − y4 + h5(t)(x2z2 + y2 + ρ̃x2)− ḣ5(t)y2 + u5,

ė6 = x4y4 − γ̂(z4 − h6(t)z2)− h6(t)(x2y2 + γ̃z2)− ḣ6(t)z2 + u6,

where e1 = x3 − h1(t)x1, e2 = y3 − h2(t)y1, e3 = z3 − h3(t)z1, e4 = x4 − h4(t)x2,

e5 = y4 − h5(t)y2, e6 = z4 − h6(t)z2, and α̃ = α̂ − α, δ̃ = δ̂ − δ, β̃ = β̂ − β, σ̃ = σ̂ − σ,
ρ̃ = ρ̂−ρ, γ̃ = γ̂−γ, respectively. Our goal is to find a suitable adaptive control law and
parameter update rule equation so that pair of the two chaotic systems will approach
projective dual synchronization for any initial conditions.
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Figure 1: (a)–(b): Error signals between drive and response systems for Case I. (c)–(d): Esti-
mated values for unknown parameters for Case I.

Theorem 2.1 For given synchronization scaling function matrix h(t) =
diag(h1(t), h2(t), ..., h6(t)), the function projective dual synchronization between
the drive systems (14)-(15) and the response systems (16)–(17) will occur if the adaptive
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Figure 2: Signals x1 versus x3, y1 versus y3, and z1 versus z3 and signals x2 versus x4, y4
versus y4, and z2 versus z4 after dual–synchronization for Case I.

control law equation is designed as follows

u1 = −α̂((y3 − x3)− h1(t)(y1 − x1)) + ḣ1(t)x1 − ke1 − es, (19)

u2 = x3z3 − h2(t)x1z1 − δ̂(y3 − h2(t)y1) + ḣ2(t)y1 − ke2 − es,

u3 = h3(t)x1y1 − x3y3 + β̂(z3 − h3(t)z1) + ḣ3(t)z1 − ke3 − es,

u4 = −σ̂((y4 − x4)− h4(t)(y2 − x2)) + ḣ4(t)x2 − ke4 − es,

u5 = x4z4 + y4 − ρ̂(x4 − h5(t)x2)− h5(t)(x2z2 + y2) + ḣ5(t)y2 − ke5 − es,

u6 = γ̂(z4 − h6(t)z2) + h6(t)x2y2 − x4y4 + ḣ6(t)z2 − ke6 − es,

where

es = a1e1 + a2e2 + a3e3 + b1e4 + b2e5 + b3e6 (20)

denotes the linear coupling of the drive and response systems and the adaptive parameter
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Figure 3: (a)–(b): Error signals between drive and response systems for Case II. (c)–(d):
Estimated values for unknown parameters for Case II.

update laws are chosen as

˙̂α = −h1(t)(y1 − x1)e1,
˙̂
δ = −h2(t)y1e2, (21)

˙̂
β = h3(t)z1e3, ˙̂σ = −h4(t)(y2 − x2)e4,
˙̂ρ = −h5(t)x2e5, ˙̂γ = h6(t)z2e6.

Proof. Substituting (19) into (18) leads to the following error system

ė1 = h1(t)α̃(y1 − x1)− ke1 − es, ė2 = h2(t)δ̃y1 − ke2 − es, (22)

ė3 = −h3(t)β̃z3 − ke3 − es, ė4 = h4(t)σ̃(y2 − x2)− ke4 − es,

ė5 = h5(t)ρ̃x2 − ke5 − es, ė6 = −h6(t)γ̃z2 − ke6 − es.

Construct a Lyapunov function of the form:

V =
1

2
(eT e+ α̃2 + δ̃2 + β̃2 + σ̃2 + ρ̃2 + γ̃2). (23)

Inserting (20), (21) and (22) into the time derivative of V leads to

V̇ = eT ė+ α̃ ˙̃α+ δ̃
˙̃
δ + β̃

˙̃
β + σ̃ ˙̃σ + ρ̃ ˙̃ρ+ γ̃ ˙̃γ (24)

= (h1(t)α̃(y1−x1)−ke1−es)e1+(h2(t)δ̃y1 − ke2 − es)e2 − (h3(t)β̃z3 + e3 + es)e3

+(h4(t)σ̃(y2−x2)− ke4−es)e4+(h5(t)ρ̃x2−ke5−es)e5−(h6(t)γ̃z2+ke6+es)e6

−α̃(h1(t)(y1 − x1)e1)− δ̃(h2(t)y1e2) + β̃(h3(t)z1e3)− σ̃(h4(t)(y2 − x2)e4)

−ρ̃(h5(t)x2e5) + γ̃(h6(t)z2e6)
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Figure 4: Signals x1 versus x3, y1 versus y3, and z1 versus z3 and signals x2 versus x4, y4
versus y4, and z2 versus z4 after dual–synchronization for Case II.

= − [(k + a1)e
2

1
+ (a1 + a2)e1e2 + (a1 + a3)e1e3 + (a1 + b1)e1e4 + (a1 + b2)e1e5

+(a1 + b3)e1e6 + (k + a2)e
2

2 + (a2 + a3)e2e3 + (a2 + b1)e2e4 + (a2 + b2)e2e5

+(a2 + b3)e2e6 + (k + a3)e
2

3
+ (a3 + b1)e3e4 + (a3 + b2)e3e5 + (a3 + b3)e3e6

+(k+b1)e
2

4+(b1+b2)e4e5+(b1+b3)e4e6+(k+b2)e
2

5+(b2+b3)e5e6 + (k+b3)e
2

6]

= −eTPe < 0,

where e = [|e1|, |e2|, |e3|, |e4|, |e5|, |e6|] and P is real symmetric matrix. From the Lya-
punov theorem of stability [38], it is simple to point out that the zero equilibrium point
(ei = 0, i = 1, ..., 6) of the error dynamical system (18) is asymptotically stable if the
real symmetric matrix P is positive definite. According to Sylvester’s theorem [39], P is
positive definite if and only if ∆i > 0, i = 1, 2, ..., 6, where ∆i represents the ith order
sequential sub determinant of matrix. That is, we should choose the appropriate coupled
parameters. Then, we realize the function projective dual synchronization between a pair
of Lü systems and a pair of Lorenz systems. This completes the proof.
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2.1 Numerical simulation and results for function projective dual synchro-
nization

In the present section, the numerical simulations for the function projective dual syn-
chronization of a pair of chaotic systems are studied. The true values of the un-
known parameter of the systems ((14)–(15)) are taken as α = 36, δ = 20, β = 3,
and σ = 10, ρ = 28, γ = 8/3, so both systems exhibit chaotic behavior. The ini-
tial values of the estimated unknown parameter vectors of the systems are taken as
α(0) = 2, δ(0) = −1, β(0) = 3, and σ(0) = 4, ρ(0) = −5, γ(0) = 6. The initial condi-
tions of the drive system (14) and the drive system (15) are taken as x1(0) = 1, y1(0) =
2, z1(0) = 3, x2(0) = −9, y2(0) = 5, z2(0) = 30, the initial conditions of the response
system (16) and the response system (17) are taken as x3(0) = 11, y3(0) = 12, z3(0) = 13
and x4(0) = −4, y4(0) = 3, z4(0) = 10, respectively. The coupled parameters are valued
as ai = (1, 1, 1), bi = (1, 1, 1), i = 1, 2, 3, for which condition P is positive definite. The
real positive constants k is taken as 1.

Case I. Let the scaling function be hi(t) = 0.9 +
t

1 + t2
, i = (1, .2, ..., 6). The simula-

tion results are shown through Fig. 1 (a)–(d), which shows that the dual synchronization

errors converge asymptotically to zero and the estimated parameters α̂, δ̂, β̂, and σ̂, ρ̂, γ̂
converge to the original parameter α = 36, δ = 20, β = 3 , and σ = 10, ρ = 28, γ = 8/3
as t → ∞. Fig. 2 shows the signals after dual synchronization.

Case II. Let the scaling function be hi(t) = 0.2 + 0.5 sin

(

πt

10

)

. The simulation

results are depicted through Fig. 3 (a)–(d), which shows that the dual synchronization

errors converge asymptotically to zero and the estimated parameters α̂, δ̂, β̂, and σ̂, ρ̂, γ̂
converge to the original parameters α = 36, δ = 20, β = 3 , and σ = 10, ρ = 28, γ = 8/3
as t → ∞. Fig. 4 shows the signals after dual synchronization.

3 Conclusion

In the present paper, we have successfully demonstrated the function projective dual
synchronization between a pair of chaotic systems using adaptive control method with
uncertain parameters. The method is applied for the function projective dual synchro-
nization between chaotic Lü and Lorenz systems. This clearly exhibits that the adaptive
control method is effective and convenient to achieve the global dual synchronization of
a pair of chaotic systems. Eventually some simulation results shown in corresponding
figures have illustrated the effectiveness and feasibility of the proposed controller.
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