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1 Introduction

Neural networks is an exciting area for research with a broad spectrum of applications [1-
12, 16, 22-24]. Networks of neurons have taken many shapes as mathematical models bas-
ing on the application which they are designed for. Models of Hopfield, Cohen-Grossberg,
cellular networks, recurrent networks, cooperative modular networks and spiking neural
networks are such popular models to quote [1-9, 13, 20]. Along the cite, a new class
of neural networks, designated as co-operative and supportive neural network (CSNN,
for short) is introduced in [26]. It consists of a network of neurons called main compo-
nents each of which is connected to and supported by another network of neurons called
subnetwork components. The model is aimed at explaining the dynamics of systems
exhibiting hierarchy that takes into account the collective capabilities of components for
better performance of the system. Such systems are useful in understanding industrial
information management, financial and economic systems which involve distribution and
monitoring of various tasks. They are utilized to decompose complex classification tasks
into simpler subtasks and puzzle them out. In particular, the network of [26] was utilized
for estimation of key parameters in an infectious disease model [25]. For different models
of cooperative neural networks and their applications, readers are referred to [9, 14, 15,
17, 21]. It was also claimed that the CSNN model presented in [26] was entirely new
and different from all the above neural models in terms of formulation and application.
Hereunder, we explain briefly the CSNN model introduced in [26], which we are going to
modify and analyze further in the present study.

The model comprises two neuronal fields, say, Fx and Fy. Each neuron in Fx is
denoted by xi, i = 1, 2, ..., n and is connected to other neurons xj , j = 1, 2, ...n in the
same field Fx. Also each xi is connected to ri number of neurons in the neuronal field
Fy. These are denoted by yik , k = 1, 2, ....ri, 1 ≤ ri ≤ n. These yik ’s support xi in the
sense that they coordinate and cooperate with it so that any task assigned to them by
xi will be attended to. The dynamics of the model are described by the following system
of equations

x′

i = −aixi +

n∑

j=1

bijfj(xj) +

ri∑

k=1

ciikgik(xi, yik) + Ii, i = 1, 2, ..., n,

y′ik = −cikyik +

ri∑

l=1

dilhil(yil) + Jik , k = 1, 2, ..., ri, 1 ≤ ri ≤ n. (1)

In (1), ai and cik are positive constants known as decay rates, Ii, Jik are exogenous inputs
and bij , dil are the synaptic connection weights which may be real or complex constants.
ciik is the rate of distribution of information between xi and yik . The functions fi, gik
and hik are the neuronal output response functions and are more commonly known as
the signal functions.

Besides a study of qualitative behavior of the system, several modifications of the
CSNN model (1) are suggested and left as open problems in [26] for enthusiastic readers.
Present authors have studied two such modified models [18, 19] of (1) that increase its
applicability. Extending this view point, we shall address one more modification of (1)
in our present study. Motivation for this stems from the following observations.

The second equation of (1) contains no term that includes xi. That means, the sub-
components yik work independently of xi, supply information to xi and do not bother
whether their contribution is fully utilized or are contributing more than what is re-
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quired. At the same time for the main component xi there is a need to check this
contribution from yik either in terms of money or in terms of easing out yik from unnec-
essary production beyond what is required. Thus, there is a need to check the activity
of sub-components. Also when yik depends mainly on xi for its survival or activity
there should be a term that reflects the interaction between xi and yik . Such a term
in second equation of (1) represents: (i) physical transfer of subcomponents in case of
ancillary manufacturing units; (ii) removal of data/information after transferring it to
main component (’cut and paste’ instead of ’copy and paste’) or (iii) deactivation of
subcomponents as soon as the required data is supplied.

Another argument runs as follows. System (1) reflects how xi receives information
from yik represented by gik(xi, yik) but not how it is sent from yik - term at receiver’s
end but not at giver’s end. It may also be understood as that yik keeps a copy of what
ever information/data sent to xi. This may not be possible in all cases. We can not keep
copies of physical quantities such as spare parts, components, etc., of the main item in
a manufacturing unit. Even in data processing systems, retention of data at too many
places may raise security problems. Absence of a term involving xi may also infer that
the requirements of xi are insignificant when compared to the quantum of work done by
yik for all its purposes.

In order to incorporate these, we introduce a term which may be utilized for deacti-
vating or resting of yik once its task is done. Introduction of such term into the second
equation modifies (1) to

x′

i = −aixi +
n∑

j=1

bijfj(xj) +

ri∑

k=1

ciikgik(xi, yik) + Ii,

y′ik = −cikyik +

ri∑

l=1

dilhil(yil)− ciikgik(xi, yik) + Jik . (2)

In (2), the term c̄iik ḡik(xi, yik) denotes the resting or deactivating component for the
subsystem. Here each c̄iik > 0 may be called the rate of de-activation of yik by xi. The
functional term ḡik(xi, yik) denotes how the deactivation takes place. System (2) is Model
I in [26] which is left open for exploration. Our task in this paper shall be to study the
influence of this new term on the dynamics of the system (1). Is this term going to pacify
sub-components or influence the entire network will be a question of utmost importance.
How to manage its influence using the system parameters may be reasonable task to take
up. This we study in terms of stability of equilibrium patterns of the system (2) in the
light of existing results on (1).

The paper is organized as follows. In Section 2, we provide conditions for existence
and uniqueness of solutions, equilibria for system (2) — basic properties of any such
dynamical system. Results on global asymptotic stability of equilibria are obtained in
Section 3. The results are compared with earlier results on (1). Examples are provided
for illustration of results. Finally a discussion follows in Section 4.

2 Basic Properties

In this section, we explain basic properties of (2) such as existence of solutions along
with equilibria. This is to be done with appropriate assumptions or restrictions on
system parameters and nonlinear functions. To begin with we assume that the response
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functions fj , giik , hik and giik satisfy local Lipschitz conditions given by

‖ gik(xi, yik)− gik(xi, yik) ‖ ≤ M1ik |yik − yik |+M2ik |xi − xi|, (3)

‖ gik(xi, yik)− gik(xi, yik) ‖ ≤ M1ik |yik − yik |+M2ik |xi − xi|, (4)

|fj(xj)− fj(xj)| ≤ pj |xj − xj |, (5)

|hil(yil)− hil(yil)| ≤ qil |yil − yil |, (6)

where M1ik , M2ik , pj and qil are positive constants. Then from the theory of differential
equations, it is evident that solutions for (2) do exist, are unique and continuable in their
maximal intervals of existence.

Since the stability of a system is understood in terms of the stability of its equilibria, we
verify whether (2) provides scope for equilibrium patterns to exist. The following result
provides one such set of sufficient conditions.

Theorem 2.1. Let ai and cik be positive numbers such that

1

ai

n∑

j=1

|bij |pj +
1

ai

ri∑

k=1

|ciik |M2ik +
1

cik
|ciik |M2ik < 1, i = 1, 2, ..., n.

1

cik

ri∑

l=1

|dil |qil +
1

ai

ri∑

k=1

|ciik |M1ik +
1

cik
|ciik |M1ik < 1, 1 ≤ ri ≤ n. (7)

Then the system (2) has a unique equilibrium solution (x∗

i , y
∗

ik
) for each i, k.

Since several results are available in literature on similar systems, we omit the proof
of the above result here and refer the interested readers to [3],[26] for a line of proof
based on contraction mapping principle.

Since (x∗

i , y
∗

ik
) is a constant solution of (2), we have

x∗
′

i = 0 = −aix
∗

i +
n∑

j=1

bijfj(x
∗

i ) +

ri∑

k=1

ciikgik(x
∗

i , y
∗

ik
) + Ii,

y∗
′

ik
= 0 = −ciky

∗

ik
+

ri∑

l=1

dilhil(y
∗

il
)− ciikgik(x

∗

i , y
∗

ik
) + Jik . (8)

We shall now take up the aspect of stability of equilibrium pattern of (2), assuming its
existence tacitly.

3 Global Stability Results

In this section we study the influence of deactivation term on the stability of the system.
Whether its presence will increase strain on parameters or reduce it when compared to
(1) — is the main concern.

Before we present our results, we rearrange system (2) as follows. Utilizing (8) in (2),
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we get

(xi−x∗

i )
′

= −ai(xi−x∗

i )+
n∑

j=1

bij [fj(xj)−fj(x
∗

j )]+

ri∑

k=1

ciik [gik(xi, yik)−gik(x
∗

i , y
∗

ik
)],

(yik−y∗ik)
′ = −cik(yik−y∗ik)+

ri∑

l=1

dil [hil(yil)−hil(y
∗

il
)]−ciik [gik(xi, yik)−gik(x

∗

i , y
∗

ik
)].

(9)

We shall establish our first result now.

Theorem 3.1. Assume that the parameters of the system (2) satisfy the following
conditions:

ai >

n∑

j=1

|bji|pi +

ri∑

k=1

|ciik |M2ik +

ri∑

k=1

|ciik |M2ik ,

cik >

ri∑

l=1

|dil |qil + |ciik |M1ik + |ciik |M1ik .

Assume further that conditions (3) - (6) on response functions hold. Then the equilibrium
(x∗

i , y
∗

ik
) is globally asymptotically stable in the sense that all solutions of (2) satisfy the

convergence requirement

lim
t→∞

yik → y∗ik , lim
t→∞

xi → x∗

i .

Proof. We consider the functional

V (t) =
n∑

i=1

{
|xi − x∗

i |+

ri∑

k=1

|yik − y∗ik |
}
. (10)

The upper right derivative of V along the solutions of (2) utilizing (9) may be given by

D+V (t) ≤

n∑

i=1

{
− ai|xi − x∗

i |+

n∑

j=1

|bij ||fj(xj)− fj(x
∗

j )|

+

ri∑

k=1

|ciik ||gik(xi, yik)− gik(x
∗

i , y
∗

ik
)|

+

ri∑

k=1

[
− cik |yik − y∗ik |+

ri∑

l=1

|dil ||hil(yil)− hil(y
∗

il
)|
]

−

ri∑

k=1

|ciik ||gik(xi, yik)− gik(x
∗

i , y
∗

ik
)|
}
.
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Then,

D+V (t) ≤

n∑

i=1

{
− ai|xi − x∗

i |+

n∑

j=1

|bij |pj|xj − x∗

j |

+

ri∑

k=1

|ciik |M2ik |xi − xi|+

ri∑

k=1

|ciik |M1ik |yik − y∗ik |

+

ri∑

k=1

[
− cik |yik − y∗ik |+

ri∑

l=1

|dil |qil |yil − y∗il |
]

+

ri∑

k=1

|ciik |[M1ik |yik − y∗ik |+M2ik |xi − x∗

i |]
}
,

using (3) - (6) on the response functions. Thus,

D+V (t) ≤ −

n∑

i=1

{
[ai −

n∑

j=1

|bji|pi −

ri∑

k=1

|ciik |M2ik −

ri∑

k=1

|ciik |M2ik ] |xi − x∗

i |

+

ri∑

k=1

[cik −

ri∑

l=1

|dil |qil − |ciik |M1ik − |ciik |M1ik ] |yik − y∗ik |
}

≤ −ÃV < 0, by hypotheses,

where Ã = min
{
A, B

}
, and

A =




min



ai −
n∑

j=1

|bji|pj −

ri∑

k=1

|ciik |M2ik −

ri∑

k=1

|ciik |M2ik



 > 0, 1 ≤ i ≤ n.






B =

{
min

[
cik −

ri∑

l=1

|dil |qil − |ciik |M1ik − |ciik |M1ik

]
> 0, 1 ≤ k ≤ ri, 1 ≤ i ≤ n.

}

Thus, D+V (t) + ÃV (t) < 0. Integrating on both sides with respect to t from 0 to t,

we have V (t) < V (0)e−Ãt → 0 for large t. The conclusion follows from the definition of
V.

We shall present yet another result on global asymptotic stability of equilibrium
pattern of (2) using a different Lyapunov functional providing one more set of sufficient
conditions on parameters of the system.

Theorem 3.2. Assume that the conditions (3)–(6) on response functions hold.
Furthermore the parameters satisfy the following inequalities

ai >
1

2

n∑

j=1

|bij |pj +
1

2

n∑

j=1

|bji|pi +
1

2

ri∑

k=1

|ciik |M2ik (11)

+
1

2

ri∑

k=1

|ciik |M1ik +
1

2

ri∑

k=1

|ciik |M2ik ,

cik >

ri∑

l=1

|dil |qil +
1

2
|ciik |M1ik +

1

2
|ciik |M2ik + |ciik |M1ik ,
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for all i and ik. Then the equilibrium pattern of (2) is globally asymptotically stable.
Proof. We consider the functional

V (t) =

n∑

i=1

{
(xi(t)− x∗

i )
2

2
+

ri∑

k=1

(yik − y∗ik)
2

2

}
.

The derivative of V along the solutions of (1.2), using (3.1), is given by

V ′(t) =

n∑

i=1

[
(xi(t)− x∗

i )(x
′

i(t)− x∗
′

i ) +

ri∑

k=1

(yik(t)− y∗ik)(y
′

ik
(t)− y∗

′

ik
)
]

=

n∑

i=1

[[
− ai(xi(t)− x∗

i )
2 + (xi(t)− x∗

i )

n∑

j=1

bij(fj(xj)− fj(x
∗

j ))

+(xi(t)− x∗

i )

ri∑

k=1

ciik(gik(xi, yik)− gik(x
∗

i , y
∗

ik
))
]

+

ri∑

k=1

[
− cik(yik(t)− y∗ik)

2 + (yik(t)− y∗ik)

ri∑

l=1

dil [hil(yil)− hil(y
∗

il
)]

−(yik(t)− y∗ik)ciik

(
gik(xi, yik)− gik(x

∗

i , y
∗

ik
)
)]]

≤
n∑

i=1

[
− ai(xi(t)− x∗

i )
2 + |xi(t)− x∗

i |
n∑

j=1

|bij |pj |xj(t)− x∗

j |

+|xi(t)− x∗

i |

ri∑

k=1

|ciik |
[
M2ik |xi − x∗

i |+M1ik |yik − y∗ik |
]

+

ri∑

k=1

[
− cik(yik(t)− y∗ik)

2 + |yik(t)− y∗ik |

ri∑

l=1

|dil |qil |yil − y∗il |

+|yik − y∗ik ||ciik |
(
M2ik |xi − x∗

i |+M1ik |yik − y∗ik |
)]]

,

utilizing (3)-(6). Employing the inequality ab ≤ a2
+b2

2
and rearranging the terms we get

V ′(t) ≤

n∑

i=1

[
− ai(xi(t)− x∗

i )
2 +

1

2

n∑

j=1

|bij |pj

[
(xi(t)− x∗

i )
2 + (xj − x∗

j )
2

]

+
1

2

ri∑

k=1

|ciik |M2ik(xi − x∗

i )
2

+
1

2

ri∑

k=1

|ciik |M1ik

[
(yik − y∗ik)

2 + (xi − x∗

i )
2

]]

−

ri∑

k=1

[
cik −

1

2

ri∑

l=1

|dil |qil −
1

2

ri∑

k=1

|dik |qik

]
(yik − y∗ik)

2

+
1

2

ri∑

k=1

|ciik |M2ik(xi − x∗

i )
2 +

1

2
|ciik |M2ik(yik − y∗ik)

2

+|ciik |M1ik(yik − y∗ik)
2

]
.
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Thus,

V ′(t) ≤ −

n∑

i=1

[
ai −

1

2

n∑

j=1

|bij |pj −
1

2

n∑

j=1

|bji|pi −
1

2

ri∑

k=1

|ciik |M2ik

−
1

2

ri∑

k=1

|ciik |M1ik −
1

2

ri∑

k=1

ciikM2ik

]
(xi − x∗

i )
2

−
n∑

i=1

ri∑

k=1

[
cik −

1

2

ri∑

l=1

|dil |qil −
1

2

ri∑

l=1

|dil |qil −
1

2
|ciik |M1ik

−
1

2
|ciik |M2ik − |ciik |M1ik

]
(yik − y∗ik)

2.

Then by assumptions, V ′ is negative definite, and hence, the conclusion follows employing
standard arguments as in earlier case (e.g., [3, 19, 26]).

We shall now provide examples to illustrate these results and establish the criteria
provided in these two results are independent.

Example 3.3. Consider

(
x′

1

x′

2

)
= −

(
1.49 x1

3.79 x2

)
+

(
0.32 0.43
0.18 0.24

)(
f1(x1)
f2(x2)

)

+

(
0.25 0.53
0.85 0.95

)(
g11(x1, y11) g21(x2, y21)
g12(x1, y12) g22(x2, y22)

)
+

(
I1
I2

)
,

(
y′11
y′12

)
, = −

(
1.25 y11
1.02 y12

)
+

(
0.5 0.25
0.3 0.1

)(
h11(y11)
h12(y12)

)
+

(
J11
J12

)

−

(
0.15 g11(x1, y11)
0.05 g12(x1, y12)

)
,

(
y′21
y′22

)
= −

(
2.01 y21
1.72 y22

)
+

(
0.25 0.12
0.15 0.05

)(
h21(y21)
h22(y22)

)
+

(
J21
J22

)

−

(
0.75 g21(x2, y21)
0.53 g22(x2, y22)

)
.

Let fi(xi) = tanh(xi), hik = tanh(yik) and gik(xi, yik) = xi + yik . Then pj = qik =
M1ik = M2ik = 1. Choose Ii = 10, Jik = 10, i = 1, 2, k = 1, 2.

For the above system, the equilibrium pattern is given by (11.68, 4.33, 6.67, 9.40,
2.69, 3.89). It may be seen that all the conditions of Theorem 3.1 are satisfied, and
hence,the equilibrium pattern of the system is globally asymptotically stable by virtue
of Theorem 3.1. Also some of the parametric conditions of Theorem 3.2 are violated, it
can not be applied here.

Example 3.4. Consider

(
x′

1

x′

2

)
= −

(
2.45 x1

3.85 x2

)
+

(
0.4 0.6
0.7 1.3

)(
f1(x1)
f2(x2)

)

+

(
0.6 0.3
0.8 0.5

)(
g11(x1, y11) g21(x2, y21)
g12(x1, y12) g22(x2, y22)

)
+

(
I1
I2

)
,
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(
y′11
y′12

)
= −

(
1.4 y11
1.7 y12

)
+

(
0.2 0.4
0.4 0.6

)(
h11(y11)
h12(y12)

)
+

(
J11
J12

)

−

(
0.3 g11(x1, y11)
0.6 g12(x1, y12)

)
,

(
y′21
y′22

)
= −

(
1.65 y21
2.5 y22

)
+

(
0.2 0.4
0.4 0.6

)(
h21(y21)
h22(y22)

)
+

(
J21
J22

)

−

(
0.4 g21(x2, y21)
0.8 g22(x2, y22)

)
.

Choosing fi(xi) = tanh(xi), hik = tanh(yik) and gik(xi, yik) = xi + yik , we have
pj = qik = M1ik = M2ik = 1. Let Ii = 10, Jik = 10, i = 1, 2, k = 1, 2.

The equilibrium pattern of the above system is given by ( 6.21, 4.38, 5.51, 4.06,
4.74, 2.18). Clearly, all the conditions of Theorem 3.2 are satisfied here while some of
the parametric conditions in Theorem 3.1 are violated. Thus, the unique equilibrium
pattern of system is stable by virtue of Theorem 3.2.

It may be concluded from Examples 3.3 and 3.4 that Theorems 3.1 and 3.2 are
independent of each other. The examples are simulated using ODE23 of MATLAB and
Figures 1 and 2 picturize our theoretical conclusions. We now consider the case where all

t
0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

x
1

x
2

y
11

y
12

y
21

y
22

Figure 1: Behaviour of solutions in Example 3.3.

contribution of yik has been completely received and utilized by xi as it is. That means,
we assume that ciikgik(xi, yik) ≡ ciikgik(xi, yik) for all xi and yik . Our next result studies
the global stability of equilibrium in this case.

Theorem 3.5. Assume that the parameters of the system satisfy the following con-
ditions:

ai −

n∑

j=1

|bji|pi > 0, cik −

ri∑

l=1

|dil |qil > 0,

for all i and ik and the response functions satisfy (3)-(6). Then the equilibrium pattern
of (2) is globally asymptotically stable.

Proof. We employ the same functional as in Theorem 3.1,

V (t) =

n∑

i=1

[
|xi − x∗

i |+

ri∑

k=1

|yik − y∗ik |
]
. (12)
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t
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1
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3
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x
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Figure 2: Solutions converging to equilibrium values in Example 3.4.

Then we have

D+V (t) ≤

n∑

i=1

[
− ai|xi − x∗

i |+

n∑

j=1

|bij ||fj(xj)− fj(x
∗

j )|

+

ri∑

k=1

|ciik ||gik(xi, yik)− gik(x
∗

i , y
∗

ik
)|+

ri∑

k=1

[
− cik |yik − y∗ik |

+

ri∑

l=1

|dil ||hil(yil)− hil(y
∗

il
)| −

ri∑

k=1

|ciik ||gik(xi, yik)− gik(x
∗

i , y
∗

ik
)|
]]

≤

n∑

i=1

[
− ai|xi − x∗

i |+

n∑

j=1

|bij |pj |xj − x∗

j |

+

ri∑

k=1

[
− cik |yik − y∗ik |+

ri∑

l=1

|dil |qil |yil − y∗il |]
]]
.

Therefore,

D+V (t) ≤ −
n∑

i=1

[
[ai −

n∑

j=1

|bji|pi] |xi − x∗

i |+

ri∑

k=1

[cik −

ri∑

l=1

|dil |qil ] |yik − y∗ik |
]

Negative definiteness of D+V follows from assumptions on parameters. The rest of the
argument is similar to that of Theorem 3.1, and thus, omitted.

Remark 3.6. Two types of approaches are possible here. For system (1), where the
dynamics of subnetwork neurons yik (i.e., second equation of (1)) do not include terms
of main components xi, the subnetworks are allowed to converge first, xi waits to receive
this contribution and then starts working on its own for a convergence - as worked out in
Theorem 4.1 of [26]. Secondly, the case where xi works together with yik and interacts
continuously with them for a simultaneous convergence was discussed in Corollary 2.3
of [19]. First situation may be called as a ’serial processing’ – elongates the convergence
process but the strain on the parameters is considerably less when compared to that in
second situation which may be termed as a ’parallel processing’.
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It may be noticed from Theorem 3.5 here that the strain on parameters is very less
as compared to that of Theorem 4.1 of [26] at the same time allows interactions of yik ’s
with xi as Corollary 2.3 of [19]. Thus, influence of deactivation term gik(xi, yik) in second
equation is clear. This also indicates that when the subcomponents contribute exactly
what their main components require and the main components receive what they need
with a proper interaction with their subcomponents then the system parameters are
strained less and thus, paving way for a better performance of the system.

4 Discussion

In the present paper, we studied the influence of deactivation dynamics introduced into
the supportive subnetwork of a cooperative and supportive network system. We estab-
lished sufficient conditions for global asymptotic stability of the equilibrium pattern.
Examples are provided to establish that the criteria presented are independent of each
other. It was assumed in [26] that the subnetworks of the main group always support it.
If the subnetwork is an ancillary unit established independently of the main system (but
always supports it) and survives on its own (has independent, own dynamics – second
equation of system(1)), then main system has no burden. In case if the subnetwork is
an ancillary unit that survives only because of main network or is an integral part of the
main system which needs to be defunct as soon as the task of main network is finished
either to reduce or to avoid unnecessary use of yik ’s, then system (2) comes into play
and the study in this paper becomes very relevant and useful. A look at Theorems 3.1
and 3.2 shows that the parameters have to be strained much when the contribution from
subnetwork is not utilized as it is or is not known to be the same as that required by main
network. On the other hand, the strain on parameters is much less for systems which
utilize contributions of its subnetworks completely or equivalently, the subnetworks are
contributing exactly what their main group is expecting from them. This is what The-
orem 3.5 says. Thus, systems with perfect coordination and cooperation among groups
perform well with less strain on constituent components and resources.
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