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Abstract: This work is devoted to the study of the existence of positive periodic
solutions of the second order nonlinear neutral differential equation

d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)x(t) =

d2

dt2
Q(t, x(t− τ(t))) + f(t, h (x(t)) , g (x(t− τ(t)))).

The method used here is one of the most efficient techniques for studying this type of
equations since it combines some useful properties of Green’s function together with
Krasnoselskii’s fixed point theorem.
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1 Introduction

In this work we are essentially interested in the study of the existence of positive peri-
odic solutions for certain classes of second order nonlinear neutral differential equations
which are ubiquitous in different scientific disciplines and arise specially in beam theory,
viscoelastic and inelastic flows and electric circuits.

There is a sizeable literature related to this topic, for instance in the middle of the pre-
vious century, the existence of solutions of differential equations was extensively studied
by many investigators, see, for example, the papers and books [1]- [9], [11], [12]. During
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the last two decades, there has been an increasing activity in the study of periodic prob-
lems of second-order nonlinear neutral differential equations (see [1]- [3], [9], [11], [12]
and references therein).

Some mathematicians used transformation in order to reduce the equation into more
simple equation or system of equations or used synthetic division, others gave the solution
in a series form which converges to the exact solution and some of them dealt with second-
order nonlinear neutral differential equations by using some numerical techniques such
as Ritz method, finite difference method, finite element method, cubic spline method
and multiderivative method. In this paper, these usual methods may seem inefficient to
establish the existence of positive periodic solutions of the second-order nonlinear neutral
differential equations

d2

dt2
x(t)+p(t)

d

dt
x(t)+q(t)x(t) =

d2

dt2
Q(t, x(t−τ(t)))+f(t, h (x(t)) , g (x(t− τ(t)))), (1)

where p, q are positive continuous real-valued functions. The functions Q : R×R −→ R,
h, g : R −→ R and f : R× R× R −→ R are continuous with respect to their arguments.
Our ideas are inspired by the ones given in the recent papers [1, 3, 9, 11, 12], we will
convert the nonlinear neutral differential equation into an integral equation before using
the Krasnoselskii’s fixed point theorem.

This paper is organized as follows. In the next section, we start by providing some
background definitions, lemmas and some preliminary results, then we give Green’s func-
tion of a second order differential equation and some of their useful properties. We in-
troduce Green’s functions of a second order differential equation and we show that the
solution of a given equation can be explicitly expressed in terms of Green’s function of
the corresponding homogeneous equation. Next, we present the inversion of (1) and we
assert without proof the well-known Krasnoselskii’s fixed point theorem which will be
useful in what follows.

Finally, in the last section, we study the neutral functional differential equation (1)
and present an existence result for positive periodic solutions for this equation by combin-
ing some properties of Green’s function together with Krasnoselskii fixed point theorem.

2 Preliminaries

For T > 0, let PT be the set of all continuous scalar functions x, periodic in t of period
T . Then (PT , ‖.‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R
|x (t)| = sup

t∈[0,T ]

|x (t)| .

Since we are searching for the existence of periodic solutions for equation (1), it is natural
to assume that

p (t+ T ) = p (t) , q (t+ T ) = q (t) , τ (t+ T ) = τ (t) , (2)

with τ being scalar function, continuous, and τ (t) ≥ τ∗ > 0. Also, we assume∫ T

0

p (s) ds > 0,

∫ T

0

q (s) ds > 0. (3)

We also assume that the functions Q (t, x) and f (t, x, y) are periodic in t with period T ,
that is,

Q (t+ T, x) = Q (t, x) , f (t+ T, x, y) = f (t, x, y) . (4)
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Lemma 2.1 ( [9]) Suppose that (2) and (3) hold and

R1

[
exp

(∫ T

0
p (u) du

)
− 1
]

Q1T
≥ 1, (5)

where

R1 = max
t∈[0,T ]

∣∣∣∣∣∣
∫ t+T

t

exp
(∫ s

t
p (u) du

)
exp

(∫ T

0
p (u) du

)
− 1

q (s) ds

∣∣∣∣∣∣ , Q1 =

(
1 + exp

(∫ T

0

p (u) du

))2

R2
1.

Then there are continuous T -periodic functions a and b such that b (t) > 0,
∫ T

0
a (u) du >

0 and

a (t) + b (t) = p (t) ,
d

dt
b (t) + a (t) b (t) = q (t) , for t ∈ R.

Lemma 2.2 ( [11]) Suppose the conditions of Lemma 2.1 hold and φ ∈ PT . Then
the equation

d2

dt2
x (t) + p (t)

d

dt
x (t) + q (t)x (t) = φ (t)

has a T -periodic solution. Moreover, the periodic solution can be expressed by

x (t) =

∫ t+T

t

G (t, s)φ (s) ds,

where

G (t, s) =

∫ s

t
exp

[∫ u

t
b (v) dv +

∫ s

u
a (v) dv

]
du+

∫ t+T

s
exp

[∫ u

t
b (v) dv +

∫ s+T

u
a (v) dv

]
du[

exp
(∫ T

0
a (u) du

)
− 1
] [

exp
(∫ T

0
b (u) du

)
− 1
] .

Corollary 2.1 ( [11]) Green’s function G satisfies the following properties

G (t, t+ T ) = G (t, t) , G (t+ T, s+ T ) = G (t, s) ,

∂

∂s
G (t, s) = a (s)G (t, s)−

exp
(∫ s

t
b (v) dv

)
exp

(∫ T

0
b (v) dv

)
− 1

,

∂

∂t
G (t, s) = −b (t)G (t, s) +

exp
(∫ s

t
a (v) dv

)
exp

(∫ T

0
a (v) dv

)
− 1

,

∂2

∂s2
G(t, s) =

(
a′(s) + a2(s)

)
G(t, s)− p (t)

exp
(∫ s

t
b (v) dv

)
)

exp
(∫ T

0
b (v) dv

)
)− 1

.

The following lemma is fundamental to our results.

Lemma 2.3 Suppose (2)-(4) and (5) hold. If x ∈ PT , then x is a solution of equation
(1) if and only if

x (t) = Q (t, x (t− τ (t)))−
∫ t+T

t

p (s)E (t, s)Q (s, x (s− τ (s))) ds

+

∫ t+T

t

G (t, s)
[
f (s, h (x (s)) , g (x (s−τ (s))))+

(
a′(s)+a2(s)

)
Q (s, x (s−τ (s)))

]
ds,

(6)
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where

E (t, s) =
exp

(∫ s

t
b (v) dv

)
exp

(∫ T

0
b (v) dv

)
− 1

. (7)

Proof. Let x ∈ PT be a solution of (1). From Lemma 2.2, we have

x (t) =

∫ t+T

t

G (t, s)

[
∂2

∂s2
Q (s, x (s− τ (s))) + f (s, h (x (s)) , g (x (s− τ (s))))

]
ds. (8)

Using the integration by parts, we have

∫ t+T

t

G (t, s)
∂2

∂s2
Q (s, x (s− τ (s))) ds

=

[
G(t, s)

∂

∂s
Q(s, x(s− τ(s)))

]t+T

t

= −
∫ t+T

t

(
∂

∂s
G(t, s)

)(
∂

∂s
Q(s, x(s− τ(s)))

)
ds.

But

[
G(t, s)

∂

∂s
Q(s, x(s− τ(s)))

]t+T

t

= 0.

So

∫ t+T

t

G(t, s)
∂2

∂s2
Q(s, x(s− τ(s)))ds = −

∫ t+T

t

(
∂

∂s
G(t, s)

)(
∂

∂s
Q(s, x(s− τ(s)))

)
ds.

A second integration by parts gives

∫ t+T

t

G(t, s)
∂2

∂s2
Q(s, x(s− τ(s)))ds

=

[
−Q(s, x(s− τ(s)))

(
∂

∂s
G(t, s)

)]t+T

t

+

∫ t+T

t

Q(s, x(s− τ(s)))
∂2

∂s2
G(t, s)ds.
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Since[
−Q(s, x(s− τ(s)))

(
∂

∂s
G(t, s)

)]t+T

t

=

−Q(s, x(s− τ(s)))

a(s)G(t, s)−
exp

(∫ s

t
b (v) dv

)
exp

(∫ T

0
b (v) dv

)
− 1

t+T

t

= −Q(t+ T, x(t+ T − τ(t+ T )))

a(t+ T )G(t, t+ T )−
exp

(∫ t+T

t
b (v) dv

)
exp

(∫ T

0
b (v) dv

)
− 1


+Q(t, x(t− τ(t)))

a(t)G(t, t)−
exp

(∫ t

t
b (v) dv

)
exp

(∫ T

0
b (v) dv

)
− 1


= −Q(t, x(t− τ(t)))

a(t)G(t, t)−
exp

(∫ T

0
b (v) dv

)
exp

(∫ T

0
b (v) dv

)
− 1


+Q(t, x(t− τ(t)))

a(t)G(t, t)− 1

exp
(∫ T

0
b (v) dv

)
− 1


= Q(t, x(t− τ(t))),

and∫ t+T

t

(
∂2

∂s2
G(t, s)

)
Q(s, x(s− τ(s)))ds

=

∫ t+T

t

{(
a′(s) + a2(s)

)
Q(s, x(s− τ(s)))G(t, s)− p (s)E (t, s)Q(s, x(s− τ(s)))

}
ds,

we obtain∫ t+T

t

G(t, s)
∂2

∂s2
Q(s, x(s− τ(s)))ds

= Q(t, x(t− τ(t)))

+

∫ t+T

t

{(
a′(s) + a2(s)

)
Q(s, x(s− τ(s)))G(t, s)− p (s)E (t, s)Q(s, x(s− τ(s)))

}
ds,

(9)

where E is given by (7). Then substituting (9) in (8) completes the proof.

Lemma 2.4 ( [11]) Let A =
∫ T

0
p (u) du, B = T 2 exp

(
1

T

∫ T

0
ln (q (u)) du

)
. If

A2 ≥ 4B, (10)
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then we have

min

{∫ T

0

a (u) du,

∫ T

0

b (u) du

}
≥ 1

2

(
A−

√
A2 − 4B

)
:= l,

max

{∫ T

0

a (u) du,

∫ T

0

b (u) du

}
≤ 1

2

(
A+

√
A2 − 4B

)
:= m.

Corollary 2.2 ( [11]) Functions G and E satisfy

T

(em − 1)
2 ≤ G (t, s) ≤

T exp
(∫ T

0
p (u) du

)
(el − 1)

2 , E (t, s) ≤ em

el − 1
.

Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables us
to prove the existence of positive periodic solutions to (1). For its proof we refer the
reader to [10].

Theorem 2.1 (Krasnoselskii) Let D be a closed convex nonempty subset of a Ba-
nach space (B, ‖.‖) . Suppose that A and B map D into B such that

(i) x, y ∈ D, implies Ax+ By ∈ D,
(ii) A is compact and continuous,
(iii) B is a contraction mapping.

Then there exists z ∈ D with z = Az + Bz.

3 Existence of Positive Periodic Solutions

To apply Theorem 2.1, we need to define a Banach space B, a closed convex subset D of
B and construct two mappings, one is a contraction and the other is compact. So, we
let (B, ‖.‖) = (PT , ‖.‖) and D = {ϕ ∈ B : K ≤ ϕ ≤ L}, where K is non-negative constant
and L is positive constant. We express equation (6) as

ϕ (t) = (Bϕ) (t) + (Aϕ) (t) := (Hϕ) (t) ,

where A,B : D→ B are defined by

(Aϕ) (t)

=

∫ t+T

t

G (t, s)
[
f (s, h (ϕ (s)) , g (ϕ (s− τ (s)))) +

(
a′(s) + a2(s)

)
Q (s, ϕ (s− τ (s)))

]
ds,

(11)

and

(Bϕ) (t) = Q (t, ϕ (t− τ (t)))−
∫ t+T

t

p (s)E (t, s)Q (s, ϕ (s− τ (s))) ds. (12)

To simplify notations, we introduce the following constants

α =
T exp

(∫ T

0
p (u) du

)
(el − 1)

2 , β =
em

el − 1
, γ =

T

(em − 1)
2 ,

θ = max
t∈[0,T ]

{b (t)} , µ = min
t∈[0,T ]

{p (t)} , λ = max
t∈[0,T ]

{p (t)} . (13)
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In this section we obtain the existence of a positive periodic solution of (1) by considering
the two cases: Q (t, x) ≥ 0 and Q (t, x) ≤ 0 for all t ∈ R, x ∈ D. We assume that function
Q (t, x) is locally Lipschitz continuous in x. That is, there exists a positive constant k
such that

|Q (t, x)−Q (t, y)| ≤ k ‖x− y‖ , for all t ∈ [0, T ] , x ∈ D. (14)

In the case Q (t, x) ≥ 0, we assume that there exist a non-negative constant k1 and
positive constants k2, σ such that

E (t, s) > σ, for all (t, s) ∈ [0, T ]× [0, T ] , (15)

k1x ≤ Q (t, x) ≤ k2x, for all t ∈ [0, T ] , x ∈ D, (16)

k2 < 1, (17)

and for all s ∈ [0, T ] , x, y ∈ D

(1−k1)K+λβk2TL

γT
≤ f (s, h (x) , g (y))+

(
a′(s)+a2(s)

)
Q (s, y) ≤ (1−k2)L+µσk1TK

αT
.

(18)

Lemma 3.1 Suppose that the conditions (2)-(5), (10) and (15)-(18) hold. Then
A : D→ B is compact.

Proof. Let A be defined by (11). Obviously, Aϕ is continuous and it is easy to show
that (Aϕ) (t+ T ) = (Aϕ) (t). For t ∈ [0, T ] and for ϕ ∈ D, we have

|(Aϕ) (t)| ≤

∣∣∣∣∣
∫ t+T

t

G (t, s) [f (s, h (ϕ (s)) , g (ϕ (s− τ (s))))− a (s)Q (s, ϕ (s− τ (s)))] ds

∣∣∣∣∣
≤ αT (1− k2)L+ µσk1TK

αT
= (1− k2)L+ µσk1TK.

Thus from the estimation of |(Aϕ) (t)| we have

‖Aϕ‖ ≤ (1− k2)L+ µσk1TK.

This shows that A (D) is uniformly bounded.
Let us that A (D) is equicontinuous. Let ϕn ∈ D, where n is a positive integer. Next

we calculate d
dt (Aϕn) (t) and show that it is uniformly bounded. By making use of (2),

(3) and (4) we obtain by taking the derivative in (11) that

d

dt
(Aϕn) (t) =

∫ t+T

t

−b (t)G (t, s) +
exp

(∫ s

t
a (v) dv

)
exp

(∫ T

0
a (v) dv

)
− 1


× [f (s, h (ϕn (s)) , g (ϕn (s− τ (s))))− a (s)Q (s, ϕn (s− τ (s)))] ds.

Consequently, by invoking (13) and (18), we obtain∣∣∣∣ ddt (Aϕn) (t)

∣∣∣∣ ≤ T (θα+ β)
(1− k2)L+ µσk1TK

αT
≤ D,

for some positive constant D. Hence the sequence (Aϕn) is equicontinuous. The Ascoli-
Arzela theorem implies that a subsequence (Aϕnk

) of (Aϕn) converges uniformly to
a continuous T -periodic function. Thus A is continuous and A (D) is contained in a
compact subset of B.
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Lemma 3.2 Suppose that (14) holds. If B is given by (12) with

k (1 + λβT ) < 1, (19)

then B : D→ B is a contraction.

Proof. Let B be defined by (12). Obviously, Bϕ is continuous and it is easy to show
that (Bϕ) (t+ T ) = (Bϕ) (t). So, for any ϕ,ψ ∈ D, we have

|(Bϕ) (t)− (Bψ) (t)|
≤ |Q (t, ϕ (t− τ (t)))−Q (t, ψ (t− τ (t)))|

+

∫ t+T

t

p (s)E (t, s) |Q (s, ϕ (s− τ (s)))−Q (s, ψ (s− τ (s)))| ds

≤ k (1 + λβT ) ‖ϕ− ψ‖ .

Then ‖Bϕ− Bψ‖ ≤ k (1 + λβT ) ‖ϕ− ψ‖. Thus B : D→ B is a contraction by (19).

Theorem 3.1 Suppose (2)-(5), (10) and (14)-(19) hold. Then equation (1) has a
positive T -periodic solution x in the subset D.

Proof. By Lemma 3.1, the operator A : D → B is compact and continuous. Also,
from Lemma 3.2, the operator B : D→ B is a contraction. Moreover, if ϕ,ψ ∈ D, we see
that

(Bψ) (t) + (Aϕ) (t)

= Q (t, ψ (t− τ (t)))−
∫ t+T

t

p (s)E (t, s)Q (s, ψ (s− τ (s))) ds

+

∫ t+T

t

G (t, s)
[
f (s, h (ϕ (s)) , g (ϕ (s− τ (s)))) +

(
a′(s) + a2(s)

)
Q (s, ϕ (s− τ (s)))

]
ds

≤ k2L− µσ
∫ t+T

t

Q (s, ψ (s− τ (s))) ds

+ α

∫ t+T

t

[
f (s, h (ϕ (s)) , g (ϕ (s− τ (s)))) +

(
a′(s) + a2(s)

)
Q (s, ϕ (s− τ (s)))

]
ds

≤ k2L− µσk1TK + αT
(1− k2)L+ µσk1TK

αT
= L,

and

(Bψ) (t) + (Aϕ) (t)

= Q (t, ψ (t− τ (t)))−
∫ t+T

t

p (s)E (t, s)Q (s, ψ (s− τ (s))) ds

+

∫ t+T

t

G (t, s) [f (s, h (ϕ (s)) , g (ϕ (s− τ (s))))− a (s)Q (s, ϕ (s− τ (s)))] ds

≥ k1K − λβ
∫ t+T

t

Q (s, ψ (s− τ (s))) ds

+ γ

∫ t+T

t

[f (s, h (ϕ (s)) , g (ϕ (s− τ (s))))− a (s)Q (s, ϕ (s− τ (s)))] ds

≥ k1K − λβk2TL+ γT
(1− k1)K + λβk2TL

γT
= K.
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Clearly, all the hypotheses of the Krasnoselskii theorem are satisfied. Thus there exists
a fixed point x ∈ D such that x = Ax+ Bx. By Lemma 2.3 this fixed point is a solution
of (1) and the proof is complete.

In the case Q (t, x) ≤ 0, we substitute conditions (16)-(18) with the following condi-
tions respectively. We assume that there exist a negative constant k3 and a non-positive
constant k4 such that

k3x ≤ Q (t, x) ≤ k4x, for all t ∈ [0, T ] , x ∈ D, (20)

− k3λβT < 1, (21)

and for all s ∈ [0, T ] , x, y ∈ D

K (1+k4µσT )−k3L
γT

≤ f (s, h (x) , g (y))+
(
a′(s)+a2(s)

)
Q (s, y) ≤ L (1+k3λβT )−k4K

αT
.

(22)

Theorem 3.2 Suppose (2)-(5), (10), (14), (15) and (19)-(22) hold. Then equation
(1) has a positive T -periodic solution x in the subset D.

The proof follows along the lines of Theorem 3.2, and hence we omit it.
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