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1 Introduction

Hopfield neural networks and their generalizations are important models of biological
processes that are widely used now for solution of the applied problems in different areas
of the modern technologies such as the optoelectronics, image reconstruction, speech
synthesis, computer vision [1]– [6], and in the solution of different optimization problems,
see also [7, 8].

Neural networks with impulses, both continuous and discrete ones, are widely used
in the modeling of artificial intelligence, in robotics and electronics, and are intensively
studied lately [9]– [13], with the most results obtained for neural networks with continuous
time. Therefore, it makes sense to consider impulsive neural systems on time scale, which
allows a simultaneous description of the system dynamics both in the discrete and the
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continuous case. In addition, this approach allows us to obtain new results for discrete
neural systems, similar to those already known for the continuous case.

An extensive literature is devoted to the differential systems with impulsive action
on general time scale [14]– [16] while the neural networks with pulses on the time scale
are not well studied [17].

The purpose of this paper is to obtain the sufficient conditions of the global expo-
nential stability of the equilibrium state for the impulsive neural Hopfield network on
time scale. The study was carried out within the framework of the generalized second
Lyapunov method on the basis of the scalar non-autonomous function on time scale.

2 Main Definitions and Necessary Theorems

A time scale T is an arbitrary nonempty closed subset of the set of real numbers R.
Fundamental notions and theorems of mathematical analysis on time scale, as well as the
definitions of the derivative and the integral, the rules of differentiation and integration,
the definitions and properties of rd-contiguous function, regressive function, the jump
operator σ(t), the graininess of the time scale µ(t) and the exponential function are
explicity given in [18]– [20].

We need the following properties of the ∆-derivative.

Theorem 2.1 Assume that f, g are ∆-differentiable at t ∈ Tk. Then the following
assertions are true:

(1) the product fg is ∆-differentiable at t ∈ Tk and

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t));

(2) f(σ(t)) = f(t) + µ(t)f∆(t);

(3) if f∆(t) ≥ 0 then f is non-decreasing on Tk.

We denote by ep(t, t0) an exponential function on time scale. Further the following
properties of an exponential function will be used.

Theorem 2.2 If p ∈ R+, λ > 0, then for all t, t0 ∈ T and t ≥ t0

(1) ep(t0, t0) = 1, ep(t, t0) > 0;

(2) ep(t, t0) = 1/ep(t0, t);

(3) e∆
p (t, t0) = p(t)ep(t, t0);

(4) ep(σ(t), t0) = (1 + µ(t)p(t))ep(t, t0);

(5) 1
ep(t,t0) = e	p(t, t0), where 	p ∈ R+, (	p)(t) = − p(t)

1+µ(t)p(t) ;

(6) e	λ(t, t0) ≤ 1, limt→+∞ e	λ(t, t0) = 0 (see [21]);

(8) if T = R, that e	λ(t, t0) = e−λ(t−t0);

(9) if T = Z, that e	λ(t, t0) = (1 + λ)−(t−t0).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 17 (3) (2017) 315–326 317

Here R+ is the set of all rd-continuous and positively regressive functions f : T→ R.

We denote by ‖x‖ = (
∑n
i=1 x

2
i )

1/2 an Euclidean vector norm of the vector x ∈ Rn,
‖A‖ = (λM (ATA))1/2 denotes a matrix norm of the matrix A = {aij} ∈ Rn×n, λM (A)
is a maximal eigenvalue of the matrix A, [a, b]T = {t ∈ T : a ≤ t ≤ b} for a, b ∈ T, the
intervals [a, b)T, (a, b]T, [a,+∞)T are defined similarly.

Further we shall need the following result.

Lemma 2.1 Let C̃ = C̃[a, b]T be a set of all continuous on [a, b]T functions

f : [a, b]T → Rn, p > 0 and ‖ · ‖∼ be a norm defined on C̃ by the formula

‖f‖∼ = sup
t∈[a,b]T

{p−1 e	p(t, a)‖f(t)‖}.

Then
(
C̃, ‖ · ‖∼

)
is a Banach space.

Proof. Let ‖ · ‖1 be a norm given on the set of C̃ by the formula ‖f‖1 =
supt∈[a,b]T ‖f(t)‖. We show that the norms ‖ · ‖∼ and ‖ · ‖1 are equivalent. For

all f ∈ C̃ and t ∈ [a, b]T we have p−1e	p(t, a)‖f(t)‖ ≤ p−1 ‖f(t)‖ ≤ p−1 ‖f‖1
or ‖f‖∼ ≤ p−1 ‖f‖1. Since the function ep(t, a) is continuous on [a, b]T, there ex-
ists a constant E > 0 such that ep(t, a) ≤ E for all t ∈ [a, b]T, whence for any

f ∈ C̃ we have ‖f(t)‖ = p ep(t, a)p−1e	p(t, a)‖f‖ ≤ p Ep−1e	p(t, a)‖f(t)‖ ≤ p E‖f‖∼ or
‖f‖1 ≤ p E‖f‖∼. Thus, the norms ‖ · ‖∼ and ‖ · ‖1 are equivalent.

As is known from the mathematical analysis, since [a, b]T is a compact set, the space(
C̃, ‖·‖1

)
is a Banach space. Consequently,

(
C̃, ‖·‖∼

)
is also a Banach space. Lemma 2.1

is proved.

3 Impulsive Neural Network on Time Scale

Let T be an arbitrary time scale, supT = +∞, the sequence {tk}+∞k=1 ⊂ T so that
t1 < t2 < ..., tk → +∞ and k → +∞ and points tk are dense.

We consider the impulsive neural system

x∆(t) = −Bx(t) + Ts(x(t)) + u, t ∈ Tτ , t 6= tk, (1)

x(t+k ) = x(tk) + Ik(x(tk)), k ∈ N, (2)

with the initial condition

x(t0) = x0, t0 ∈ Tτ , x0 ∈ Rn. (3)

Here Tτ = [τ,+∞)T, τ ∈ T, τ < t1, x = (x1, x2, ..., xn)T ∈ Rn, xi is the activation of
the i-th neuron, T = {tij} ∈ Rn×n, the components tij describe the interaction between
the ith and jth neurons, s : Rn → Rn, s(x) = (s1(x1), s2(x2), . . . , sn(xn))T, the function
si describes the response of the ith neuron, B ∈ Rn×n, B = diag {b1, b2, . . . , bn}, bi > 0,
i = 1, 2, . . . , n, u ∈ Rn is a constant external input vector, the function Ik : Rn → Rn
describes impulsive perturbations of the neural system.

By the solution of the impulsive system (1), (2) we mean the function x(t), which
for t 6= tk satisfies the equation (1) and for t = tk satisfies the equation (2), where
x(t+k ) = limt→tk+0, t∈T x(t), x(tk) = x(t−k ) = limt→tk−0, t∈T x(t) are one-sided right-
hand and left-hand limits of the function x(t), respectively.

Concerning the system (1) and the time scale T, we introduce the following assump-
tions.
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H1. There are positive constants li > 0, i = 1, 2, . . . , n such that |si(u) − si(v)| ≤
li|u− v| for all u, v ∈ R.

H2. There is a constant µ∗ > 0 such that µ(t) ≤ µ∗ for all t ∈ Tτ .

Existence conditions for a unique equilibrium state of the system (1) without impulses
be given by the following theorem, the proof of which is similar to the proof of Theorem
1 from [22].

Theorem 3.1 Let the assumption H1 be valid and there exist a constant di > 0,
i = 1, 2, . . . , n, such that the inequalities

bi −
1

2

n∑
j=1

(
lj |tij |+

dj
di
li|tji|

)
> 0, i = 1, 2, . . . , n, (4)

are true. Then there is a unique equilibrium state of the system (1).

The equilibrium state of the system (1), (2) will be referred to as the constant function
x(t) ≡ x∗, which is the solution of the system (1), (2). Using Theorem 3.1 it is easy to
get the following result.

Theorem 3.2 Let the assumption H1 and inequalities (4) be valid and let x(t) ≡ x∗
be an equilibrium state of the system (1). If Ik(x∗) = 0 for all k ∈ N, then x(t) ≡ x∗

is a unique equilibrium state of the system (1), (2).

We prove the following theorem on the existence and uniqueness of the solution of
impulsive neural system.

Theorem 3.3 Let the assumption H1 be valid, then there exists a unique solution of
problem (1) – (3) on [t0,+∞)T for all initial data (t0, x0) ∈ Tτ × Rn.

Proof. For an arbitrary t0 ∈ Tτ two cases are possible: t0 ∈ [τ, t1)T or t0 ∈
[tk−1, tk)T for some k = 2, 3, . . . . We first choose t0 ∈ [τ, t1)T and we denote L =
max{l1, l2, . . . , ln}, γ = ‖B‖+ L‖T‖, p = γ + 1.

Let C̃1 = C̃1[t0, t1] be the space of continuous functions f : [t0, t1]T → Rn with the
norm

‖f‖∼1 = sup
t∈[t0, t1]T

{p−1 e	p(t, t0)‖f(t)‖}.

Consider the operator F1 : C̃1 → C̃1 acting according to the formula

F1(x)(t) = x01 +

∫ t

t0

[−Bx(λ) + Ts(x(λ)) + u]∆λ,

where x01 = x0. The function −Bx(t) + Ts(x(t)) + u is continuous on the segment
[t0, t1]T, hence it is rd-continuous on [t0, t1]T. In accordance with Theorem 1.74 from [18]
the function F1(x)(t) is differentiable on [t0, t1]T (and, as a consequence, it is continuous
on [t0, t1]T ) and

[F1(x)(t)]∆ = −Bx(t) + Ts(x(t)) + u, t ∈ [t0, t1]T.
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We verify the fulfillment of the conditions of the contraction map principle. For any
x, y ∈ C̃1 for all t ∈ [t0, t1]T we obtain the inequalities

‖F1(x)(t)− F1(y)(t)‖ = ‖
∫ t

t0

[−B(x(λ)− y(λ)) + Ts(x(λ)− y(λ))]∆λ‖ ≤

≤ ‖B‖
∫ t

t0

‖x(λ)− y(λ)‖∆λ+ L‖T‖
∫ t

t0

‖x(λ)− y(λ)‖∆λ =

= γ

∫ t

t0

‖x(λ)− y(λ)‖∆λ = γ

∫ t

t0

p ep(λ, t0)p−1 e	p(λ, t0)‖x(λ)− y(λ)‖∆λ ≤

≤ γ sup
λ∈[t0, t1]T

{p−1 e	p(λ, t0)‖x(λ)− y(λ)‖}
∫ t

t0

p ep(λ, t0)∆λ =

= γ‖x− y‖∼1 (ep(t, t0)− 1) ≤ γ ep(t, t0)‖x− y‖∼1 ,

whence we have

1

p
e	p(t, t0)‖F1(x)(t)− F1(y)(t)‖ ≤ γ

p
‖x− y‖∼1 ,

sup
t∈[t0, t1]T

{p−1 e	p(t, t0)‖F1(x)(t)− F1(y)(t)‖} ≤ γ

p
‖x− y‖∼1 ,

‖F1(x)− F1(y)‖∼1 ≤
γ

γ + 1
‖x− y‖∼1 .

Thus, the map F1 is a contraction and consequently, there exists a unique fixed point
x̃1 ∈ C̃1 of the operator F1 for which we have

[x̃1(t)]∆ = −Bx̃1(t) + Ts(x̃1(t)) + u, t ∈ [t0, t1]T,

x̃1(t0) = x01.

Now let C̃2 = C̃2[t1, t2] be a space of continuous functions f : [t1, t2]T → Rn with the
norm

‖f‖∼2 = sup
t∈[t1, t2]T

{p−1 e	p(t, t1)‖f(t)‖}.

Consider the operator F2 : C̃2 → C̃2 acting according to the formula

F2(x)(t) = x02 +

∫ t

t1

[−Bx(λ) + Ts(x(λ)) + u]∆λ,

where x02 = x̃1(t1) + I1(x̃1(t1)). As above, there exists a unique fixed point x̃2 ∈ C̃2 of
the operator F2 for which we obtain that

[x̃2(t)]∆ = −Bx̃2(t) + Ts(x̃2(t)) + u, t ∈ [t1, t2]T,

x̃2(t1) = x02.

Similarly, at the kth step, let C̃k = C̃k[tk−1, tk] be a space of continuous functions
f : [tk−1, tk]T → Rn with the norm

‖f‖∼k = sup
t∈[tk−1, tk]T

{p−1 e	p(t, tk−1)‖f(t)‖},
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and Fk : C̃k → C̃k is the operator acting according to the formula

Fk(x)(t) = x0k +

∫ t

tk−1

[−Bx(λ) + Ts(x(λ)) + u]∆λ,

where x0k = x̃k−1(tk−1) + Ik−1(x̃k−1(tk−1)). As above, there exists a unique fixed point

x̃k ∈ C̃k of the operator Fk and

[x̃k(t)]∆ = −Bx̃k(t) + Ts(x̃k(t)) + u, t ∈ [tk−1, tk]T,

x̃k(t1) = x0k.

We now consider the function

x(t) =

{
x̃1(t), t ∈ [τ, t1]T,

x̃k(t), t ∈ (tk−1, tk]T, k = 2, 3, . . . .
(5)

It is clear that the function (5) is a solution of the Cauchy problem (1)-(3) on [t0,+∞)T
and moreover, it is unique.

The case t0 ∈ [tk−1, tk)T for some k = 2, 3, . . . is investigated similarly. Theorem 3.3
is proved.

4 Stability of the Neural Network

Let x(t) ≡ x∗ be an isolated equilibrium state of the system (1), (2).

Definition 4.1 The equilibrium state x(t) ≡ x∗ of the system (1), (2) is called
globally uniformly exponentially stable, if there exist constants p > 0, α > 0 and
N = N (x0) > 0 such that ‖x(t; t0, x0)− x∗‖ < N (e	p(t, t0))α for all x0 ∈ Rn, t0 ∈ Tτ
and t ∈ [t0,+∞)T.

We make the change of variables y(t) = x(t) − x∗ and rewrite the initial problem
(1)–(3) in the form

y∆(t) = −By(t) + Tg(y(t)), t ∈ Tτ , t 6= tk, (6)

y(t+k ) = y(tk) + Jk(y(tk)), k ∈ N, (7)

y(t0; t0, y0) = y0, t0 ∈ Tτ , y0 ∈ Rn,

where

y ∈ Rn, g(y) = (g1(y1), g2(y2), . . . , gn(yn))T, Jk(y) = (Jk1(y), Jk2(y), . . . , Jkn(y))T,

g(y) = s(y + x∗)− s(x∗), Jk(y) = Ik(y + x∗)− Ik(x∗).

It is clear that the behavior of the solution x(t) of the system (1), (2) in the neigh-
borhood of the equilibrium state x∗ is equivalent to the behavior of solution y(t) of the
system (6), (7) in the neighborhood of zero.

If for the system (1) the assumption H1 is valid, then for the system (6), (7) the
following statements are true.

G1. There are positive constants li > 0 such that |gi(r) − gi(v)| ≤ li| r − v|, for all
r, v ∈ R, i = 1, 2, . . . , n.
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G2. g(0) = 0, Jk(0) = 0, k ∈ N.

Theorem 4.1 We assume that assumptions G1, G2 and H2 are valid. Let for all
y ∈ Rn the inequalities

J2
ki(y) + 2yiJki(y) ≤ 0, k ∈ N, i = 1, 2, . . . , n,

are true and there exist constants di > 0, i = 1, 2, . . . , n such that the inequalities

bi −
1

2

n∑
j=1

(lj |tij |+
dj
di
li|tji|)−

1

2
µ∗(n+ 1)(b2i + l2i

n∑
j=1

t2ji) > 0, i = 1, 2, . . . , n, (8)

are valid. Then the equilibrium state y(t) ≡ 0 of the system (6), (7) is globally uniformly
exponentially stable.

Proof. We denote

ξi =

n∑
j=1

(dilj |tij |+ dj li|tji|),

νi = (n+ 1)(dib
2
i + ηi),

ηi = dil
2
i

n∑
j=1

t2ji, i = 1, 2, . . . , n,

and write the inequalities (8) in the form

2dibi − ξi − µ∗νi > 0, i = 1, 2, . . . , n.

Now choose a constant

0 < p < min
i=1,2,...,n

(2dibi − ξi − µ∗νi)d−1
i

and apply the Lyapunov function to the proof of the theorem

v(t, y) =

n∑
i=1

diy
2
i (t)ep(t, t0), di > 0, i = 1, 2, . . . , n.

Let t 6= tk. For convenience, in what follows we shall write yi, σ, µi and g(yi) instead
of yi(t), σ(t), µi(t) and g(yi(t)) respectively. Since

(y2
i )∆ = y∆

i yi + y∆
i yi(σ) = 2y∆

i yi + µ(y∆
i )2,

for the derivative of the function y2
i along the solutions of the system (6) at the point t

we have the estimate

(y2
i )∆|(6) = 2yi

(
− biyi +

n∑
j=1

tijgj(yj)
)

+ µ
(
− biyi +

n∑
j=1

tijgj(yj)
)2 ≤

≤ −2biy
2
i + 2

n∑
j=1

|tij ||yi||gj(yj)|+ µ(n+ 1)
(
b2i y

2
i +

n∑
j=1

t2ijg
2
j (yj)

)
≤

≤ −2biy
2
i + 2

n∑
j=1

lj |tij ||yi||yj |+ µ(n+ 1)
(
b2i y

2
i +

n∑
j=1

l2j t
2
ijy

2
j

)
=

≤ (−2biy
2
i + µ(n+ 1)b2i )y

2
i + 2

n∑
j=1

lj |tij ||yi||yj |+ µ(n+ 1)

n∑
j=1

l2j t
2
ijy

2
j .
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Further, using the formula

[y2
i ep(t, t0)]∆ =

[
py2
i + (y∆)2(1 + µp)

]
ep(t, t0),

for the derivative of the function y2
i ep(t, t0) along the solutions of system (6) we obtain

the estimates

[y2
i ep(t, t0)]∆|(6) ≤

[
py2
i + (1 + µp)

{
(−2biy

2
i + µ(n+ 1)b2i )y

2
i+

+ 2

n∑
j=1

lj |tij ||yi||yj |+ µ(n+ 1)

n∑
j=1

l2j t
2
ijy

2
j

}]
ep(t, t0) =

=
[{
p+ (1 + µp)(−2bi + µ(n+ 1)b2i )

}
y2
i+

+ 2(1 + µp)
n∑
j=1

lj |tij ||yi||yj |+ µ(n+ 1)(1 + µp)

n∑
j=1

l2j t
2
ijy

2
j

]
ep(t, t0).

Now we can estimate the derivative of the function v(t, y(t)) along solutions (6)

v∆(t, y(t))|(6) =

n∑
i=1

di[y
2
i ep(t, t0)]∆|(6) ≤

≤
n∑
i=1

diep(t, t0)
[{
p+ (1 + µp)(−2bi + µ(n+ 1)b2i )

}
y2
i+

+2(1 + µp)

n∑
j=1

lj |tij ||yi||yj |+ µ(n+ 1)(1 + µp)

n∑
j=1

l2j t
2
ijy

2
j

]
=

= ep(t, t0)
[ n∑
i=1

di
{
p+ (1 + µp)(−2bi + µ(n+ 1)b2i )

}
y2
i+

+(1 + µp)

n∑
i,j=1

2dilj |tij ||yi||yj |+ µ(n+ 1)(1 + µp)

n∑
i,j=1

dil
2
j t

2
ijy

2
j

]
. (9)

Let us consider separately the last two double sums

n∑
i,j=1

2dilj |tij ||yi||yj | ≤
n∑

i,j=1

2dilj |tij |
y2
i + y2

j

2
=

n∑
i,j=1

(
dilj |tij |y2

i + dilj |tij |y2
j

)
=

=

n∑
i,j=1

dilj |tij |y2
i +

n∑
i,j=1

dilj |tij |y2
j =

n∑
i,j=1

dilj |tij |y2
i +

n∑
i,j=1

dj li|tji|y2
i =

=

n∑
i=1

[ n∑
j=1

(dilj |tij |+ dj li|tji|)
]
y2
i =

n∑
i=1

ξiy
2
i ,

n∑
i,j=1

dil
2
j t

2
ijy

2
j =

n∑
i,j=1

dj l
2
i t

2
jiy

2
i =

n∑
i=1

l2i
( n∑
j=1

djt
2
ji

)
y2
i =

n∑
i=1

ηiy
2
i
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and continue the estimate (9)

v∆(t, y(t))|(6) ≤ ep(t, t0)
[ n∑
i=1

di
{
p+ (1 + µp)(−2bi + µ(n+ 1)b2i )

}
y2
i+

+(1 + µp)

n∑
i=1

ξiy
2
i + µ(n+ 1)(1 + µp)

n∑
i=1

ηiy
2
i

]
=

= ep(t, t0)

n∑
i=1

[
di
{
p+ (1 + µp)(−2bi + µ(n+ 1)b2i )

}
+ (1 + µp)(ξi + µ(n+ 1)ηi)

]
y2
i =

= ep(t, t0)

n∑
i=1

[
dip+ (1 + µp){di(−2bi + µ(n+ 1)b2i ) + ξi + µ(n+ 1)ηi}

]
y2
i =

= ep(t, t0)

n∑
i=1

[
dip+ (1 + µp){−2dibi + µ(n+ 1)dib

2
i + ξi + µ(n+ 1)ηi}

]
y2
i =

= ep(t, t0)

n∑
i=1

[
dip+ (1 + µp){−2dibi + ξi + µ(n+ 1)(dib

2
i + ηi)}

]
y2
i =

= ep(t, t0)

n∑
i=1

[
dip+ (1 + µp){−2dibi + ξi + µνi}

]
y2
i .

(10)

For the quadratic trinomial ψi(z) = νiz
2 − (2dibi − ξi)z + di, taking into account the

fact that νi > 0 and the discriminant

D = (2dibi − ξi)2 − 4νidi =

= 4d2
i b

2
i − 4dibiξi + ξ2

i − 4di(n+ 1)(dib
2
i + ηi) =

= 4d2
i b

2
i − 4dibiξi + ξ2

i − 4d2
i (n+ 1)b2i − 4di(n+ 1)ηi =

= −4nd2
i b

2
i − ξ2

i + ξ2
i − 4dibiξi + ξ2

i − 4di(n+ 1)ηi =

= −4nd2
i b

2
i − ξ2

i − 2ξi(2dibi − ξi)− 4di(n+ 1)ηi < 0,

we have that ψi(z) > 0 for all z ∈ R. Thus, for all i = 1, 2, . . . , n, t 6= tk

di − µ(2dibi − ξi − µνi) = νiµ
2 − (2dibi − ξi)µ+ di > 0

and, beside,

2dibi − ξi − µνi > 2dibi − ξi − µ∗νi > 0.

Therefore, by the choice of the constant p the inequalities

0 < p <
2dibi − ξi − µ∗νi

di
≤ 2dibi − ξi − µνi

di
≤ 2dibi − ξi − µνi
di − µ(2dibi − ξi − µνi)

,

are true, whence we obtain

p(di − µ(2dibi − ξi − µνi)) ≤ 2dibi − ξi − µνi,
dip+ (1 + µp)(−2dibi + ξi + µνi) < 0.
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Continuing the estimate (10), finally, for all t 6= tk, we will have

v∆(t, y(t))|(6) ≤ 0.

If t ∈ [t0, t1]T, then by Theorem 2.1 and definition of y(t+k ) we have

v(t, y(t)) ≤ v(t0, y0). (11)

Similarly, for all t ∈ (tk, tk+1]T, k ∈ N, the inequality

v(t, y(t)) ≤ v(t+k , y(t+k ))

is true. Since

v(t+k , y(t+k ))− v(tk, y(tk)) =

n∑
i=1

di(y
2
i (t+k )− y2

i (tk))ep(tk, t0) =

=

n∑
i=1

di

[
2y(tk)Jki(y(tk)) + J2

ki(y(tk))
]
ep(tk, t0) ≤ 0,

we have

v(t, y(t)) ≤ v(tk, y(tk)), t ∈ (tk, tk+1]T, k ∈ N.

In view of (11), the last estimate leads to the inequality

v(t, y(t)) ≤ v(t0, y0) for all t ∈ [t0,+∞]T,

from which it is easy to obtain the following estimate

‖y(t)‖ ≤ m‖y0‖(e	p(t, t0))
1
2 ,

where m = (maxi=1,2,...,n{di}/mini=1,2,...,n{di})1/2, for all y0 ∈ Rn, t0 ∈ Tτ and
t ∈ [t0,+∞)T. Theorem 4.1 is proved.

We now consider the system (1), (2) in the particular case, when the impulsive action
is given by a linear function.

Corollary 4.1 Suppose that the assumptions H1, H2 are satisfied and there exist con-
stants di > 0, i = 1, 2, . . . , n such that the following inequalities hold

bi −
1

2

n∑
j=1

(lj |tij |+
dj
di
li|tji|)−

1

2
µ∗(n+ 1)(b2i + l2i

n∑
j=1

t2ji) > 0, i = 1, 2, . . . , n.

Let x(t) ≡ x∗ be the only equilibrium state of the systems (1), (2) and

Iki(xi(tk)− x∗) = −γik(xi(tk)− x∗), k ∈ N, i = 1, 2, . . . , n,

where 0 < γik ≤ 2. Then the equilibrium state x(t) ≡ x∗ of the system (1), (2) is
globally uniformly exponentially stable.
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5 Example

On the time scale
P1,β = ∪∞j=0

[
j(1 + β), 1 + j(1 + β)

]
we consider a three-component neural network with impulses

x1(t)∆ = −x1(t) + 0, 1s1(x1(t)) + 0, 09s2(x2(t))− 0, 1s3(x3(t))− 2, 09,

x2(t)∆ = −x2(t) + 0, 05s1(x1(t))− 0, 1s2(x2(t)) + 0, 1s3(x3(t)) + 1, 25,

x3(t)∆ = −x3(t)− 0, 1s1(x1(t)) + 0, 05s2(x2(t)) + 0, 06s3(x3(t)) + 0, 96,

t 6= tk,

(12)

x1(t+k ) = x1(tk) + γ(x1(tk)− 2),

x2(t+k ) = x2(tk) + γ(x2(tk) + 1),

x3(t+k ) = x3(tk) + γ(x1(tk) + 1, 5), k ∈ N,
(13)

where x1, x2, x3 ∈ R, s1(r) = s2(r) = s3(r) = 1
2

(
|r+1|−|r−1|

)
, tk = (k−1)(1+β)+0, 5.

Since the inequalities (4) are satisfied with the constants li = di = 1, the state x∗ =
(2;−1;−1, 5)T is the only equilibrium state of the systems (12). In view of the fact that
µ∗ = β, the inequalities (8) take the form

0, 32− 2, 045β > 0,

0, 805− 2, 0412β > 0,

0, 765− 2, 0472β > 0,

from which we find β < 0, 1564. According to Corollary 4.1 we conclude that for β <
0, 1564 the equilibrium x∗ = (2;−1;−1, 5)T of the system (12), (13) is globally uniformly
exponentially stable.

6 Conclusion

In the framework of the approach proposed in the paper [23] sufficient conditions of global
uniform exponential stability are obtained for the equilibrium state of a neural network
with impulses on an arbitrary time scale. The case is considered when the impulse action
is given by a linear function. We note that in [10] similar results are obtained for T = R
under the assumption that the functions si are bounded. Corollary 4.1 of the present
paper for T = R gives sufficient conditions under which such a restriction is absent. In
addition, sufficient conditions for the existence of a unique equilibrium state of a neural
impulsive system on time scale are obtained.
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