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Abstract: An existence result of a solution for a class of nonlinear parabolic systems
is established. The source term is less regular (bounded Radon measure) and no coer-
civity is made in the non-divergentiel lower order term div(c(x, t)|u(x, t)|γ−2u(x, t)).
The main contribution of our work is to prove the existence of a renormalized solu-
tion without the coercivity condition on the nonlinearities, so we used the Gagliardo-
Nirenberg theorem to prove it.

Keywords: Dirichlet problem; parabolic systems; Gagliardo-Nirenberg inequality;
renormalized solutions.

Mathematics Subject Classification (2010): Primary 35K41; Secondary 35K55,
35K65.

1 Introduction

Given a bounded-connected open set Ω of RN (N ≥ 2), with Lipschitz boundary ∂Ω,
QT = Ω × (0, T ) is the generic cylinder of an arbitrary finite hight, T < ∞. We prove
the existence of a renormalized solution for the nonlinear parabolic systems

∂bi(x,ui)
∂t − div(a(x, t, ui,∇ui)− φi(x, t, ui)− Fi) = fi(x, u1, u2) in QT ,

ui(x, t) = 0 on ∂Ω× (0, T ),
bi(x, ui(x, 0)) = bi(x, u0,i(x)) in Ω,

(1)

∗ Corresponding author: mailto:aberqi_ahmed@yahoo.fr
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218 A. ABERQI, J. BENNOUNA AND M. HAMMOUMI

where i = 1, 2. Here the vector field a : Ω× (0, T )× R× RN −→ RN is a Carathéodory

function such that A(ui) = −div
(
a(x, t, ui,∇ui)

)
is a Leray-Lions operator defined on

Lp(0, T ;W 1,p
0 (ν)), φi(x, t, ui) is a Carathéodory function (see assumptions (13)–(14)),

and bi : Ω × R −→ R is a Carathéodory function such that for every x ∈ Ω, bi(x, .)
is a strictly increasing C1-function, the data u0,i is in L1(Ω) such that bi(., u0,i) in
L1(Ω). The data fi : Ω × R × R → R is a Carathéodory function (see assumptions
H4) and Fi ∈ (Lp

′
(ν))N . When problem (1) is investigated, there is a difficulty due to

the fact that the data b1(x, u1
0(x)) and b2(x, u2

0(x)) only belong to L1 and the functions(
a(x, t, ui,∇ui)

)
, φi(x, t, ui) and fi(x, u1, u2) do not belong to (L1

loc(QT ))N in general,

so that proving existence of weak solution seems to be an arduous task, and we cannot
use the Stocks formula in the a priori estimates of the nonlinearity φi(x, t, ui). In order
to overcome this difficulty, we work with the framework of renormalized solutions (see
Definition 3.1). The notion of renormalized solutions was introduced by R.-J. DiPerna
and P.-L. Lions [8] for the study of the Boltzmann equation. It was adapted to the
study of some nonlinear elliptic or parabolic problems in fluid mechanics, see [6]. In
the case where b(x, u) = u, the existence of renormalized solutions for (1) has been
established by R.-Di Nardo [5]. In the case where φ(x; t;u) = 0 and f ∈ L1(QT ),
the existence of renormalized solutions has been established by H. Redwane [13] in the
classical Sobolev space, the existence results are already proved by the authors in the
case where fi(x, u1, u2) is replaced by f−div(g), where f ∈ L1(QT )and g ∈ (Lp

′
(QT ))N .

For the elliptic version of (1) we refer to [10].

One of the models of applications of these operators is the system of Boussinesq:

∂u

∂t
+ (u.∇))u− 2div(µ(θ)ε(u)) +∇p = F (θ) in QT ,

∂b(θ)

∂t
+ u.∇b(θ)−4θ = 2µ(θ)|ε(u)|2 in QT ,

u(t = 0) = u0, b(θ)(t = 0) = b(θ0) on Ω,

u = 0 θ = 0 on ∂Ω× (0, T ).

The first equation is the motion conservation equation, the unknowns are the fields of
displacement u : QT → RN and temperature θ : QT → R. The field ε(u) = 1

2 (∇u+(∇u)t)
is the strain rate tensor.

It is our purpose, in this paper to generalize the result of [2, 5, 13] and we prove the
existence of a renormalized solution of system (1).

The plan of the paper is as follows: In Section 2 we give basic assumptions. In Section
3 we give the definition of a renormalized solution of (1), and we establish (Theorem 3.1)
the existence of such a solution.

2 Preliminaries and Auxiliary Results

We recall here some standard notations, properties and results which will be used
throughout the paper.

Let Ω be a bounded open set of RN and QT = Ω× (0, T ), T is a positive real number.
Let ν(x) be a nonnegative function on Ω such that ν(x) ∈ Lr(Ω), r ≥ 1, ν(x)−1 ∈ Lt(Ω),
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p ≥ 1 + 1/t. We denote by Lp(Ω, ν), or simply Lp(ν) if there is no confusion, p ≥ 1, the
space of measurable functions u on Ω such that

‖u‖Lp(ν) =
(∫

Ω

|u|pν(x)dx
) 1
p

< +∞, (2)

and by W 1,p(ν) the completion of the space C1(Ω) with respect to the norm

‖u‖W 1,p(ν) = ‖u‖Lp(ν) + ‖∇u‖Lp(ν). (3)

Moreover, we denote by W 1,p
0 (ν) the closure of C1

0 (Ω) in W 1,p(ν), provided with the

induced topology defined by the induced norm, and by W−1,p′(ν1−p′), p′ = p
p−1 , its dual

space. W 1,p(ν) and W 1,p
0 (ν) are reflexive Banach spaces if 1 < p <∞, (see [11]).

Denote V = W 1,p
0 (ν), H = L2(ν) and V ∗ = W−1,p′

0 (ν1−p′), with p ≥ 2. The dual

space of X := Lp(0, T ;W 1,p
0 (ν)) denoted X∗ is identified with Lp

′
(0, T ;V ∗). Define

W 1
p (0, T, V,H) = {v ∈ X : v′ ∈ X∗}. Endowed with the norm

‖u‖W 1
p

= ‖u‖X + ‖u′‖X∗ ,

W 1
p (0, T, V,H) is a Banach space. Here u′ stands for the generalized time derivative of

u, that is, ∫ T

0

u′(t)ϕ(t)dt = −
∫ T

0

u(t)ϕ′(t)dt for all ϕ ∈ C∞0 (0, T ).

Lemma 2.1 [14]

1. The evolution triple V ↪→ H ↪→ V ∗ is verified.

2. The imbedding W 1
p (0, T, V,H) ↪→ C(0, T,H) is continuous.

3. The imbedding W 1
p (0, T, V,H) ↪→ Lp(QT , ν) is compact.

Lemma 2.2 [1] Let {vn} be a bounded sequence in Lp(0, T ;V ) such that

∂vn
∂t

= αn + βn in D′(QT )

with {αn} and {βn} being two bounded sequences respectively in X∗ and in L1(QT ). Then
vn → v in Lploc(QT , ν). Furthermore, vn → v strongly in L1(QT ).

From now on, we assume that the following assumptions hold true

ν(x)−1 ∈ Lt(Ω), t ≥ N

p
, 1 +

1

t
< p < N(1 +

1

t
), (4)

ν(x) ∈ Lr(Ω), r >
Nt

pt−N
. (5)

An important tool that we will use here, is the following weighted version of the
Sobolev inequality (see Theorem 3.1 and Corollary 3.5 in [11]).
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Proposition 2.1 [11] Assume that (4) and (5) hold true. Let p̃ denote the number
associated with p defined by

1

p̃
= r′

(1

p
(1 +

1

t
)− 1

N

)
.

Then the imbedding of W 1,p
0 (ν) into Lp̃(ν) is continuous. moreover, there exists a con-

stant C0 > 0 depending on N, p, ν, t, such that

‖u‖Lp̃(ν) ≤ C0‖|∇u|‖Lp(ν),∀u ∈W 1,p
0 (ν). (6)

Using this proposition, we can prove the following interpolation result.

Proposition 2.2 Assume that (4) and (5) hold true. Let v be a function in W 1,p
0 (ν)∩

Ls(Ω) with 2 ≤ p < N and s > r′. Then there exists a positive constant C, depending on
N, p, ν, t and q, such that

‖v‖Lσ(ν) ≤ C‖∇v‖1−θLp(ν)‖v‖
θ
Ls(Ω)

for every θ and σ satisfying

0 ≤ θ ≤ 1, 1 ≤ σ ≤ +∞, 1

σ
= θ + r′(1− θ)

(
(1 +

1

t
)
1

p
− 1

N

)
, r >

Nt

pt−N
.

Proof. For every 1 ≤ σ ≤ p̃, we can write
1

σ
= θ +

1− θ
p̃

for some 0 ≤ θ ≤ 1. then

by the Hölder inequality and (6), one has

‖v‖Lσ(ν) ≤ C0‖|∇v|‖1−θLp(ν)‖v‖
θ
L1(ν) ≤ C0‖|∇v|‖1−θLp(ν)‖ν‖

θ
Ls′ (Ω)

‖v‖θLs(Ω),

which gives the desired result.
As an immediate consequence of the previous result, we get

Corollary 2.1 Let v ∈ Lp((0, T ),W 1,p
0 (ν))∩L∞((0, T ), Ls(Ω)), with 2 ≤ p < N and

s > r′. Then v ∈ Lσ(ν) with σ = pp̃+p̃−p
p̃ . Moreover,∫

QT

ν(x)|v|σdxdt ≤ C ‖ v ‖
p̃−p
p̃

L∞(0,T,Ls(Ω))

∫
QT

ν(x)|∇v|pdxdt.

Proof. By virtue of Proposition 2.2, we can write∫
Ω

ν(x)|v|σdx ≤ C‖|∇v|‖(1−θ)σLp(ν) ‖ v ‖
θσ
Ls(Ω) .

Integrating between 0 and T, we get∫ T

0

∫
Ω

ν(x)|v|σdxdt ≤ C
∫ T

0

‖|∇v|‖(1−θ)σLp(ν) ‖v‖
θσ
Ls(Ω)dt. (7)

Since v ∈ Lp((0, T ),W 1,p
0 (ν)) ∩ L∞((0, T ), Ls(Ω)), we have∫ T

0

∫
Ω

ν(x)|v|σdxdt ≤ C‖v‖θσL∞(0,T,Ls(Ω))

∫ T

0

‖|∇v(t)|‖(1−θ)σLp(ν) dt.
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Now we choose θ such that (1− θ)σ = p and θσ = p̃−p
p̃ . This choice yields

θ =
p̃− p

pp̃+ p̃− p
, σ =

pp̃+ p̃− p
p̃

.

Then, (7) becomes∫ T

0

∫
Ω

ν(x)|v|σdxdt ≤ C ‖ v ‖
p̃−p
p̃

L∞(0,T,Ls(Ω))

∫ T

0

‖|∇v(t)|‖pLp(ν)dt.

3 Assumptions on Data

Let Ω be a bounded open set of RN (N ≥ 2), T be a positive real number, and QT =
Ω× (0, T ).

3.1 Assumptions

Throughout this paper, we assume that the following assumptions hold true:
Assumptions (H1)

bi : Ω× R→ R is a Carathéodory function such that for every x ∈ Ω, (8)

bi(x, .) is a strictly increasing C1(R)-function with bi(x, 0) = 0, for any k > 0, there exist
a constant λi > 0 and functions Aik ∈ L∞(Ω) and Bik ∈ Lp(Ω) such that: for almost
every x in Ω

λi ≤
∂bi(x, s)

∂s
≤ Aik(x) and

∣∣∣∇x(∂bi(x, s)
∂s

)∣∣∣ ≤ Bik(x) ∀ |s| ≤ k. (9)

Assumptions (H2) Let a : QT × R× RN → RN be a Carathéodory function such
that, for any k > 0, there exist νk and a function hk ∈ Lp

′
(ν) with

|a(x, t, s, ξ)| ≤ ν(x)
(
hk(x, t) + |ξ|p−1

)
∀ |s| ≤ k, (10)

a(x, t, s, ξ)ξ ≥ αν(x)|ξ|p with α > 0, (11)

(a(x, t, s, ξ)− a(x, t, s, η)(ξ − η) > 0 with ξ 6= η. (12)

Assumptions (H3) Let φi : QT ×R→ RN be a Carathéodory function such that

|φi(x, t, s)| ≤ ci(x, t)|s|γν(x), (13)

ci(x, t) ∈ Lτ (ν) with τ =
p(3p̃− p)

(p− 1)(p̃− p)
, γ =

2(p− 1)(pp̃+ p̃− p)
p(3p̃− p)

(14)

for almost every (x, t) ∈ QT , for every s ∈ R and every ξ, η ∈ RN .
Assumptions (H4) We suppose for that for i=1,2 fi : Ω × R × R → R is a

Carathéodory function with f1(x, 0, s) = f2(x, s, 0) = 0 a.e x ∈ Ω,
∀s ∈ R. And for almost every x ∈ Ω, for every s1, s2 ∈ R

signe(si)fi(x, s1, s2) ≥ 0. (15)
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The growth assumptions on fi are as follows: for each k > 0 there exist σk > 0 and a
function Fk in L1(Ω) such that

|f1(x, s1, s2)| ≤ Fk + σk|b2(x, s2)|. a.e x ∈ Ω,∀|s1| ≤ k, ∀s2 ∈ R. (16)

for each k > 0 there exist µk > 0 and a function Gk in L1(Ω) such that

|f2(x, s1, s2)| ≤ Gk(x) + µk|b1(x, s1)|. a.e x ∈ Ω,∀|s2| ≤ k, ∀s1 ∈ R. (17)

u0,i is a measurable function such that bi(x, u0,i) ∈ L1(Ω) for i = 1, 2.

4 Main Results

In this section, we study the existence of renormalized solutions to systems (1).

Definition 4.1 A couple of measurable functions (u1, u2) defined on QT is called a
renormalized solution of (1) if for i=1,2. the function ui satisfies

bi(x, ui) ∈ L∞(0, T ;L1(Ω)), (18)

Tk(ui) ∈ Lp(0, T ;W 1,p
0 (ν)) for any k > 0, (19)

lim
m→+∞

1

m

∫
{(x,t)∈QT : |ui(x,t)|≤m}

a(x, t, ui,∇ui)∇ui dx dt = 0, (20)

and if for every function S in W 2,∞(R) which is piecewise C1 and such that S′ has a
compact support

∂Bi,S(x, ui)

∂t
− div

(
a(x, t, ui,∇ui)S′(ui)

)
+ S

′′
(ui)a(x, t, ui,∇ui)∇ui (21)

+ div
(
φi(x, t, ui)S

′(ui)
)
− S′′(ui)φi(x, t, ui)∇ui

= fi(x, u1, u2)S′(ui)− div(S′(ui)Fi) + S′′(ui)Fi∇ui in D
′
(QT ),

and
Bi,S(x, ui)(t = 0) = Bi,S(x, ui,0) in Ω, (22)

where Bi,S(x, z) =

∫ z

0

∂bi(x, s)

∂s
S
′
(s)ds.

Equation (21) is formally obtained through pointwise multiplication of equation (1)
by S′(u). However meanwhile a(x, t, ui,∇ui) and φi(x, t, ui) do not in general make
sense in (1). Recall that for a renormalized solution, due to (19), each term in (21) has
a meaning in L1(QT ) + Lp

′
(0, T ;W−1,p′(ν1−p′)) (see e.g. [6]).We have

∂Bi,S(x, ui)

∂t
belongs to Lp

′
(0, T ;W−1,p′(ν1−p′)) + L1(QT ). (23)

Bi,S(x, ui) belongs to Lp(0, T ;W 1,p
0 (ν)). (24)

Then (23) and (24) imply that Bi,S(x, ui) belongs to C0([0, T ];L1(Ω)) (for the proof of
this trace result see [12],) so that the initial condition (22) makes sense.
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Theorem 4.1 Let b(x, u0) ∈ L1(Ω), assume that (H1)-(H4) hold true, then there
exists at least a renormalized solution (u1, u2) of problem (1) in the sense of Definition
(4.1).

Proof. Step 1. Let us introduce the following regularization of the data: for i=1,2.
For each n > 0

bi,n(x, r) = b(x, Tn(r)) +
r

n
∀ r ∈ R, (25)

an(x, t, s, ξ) = a(x, t, Tn(s), ξ) a.e. (x, t) ∈ QT , ∀ s ∈ R, ∀ ξ ∈ RN , (26)

φi,n(x, t, r) = φi(x, t, Tn(r)) a.e. (x, t) ∈ QT , ∀ r ∈ R. (27)

Let f1,n(x, s1, s2) = f1(x, Tn(s1), Tn(s2)) a.e x ∈ Ω, ∀s1, s2 ∈ R.

and f2,n(x, s1, s2) = f2(x, Tn(s1), Tn(s2)) a.e x ∈ Ω,∀s1, s2 ∈ R. (28)

Let ui,0n ∈ C∞0 (Ω) such that

bi,n(x, ui,0n)→ bi(x, ui,0) strongly in L1(Ω). (29)

In view of (25), for i=1,2 bi,n is a Carathéodory function and satisfies (9), there exists
λi > 0 such that:

λi +
1

n
≤ ∂bi,n(x, s)

∂s
and |bi,n(x, s)| ≤ max|s|≤n|bi(x, s)| a.e. x ∈ Ω, ∀s ∈ R.

Let us now consider the regularized problem
∂bi,n(x,ui,n)

∂t − div(an(x, t, ui,n,∇ui,n)− φi,n(x, t, ui,n)− Fi) = fi,n(x, u1, u2) in QT ,
ui,n(x, t) = 0 on ∂Ω× (0, T ),
bi,n(x, ui,n)(t = 0) = bi,n(x, ui,0n) in Ω.

(30)
In view of (16)-(17), there exist F1,n ∈ L1(Ω) and F2,n ∈ L1(Ω) and σn > 0,µn > 0

such that :

|f1,n(x, s1, s2)| ≤ F1,n(x) + σn max
|s|≤n

|bi(x, s)|. a.e x ∈ Ω, ∀s1, s2 ∈ R.

|f2,n(x, s1, s2)| ≤ F2,n(x) + µn max
|s|≤n

|bi(x, s)|. a.e x ∈ Ω, ∀s1, s2 ∈ R.

As a consequence, proving the existence of weak solution ui,n ∈ Lp(0, T ;W 1,p
0 (ν)) of (30)

is an easy task (see e.g. [?, 9]).
Step 2: The estimates derived in this step rely on standard techniques for problems

of type (30). So we just sketch the proof of them (the reader is referred to [4] ) for the
elliptic version. Let τ1 ∈ (0, T ) and t be fixed in (0, τ1). For i=1,2, using Tk(ui,n)χ(0,t) as
a test function in (30), we integrate between (0, τ1), and by the condition (13) we have∫

Ω

Bni,k(x, ui,n(t))dx+

∫
Qt

an(x, t, ui,n,∇ui,n)∇Tk(ui,n) dx ds (31)

≤
∫
Qt

c(x, t)|ui,n|γν(x)|∇Tk(ui,n)| dx ds+

∫
Qt

fi,n(x, un1 , u
n
2 )Tk(ui,n) dx ds
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+

∫
Ω

Bi,nk (x, uni,0)dx+

∫
Qt

Fi∇Tk(uni )dxds,

where Bni,k(x, r) =

∫ r

0

Tk(s)
∂bi,n(x, s)

∂s
ds. Due to definition of Bni,k we have:

0 ≤
∫

Ω

Bni,k(x, ui,0n)dx ≤ k
∫

Ω

|bi,n(x, ui,0n)|dx = k||bi(x, ui,0n)||L1(Ω) ∀k > 0. (32)

Using (31), (11) and (28) we obtain:∫
Ω

Bni,k(x, ui,n(t))dx+α

∫
Qt

ν(x)|∇Tk(ui,n)|p dx ds ≤
∫
Qt

c(x, t)|ui,n|γν(x)|∇Tk(ui,ε)| ds dx

+ k(‖bi(x, ui,0n)‖L1(Ω) + ‖fi,n‖L1(QT )) +

∫
Qt

Fi∇Tk(ui,n)dxds. (33)

Let Mi =
(
supn||fi,n||L1(QT ) + ||bi(x, ui,0n)||L1(Ω)

)
. Noting that

Bni,k(x, s) =

∫ s

0

Tk(σ)
∂bi,n(x, σ)

∂σ
dσ ≥

λi + 1
n

2
|Tk(s)|2 > λi

2
|Tk(s)|2

we deduce from (31) and (32) that

λi
2

∫
Ω

|Tk(ui,n)|2 dx+ α

∫
Qt

ν(x)|∇Tk(ui,n)|p dx ds (34)

≤Mik +

∫
Qt

ci(x, t)|ui,n|γν(x)|∇Tk(ui,n)| dx ds+

∫
Qt

Fi∇Tk(ui,n) dx ds.

By Gagliardo-Nirenberg and Young inequalities we have:∫
Qt

ci(x, t)|ui,n|γν(x)|∇Tk(ui,n)| dx ds

≤ Ci
γ(p̃− p)

2(pp̃+ p̃− p)
||ci(x, t)||Lτ (Qτ1 ,ν) sup

t∈(0,τ1)

∫
Ω

|Tk(ui,n)|2 dx

+Ci
2pp̃+ (2− γ)(p̃− p)

2(pp̃+ p̃− p)
||ci(x, t)||Lτ (Qτ1 ,ν)

(∫
Qτ1

ν(x)|∇Tk(ui,n)|p dx ds
)( 1

p+ γp̃
pp̃+p̃−p )

2(pp̃+p̃−p)
2pp̃+(2−γ)(p̃−p)

. (35)

Since γ = 2(p−1)(pp̃+p̃−p)
p(3p̃−p) and by using (34) and (35), we obtain

λi
2

∫
Ω

|Tk(ui,n)|2 dx+ α

∫
Qt

ν(x)|∇Tk(ui,n)|p dx ds ≤Mik+

Ci
γ(p̃− p)

2(pp̃+ p̃− p)
||ci(x, t)||Lτ (Qτ1 ,ν) sup

t∈(0,τ1)

∫
Ω

|Tk(ui,n)|2 dx+
α
−p′
p

p′
‖Fi‖(Lp′ (ν))N
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+Ci
2pp̃+ (2− γ)(p̃− p)

2(pp̃+ p̃− p)
||ci(x, t)||Lτ (Qτ1 ,ν)

∫
Qτ1

ν(x)|∇Tk(ui,n)|p dx ds

+
α

p

∫
Qt

ν(x)|∇Tk(ui,n)|p dx ds

which is equivalent to(λi
2
− Ci

γ(p̃− p)
2(pp̃+ p̃− p)

||ci(x, t)||Lτ (Qτ1 ,ν)

)
sup

t∈(0,τ1)

∫
Ω

|Tk(ui,n)|2 dx

+α

∫
Qτ1

ν(x)|∇Tk(ui,n)|p dx ds

−
(
Ci

2pp̃+ (2− γ)(p̃− p)
2(pp̃+ p̃− p)

||ci(x, t)||Lτ (Qτ1 ,ν) +
α

p

)∫
Qτ1

ν(x)|∇Tk(ui,n)|p dx ds ≤Mik.

If we choose τ1 such that(λi
2
− Ci

γ(p̃− p)
2(pp̃+ p̃− p)

||ci(x, t)||Lτ (Qτ1 ,ν)

)
> 0, (36)

(α
p′
− Ci

2pp̃+ (2− γ)(p̃− p)
2(pp̃+ p̃− p)

||ci(x, t)||Lτ (Qτ1 ,ν)

)
> 0, (37)

and then denote by Ci the minimum between the constants
(

λi(pp̃+p̃−p)
γ(p̃−p)||ci(x,t)||Lτ (Qτ1

)

)
and(

2α(pp̃+p̃−p)
p′[2pp̃+(2−γ)(p̃−p)]||ci(x,t)||Lτ (Qτ1

)

)
, we obtain

sup
t∈(0,τ1)

∫
Ω

|Tk(ui,n)|2 dx+

∫
Qτ1

ν(x)|∇Tk(ui,n)|p dx dt ≤ CiMik. (38)

Then, by (38) and Lemma 3.1( [?, 2]), we conclude that Tk(ui,n) is bounded in

Lp(0, T,W 1,p
0 (ν)) independently of n and for any k ≥ 0, so there exists a subsequence

still denoted by ui,n such that

Tk(ui,n) ⇀ Hi,k weakly in Lp(0, T,W 1,p
0 (ν)). (39)

Lemma 4.1 (see [2])

ui,n → ui a.e. QT , bi(x, ui) ∈ L∞(0, T ;L1(Ω)), (40)

where ui is a measurable function defined on QT for i=1,2.

lim
m→+∞

lim sup
n→+∞

1

m

∫
{|ui,n|≤m}

a(x, t, ui,n,∇ui,n)∇ui,n dx dt = 0. (41)

Step 4: In this step we prove that the weak limit Xi,k of a(x, t, Tk(ui,n)∇Tk(ui,n))
can be identified with a(x, t, Tk(ui),∇Tk(ui)), for i=1,2. In order to prove this result we
recall the following lemma.
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Lemma 4.2 For i=1,2, the subsequence of ui,n satisfies for any k ≥ 0:

lim sup
n→+∞

∫
QT

∫ t

0

a(x, s, ui,n,∇Tk(ui,n))∇Tk(ui,n) ds dx dt ≤
∫
QT

∫ t

0

Xi,k∇Tk(ui) dx ds dt,

(42)

lim
n→+∞

∫
QT

∫ t

0

(
a(x, t, Tk(ui,n),∇Tk(ui,n))− a(x, t, Tk(ui,n),∇Tk(ui))

)
(
∇Tk(ui,n)−∇Tk(ui)

)
= 0, (43)

Xi,k = a(x, t, Tk(ui),∇Tk(ui)) a.e. in QT , (44)

and as n tends to +∞

a(x, t, Tk(ui,n),∇Tk(ui,n))∇Tk(ui,n) ⇀ a(x, t, Tk(ui),∇Tk(ui))∇Tk(ui) (45)

weakly in L1(QT ).

For i=1,2. We introduce a time regularization of the Tk(ui) for k > 0 in order to
perform the monotonicity method.

Lemma 4.3 (see H. Redwane [13]) Let k ≥ 0 be fixed. Let S be an increasing
C∞(R)−function such that S(r) = r for |r| ≤ k, and suppS′ is compact. Then

lim inf
µ→+∞

lim
n→+∞

∫ T

0

∫ t

0

<
∂bi,n(x, ui,n)

∂t
, S′(ui,n)(Tk(ui,n)− (Tk(ui))µ) >≥ 0,

where < ., . > denotes the duality pairing between L1(Ω) + W−1,p′(ν1−p′) and L∞(Ω) ∩
W 1,p

0 (ν).

Let Sm be a sequence of increasing C∞-function such that:

Sm(r) = r for |r| ≤ m, supp(S′m) ⊂ [−2m, 2m] and ‖S′′m‖L∞(R) ≤
3

m
for any m ≥ 1.

For i=1,2. We use the sequence (Tk(ui))µ of approximation of Tk(ui), and plug the test
function S′m(ui,n)(Tk(ui,n) − (Tk(ui))µ) for m > 0 and µ > 0. For fixed k ≥ 0, let
Wn
µ = Tk(ui,n)− (Tk(ui))µ. We obtain upon integration over (0, t) and then over (0, T ) :∫ T

0

∫ t

0

<
∂bi,n(x, ui,n)

∂t
, S′m(ui,n)Wn

µ > ds dt

+

∫
QT

∫ t

0

an(x, s, ui,n,∇ui,n)S′m(ui,n)∇Wn
µ ds dt dx

+

∫
QT

∫ t

0

an(x, s, ui,n,∇ui,n)S′′m(ui,n)∇ui,n∇Wn
µ ds dt dx (46)

−
∫
QT

∫ t

0

φi,n(x, s, ui,n)S′m(ui,n)∇Wn
µ ds dt dx

−
∫
QT

∫ t

0

S′′m(ui,n)φi,n(x, s, ui,n)∇ui,n∇Wn
µ ds dt dx =

∫
QT

∫ t

0

fi,nS
′
m(ui,n)Wn

µ dx ds dt
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+

∫
QT

∫ t

0

FiS
′
m(ui,n)∇Wn

µ ds dt dx+

∫
QT

∫ t

0

FiS
′′
m(ui,n)∇ui,n∇Wn

µ ds dt dx.

We pass to the limit in (46) as n → +∞, µ → +∞ and then m → +∞ for k being a
fixed real number. We use Lemma (4.3) and proceed as in ( [4, 13]), then it possible to
conclude that

lim inf
µ→+∞

lim
n→+∞

∫ T

0

∫ t

0

<
∂bi,n(x, ui,n)

∂t
,Wn

µ > ds dt ≥ 0 for any m ≥ k, (47)

lim
m→+∞

lim sup
µ→+∞

lim sup
n→+∞

∫
QT

∫ t

0

an(x, t, ui,n,∇ui,n)S′′m(ui,n)∇ui,n∇Wn
µ ds dt dx = 0,

(48)

lim
µ→+∞

lim
n→+∞

∫
QT

∫ t

0

fi,nS
′
m(ui,n)Wn

µ ds dt dx = 0, (49)

lim
µ→+∞

∫
QT

∫ t

0

FiS
′
m(ui,n)∇Wn

µ ds dt dx = 0, (50)

lim
µ→+∞

∫
QT

∫ t

0

FiS
′′
m(ui,n)∇ui,nWn

µ ds dt dx = 0. (51)

lim
µ→+∞

lim
n→+∞

∫
QT

∫ t

0

φi,n(x, t, ui,n)S′m(ui,n)∇Wn
µ ds dt dx = 0, (52)

lim
µ→+∞

lim
n→+∞

∫
QT

∫ t

0

S′′m(un)φi,n(x, t, ui,n)∇ui,n∇Wn
µ ds dt dx = 0. (53)

For the proof of(52) and (53) the reader is referred to ( [2]),(44) and (45) hold true. Note
that, taking the limit as n tends to +∞ in (41) and using (45) show that u satisfies (20).
Now we want to prove that u satisfies the equation (21).

Let S be a function in W 2,∞(R) such that suppS′ ⊂ [−k, k] where k is a real positive
number. Pointwise multiplication of the approximate equation (30) by S′(un) leads to

∂Bni,S(x, ui,n)

∂t
−div

(
an(x, t, ui,n,∇ui,n)S′(ui,n)

)
+S′′(ui,n)a(x, t, ui,n,∇ui,n)∇ui,n (54)

+ div
(
φi,n(x, t, ui,n)S′(ui,n)

)
− S′′(ui,n)φi,n(x, t, ui,n)∇ui,n = fi,nS

′(ui,n)

−div(FiS
′(ui,n)) + S′′(ui,n)Fi∇ui,n in D′(QT ),

where Bni,S(x, r) =

∫ r

0

∂bi,n(x, s)

∂s
S′(s) ds. In what follows we pass to the limit as n

tends to +∞ in each term of (54). Since the fact that ui,n converges to ui a.e. in QT
implies that Bni,S(x, ui,n) converges to Bi,S(x, ui) a.e. in QT and L∞(QT ) is weak-∗, we

have that
∂Bni,S(x, ui,n)

∂t
converges to

∂Bi,S(x, ui)

∂t
in D′(QT ). We observe that the term

an(x, t, ui,n,∇ui,n)S′(ui,n) can be identified with a(x, t, Tk(ui,n),∇Tk(ui,n))S′(ui,n) for
n ≥ k, so using the pointwise convergence of ui,n to ui in QT and the weak convergence

of Tk(ui,n)to Tk(ui)in Lp(0, T ;W 1,p
0 (ν)), we get

an(x, t, ui,n,∇ui,n)S′(ui,n) ⇀ a(x, t, Tk(ui,n),∇Tk(ui))S
′(ui) in Lp

′
(ν1−p′), and

S′′(ui,n)an(x, t, ui,n,∇ui,n)∇ui,n ⇀ S′′(ui)a(x, t, Tk(ui,n),∇Tk(ui))∇Tk(ui)
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in L1(QT ). Furthermore, φi,n(x, t, ui,n)S′(ui,n) = φi,n(x, t, Tk(ui,n))S′(ui,n) a.e. in
QT . By (27) we obtain |φi,n(x, t, Tk(ui,n))S′(ui,n)| ≤ ν(x)|ci(x, t)|kγ , it follows that

φi,n(x, t, Tk(ui,n))S′(ui,n)→ φi,n(x, t, Tk(ui))S
′(ui) strongly in Lp

′
(ν1−p′).

In a similar way

S′′(ui,n)φi,n(x, t, ui,n)∇ui,n = S′′(Tk(ui,n))φi,n(x, t, Tk(ui,n))∇Tk(ui,n) a.e. in QT .

Using the weak convergence of Tk(ui,n) in Lp(0, T ;W 1,p
0 (ν)) it is possible to prove that

S′′(ui,n)φn(x, t, ui,n)∇ui,n → S′′(ui)φi(x, t, ui)∇ui in L1(QT ), and S′′(ui,n)Fi∇ui,n
converges to S′′(ui)Fi∇ui in L1(QT ). Since |S′(ui,n)| ≤ C, it follows that FiS

′′(ui,n)

converges to FiS
′′(ui) strongly in Lp

′
(ν). Finally by (28) we deduce that fnS

′(ui,n)
converges to fiS

′(ui) in L1(QT ). It remains to prove that Bi,S(x, ui) satisfies the
initial condition Bi,S(x, ui)(t = 0) = Bi,S(x, ui,0) in Ω. To this end, firstly note

that Bni,S(x, ui,n) is bounded in Lp(0, T ;W 1,p
0 (ν)). Secondly, the above considerations

of the behavior of the terms of this equation show that
∂Bni,S(x,ui,n)

∂t is bounded in

L1(QT ) + Lp
′
(0, T ;W−1,p′(ν1−p′)). As a consequence, Bni,S(ui,n)(t = 0) = Bni,S(x, ui,0n)

converges to Bi,S(x, ui)(t = 0) strongly in L1(Ω) (for the proof of this trace result
see [12]). On the other hand, the smoothness of S implies that Bi,S(x, ui)(t = 0) =
Bi,S(x, ui,0) in Ω. The proof of Theorem 3.1 is complete.
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Abstract: This work is devoted to the study of the existence of positive periodic
solutions of the second order nonlinear neutral di�erential equation

d2

dt2
x(t) + p(t)

d
dt

x(t) + q(t)x(t) =
d2

dt2
Q(t; x (t � � (t))) + f (t; h (x(t)) ; g (x(t � � (t)))) :

The method used here is one of the most e�cient techniques for studying this type of
equations since it combines some useful properties of Green's function together with
Krasnoselskii's �xed point theorem.

Keywords: positive periodic solutions; nonlinear neutral di�erential equations; �xed
point theorem.

Mathematics Subject Classi�cation (2010): 34K13, 34A34, 34K30, 34L30.

1 Introduction

In this work we are essentially interested in the study of the existence of positive peri-
odic solutions for certain classes of second order nonlinear neutral di�erential equations
which are ubiquitous in di�erent scienti�c disciplines and arise specially in beam theory,
viscoelastic and inelastic ows and electric circuits.

There is a sizeable literature related to this topic, for instance in the middle of the pre-
vious century, the existence of solutions of di�erential equations was extensively studied
by many investigators, see, for example, the papers and books [1]- [9], [11], [12]. During
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the last two decades, there has been an increasing activity in the study of periodic prob-
lems of second-order nonlinear neutral di�erential equations (see [1]- [3], [9], [11], [12]
and references therein).

Some mathematicians used transformation in order to reduce the equation into more
simple equation or system of equations or used synthetic division, others gave the solution
in a series form which converges to the exact solution and some of them dealt with second-
order nonlinear neutral di�erential equations by using some numerical techniques such
as Ritz method, �nite di�erence method, �nite element method, cubic spline method
and multiderivative method. In this paper, these usual methods may seem ine�cient to
establish the existence of positive periodic solutions of the second-order nonlinear neutral
di�erential equations

d2

dt2 x(t)+ p(t)
d
dt

x(t)+ q(t)x(t) =
d2

dt2 Q(t; x (t � � (t)))+ f (t; h (x(t)) ; g (x(t � � (t)))) ; (1)

wherep, q are positive continuous real-valued functions. The functionsQ : R � R �! R,
h; g : R �! R and f : R � R � R �! R are continuous with respect to their arguments.
Our ideas are inspired by the ones given in the recent papers [1, 3, 9, 11, 12], we will
convert the nonlinear neutral di�erential equation into an integral equation before using
the Krasnoselskii's �xed point theorem.

This paper is organized as follows. In the next section, we start by providing some
background de�nitions, lemmas and some preliminary results, then we give Green's func-
tion of a second order di�erential equation and some of their useful properties. We in-
troduce Green's functions of a second order di�erential equation and we show that the
solution of a given equation can be explicitly expressed in terms of Green's function of
the corresponding homogeneous equation. Next, we present the inversion of (1) and we
assert without proof the well-known Krasnoselskii's �xed point theorem which will be
useful in what follows.

Finally, in the last section, we study the neutral functional di�erential equation (1)
and present an existence result for positive periodic solutions for this equation by combin-
ing some properties of Green's function together with Krasnoselskii �xed point theorem.

2 Preliminaries

For T > 0, let PT be the set of all continuous scalar functionsx, periodic in t of period
T. Then (PT ; k:k) is a Banach space with the supremum norm

kxk = sup
t 2 R

jx (t)j = sup
t 2 [0;T ]

jx (t)j :

Since we are searching for the existence of periodic solutions for equation (1), it is natural
to assume that

p(t + T) = p(t) ; q(t + T) = q(t) ; � (t + T) = � (t) ; (2)

with � being scalar function, continuous, and� (t) � � � > 0. Also, we assume
Z T

0
p(s) ds > 0;

Z T

0
q(s) ds > 0: (3)

We also assume that the functionsQ (t; x ) and f (t; x; y ) are periodic in t with period T,
that is,

Q (t + T; x) = Q (t; x ) ; f (t + T; x; y) = f (t; x; y ) : (4)
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