Nonlinear Dynamics and Systems Theory, 17(4) (2017) 421-432

Nonlinear Parabolic Equations with Singular Coefficient and Diffuse Data

K. Zaki 1 and H. Redwane 2*

 Laboratoire MISI, FST Settat, Université Hassan 1, 26000 Settat, Morocco.
 2 Faculté des Sciences Juridiques, Économiques et Sociales, Université Hassan 1, B.P. 764. Settat. Morocco.

Received: January 7, 2017; Revised: October 22, 2017

Abstract: In this paper we introduce a notion of renormalized solution for nonlinear parabolic problems whose model is $\frac{\partial b(u)}{\partial t} - \Delta A(u) - div (\Phi(x,t,u)Du) = \mu$ in Q, where b is a strictly increasing C^1 -function defined on \mathbb{R} , and $A(z) = \int_0^z a(s)ds$. The function a(s) is continuous on an interval $] - \infty, m[$ of \mathbb{R} such that a(u) blows up for a finite value m of the unknown u, Φ is a Carathéodory function and μ is a diffuse measure.

Keywords: nonlinear parabolic equations; renormalized solutions; soft measure.

Mathematics Subject Classification (2010): Primary 47A15, Secondary 46A32, 47D20.

1 Introduction

Let Ω be a bounded open set of \mathbb{R}^N $(N \ge 1)$, T be a positive real number, and $Q = \Omega \times (0,T)$.

In this paper we deal with the existence of a renormalized solution for a class of nonlinear parabolic equations of the type

$$\frac{\partial b(u)}{\partial t} - \Delta A(u) - div \left(\Phi(x, t, u)Du\right) = \mu \quad \text{in } Q, \tag{1}$$

$$b(u(t=0)) = b(u_0) \quad \text{in } \Omega, \tag{2}$$

$$u = 0 \text{ on } \partial\Omega \times (0, T).$$
 (3)

^{*} Corresponding author: mailto:redwane_hicham@yahoo.fr

^{© 2017} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua421

In problem (1)-(3), the function b is assumed in $C^1(\mathbb{R})$, such that it is strictly increasing, and $A(z) = \int_0^z a(s)ds$, where the function $a \in C^0(]-\infty, m[,\mathbb{R}^+)$ (*m* is a positive real number) such that $\lim_{s \to m^-} a(s) = +\infty$. The function Φ is Carathéodory on $Q \times \mathbb{R}$ with values in \mathbb{R}^+ and $u_0 \in L^1(\Omega)$ such that $u_0 \leq m$ a.e. in Ω .

We study problem (1)-(3) in the presence of diffuse measure data μ . We call a finite measure μ diffuse if it does not charge sets of zero 2-capacity and $\mathcal{M}_0(Q)$ will denote the set of all diffuse measures in Q (see, [14]). In [9] the authors proved that for every $\mu \in \mathcal{M}_0(Q)$ there exist $f \in L^1(Q)$, $g \in L^2(0,T;H_0^1(\Omega))$ and $G \in L^2(0,T;H^{-1}(\Omega))$ such that $\mu = f + G + g_t$ in $\mathcal{D}'(Q)$. For v = b(u) - g, equation (1) is equivalent in $\mathcal{D}'(Q)$ to $\frac{\partial v}{\partial t} - div \left(a(b^{-1}(v+g))D(b^{-1}(v+g)) \right) - div \left(\Phi(x,t,b^{-1}(v+g))D(b^{-1}(v+g)) \right) = f + G$ with $f + G \in L^1(Q) + L^2(0,T;H^{-1}(\Omega))$. The first difficulty in solving this equation is defining the field $a(b^{-1}(v+g))D(b^{-1}(v+g))$ on the subset $\{(x,t); v+g = b(m)\}$ of Q, since on this set, $a(b^{-1}(v+g)) = +\infty$. In addition, the field $\Phi(x,t,b^{-1}(v+g))D(b^{-1}(v+g)) \notin \mathcal{D}'(Q)$ in general, since $g \notin L^{\infty}(Q)$ in general.

The second difficulty is represented here by the presence of the measure data μ and the nonlinear term b(u). To overcome these difficulties, we use in this paper the framework of renormalized solutions. A large number of papers was then devoted to the study of renormalized (or entropy) solution of parabolic problems with rough data under various assumptions and in different contexts: in addition to the references already mentioned, see, e.g., [1,3,6-8,10,11].

The existence of a renormalized solution of (1)-(3) has been proved in [2] in the stationary case where $\Phi(x, t, u) = 0$ and $\mu \in L^2(\Omega)$.

The existence and uniqueness of renormalized solution of (1)-(3) have been proved in [9], in the case where $u_0 \in L^1(\Omega)$ and $\Delta A(u)$ is replaced by *p*-Laplacian operator $\Delta_p u$, $\Phi(x,t,u) = 0$ and for every measure $\mu \in \mathcal{M}_0(Q)$. In the case where b(u) = u, $\Delta A(u)$ is replaced by $-div(a(t,x,u,\nabla u))$, $\Phi(x,t,u) = \Phi(u)$ and $\mu = f + div g$ where $f \in L^1(Q)$ and $g \in (L^{p'}(Q))^N$, the existence of renormalized solution has been proved in [5].

When b is assumed to satisfy $0 < b_0 \leq b'(r) \leq b_1$, $\forall r \in \mathbb{R}$, and $\Delta A(u)$ is replaced by $div(a(x,t,\nabla u))$, $\Phi(x,t,u) = 0$ and $\mu \in \mathcal{M}_0(Q)$, the existence and uniqueness of renormalized solution have been established in [4].

In the stationary and evolution cases of $u_t - div(A(x,t,u)\nabla u) = f$ in Q, where the matrix A(x,t,s) blows up (uniformly with respect to (x,t)) as $s \to m^-$ and where $f \in L^1(Q)$, the existence of renormalized solution has been proved in [3].

In the case of $u_t - div(d(u)Du) = \mu$, where the coefficients $d(s) = (d_i(s))$ are continuous on an interval $] - \infty, m[$ of \mathbb{R} (with m > 0) with value in $\mathbb{R}^+, u_0 \in L^1(\Omega)$ and $\mu \in \mathcal{M}_0(Q)$, the existence of renormalized solution has been proved in [15]. Our goal is to extend the approach from [15].

The organization of the paper is the following. In Section 2, we give some preliminaries on the concept of *p*-capacity and set out the main notation we will use throughout the paper. Section 3 will be devoted to the exposition of our main assumptions and to the definition of renormalized solution of (1)-(3). In Section 4 (Theorem 4.1) we establish the existence of such a solution. In Section 5 (Appendix), we provide the proof of Theorem 2.2. Section 6 is devoted to an example which illustrates our abstract result.

2 Preliminaries on Parabolic Capacity and Measures

For every open subset $U \subset Q$ the 2-parabolic capacity of U is given by (for further details see, [9, 14]): $cap_2(U) = inf\{\|u\|_W : u \in W, u \ge \chi_U \text{ a.e. in } Q\},\$ where $W = \{u \in L^2(0,T; H_0^1(\Omega)), u_t \in L^2(0,T; H^{-1}(\Omega))\},\$ endowed with the norm $\|u\|_W = \|u\|_{L^2(0,T; H_0^1(\Omega))} + \|u_t\|_{L^2(0,T; H^{-1}(\Omega))}.$ The 2-parabolic capacity is then extended to arbitrary Borel set $B \subseteq Q$ as $cap_2(B) = inf\{cap_2(U) : U \text{ open set of } Q, B \subseteq U\}.$ We will denote by $\mathcal{M}(Q)$ the set of all Radon measures with bounded variation on Q, while, as we have already mentioned, $\mathcal{M}_0(Q)$ will denote the set of all measures with bounded variation over Q that do not charge the sets of zero 2-capacity, that is: if $\mu \in \mathcal{M}_0(Q)$ then $\mu(E) = 0$ for all $E \subseteq Q$ such that $cap_2(E) = 0.$

In [9] the authors proved the following decomposition theorem:

Theorem 2.1 Let μ be a bounded measure on Q. If $\mu \in \mathcal{M}_0(Q)$, then there exists (f, G, g) such that $f \in L^1(Q)$, $G \in L^2(0, T; H^{-1}(\Omega))$, $g \in L^2(0, T; H^1(\Omega))$ and

$$\int_{Q} \phi \, d\mu = \int_{Q} f \phi \, dx \, dt + \int_{0}^{T} \langle G, \phi \rangle \, dt - \int_{0}^{T} \langle \phi_{t}, g \rangle \, dt \quad \phi \in C_{c}^{\infty}(\Omega \times [0, T]).$$

Such a triplet (f, G, g) will be called a decomposition of μ .

Note that the decomposition of μ is not uniquely determined.

The following theorem will be a key point in the existence result given in the next section. The proof follows the arguments in Theorem 1.2 in [13].

Theorem 2.2 Let $a \in C^0(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, $b \in C^1(\mathbb{R})$ with $0 < \beta \leq b' \leq \gamma$, Φ be a Carathéodory function such that $\Phi \in L^{\infty}(Q \times \mathbb{R})$, $\mu \in \mathcal{M}_0(Q) \cap L^2(0,T; H^{-1}(\Omega))$ and $u_0 \in L^2(\Omega)$, let $u \in W$ be the (unique) weak solution of

$$\begin{cases} \frac{\partial b(u)}{\partial t} - \Delta A(u) - div \left(\Phi(x, t, u)Du\right) = \mu & \text{ in } Q, \\ b(u (t = 0)) = b(u_0) & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega \times (0, T). \end{cases}$$
(4)

Then, $cap_2\{|u| > K\} \leq \frac{C}{\sqrt{K}}$ $\forall K \geq 1$, where C > 0 is a constant depending on $\|\mu\|_{\mathcal{M}(Q)}$ and $\|u_0\|_{L^2(\Omega)}$.

Proof. The proof of Theorem 2.2 is postponed to the Appendix in Section 5. \Box

Definition 2.1 A sequence of measures (μ_n) in Q is equidiffuse if for every $\eta > 0$ there exists $\delta > 0$ such that $cap_2(E) < \delta \Longrightarrow |\mu_n|(E) < \eta \quad \forall n \ge 1$.

The following result is proved in [13]:

Lemma 2.1 Let ρ_n be a sequence of mollifiers on Q. If $\mu \in \mathcal{M}_0(Q)$, then the sequence $(\rho_n * \mu_n)$ is equidiffuse.

Here are some notations we will use throughout the paper. For any nonnegative real number K we denote by $T_K(r) = \min(K, \max(r, -K))$ the truncation function at level K for every $r \in \mathbb{R}$. We consider the following smooth approximation of $T_K(s)$: for $m > 0, \ \eta \in]0, 1[$ and $\sigma \in]0, 1[$, we define $S^m_{K,\sigma}, \ T^m_K : \mathbb{R} \longrightarrow \mathbb{R}$ by

$$S_{K,\sigma}^{m,\eta}(s) = \begin{cases} 1 & \text{if } -K \leq s \leq m - \sigma, \\ 0 & \text{if } s \leq -K - \eta \text{ or } s \geq m, \text{ and } T_K^m(s) = \begin{cases} s & \text{if } -K \leq s \leq m, \\ -K & \text{if } s \leq -K, \\ m & \text{if } s \geq m, \end{cases}$$
(5)

and let us denote $T^{m,\eta}_{K,\sigma}(z) = \int_0^z S^{m,\eta}_{K,\sigma}(s) \, ds.$

3 Main Assumptions and Definition of Renormalized Solution

Throughout the paper, we assume that the following assumptions hold true: Ω is a bounded open set on \mathbb{R}^N $(N \ge 2), T > 0$ is given and we set $Q = \Omega \times (0, T)$.

$$b: \mathbb{R} \to \mathbb{R}$$
 is a strictly increasing \mathcal{C}^1 – function such that $0 < \beta \leq b'$ and $b(0) = 0$, (6)

$$a \in C^{0}(]-\infty, m[, \mathbb{R}^{+}) \text{ with } a(s) < +\infty \quad \forall s < m,$$
(7)

$$\exists \alpha > 0 \text{ such that} : a(s) \ge \alpha , \ \forall s \in] - \infty, m[, \tag{8}$$

$$\lim_{s \to m^-} a(s) = +\infty \text{ and } \int_0^m a(s) \, ds < +\infty, \tag{9}$$

$$\Phi: Q \times \mathbb{R} \to \mathbb{R}^+ \text{ is a Carathéodory function such that } \Phi(x, t, 0) = 0, \qquad (10)$$

$$\max_{\{|r|< K\}} |\Phi(x,t,r)| \in L^{\infty}(Q) \quad \text{for all } K > 0,$$
(11)

$$\mu \in \mathcal{M}_0(Q),\tag{12}$$

$$u_0 \in L^1(\Omega)$$
 such that $u_0 \le m$ a.e. in Ω . (13)

We now give the definition of a renormalized solution of problem (1)-(3).

Definition 3.1 A function $u \in L^1(Q)$ is a renormalized solution of problem (1)-(3) if

$$u \le m \text{ a.e. in } Q \text{ and } T_K(u) \in L^2(0,T; H^1_0(\Omega)) \quad \forall K > 0,$$
 (14)

$$a(u)DT_K^m(u)\chi_{\{u < m\}} \in (L^2(Q))^N \quad \forall K > 0,$$
(15)

if there exist a sequence of nonnegative measures $\Lambda_K \in \mathcal{M}(Q)$ and a nonnegative measure $\Gamma_m \in \mathcal{M}(Q)$ such that

$$\lim_{K \to +\infty} \|\Lambda_K\|_{\mathcal{M}(Q)} = 0, \tag{16}$$

$$\int_{Q} \varphi \, d\Gamma_m = 0 \quad \forall \varphi \in \mathcal{C}^1_0([0, T[), \tag{17})$$

and if, for every K > 0

$$\frac{\partial B_K^m(u)}{\partial t} - div \Big(a(u) DT_K^m(u) \chi_{\{u < m\}} \Big) - div \Big(\Phi(x, t, T_K^m(u)) DT_K^m(u) \Big)$$
(18)
= $\mu + \Lambda_K + \Gamma_m$ in $\mathcal{D}'(Q)$,

where $B_K^m(z) = \int_0^z b'(s) (T_K^m)'(s) \, ds.$

Remark 3.1 1/ Note that, in view of (14), (15) and (16), all terms in (18) are well defined. 2/ Let us point out that, in (17), the function $\varphi \in C_0^1([0,T[)$ does not depend on the variable x, we are not able to prove (17) with any function $\varphi \in L^2(0,T; H^1(\Omega)) \cap L^{\infty}(Q)$ such that $D\varphi = 0$ a.e. in $\{(x,t) ; u(x,t) = m\}$ because of a lack of regularity on u with respect to t in the parabolic case.

4 Existence of a Renormalized Solution

This section is devoted to establishing the following existence theorem.

Theorem 4.1 Under assumptions (6)-(13) there exists at least one renormalized solution of problem (1)-(3) in the sense of Definition 3.1.

Proof. The proof is divided into 4 steps. At Step 1, we introduce an approximate problem. Step 2 is devoted to establishing a few *a priori* estimates and we prove that u satisfies (14) and (15) of Definition 3.1. At last, Step 3 and Step 4 are aimed to prove that u satisfies (16), (17) and (18) of Definition 3.1.

* **Step 1**. A regularized problem.

Let us introduce the following regularization of the data: for $n \ge 1$ fixed

$$b_n(s) = b\left(T_n(s)\right) + \frac{1}{n}s \text{ and } a^n(s) = a\left(T_{\frac{1}{n}}^{m-\frac{1}{n}}(s)\right) \quad \forall s \in \mathbb{R},$$
(19)

$$u_0^n \in C_c^{\infty}(\Omega): \ b_n(u_0^n) \to b(u_0) \text{ strongly in } L^1(\Omega) \text{ as } n \text{ tends to } +\infty,$$
 (20)

$$\Phi_n(x,t,s) = \Phi\left(x,t,T_n(s)\right) \quad \forall s \in \mathbb{R}.$$
(21)

We consider a sequence of mollifiers (ρ_n) , and we define the convolution $\rho_n * \mu$ for every $(x,t) \in Q$ by $\mu^n(x,t) = \rho_n * \mu(x,t) = \int_Q \rho_n(x-y,t-s)d\mu(y,s)$. Let us now consider the following regularized problem

$$\frac{\partial b_n(u^n)}{\partial t} - \Delta A^n(u^n) - div\left(\Phi_n(x,t,u^n)Du^n\right) = \mu^n \quad \text{in } Q, \tag{22}$$

$$b_n(u^n(t=0)) = b_n(u_0^n) \text{ in } \Omega,$$
 (23)

$$u^n = 0 \quad \text{on } \partial\Omega \times (0, T). \tag{24}$$

As a consequence, proving existence of a weak solution $u^n \in L^2(0,T; H_0^1(\Omega))$ of (22)-(24) is an easy task (see e.g. [12]).

* Step 2. A priori estimates. Taking $T_K(u^n)$ as a test function in (22) gives

$$\int_{\Omega} B_K^n(u^n)(T) \, dx + \int_Q DA^n(u^n) \, DT_K(u^n) \, dx \, dt \tag{25}$$

$$+ \int_{Q} \Phi_{n}(x,t,u^{n}) Du^{n} DT_{K}(u^{n}) dx dt = \int_{Q} \mu^{n} T_{K}(u^{n}) dx dt + \int_{\Omega} B_{K}^{n}(u_{0}^{n}) dx dt$$

where $B_K^n(z) = \int_0^z b'_n(s) T_K(s) \, ds$. We deduce

$$\int_{\Omega} B_K^n(u^n)(T) \, dx + \int_Q \left(a^n(u^n) + \Phi_n(x, t, u^n) \right) \left| DT_K(u^n) \right|^2 \, dx \, dt \le CK \tag{26}$$

since $\|\mu^n\|_{L^1(Q)}$ and $\|b_n(u_0^n)\|_{L^1(\Omega)}$ are bounded. We deduce for any $K \ge 0$

 $T_K(u^n) \text{ is bounded in } L^2(0,T;H^1_0(\Omega)), \tag{27}$

and

$$a^{n}(u^{n})^{\frac{1}{2}}DT_{K}(u^{n})$$
 is bounded in $(L^{2}(Q))^{N}$. (28)

Now, using $\frac{1}{r}T_r(u^n)\chi_{(0,t)}$ as a test function in (22) we obtain

$$\int_{\Omega} \frac{1}{r} B_r^n(u^n) \, dx + \frac{1}{r} \int_0^t \int_{\Omega} \left(a^n(u^n) + \Phi_n(x, t, u^n) \right) \left| DT_r(u^n) \right|^2 dx \, dt \le C, \tag{29}$$

where $B_r^n(z) = \int_0^z b'_n(s)T_r(s) ds$. The second term in the left-hand side of the above inequality is nonnegative. Taking the limit in (29) as r tends to 0 we obtain $b_n(u^n)$ is bounded in $L^{\infty}(0,T;L^1(\Omega))$. According to (7)-(9), we have for any $K \ge 0$, $\left|\int_0^{u^n} a^n(s)\chi_{\{-K\le s\le m\}} dx\right| \le \int_{-K}^m a(s) ds \equiv C_K < +\infty$, then we can use $\int_0^{u^n} a^n(s)\chi_{\{-K\le s\le m\}} ds$ in $L^2(0,T;H_0^1(\Omega)) \cap L^{\infty}(Q)$ as a test function in (22), we have

$$\beta \int_{\Omega} \int_0^{u^n} \int_0^z a^n(s) \chi_{\{-K \le s \le m\}} \, ds \, dz \, dx \tag{30}$$

$$+ \int_{Q} \left((a^{n}(u^{n}))^{2} + \Phi_{n}(x,t,u^{n})a^{n}(u^{n}) \right) |DT_{K}^{m}(u^{n})|^{2} \leq (\|\mu^{n}\|_{L^{1}} + \|b_{n}(u_{0}^{n})\|_{L^{1}}) \int_{-K}^{m} a(s) \, ds$$

Since $\int_{\Omega} \int_{0}^{u^{n}} \int_{0}^{z} a^{n}(s) ds \, dz \, dx$ and $\int_{Q} \Phi_{n}(x,t,u^{n}) a^{n}(u^{n}) \left| DT_{K}^{m}(u^{n}) \right|^{2} \, dx \, dt$ are positives, $\|\mu^{n}\|_{L^{1}(Q)}$ and $\|b_{n}(u_{0}^{n})\|_{L^{1}(\Omega)}$ are bounded, we deduce from (30) that

$$a^n(u^n)DT_K^m(u^n)$$
 is bounded in $(L^2(Q))^N$. (31)

For any integer $M \ge 1$, let S_M be an increasing function of $C^{\infty}(\mathbb{R})$ and such $S_M(r) = r$ for $|r| \le \frac{M}{2}$ and $S_M(r) = Msg(r)$ for $|r| \ge M$. Note that for any M, $supp S'_M \subset [-M, M]$. We will show that for any fixed integer M the sequence $S_M(b_n(u^n))$ satisfies

$$S_M(b_n(u^n)) \text{ is bounded in } L^2(0,T;H_0^1(\Omega)), \tag{32}$$

and

$$\frac{\partial S_M(b_n(u^n))}{\partial t} \text{ is bounded in } L^1(Q) + L^2(0,T;H^{-1}(\Omega))$$
(33)

independently of *n*. Due to the definition of b_n , it is clear that for $|b_n(u^n)| \leq M$ we have $|b(T_n(u^n)| \leq M$ and $|u^n| < K_M$ as soon as $n > K_M$ and where $K_M = max \{b^{-1}(M), |b^{-1}(-M)|\}$. As a first consequence we obtain $DS_M(b_n(u^n)) = S'_M(b_n(u^n))DT_{K_M}(u^n)$ as soon as $n > K_M$, since $S'_M(b_n(u^n)) = 0$ on the set $\{|b_n(u^n)| > M\}$, and $K_M = max\{-b^{-1}(M), |b^{-1}(-M)|\}$. Secondly, the following estimate holds true $\|S'_M(b_n(u^n))b'_n(u^n)\|_{L^{\infty}(Q)} \leq \|S'_M\|_{L^{\infty}(\mathbb{R})} \left(\max_{|r| \leq K_M} |b'(r)| + 1\right)$ as soon as $n > K_M$. Since b' is continuous on \mathbb{R} , it follows that for any integer $M, S'_M(b_n(u^n))b'_n(u^n)$ is bounded in $L^{\infty}(Q)$ independently of n as soon as $n > K_M$. As a consequence of (27) we then obtain (32).

To show that (33) holds true, we multiply the equation (22) by $S'_M(b_n(u^n))$ to obtain

$$\frac{\partial S_M(b_n(u^n))}{\partial t} = div \left(S'_M(b_n(u^n))a^n(u^n)Du^n \right) - S''_M(b_n(u^n))b'_n(u^n)a^n(u^n) \left| Du^n \right|^2$$
(34)

$$+div\Big(S'_{M}(b_{n}(u^{n}))\Phi_{n}(x,t,u^{n})Du^{n}\Big)-S''_{M}(b_{n}(u^{n}))b'_{n}(u^{n})\Phi_{n}(x,t,u^{n})|Du^{n}|^{2}+\mu^{n}S'_{M}(b_{n}(u^{n}))$$

in $\mathcal{D}'(Q)$. Each term in the right-hand side of (34) is bounded either in $L^2(0,T;H^{-1}(\Omega))$ or in $L^1(Q)$. Indeed, since $suppS'_M$ and $suppS''_M$ are both included in [-M,M], u^n may be replaced by $T_{K_M}(u^n)$ in each of these terms.

Proceeding as in [5] we see that estimates (32) and (33) imply that, for a subsequence still indexed by $n, b_n(u^n) \to \chi$ almost everywhere in Q. Since b^{-1} is continuous on \mathbb{R} , b_n^{-1} converges everywhere to b^{-1} when n goes to ∞ , so that $u^n \to u = b^{-1}(\chi)$ a.e. in Qand using (27), (28) and (31), we obtain

$$b_n(u^n) \longrightarrow b(u)$$
 almost everywhere in Q , (35)

$$T_K(u^n) \rightarrow T_K(u)$$
 weakly in $L^2(0,T;H_0^1(\Omega)),$ (36)

$$(a^n(u^n))^{\frac{1}{2}}DT_K(u^n) \rightharpoonup X_K \text{ weakly } in \ (L^2(Q))^N, \tag{37}$$

$$a^n(u^n)DT_K^m(u^n) \to Y_K$$
 weakly in $(L^2(Q))^N$. (38)

By using the admissible test function $T_{2m}^{n+}(u^n) - T_m^{n+}(u^n)$ in (22) we have

$$\int_{Q} \left(a^{n}(u^{n}) + \Phi_{n}(x,t,u^{n}) \right) \left| D\left(T_{2m}^{n+}(u^{n}) - T_{m}^{n+}(u^{n}) \right) \right|^{2} dx \, dt \le Cm.$$
(39)

Now, since $\Phi_n(x, t, u^n) \ge 0$, and in view of (19) and the Poincaré inequality we deduce

$$a(m-\frac{1}{n})\int_{Q}\left|T_{2m}^{n+}(u^{n})-T_{m}^{n+}(u^{n})\right|^{2}dx\,dt\leq Cm.$$
(40)

According to (9) and (20) (since $d_p(m-\frac{1}{n}) \to +\infty$ as n tends to $+\infty$) passing to the limit in (40) as n tends to $+\infty$, we deduce that $T_{2m}^+(u) - T_m^+(u) = 0$ a.e. in Q, hence

$$u \le m$$
 a.e. in Q . (41)

In view of (37), (38) and (41) we deduce for any $K \ge 0$

$$X_K = (a(u))^{\frac{1}{2}} DT_K(u)$$
 and $Y_K = a(u)DT_K^m(u)$ a.e. in $\{(x,t) \in Q \mid u(x,t) < m\}$. (42)

We define, for any fixed $K \ge 1, 0 < \eta < 1$ and $0 < \sigma < 1$, the functions $H_{K,\eta}$ and $Z_{m,\sigma}$ by

$$H_{K,\eta}(s) = \begin{cases} -1, & \text{if } s \le -K - \eta, \\ 0, & \text{if } s \ge -K, \\ \text{affine, otherwise,} \end{cases} \text{ and } Z_{m,\sigma}(s) = \begin{cases} 0, & \text{if } s \le m - \sigma, \\ 1, & \text{if } s \ge m, \\ \text{affine, otherwise.} \end{cases}$$
(43)

We use the admissible test functions $H_{K,\eta}(u^n)$ and $Z_{m,\sigma}(u^n)$ in (22) to get

$$\int_{\Omega} \overline{H}_{K,\eta}(u^n)(T) \, dx + \int_{Q} DA^n(u^n) DH_{K,\eta}(u^n) \, dx \, dt \tag{44}$$

$$+\int_{Q}\Phi_{n}\left(x,t,u^{n}\right)Du^{n}DH_{K,\eta}\left(u^{n}\right)dx\,dt = \int_{Q}H_{K,\eta}\left(u^{n}\right)\mu^{n}\,dx\,dt + \int_{\Omega}\overline{H}_{K,\eta}\left(u^{n}_{0}\right)dx,$$

and

$$\int_{\Omega} \overline{Z}_{m,\sigma}(u^n)(T) \, dx + \int_{Q} DA^n(u^n) DZ_{m,\sigma}(u^n) \, dx \, dt \tag{45}$$

$$+\int_{Q}\Phi_{n}\left(x,t,u^{n}\right)Du^{n}DZ_{m,\sigma}\left(u^{n}\right)dx\,dt = \int_{Q}Z_{m,\sigma}\left(u^{n}\right)\mu^{n}\,dx\,dt + \int_{\Omega}\overline{Z}_{m,\sigma}\left(u^{n}_{0}\right)dx,$$

where $\overline{H}_{K,\eta}(r) = \int_0^r b'_n(s) H_{K,\eta}(s) ds \ge 0$ for $r \le 0$ and $\overline{Z}_{m,\sigma}(r) = \int_0^r b'_n(s) Z_{m,\sigma}(s) ds \ge 0$ for $r \ge 0$. Hence, using (43) and dropping a nonnegative term, we obtain

$$\frac{1}{\eta} \int_{\{-K-\eta \le u^n \le -K\}} \left(a^n(u^n) + \Phi_n(x,t,u^n) \right) \left| Du^n \right|^2 dx \, dt \qquad (46)$$

$$\le \int_{\{u^n \le -K\}} \left| \mu^n \right| \, dx \, dt + \int_{\{u^n_0 \le -K\}} \left| b_n(u^n_0) \right| \, dx \le C_1,$$

and

$$\frac{1}{\sigma} \int_{\{m-\sigma \le u^n \le m\}} \left(a^n(u^n) + \Phi_n(x,t,u^n) \right) \left| Du^n \right|^2 \, dx \, dt \le \|\mu^n\|_{L^1(Q)} + \|b_n(u_0^n)\|_{L^1(\Omega)} \le C_2.$$
(47)

Thus, there exists a bounded Radon measure $\varPsi_K^n,$ as η tends to zero

$$\Psi_{K,\eta}^{n} \equiv \frac{1}{\eta} \left(a^{n}(u^{n}) + \Phi_{n}(x,t,u^{n}) \right) \left| Du^{n} \right|^{2} \chi_{\{-K-\eta \le u^{n} \le -K\}} \rightharpoonup \Psi_{K}^{n} \ast - \text{ weakly in } \mathcal{M}(Q).$$

$$\tag{48}$$

* Step 3. At this step we prove that u satisfies (18). Let $S_{K,\sigma}^{m,\eta}$ be the function defined by (5) for all real numbers $\sigma > 0$, $\eta > 0$ and K > 0. Since $supp(S_{K,\sigma}^{m,\eta})' \subset [-K - \eta, -K] \cup [m - \sigma, m]$, we multiply the equation (22) by $S_{K,\sigma}^{m,\eta}(u^n)$ to get

$$\frac{\partial B_{K,\sigma}^{n,m,\eta}(u^n)}{\partial t} - div \left(DA^n\left(u^n\right) S_{K,\sigma}^{m,\eta}(u^n) \right) + DA^n(u^n) DS_{K,\sigma}^{m,\eta}(u^n)$$
(49)

$$-div\left(\Phi_n(x,t,u^n)Du^n S^{m,\eta}_{K,\sigma}(u^n)\right) + \Phi_n(x,t,u^n)Du^n DS^{m,\eta}_{K,\sigma}(u^n) = \mu^n S^{m,\eta}_{K,\sigma}(u^n) \text{ in } \mathcal{D}'(Q),$$

where
$$B_{K,\sigma}^{n,m,\eta}(z) = \int_{0}^{z} b'_{n}(s) S_{K,\sigma}^{m,\eta}(s) ds$$
. Let
 $\lambda_{m,\sigma}^{n} \equiv \frac{1}{\eta} \left(a^{n}(u^{n}) + \Phi_{n}(x,t,u^{n}) \right) |Du^{n}|^{2} \chi_{\{m-\sigma \leq u^{n} \leq m\}}.$
(50)

From (48), (50) and (49), we deduce that

$$\frac{\partial B_{K,\sigma}^{n,m,\eta}(u^n)}{\partial t} - div \left(DA^n \left(u^n \right) S_{K,\sigma}^{m,\eta}(u^n) \right) - div \left(\Phi_n(x,t,u^n) DT_{K,\sigma}^{m,\eta}(u^n) \right)$$
(51)
$$= \mu^n + \left(S_{K,\sigma}^{m,\eta}(u^n) - 1 \right) \mu^n - \Psi_{K,\eta}^n + \lambda_{m,\sigma}^n \quad \text{in } \mathcal{D}'(Q).$$

Passing to the limit in (51) as η tends to zero, we deduce

$$\frac{\partial B_{K,\sigma}^{n,m}(u^n)}{\partial t} - div \left(DA^n(u^n) S_{K,\sigma}^m(u^n) \right) - div \left(\Phi_n(x,t,u^n) DT_{K,\sigma}^m(u^n) \right)$$
(52)
$$= \mu^n - \mu^n \chi_{\{u^n < -K\}} - Z_{m,\sigma}(u^n) \mu^n - \Psi_K^n + \lambda_{m,\sigma}^n \text{ in } \mathcal{D}'(Q).$$

We define the measures $\Lambda_K^n = -\mu^n \chi_{\{u^n < -K\}} - \Psi_K^n$ and $\Gamma_{m,\sigma}^n = -Z_{m,\sigma}(u^n)\mu^n + \lambda_{m,\sigma}^n$. Now, using the properties of convolution $\mu_n = \rho_n * \mu$ and in view of (46), (47), (48) and (50), we deduce that Λ_K^n and $\Gamma_{m,\sigma}^n$ are bounded in $L^1(Q)$ independently of n, so that there exist bounded measures Λ_K and $\Gamma_{m,\sigma}$ such that $\Lambda_K^n \rightharpoonup \Lambda_K *$ -weakly in $\mathcal{M}(Q)$ and $\Gamma_{m,\sigma}^n \rightharpoonup \Gamma_{m,\sigma} *$ -weakly in $\mathcal{M}(Q)$. We deduce from (35), (36), (38), (41) (42) and (52) that u satisfies

$$B_{K,\sigma}^{m}(u)_{t} - div \Big(a(u) DT_{K}^{m}(u) S_{K,\sigma}^{m}(u) \chi_{\{u < m\}} \Big)$$

$$-div \Big(\Phi(x,t,T_{K}^{m}(u)) DT_{K,\sigma}^{m}(u) \Big) = \mu + \Lambda_{K} + \Gamma_{m,\sigma} \quad \text{in } \mathcal{D}'(Q).$$
(53)

To end the proof of (18), we use

$$\int_{Q} |\Gamma_{m,\sigma}| \, dx \, dt \leq \liminf_{n \to +\infty} \int_{Q} \left| \Gamma_{m,\sigma}^{n} \right| \, dx \, dt \leq 2 \left\| \mu \right\|_{\mathcal{M}(Q)} + \left\| b(u_{0}) \right\|_{L^{1}(\Omega)}$$

so that there exists a bounded measure Γ_m such that $\Gamma_{m,\sigma}$ converges to $\Gamma_m *$ -weakly in $\mathcal{M}(Q)$. Therefore, as σ tends to zero in (53), we obtain in $\mathcal{D}'(Q)$

$$\frac{\partial B_K^m(u)}{\partial t} - div \left(a(u) DT_K^m(u) \chi_{\{u < m\}} \right) - div \left(\Phi(x, t, T_K^m(u) DT_K^m(u)) = \mu + \Lambda_K + \Gamma_m,$$
(54)

where $B_K^m(z) = \int_0^z b'(s) (T_K^m)'(s) ds$, and (18) is then established.

* **Step 4**. At this step we prove that Λ_K and Γ_m satisfy (16) and (17). From (46) and (48), it follows that

$$\|\Lambda_K^n\|_{L^1(Q)} = \|-\mu^n \chi_{\{u^n < -K\}} + \Psi_K^n\|_{L^1(Q)} \le 2\int_{\{u^n < -K\}} |\mu^n| \, dx \, dt + \int_{\{u_0^n < -K\}} |b_n(u_0^n)| \, dx.$$

$$\tag{55}$$

Since $\|\Lambda_K\|_{\mathcal{M}(Q)} \leq \liminf_{n \to +\infty} \|\mu^n \chi_{\{u^n < -K\}} + \Psi_K^n\|_{\mathcal{M}(Q)}$, the sequence (μ^n) is equidiffuse, and the function $b_n(u_0^n)$ converges to $b(u_0)$ strongly in $L^1(\Omega)$, we deduce from theorem

2.2 and (55) that $\|\Lambda_K\|_{\mathcal{M}(Q)}$ tends to zero as K tends to infinity, then we obtain (16). To prove (17), we can write for all $\varphi \in C_0^1([0,T[)$

$$\int_{Q} \varphi \, d\Gamma_m = \lim_{\sigma \to 0} \int_{Q} \varphi \, d\Gamma_{m\sigma} = \lim_{\sigma \to 0} \lim_{n \to +\infty} \int_{Q} \varphi \Gamma_{\sigma}^n \, dx \, dt, \tag{56}$$

where $\Gamma_{m,\sigma}^n = \lambda_{m,\sigma}^n - Z_{m,\sigma}(u^n)\mu^n$. Taking the admissible test function $Z_{m,\sigma}(u^n)\varphi$ in (22), we have

$$-\int_{Q} \overline{Z}_{m,\sigma}(u^{n})\varphi_{t} \, dx \, dt - \int_{\Omega} \overline{Z}_{m,\sigma}(u_{0}^{n})\varphi(0) \, dx + \int_{Q} DA^{n}(u^{n})D(Z_{m,\sigma}(u^{n})\varphi) \, dx \, dt \quad (57)$$
$$+ \int_{Q} \Phi(x,t,u^{n})D(Z_{m,\sigma}(u^{n})\varphi) \, dx \, dt = \int_{Q} Z_{m,\sigma}(u^{n})\mu^{n}\varphi \, dx \, dt,$$

where $\overline{Z}_{m,\sigma}(r) = \int_0^r b'_n(s) Z_{m,\sigma}(s) ds$. We deduce from (57) that

$$-\int_{Q} \overline{Z}_{m,\sigma}(u^{n})\varphi_{t} \, dx \, dt - \int_{\Omega} \overline{Z}_{m,\sigma}(u_{0}^{n})\varphi(0) \, dx$$

$$= \int_{\{m-\sigma \leq u^{n} \leq m\}} \frac{1}{\sigma} \left(a^{n}(u^{n}) + \Phi_{n}(x,t,u^{n})\right) |Du^{n}|^{2} \varphi \, dx \, dt - \int_{Q} Z_{m,\sigma}(u^{n})\mu^{n} \varphi \, dx \, dt.$$
(58)

In the sequel we pass to the limit in (58) when n tends to infinity and then σ tends to zero. Note that $\overline{Z}_{m,\sigma}(u^n)$ converges to $\overline{Z}_{m,\sigma}(u)$ strongly in $L^1(Q)$ and $\overline{Z}_{m,\sigma}(u_0^n)$ converges to $\overline{Z}_{m,\sigma}(u_0)$ strongly in $L^1(\Omega)$ as n tends to infinity. Moreover, since $\overline{Z}_{m,\sigma}(u)$ converges to $(b(u) - b(m))^+$ as σ tends to zero, $u \leq m$ and $u_0 \leq m$ almost everywhere, then it is easy to see that

$$\lim_{\sigma \to 0} \lim_{n \to +\infty} \int_{Q} \overline{Z}_{m,\sigma}(u^{n})\varphi_{t} \, dx \, dt = 0 \text{ and } \lim_{\sigma \to 0} \lim_{n \to +\infty} \int_{\Omega} \overline{Z}_{m,\sigma}(u_{0}^{n})\varphi(0) \, dx = 0.$$
(59)

Then, from (56), (58) and (59) we deduce (17).

As a conclusion of step 1 to step 4, the proof of Theorem 4.1 is complete.

5 Appendix

Here we prove Theorem 2.2. **Proof.** Let b(u) = v, then equation (4) is equivalent to

$$\begin{cases} v_t - div \left(G(x, t, v) Dv \right) = \mu & \text{in } Q, \\ v(x, 0) = b(u(x, 0)) & \text{in } \Omega, \\ v = 0 & \text{on } \partial\Omega \times (0, T), \end{cases}$$
(60)

where $G(x,t,v) = \frac{a(b^{-1}(v)) + \Phi(x,t,b^{-1}(v))}{b'(b^{-1}(v))}$. For simplicity we assume that $\mu \ge 0$ and $u_0 \ge 0$. We use the admissible test function $T_K(u)$ in (60) to get

$$\int_{\Omega} \overline{T}_{K}(v) \, dx + \int_{Q} \left| (G(x,t,v)^{\frac{1}{2}} DT_{K}(v) \right|^{2} dx \, dt \le K \left(\|\mu\|_{\mathcal{M}(Q)} + \|b(u_{0})\|_{L^{1}(\Omega)} \right) \equiv KM,$$
(61)

where
$$\overline{T}_{K}(r) = \int_{0}^{r} T_{K}(s) ds$$
. Since $\frac{1}{2} T_{K}^{2}(r) \leq \overline{T}_{K}(r) \leq Kr$, $\beta \leq b' \leq \gamma$ and $G(x, t, v) \geq \frac{\alpha}{\gamma}$, we deduce that $\max\left\{\|T_{K}(v)\|_{L^{\infty}(0,T;L^{2}(\Omega))}^{2}; \|G(x,t,v)^{\frac{1}{2}}DT_{K}(v)\|_{L^{2}(Q)}^{2}\right\} \leq KM$ and $\|T_{K}(v)\|_{L^{2}(0,T;H_{0}^{1}(\Omega))}^{2} \leq \gamma \frac{KM}{\alpha}$. Let $z \in W$ be the solution of
$$\begin{cases} -z_{t} - div \left(G(x,t,v)Dz\right) = -2 div \left(G(x,t,v)DT_{K}(v)\right) & in Q, \\ z = 0 & on \left(0,T\right) \times \partial\Omega, \\ z(t = T) = T_{K}(v(t = T)) & in \Omega. \end{cases}$$
(62)

Taking the admissible test function z in (62) and integrating between τ and T, we have by Young's inequality that $\max\left\{\|z\|_{L^{\infty}(0,T;L^{2}(\Omega))}^{2}; \|Dz\|_{L^{2}(Q)}^{2}\right\} \leq CKM$. Moreover, the equation (62) implies that $\|z_{t}\|_{L^{2}(0,T;H^{-1}(\Omega))} \leq C\left(\|z\|_{L^{2}(0,T;H_{0}^{1}(\Omega))} + \|T_{K}(v)\|_{L^{2}(0,T;H_{0}^{1}(\Omega))}\right)$. Hence we deduce that $\|z\|_{W} \leq C\sqrt{K}$. Since $\mu \geq 0$, $b(u_{0}) \geq 0$ and $G(x,t,v) \geq 0$, we have $v_{t} - div(G(x,t,v)Dv) \geq 0$ and $v \geq 0$ in Q, and by a non-linear version of Kato's inequality for parabolic equations (see [13]), we deduce that $T_{K}(v)_{t} - div(G(x,t,v)DT_{K}(v)) \geq 0$. Then we conclude that $-z_{t} - div(G(x,t,v)Dz) \geq -T_{K}(v)_{t} - div(G(x,t,v)DT_{K}(v))$ in $\mathcal{D}'(Q)$. Now, using the standard comparison argument, we easily see that $z \geq T_{K}(v)$ a.e. in Q, hence $z \geq K$ a.e. on $\{v > K\}$, and we conclude that $cap_{2}\{v > K\} \leq \left\|\frac{z}{K}\right\|_{W} \leq \frac{C}{\sqrt{K}}$, the proof of Theorem 2.2 is complete. \Box

6 Example

Let us consider the following special case: $b(s) = s(e^s + 1)$, $a(s) = \frac{1}{(m-s)^{\frac{1}{3}}}$ for s < mand $\Phi(x,t,s) = L(x,t)e^{s^2}$, where $L(x,t) \in L^{\infty}(Q)$. Note that $A(s) = \int_0^s a(r) dr = \frac{3}{2}(m^{\frac{2}{3}} - (m-s)^{\frac{2}{3}})$ and $A(m) = \frac{3}{2}m^{\frac{2}{3}} < +\infty$. Finally, it is easy to show that the hypotheses of Theorem 4.1 are satisfied. Therefore, for all $\mu \in \mathcal{M}_0(Q)$ and $u_0 \in L^1(\Omega)$ with $u_0 \leq m$, there exists at least one renormalized solution of problem (1)-(3), and then u satisfies

$$u \in L^{1}(Q), \ u \le m \text{ a.e. in } Q \text{ and } T_{K}(u) \in L^{2}(0,T; H^{1}_{0}(\Omega)) \ \forall K > 0,$$
 (63)

$$\frac{1}{(m-u)^{\frac{1}{3}}} DT_K^m(u) \chi_{\{u < m\}} \in (L^2(Q))^N \quad \forall K > 0.$$
(64)

There exist a sequence of nonnegative measures $\Lambda_K \in \mathcal{M}(Q)$ and a nonnegative measure $\Gamma_m \in \mathcal{M}(Q)$ such that

$$\lim_{K \to +\infty} \|\Lambda_K\|_{\mathcal{M}(Q)} = 0 \text{ and } \int_Q \varphi \, d\Gamma_m = 0 \quad \forall \varphi \in \mathcal{C}^1_0([0, T[), \tag{65})$$

and for every K > 0

$$\frac{\partial B_K^m(u)}{\partial t} - div \left(\frac{1}{(m-u)^{\frac{1}{3}}} DT_K^m(u) \chi_{\{u < m\}}\right) - div \left(L(x,t) e^{(T_K^m(u))^2} DT_K^m(u)\right)$$
(66)

$$= \mu + \Lambda_K + \Gamma_m \quad \text{in } \mathcal{D}'(Q),$$
 where $B_K^m(z) = \int_0^z (1 + e^s + se^s) (T_K^m)'(s) \, ds.$

Acknowledgment

The first author has been supported by Ministry of Higher Education and Scientific Research-Yemen.

References

- Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M. and Vazquez, J.L. An L¹theory of existence and uniqueness of solutions of nonlinear elliptic equations. *Annali della* Scuola Normale Superiore di Pisa 22 (4) (1995) 241–273.
- [2] Blanchard, D. and Redwane, H. Quasilinear diffusion problems with singular coefficients with respect to the unknown. *Proceedings of the Royal Society of Edinburgh. Section A.* 132 (5) (2002) 1105–1132.
- [3] Blanchard, D., Guibé, O. and Redwane, H. Nonlinear equations with unbounded heat conduction and integrable data. Annali di Matematica Pura ed Applicata 187 (4) (2008) 405–433.
- [4] Blanchard, D., Petitta, F. and Redwane, H. Renormalized solutions of nonlinear parabolic equations with diffuse measure data. *Manuscripta Mathematica* 141 (3-4) (2013) 601–635.
- [5] Blanchard, D., Murat, F. and Redwane, H. Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems. *Journal of Differential Equations* 177 (2) (2001) 331–374.
- [6] Boccardo, L., Dall'Aglio, A., Gallouët, T. and Orsina, L. Nonlinear parabolic equations with measure data. *Journal of Functional Analysis* 147 (1997) 237–258.
- [7] Boccardo, L., Giachetti, D., Diaz, J.I. and Murat, F. Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms. *Journal* of Differential Equations 106 (1993) 215–237.
- [8] DiPerna, R.J. and Lions, P.L. On the Cauchy problem for Boltzmann equations: global existence and weak stability. Annals of Mathematics 130 (2) (1989) 321–366.
- [9] Droniou, J., Porretta, A. and Prignet, A. Parabolic capacity and soft measures for nonlinear equations. *Potential Analysis* 19 (2003) 99–161.
- [10] Petitta, F., Ponce, A.C. and Porretta, A. Approximation of diffuse measures for parabolic capacities. *Comptes Rendus de l'Acadmie des Sciences* 346 (2008) 161–166.
- [11] Orsina, L. Existence results for some elliptic equations with unbounded coefficients. Asymptotic Analysis 34 (2003) 187–198.
- [12] Lions, J.L. Quelques méthodes de résolution des problèmes aux limites non linéaire. Dunod et Gauthier-Villars, Paris, 1969. [French]
- [13] Petitta, F., Ponce, A.C. and Porretta, A. Diffuse measures and nonlinear parabolic equations. Journal of Evolution Equations 11 (4) (2011) 861–905.
- [14] Pierre, M. Parabolic capacity and Sobolev spaces. SIAM Journal on Mathematical Analysis 14 (1983) 522–533.
- [15] Zaki, K. and Redwane, H. Nonlinear parabolic equations with blowing-up coefficients with respect to the unknown and with soft measure data. *Electronic Journal of Differential Equations* **327** (2016) 1–12.
- [16] Simon, J. Compact sets in the space $L^p(0,T;B)$. Annali di Matematica Pura ed Applicata **146** (1987) 65–96.