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Abstract: In this paper, we attempt to investigate the ultimate bound and posi-
tively invariant set for the new modified hyperchaotic Pan system using a technique
combining the generalized Lyapunov function theory and optimization. For this sys-
tem, we derive a four-dimensional ellipsoidal ultimate bound and positively invariant
set. Furthermore, the two-dimensional parabolic ultimate bound with respect to x−z
is established. Finally, a numerical example is provided to illustrate the main result.
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1 Introduction

In the last four decades, chaos as a very interesting nonlinear phenomenon has been
intensively studied. Hyperchaotic system is usually defined as a chaotic system with
more than one positive Lyapunov exponent. It is even more complicated than chaotic
systems and has more unstable manifolds. At the same time, due to its theoretical
and practical applications in technological fields, such as secure communications, lasers,
nonlinear circuits, control, synchronization, hyperchaos has recently become a central
topic in the research of nonlinear sciences.

In particular, the ultimate boundedness is very important for the study of the qualita-
tive behavior of a chaotic system. If one can show that a chaotic or a hyperchaotic system
under consideration has a globally attractive set, one knows that the system cannot have
the equilibrium points, periodic or quasi-periodic solutions, or other chaotic or hyper-
chaotic attractors existing outside the attractive set. This greatly simplifies the analysis
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of dynamics of the system of a chaotic or hyperchaotic system [7]. The boundedness of a
chaotic system also plays an important role in chaos control and chaos synchronization.

Such an estimation is quite difficult to achieve technically, however, several works on
this topic were realized for some 3D and 4D dynamical systems [2, 4–6,8–15].

Furthermore, there are no unified methods for constructing the Lyapunov functions
to study the boundedness of the chaotic systems. Therefore, it is necessary to study
the boundedness of the hyperchaotic systems. In the present paper, we investigate the
ultimate bound and positively invariant set for the new modified hyperchaotic Pan system
using a technique combining the generalized Lyapunov function theory and optimization.
First, we derive an ellipsoidal ultimate bound and positively invariant set. Then we obtain
a two-dimensional parabolic ultimate bound with respect to x− z. Finally, a numerical
example is provided to illustrate the main result.

2 The Ultimate Bound and Positively Invariant Set for the New Modified
Hyperchaotic Pan System

• Consider the system
.

X = f (X) , (1)

where X ∈ Rn, f : Rn → Rn, X = (x1, x2, ..., xn)
T

, t0 ≥ 0 is the initial time,
and X(t, t0, X0) is a solution to system (1) satisfying X(t0, t0, X0) = X0, which for
simplicity is denoted by X(t). Assume Ω ∈ Rn is a compact set.

• Define the distance between the solution X(t, t0, X0) and the set Ω by
ρ (X(t, t0, X0),Ω) = inf

Y ∈Ω
‖X(t, t0, X0)− Y ‖, and denote Ωε = {X/ρ (X,Ω) < ε},

Clearly, Ω ⊂ Ωε.

Definition 2.1 Suppose that there is a compact set Ω ⊂ Rn. If, for every x0 ∈ Rn/Ω,
lim
t→∞

ρ (x (t) ,Ω) = 0, that is, for any ε > 0, there is a T > t0, such that for t ≥ T ,

x(t, t0, x0) ⊂ Ωε, then the set Ω is called an ultimate bound for system (1). If, for any
x0 ∈ Ω and all t ≥ t0, x(t, t0, x0) ⊂ Ω, then Ω is called the positively invariant set for
system (1).

Consider the new modified hyperchaotic Pan system [1] :
x

′
= ay − ax,

y′ = cx− xz + u,
z′ = xy − bz,
u′ = −dy,

(2)

where a, b, c, d are real parameters. System (2) displays a typical hyperchaotic attractor

when (a, b, c, d) =

(
10,

8

3
, 28, 10

)
, the corresponding three-dimensional phase diagrams

in (x− y − z), (x− z − u) spaces are shown in Fig. 1.



404 S. REZZAG

Figure 1: Hyperchaotic attractor of the new modified hyperchaotic Pan system (2) with

(a, b, c, d) =

(
10,

8

3
, 28, 10

)
and the initial value (x0, y0, z0, w0) = (1, 1, 1, 1) .

Some basic dynamical properties of the new modified hyperchaotic Pan system (2) were
studied in [1]. But many properties of the system (2) remain to be uncovered. In the
following, we will discuss the boundedness of the new modified hyperchaotic Pan system
(2).

Theorem 2.1 Denote

Ω =

{
(x, y, z, u) /x2 + dy2 + d

(
z − c− a

d

)2

+ u2 ≤ R2

}
, (3)

where

R2 =


b2 (dc+ a)

2

4ad (b− a)
, si b ≥ 2a

(cd+ a)
2

d
, si b < 2a.

(4)

If a > 0, b > 0, c > 0 and d > 0, then all orbits of system (2), including hyperchaotic
attractors, are trapped into a bounded region, and so the hyperellipsoid Ω is an ultimate
bound and positively invariant set for system (2).

Proof. Define the following Lyapunov function

V = x2 + dy2 + d
(
z − c− a

d

)2

+ u2. (5)

Then, its time derivative along the orbits of system (2) is

1

2

.

V = −ax2 − dbz2 + b (cd+ a) z = 0. (6)

That is to say, for a > 0, b > 0, d > 0, the surface, defined by

Γ =

{
(x, y, z, u) /ax2 + db

(
z − cd+ a

2d

)2

=
b (cd+ a)

2

4d
,

}
(7)
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is an ellipsoid in 4D space for certain values of a, b, c and d. Outside Γ, we have
.

V < 0,

while inside Γ, we have
.

V > 0. Since the function V = x2 + dy2 + d
(
z − c− a

d

)2
+ u2 is

continuous on the closed set Γ, V can reach its maximum on the surface Γ. Denote the
maximum value of V by R2, that is R2 = maxV(x,y,z,u)∈Γ. Next, we use the Lagrange
multiplier method to obtain the optimal value of V on Γ. Define

F = x2 + dy2 + d
(
z − c− a

d

)2

+ u2 + λ

[
ax2 + db

(
z − cd+ a

2d

)2

− b (cd+ a)
2

4d
,

]
(8)

and let 

∂F (x, y, z, u)

∂x
= 2x+ 2λax = 0,

∂F (x, y, z, u)

∂y
= 2dy = 0,

∂F (x, y, z, u)

∂z
= 2d

(
z − c− a

d

)
+ 2λdb

(
z − cd+ a

2d

)
= 0,

∂F (x, y, z, u)

∂u
= 2u = 0,

∂F (x, y, z, u)

∂λ
= ax2 + db

(
z − cd+ a

2d

)2

− b (cd+ a)
2

4d
= 0.

. (9)

Thus,

(i) When λ 6= −1

a
, we have (x, y, z, u) = (0, 0, 0, 0) or (x, y, z, u) =

(
0, 0,

cd+ a

d
, 0

)
and

R2 =
(cd+ a)

2

d
or R2 = 0 correspondingly.

(ii) When λ =
−1

a
, and b ≥ 2a, we have (x, y, z, u) =(

±b (cd+ a)
√
b− 2a

2
√
ad (a− b)

, 0,
(cd+ a) (2a− b)

2d (a− b)
, 0

)
and R2 =

b2 (dc+ a)
2

4ad (b− a)
. Summariz-

ing (i)–(ii) above, we have

R2 =


b2 (dc+ a)

2

4ad (b− a)
, if b ≥ 2a,

(cd+ a)
2

d
, if b < 2a.

(10)

For the set Ω, as shown in (3), we have Γ ⊂ Ω. Next, we will show

lim
t→∞

ρ (X (t) ,Ω) = 0, (11)

using the reduction to absurdity, where X(t) = (x(t), y(t), z(t), u(t)). If (11) does not

hold, we can conclude that the orbits of system (2) are outside Ω permanently, thus
.

V <
0. Therefore,V (X(t)) monotonously decreases outside Ω, which leads to the following

result lim
t→∞

V (X (t)) = v∗ > l. Let s = inf
X∈D

(
−

.

V (X (t))
)

where D = {X(t)/V ∗ ≤
V (X(t)) ≤ V (X(t0))}, while t0 is the initial time. Consequently, we have that s, V ∗

are positive constants, and
dV (X (t))

dt
≤ −s. As t → ∞, we have 0 ≤ V (X(t)) ≤
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V (X(t0)) − s (t− t0) → −∞ this is inconsistent. Therefore (11) actually holds, that is
to say, Ω is the ultimate bound of system (2). Finally, to see that Ω is also the positively
invariant set, reason as follows. Suppose V attains its maximum value on surface Γ
at point P0 (x̂0, ŷ0, ẑ0, û0). Since Γ ⊂ Ω, for any point X(t) on Ω and X(t) 6= P0, we

have
.

V (X) < 0, thus, any orbit X(t) (X(t) 6= P0) of system (2) will go into Ω. When
X(t) = P0, by the continuation theorem [3], X(t) will also go into Ω. Summarizing the
above, we conclude that Ω is the positively invariant set of system (2).

Corollary 2.1 For a > 0, b > 0, c > 0 and d > 0, the solution of the system (2) is
bounded by the conditions

|x| ≤ R,

|y| ≤ R√
d
,

cd+ a

d
− R√

d
≤ z ≤ R√

d
+
cd+ a

d
,

|u| ≤ R.

(12)

Proof. Direct consequence of the previous theorem.

3 The Estimation of the Two-Dimensional Parabolic Ultimate Bound with
Respect to x–z

Theorem 3.1 When b < 2a, the system (2) has the following two-dimensional
parabolic ultimate bound

z ≥ x2

2a
. (13)

Proof. Define

V (t) =
1

2a
x2 (t)− z (t) .

Then, its time derivative along the orbits of system (2) is

.

V =
1

a
x

.
x− .

z = −x2 + bz.

Thus,
.

V + bV = −x2 + bz +
b

2a
x2 − bz =

(
b

2a
− 1

)
x2.

When b < 2a, we have
.

V + bV ≤ 0.

For any initial value V (t0) = V0, according to the comparison theorem, we have

V (t) ≤ V0e
−b(t−t0) → 0 (t→∞)

Thus

lim
t→∞

V (t) = lim
t→∞

[
1

2a
x2 (t)− z (t)

]
≤ 0.

So, we get that system orbits satisfy the parabolic ultimate bound

z ≥ x2

2a
.

This completes the proof.
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4 Example

Consider the system (2), when a = 10, b =
8

3
, c = 28 and d = 10.

We have

V (x, y, z, u) = x2 + 10y2 + 10 (z − 29)
2

+ u2,

Γ =

{
(x, y, z, u) /10x2 +

80

3

(
z − 29

2

)2

=
20

3
× 292

}
and

R2 = maxV(x,y,z,u)∈Γ =
(cd+ a)

2

d
= 10× 292.

Therefore, the estimate of ultimate bound for system (2) is

Ω =
{

(x, y, z, u) /x2 + 10y2 + 10 (z − 29)
2

+ u2 ≤ 10× 292
}
.

Consequently, we have 
|x| ≤ 29×

√
10,

|y| ≤ 29,
0 ≤ z ≤ 58,

|u| ≤ 29×
√

10.

.

It is obvious that the orbits of system (2) locate in the section where z ≥ 0.

5 Conclusion

In this paper, we have investigated the ultimate bound and positively invariant set for
the new modified hyperchaotic Pan system. We have first derived a four-dimensional
ellipsoidal ultimate bound and positively invariant set. Then, we have obtained a two-
dimensional parabolic bound with respect to x − z, which shows that, in the four-
dimensional space, the orbits of the system are located inside the parabolic cylinder

z ≥ x2

2a
, accordingly, we have also got z ≥ 0. Finally, a numerical example is provided to

illustrate the main result.
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