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Abstract: This paper deals with the existence of random solutions of Darboux
problem of impulsive fractional di�erential equations. The main results are based on
the measure of noncompactness and a �xed point theorem for random operators.
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1 Introduction

Fractional calculus is generalization of ordinary di�erentiation and integration to arbi-
trary non-integer order. The subject is as old as the di�erential calculus, starting from
some speculations of G.W. Lebeniz (1967) and L. Euler (1730) and since then, it has
continued to be developed up to nowadays. Integral equations are one of the most use-
ful mathematical tools in both pure and applied analysis. This is particulary true for
problems in mechanical vibrations and the related �elds of engineering and mathemati-
cal physics. We can �nd numerous applications of di�erential and integral equations of
fractional order in �nance, hydrology, biophysics, thermodynamics, control theory, statis-
tical mechanics, astrophysics, cosmology and bioengineering [10,14,19,20,23]. There has
been a signi�cant development in ordinary and partial fractional di�erential equations
in recent years; see the monographs of Abbaset al. [5, 6], Baleanuet al. [10], Kilbas et
al. [16], Zhou [25], the papers of Abbaset al. [1{3,7], Sowmya and Vatsala [21], Stutson
and Vatsala [22], Vityuk and Golushkov [24], and the references therein.
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328 M. BENCHOHRA AND A. HERIS

There has been a signi�cant development in impulse theory in recent years, especially
in the area of impulsive di�erential equations with �xed moments. Recently some results
on the Darboux problem for fractional order impulsive hyperbolic di�erential equations
and inclusions have been obtained by Abbaset al. [3,5].

The initial value problems of ordinary random di�erential equations have been studied
in the literature on bounded as well as unbounded internals of the real line for di�erent
aspects of the solution. See, for example, Burton and Furumochi [11] and the references
therein.

In this paper, we discuss the existence of random solutions for the following impulsive
partial fractional random di�erential equations

8
>>>>>><

>>>>>>:

cD r
x k

u(x; y; w) = f (x; y; u(x; y; w); w); if ( x; y) 2 Jk ; k = 0 ; : : : ; m; w 2 
 ;
u(x+

k ; y; w) = u(x �
k ; y; w) + I k (u(x �

k ; y; w)); if y 2 [0; b]; k = 1 ; : : : ; m; w 2 
 ;
u(x; 0; w) = ’ (x; w); x 2 [0; a]; w 2 
 ;
u(0; y; w) =  (y; w); y 2 [0; b]; w 2 
 ;
’ (0; w) =  (0; w);

(1)

where J0 = [0 ; x1] � [0; b]; Jk := ( xk ; xk+1 ] � [0; b]; k = 1 ; : : : ; m; a; b > 0; � k =
(xk ; 0); k = 0 ; : : : ; m; cD r

x k
is the fractional Caputo derivative of order r = ( r 1; r 2) 2

(0; 1] � (0; 1]; 0 = x0 < x 1 < � � � < x m < x m +1 = a; (
 ; A ) is a measurable space,f : J �
E � 
 ! E ; I k : E ! E ; k = 1 ; : : : ; m are given continuous functions,’ : [0; a] � 
 ! E
and  : [0; b] � 
 ! E are given absolutely continuous functions. Hereu(x+

k ; y; w) and
u(x �

k ; y; w) denote the right and left limits of u(x; y; w) at x = xk ; respectively.
This paper initiates the study of random solutions for impulsive partial hyperbolic

fractional di�erential equations.

2 Preliminaries

In this section, we introduce notations, de�nitions, and preliminary facts which are used
throughout this paper. Let E be a Banach space and letJ := [0 ; a] � [0; b]; a; b > 0:
Denote by L 1(J ) the space of Bochner-integrable functionsu : J ! E with the norm

kukL 1 =
Z a

0

Z b

0
ku(x; y)kE dydx;

where k � kE denotes a suitable complete norm onE:
As usual, by AC (J ) we denote the space of absolutely continuous functions fromJ

into E; and C := C(J ) is the Banach space of continuous functions fromJ into E with
the norm k � k1 de�ned by

kuk1 = sup
(x;y )2 J

ku(x; y)kE :

Consider the space

P C = P C(J � 
) =
�

u : J � 
 ! E : u(�; �; w) is continuous on Jk ; k = 0 ; 1; : : : ; m; and

there exist u(x �
k ; y; w) and u(x+

k ; y; w); k = 1 ; : : : ; m;

with u(x �
k ; y; w) = u(xk ; y; w) for each y 2 [0; b]; w 2 


	
:
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This set is a Banach space with the norm

kukP C = sup
(x;y )2 J

ku(x; y; w)kE :

Let � E be the � -algebra of Borel subsets ofE: A mapping v : 
 ! E is said to be
measurable if for anyB 2 � E ; one has

v� 1(B ) = f w 2 
 : v(w) 2 B g � A :

To de�ne integrals of sample paths of random process, it is necessary to de�ne a
jointly measurable map.

De�nition 2.1 A mapping T : 
 � E ! E is called jointly measurable if for any
B 2 � E ; one has

T � 1(B ) = f (w; v) 2 
 � E : T (w; v) 2 B g � A � � E ;

whereA � � E is the direct product of the � -algebrasA and � E that are de�ned in 
 and
E respectively.

Lemma 2.1 Let T : 
 � E ! E be a mapping such thatT (�; v) is measurable for all
v 2 E; and T (w; �) is continuous for all w 2 
 : Then the map (w; v) 7! T (w; v) is jointly
measurable.

De�nition 2.2 A function f : J � E � 
 ! E is called random Carath�eodory if the
following conditions are satis�ed:

(i) The map (x; y; w) ! f (x; y; u; w) is jointly measurable for all u 2 E; and

(ii) The map u ! f (x; y; u; w) is continuous for almost all (x; y) 2 J and w 2 
 :

Let T : 
 � E ! E be a mapping. Then T is called a random operator if T (w; u)
is measurable inw for all u 2 E and it is expressed asT (w)u = T (w; u): In this case
we also say that T (w) is a random operator on E: A random operator T (w) on E is
called continuous (compact, totally bounded and completely continuous) ifT (w; u) is
continuous (compact, totally bounded and completely continuous, respectively) inu for
all w 2 
 : The details of completely continuous random operators in Banach spaces and
their properties appear in Itoh [15].

De�nition 2.3 [13] Let P (Y ) be the family of all nonempty subsets ofY and C
be a mapping from 
 into P (Y ): A mapping T : f (w; y) : w 2 
 ; y 2 C(w)g ! Y
is called random operator with stochastic domain C if C is measurable (i.e., for all
closedA � Y; f w 2 
 ; C(w) \ A 6= ;g is measurable) and for all openD � Y and all
y 2 Y; f w 2 
 : y 2 C(w); T (w; y) 2 Dg is measurable. T will be called continuous
if every T (w) is continuous. For a random operator T; a mapping y : 
 ! Y is called
random (stochastic) �xed point of T if for P � almost all w 2 
 ; y(w) 2 C(w) and
T (w)y(w) = y(w) and for all open D � Y; f w 2 
 : y(w) 2 Dg is measurable.

Let M X denote the class of all bounded subsets of a metric spaceX:
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De�nition 2.4 Let X be a complete metric space. A map� : M X ! [0; 1 ) is
called a measure of noncompactness onX if it satis�es the following properties for all
B; B 1; B2 2 M X :

(MNC.1) � (B ) = 0 if and only if B is precompact (regularity),
(MNC.2) � (B ) = � (B ) (invariance under closure),
(MNC.3) � (B1 [ B2) = max f � (B1); � (B2)g (semi-additivity).

For more details on measure of noncompactness and its properties, see [8,9].

Let � = (0 ; 0); r 1; r 2 > 0 and r = ( r 1; r 2): For f 2 L 1(J ); the expression

(I r
� f )(x; y) =

1
�( r 1)�( r 2)

Z x

0

Z y

0
(x � s)r 1 � 1(y � t)r 2 � 1f (s; t)dsdt

is called the left-sided mixed Riemann-Liouville integral of order r; where �( �) is the
(Euler’s) gamma function de�ned by �( � ) =

R1
0 t � � 1e� t dt; � > 0:

In particular,

(I �
� u)(x; y) = u(x; y); (I �

� u)(x; y) =
Z x

0

Z y

0
u(s; t)dtds; for almost all (x; y) 2 J;

where � = (1 ; 1): For instance, I r
� u exists for all r 1; r 2 2 (0; 1 ); when u 2 L 1(J ): Note

also that when u 2 C(J ); then (I r
� u) 2 C(J ): Moreover

(I r
� u)(x; 0) = ( I r

� u)(0; y) = 0; x 2 [0; a]; y 2 [0; b]:

Example 2.1 Let �; ! 2 (� 1; 1 ) and r = ( r 1; r 2) 2 (0; 1 ) � (0; 1 ); then

I r
� x � y! =

�(1 + � )�(1 + ! )
�(1 + � + r 1)�(1 + ! + r 2)

x � + r 1 y! + r 2 ; for almost all (x; y) 2 J:

By 1 � r we mean (1� r 1; 1 � r 2) 2 [0; 1) � [0; 1): Denote by D 2
xy := @2

@x@ythe mixed
second order partial derivative.

De�nition 2.5 [24] Let r 2 (0; 1]� (0; 1] andu 2 L 1(J ): The Caputo fractional-order
derivative of order r of u is de�ned by the expression

cD r
� u(x; y) = ( I 1� r

� D 2
xy u)(x; y):

The case� = (1 ; 1) is included and we have

(cD �
� u)(x; y) = ( D 2

xy u)(x; y); for almost all ( x; y) 2 J:

Example 2.2 Let �; ! 2 (� 1; 1 ) and r = ( r 1; r 2) 2 (0; 1] � (0; 1]; then

cD r
� x � y! =

�(1 + � )�(1 + ! )
�(1 + � � r 1)�(1 + ! � r 2)

x � � r 1 y! � r 2 ; for almost all (x; y) 2 J:
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Let a1 2 [0; a]; z+ = ( a1; 0) 2 J; J z = ( a1; a] � [0; b]; r 1; r 2 > 0 and r = ( r 1; r 2): For
u 2 L 1(Jz ); the expression

(I r
z+ u)(x; y) =

1
�( r 1)�( r 2)

Z x

a+
1

Z y

0
(x � s)r 1 � 1(y � t)r 2 � 1u(s; t)dtds

is called the left-sided mixed Riemann-Liouville integral of orderr of u:

De�nition 2.6 [24]. For u 2 L 1(Jz ) where D 2
xy u is Lebesque integrable on

[xk ; xk+1 ] � [0; b]; k = 0 ; : : : ; m; the Caputo fractional order derivative of order r of
u is de�ned by the expression

(cD r
z+ f )(x; y) = ( I 1� r

z+ D 2
xy f )(x; y):

Lemma 2.2 [12] If Y is a bounded subset of Banach spaceX; then for each � > 0;
there is a sequencef yk g1

k=1 � Y such that

� (Y ) � 2� (f yk g1
k=1 ) + �:

Lemma 2.3 [18] If f uk g1
k=1 � L 1(J ) is uniformly integrable, then � (f uk g1

k=1 ) is
measurable and for each(x; y) 2 J;

�
�� Z x

0

Z y

0
uk (s; t)dtds

� 1

k=1

�
� 2

Z x

0

Z y

0
� (f uk (s; t)g1

k=1 )dtds:

Lemma 2.4 [17] Let F be a closed and convex subset of a real Banach space, let
G : F ! F be a continuous operator andG(F ) be bounded. If there exists a constant
k 2 [0; 1) such that for each bounded subsetB � F;

� (G(B )) � k� (B );

then G has a �xed point in F:

3 Existence Results

We need the following auxiliary lemma.

Lemma 3.1 [4] Let 0 < r 1; r 2 � 1; � (x; y) = ’ (x)+  (y) � ’ (0) and let f : J � E !
E be continuous. A function u 2 P C(J ) is a solution of the fractional integral equation

u(x; y) =

8
>>>>>>>>><

>>>>>>>>>:

� (x; y) + 1
�( r 1 )�( r 2 )

Rx
0

Ry
0 (x � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t))dtds;

if (x; y) 2 [0; x1] � [0; b];

� (x; y) +
P k

i =1 (I i (u(x �
i ; y)) � I i (u(x �

i ; 0)))
+ 1

�( r 1 )�( r 2 )
P k

i =1
Rx i

x i � 1

Ry
0 (x i � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t))dtds

+ 1
�( r 1 )�( r 2 )

Rx
x k

Ry
0 (x � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t))dtds;

if (x; y) 2 (xk ; xk+1 ] � [0; b]; k = 1 ; : : : ; m;

if and only if u is a solution of the problem
8
>>>>>><

>>>>>>:

cD r
x k

u(x; y) = f (x; y; u(x; y)); if (x; y) 2 Jk ; k = 0 ; : : : ; m;
u(x+

k ; y) = u(x �
k ; y) + I k (u(x �

k ; y)); if y 2 [0; b]; k = 1 ; : : : ; m;
u(x; 0) = ’ (x); x 2 [0; a];
u(0; y) =  (y); y 2 [0; b];
’ (0) =  (0):
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As a consequence, we have the following lemma.

Lemma 3.2 Let 0 < r 1; r 2 � 1; � (x; y; w) = ’ (x; w) +  (y; w) � ’ (0; w): A function
u 2 P C is a solution of the random fractional integral equation

u(x; y; w) =

8
>>>>>>>>><

>>>>>>>>>:

� (x; y; w) + 1
�( r 1 )�( r 2 )

Rx
0

Ry
0 (x � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t; w); w)dtds;

if (x; y) 2 [0; x1] � [0; b]; w 2 
 ;

� (x; y; w) +
P k

i =1 (I i (u(x �
i ; y; w)) � I i (u(x �

i ; 0; w)))
+ 1

�( r 1 )�( r 2 )
P k

i =1
Rx i

x i � 1

Ry
0 (x i � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t; w); w)dtds

+ 1
�( r 1 )�( r 2 )

Rx
x k

Ry
0 (x � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t; w); w)dtds;

if (x; y) 2 (xk ; xk+1 ] � [0; b]; k = 1 ; : : : ; m; w 2 
 ;
(2)

if and only if u is a solution of the random problem (1).

The following hypotheses will be used in the sequel.

Hypothesis 3.1 The functions w 7! ’ (x; 0; w) and w 7!  (0; y; w) are measurable
and bounded for almost eachx 2 [0; a] and y 2 [0; b] respectively.

Hypothesis 3.2 The function f is random Carath�eeodory on J � E � 
 :

Hypothesis 3.3 There exist functions p1; p2; p3 : J � 
 ! [0; 1 ) with pi (�; w) 2
L 1 (J; [0; 1 )); i = 1 ; 2; 3 such that for eachw 2 
 ;

kf (x; y; u; w)kE � p1(x; y; w) + p2(x; y; w)kukE ;

and
kI k (u)kE � p3(x; y; w)kukE ;

for all u 2 E and almost each(x; y) 2 J:

Hypothesis 3.4 For any boundedB � E;

� (f (x; y; B; w )) � p2(x; y; w)� (B ); for almost each(x; y) 2 J;

and
� (I k (B )) � p3(x; y; w)� (B ); for almost each(x; y) 2 J:

Set

� � (w) = sup
(x;y )2 J

k� (x; y; w)kE ; p�
i (w) = sup ess(x;y )2 J pi (x; y; w); i = 1 ; 2; 3:

Remark 3.1 Hypotheses 3.3 and 3.4 are equivalent [8].

Theorem 3.1 Assume that hypotheses 3.1-3.3 hold. If

‘ := 2mp�
3(w) +

4(m + 1) p�
2(w)ar 1 br 2

�(1 + r 1)�(1 + r 2)
< 1;

then the problem (1) has a random solution de�ned onJ:
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Proof. By Lemma 3.2, the problem (1) is equivalent to the integral equation

u(x; y; w) =

8
>>>>>>>>><

>>>>>>>>>:

� (x; y; w) + 1
�( r 1 )�( r 2 )

Rx
0

Ry
0 (x � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t; w); w)dtds;

if ( x; y) 2 [0; x1] � [0; b]; w 2 
 ;

� (x; y; w) +
P k

i =1 (I i (u(x �
i ; y; w)) � I i (u(x �

i ; 0; w)))
+ 1

�( r 1 )�( r 2 )
P k

i =1
Rx i

x i � 1

Ry
0 (x i � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t; w); w)dtds

+ 1
�( r 1 )�( r 2 )

Rx
x k

Ry
0 (x � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t; w); w)dtds;

if ( x; y) 2 (xk ; xk+1 ] � [0; b]; k = 1 ; : : : ; m; w 2 
 ;

for each w 2 
 and almost each ( x; y) 2 J:

De�ne the operator N : P C ! P C by

(Nu)(x; y) = � (x; y; w) +
kX

i =1

(I i (u(x �
i ; y; w)) � I i (u(x �

i ; 0; w)))

+
1

�( r 1)�( r 2)

kX

i =1

Z x i

x i � 1

Z y

0
(x i � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t; w); w)dtds

+
1

�( r 1)�( r 2)

Z x

x k

Z y

0
(x � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t; w); w)dtds:

Since the functions ’;  and I k and f are absolutely continuous, the function � and
the inde�nite integral are absolutely continuous for all w 2 
 and almost all ( x; y) 2 J:
Again, as the maps� and I k are continuous for all w 2 
 and the inde�nite integral is
continuous on J; then N (w) de�nes a mapping N : P C ! P C: Henceu is a solution for
the problem (1) if and only if u = Nu: We shall show that the operator N satis�es all
conditions of Lemma 2.4. The proof will be given in several steps.

Step 1: N is a random operator with stochastic domain onP C:
Since f (x; y; u; w) is random Carath�eodory, the map w ! f (x; y; u; w) is measurable in
view of De�nition 2.1. Similarly, the product ( x � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t; w); w) of
a continuous and a measurable function is again measurable. Further, the integral is a
limit of a �nite sum of measurable functions and I k is measurable. Therefore, the map

w 7! � (x; y; w) +
kX

i =1

(I i (u(x �
i ; y; w)) � I i (u(x �

i ; 0; w)))

+
1

�( r 1)�( r 2)

kX

i =1

Z x i

x i � 1

Z y

0
(x i � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t; w); w)dtds

+
1

�( r 1)�( r 2)

Z x

x k

Z y

0
(x � s)r 1 � 1(y � t)r 2 � 1f (s; t; u(s; t; w); w)dtds

is measurable. As a result,N is a random operator from P C into P C:

Let W : 
 ! P (P C) be de�ned by

W (w) = f u 2 P C : kukP C � R(w)g
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with R(�) being chosen appropriately. For instance, we assume that

R(w) �
� � + (m +1) p�

1 (w )ar 1 br 2

�(1+ r 1 )�(1+ r 2 )

1 � 2mp�
3(w) � (m + 1) p�

2(w) ar 1 br 2

�(1+ r 1 )�(1+ r 2 )
:

The set W (w) is bounded, closed, convex and solid for allw 2 
 : Then W is measurable
(Lemma 17 ( [13]). Let w 2 
 be �xed, then from Hypothesis 3.4 for any u 2 w(w); we
get

k(Nu)(x; y)kE

� k � (x; y; w)kE +
kX

i =1

kI i (u(x �
i ; y; w))k + kI i (u(x �

i ; 0; w))k

+
1

�( r 1)�( r 2)

kX

i =1

Z x i

x i � 1

Z y

0
(x i � s)r 1 � 1(y � t)r 2 � 1kf (s; t; u(s; t; w); w)kE dtds

+
1

�( r 1)�( r 2)

Z x

x k

Z y

0
(x � s)r 1 � 1(y � t)r 2 � 1kf (s; t; u(s; t; w); w)kE dtds;

� k � (x; y; w)kE +
kX

i =1

(p3(x; y; w)kuk + ( p3(x i ; 0; w))kuk)

+
1

�( r 1)�( r 2)

kX

i =1

 Z x i

x i � 1

Z y

0
(x i � s)r 1 � 1(y � t)r 2 � 1p1(s; t; w)dtds

+
Z x i

x i � 1

Z y

0
(x � s)r 1 � 1(y � t)r 2 � 1p2(s; t; w)ku(s; t; w)kE dtds

!

+
1

�( r 1)�( r 2)

Z x

x k

Z y

0
(x � s)r 1 � 1(y � t)r 2 � 1p1(s; t; w)dtds

+
1

�( r 1)�( r 2)

Z x

x k

Z y

0
(x � s)r 1 � 1(y � t)r 2 � 1p2(s; t; w)ku(s; t; w)kE dtds

� � � (w) + 2 mp�
3(w)R(w)

+
kX

i =1

 
p�

1(w)
�( r 1)�( r 2)

Z x i

x i � 1

Z y

0
(x � s)r 1 � 1(y � t)r 2 � 1dtds

+
p�

2(w)R(w)
�( r 1)�( r 2)

Z x i

x i � 1

Z y

0
(x � s)r 1 � 1(y � t)r 2 � 1dtds

!

+
p�

1(w)
�( r 1)�( r 2)

Z x

x k

Z y

0
(x � s)r 1 � 1(y � t)r 2 � 1dtds

+
p�

2(w)R(w)
�( r 1)�( r 2)

Z x

x k

Z y

0
(x � s)r 1 � 1(y � t)r 2 � 1dtds

� � � (w) + 2 mp�
3(w)R(w) +

(p�
1(w) + p�

2(w)R(w))( m + 1) ar 1 br 2

�(1 + r 1)�(1 + r 2)
� R(w):

Therefore, N is a random operator with stochastic domainW and N : W (w) ! W (w):
Furthermore, N maps bounded sets into bounded sets inP C:
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Step 2: N is continuous.
Let f un g be a sequence such thatun ! u in P C: Then, for each (x; y) 2 J and w 2 
 ;
we have

k(Nun )(x; y) � (N (w)u)(x; y)kE

�
kX

i =1

(kI i (un (x �
i ; y; w)) � I i (u(x �

i ; y; w))k + kI i (un (x �
i ; 0; w)) � I i (u(x �

i ; 0; w))k)

+
1

�( r 1)�( r 2)

kX

i =1

Z x i

x i � 1

Z y

0
(x i � s)r 1 � 1(y � t)r 2 � 1kf (s; t; un (s; t; w); w)

� f (s; t; u(s; t; w); w)kE dtds

+
1

�( r 1)�( r 2)

Z x

x k

Z y

0
(x � s)r 1 � 1(y � t)r 2 � 1kf (s; t; un (s; t; w); w)

� f (s; t; u(s; t; w); w)kE dtds:

Using the Lebesgue dominated convergence theorem, we get

kNun � Nuk1 ! 0 asn ! 1 :

As a consequence of Steps 1 and 2, we can conclude thatN : W (w) ! W (w) is a
continuous random operator with stochastic domainW; and N (W (w)) is bounded.
Step 3: For each bounded subsetB of W (w) we have

� (NB ) � ‘� (B ):

Let w 2 
 be �xed. From Lemmas 2.2 and 2.3, for any B � W and any � > 0; there
exists a sequencef un g1

n =0 � B; such that for all ( x; y) 2 J; we have

� ((NB )(x; y))

= �

(

� (x; y; w) +
kX

i =1

(I i (u(x �
i ; y; w)) � I i (u(x �

i ; 0; w)))

+
kX

i =1

Z x i

x i � 1

Z y

0

(x i � s)r 1 � 1(y � t)r 2 � 1

�( r 1)�( r 2)
f (s; t; u(s; t; w); w)dtds

+
Z x

x k

Z y

0

(x � s)r 1 � 1(y � t)r 2 � 1

�( r 1)�( r 2)
f (s; t; u(s; t; w); w)dtds; u 2 B

�

� �

(
kX

i =1

(I i (un (x �
i ; y; w)) � I i (un (x �

i ; 0; w)))

+
kX

i =1

Z x i

x i � 1

Z y

0

(x i � s)r 1 � 1(y � t)r 2 � 1

�( r 1)�( r 2)
f (s; t; un (s; t; w); w)dtds
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+
Z x

x k

Z y

0

(x � s)r 1 � 1(y � t)r 2 � 1

�( r 1)�( r 2)
f (s; t; un (s; t; w); w)dtds

� 1

n =1
+ �

� �

(
kX

i =1

(I i (un (x �
i ; y; w)) � I i (un (x �

i ; 0; w)))

) 1

n =1

+2
kX

i =1

Z x i

x i � 1

Z y

0

(x i � s)r 1 � 1(y � t)r 2 � 1

�( r 1)�( r 2)
� f f (s; t; un (s; t; w); w)g1

n =1 dtds

+2
Z x

x k

Z y

0

(x � s)r 1 � 1(y � t)r 2 � 1

�( r 1)�( r 2)
� f f (s; t; un (s; t; w); w)g1

n =1 dtds + �

� 2mp3(x; y; w)� (f un (s; t; w)g1
n =1 )

+4
kX

i =1

Z x i

x i � 1

Z y

0

(x i � s)r 1 � 1(y � t)r 2 � 1

�( r 1)�( r 2)
p2(s; t; w)� (f un (s; t; w)g1

n =1 ) dtds

+4
Z x

x k

Z y

0

(x � s)r 1 � 1(y � t)r 2 � 1

�( r 1)�( r 2)
p2(s; t; w)� (f un (s; t; w)g1

n =1 ) dtds + �

� 2mp3(x; y; w)� (f un g1
n =1 )

+

 

4
kX

i =1

Z x i

x i � 1

Z y

0

(x i � s)r 1 � 1(y � t)r 2 � 1

�( r 1)�( r 2)
p2(s; t; w)

!

� (f un g1
n =1 ) dtds

+
�

4
Z x

x k

Z y

0

(x � s)r 1 � 1(y � t)r 2 � 1

�( r 1)�( r 2)
p2(s; t; w)dsdt

�
� (f un g1

n =1 ) + �

� 2mp3(x; y; w)� (B )

+

 

4
kX

i =1

Z x i

x i � 1

Z y

0

(x i � s)r 1 � 1(y � t)r 2 � 1

�( r 1)�( r 2)
p2(s; t; w)dtds

!

� (B )

+
�

4
Z x

x k

Z y

0

(x � s)r 1 � 1(y � t)r 2 � 1

�( r 1)�( r 2)
p2(s; t; w)dtds

�
� (B ) + �

�
�

2mp�
3(w) +

4(m + 1) p�
2(w)ar 1 br 2

�(1 + r 1)�(1 + r 2)

�
� (B ) + �

= ‘� (B ) + �:

Since � > 0 is arbitrary, we have

� (N (B )) � ‘� (B ):

It follows from Lemma 2.4 that for each w 2 
 ; N has at least one �xed point in
W: Since

T
w2 
 intW (w) 6= ; , there exists a measurable selector ofintW , thus N has a

stochastic �xed point, i.e., the problem (1) has at least one random solution.

4 An Example

Let E = R; 
 = ( �1 ; 0) be equipped with the usual � -algebra consisting of Lebesgue
measurable subsets of (�1 ; 0): Given a measurable functionu : 
 ! AC ([0; 1] � [0; 1]);
consider the following impulsive partial fractional random di�erential equations of the
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form
(

cD r
x k

u(x; y; w) = w 2 e� x � y � 3

1+ w 2 +5 ju (x;y;w ) j ; if (x; y) 2 Jk ; k = 0 ; : : : ; m;
u(x+

k ; y; w) = u(x �
k ; y; w) + w 2

(1+ w 2 +10 ju (x;y;w ) j )ex + y +10 ; if y 2 [0; 1]; k = 1 ; : : : ; m;
(3)

where w 2 
, J = [0 ; 1] � [0; 1]; (r 1; r 2) 2 (0; 1] � (0; 1] with the initial conditions
(

u(x; 0; w) = x sinw; x 2 [0; 1];
u(0; y; w) = y2 cosw; y 2 [0; 1]:

w 2 
 ; (4)

Set

f (x; y; u(x; y; w); w) =
w2

(1 + w2 + 5 ju(x; y; w)j)ex + y+10 ; (x; y) 2 [0; 1] � [0; 1]; w 2 
 ;

and

I k (u(x �
k ; y; w)) =

w2

(1 + w2 + 10 ju(x; y; w)j)ex + y+10 ; y 2 [0; 1]; k = 1 ; : : : ; m; w 2 
 :

The functions w 7! ’ (x; 0; w) = x sinw and w 7!  (0; y; w) = y2 cosw are measurable
and bounded with

j’ (x; 0; w)j � 1; j (0; y; w)j � 1;

hence, Hypothesis 3.1 is satis�ed.
Clearly, the map (x; y; w) 7! f (x; y; u; w) is jointly continuous for all u 2 R and hence

jointly measurable for all u 2 R: Also the map u 7! f (x; y; u; w) is continuous for all
(x; y) 2 J and w 2 
 : So the function f is Carath�eodory on [0; 1] � [0; 1] � R � 
 :
For each u 2 R; (x; y) 2 [0; 1] � [0; 1] and w 2 
 ; we have

jf (x; y; u; w)j � 1 +
5

e10 juj;

and
jI k (u)j �

10
e10 juj:

Hence Hypothesis 3.4 is satis�ed with

p1(x; y; w) = p�
1(w) = 1 ; p2(x; y; w) = p�

2(w) =
5

e10 ; p3(x; y; w) = p�
3(w) =

10
e10 :

We shall show that condition ‘ < 1 holds with a = b = 1 : Indeed, if we assume, for
instance, that the number of impulsesm = 3 ; then we have

‘ = 2mp�
3(w) +

4(m + 1) p�
2(w)ar 1 br 2

�(1 + r 1)�(1 + r 2)

=
60
e10 +

80
e10�(1 + r 1)�(1 + r 2)

< 1;

which is satis�ed for each (r 1; r 2) 2 (0; 1]� (0; 1]: Consequently, Theorem 3.1 implies that
the problem (3)-(4) has a random solution de�ned on [0; 1] � [0; 1]:
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Abstract: The purpose of this paper is to obtain new su�cient conditions guaran-
teeing the Hyers-Ulam stability of Laguerre di�erential equation

xy 00+ (1 � x)y0 + ny = 0

and Bessel di�erential equation of order zero

xy 00+ y0 + xy = 0 :

Our �ndings make a contribution to the topic and complete those in the relevant
literature.

Keywords: Hyers-Ulam stability; Laguerre equation; Bessel equation; Laplace trans-
form.

Mathematics Subject Classi�cation (2010): 34A12, 34A30, 39B82, 44A10.

1 Introduction

Di�erential equations of second order can serve as excellent tools for description of math-
ematical modelling of systems and processes in the �elds of engineering, physics, chem-
istry, economics, aerodynamics, and polymerrheology, etc. Therefore, the qualitative
behaviors of solutions of di�erential equations of second order, stability, boundedness,
oscillation, etc., play an important role in many real world phenomena related to the
sciences and engineering technique �elds. However, we would not like to give the details
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of the applications related to di�erential equations of second order here.This information
indicates the importance of investigating the qualitative properties, Hyers-Ulam stability,
Lyapunov stability, etc., of solutions of di�erential equations of second order.

The stability of functional equations was originally raised by Ulam in 1940 in a
talk given at Wisconsin University (Ulam [17]). He discussed a number of unsolved
important problems in that presentation. Later, Hyers [5] answered to the questions of
Ulam [17]. Hence, the concepts related to the Hyers-Ulam stability arose in the literature.
Later, the result of Hyers [5] has been generalized by Rassias [15]. In 1998, Alsina and
Ger [3] studied the Hyers{Ulam stability of the fundamental linear di�erential equation.
They proved that the linear di�erential equation has the Hyers{Ulam stability. After
that, many researchers have studied the Hyers{Ulam stability of the various linear and
partially di�erential equations. For more details on the Hyers{Ulam stability of various
linear ordinary and partially di�erential equations, one can see Abdollahpour et al. [1],
Alqi�ary [2], Alsina and Ger [3], Bi�cer and Tun�c [4], Hyers [5], Jung [6-11], Liu and
Zhao [12], Lungu and Popa [13-14], Rassias [15], Tun�c and Bi�cer [16], Ulam [17] and the
references therein.

In these sources, the Hyers{Ulam stability of solutions to various linear ordinary,
functional and partially di�erential equations was discussed by direct method, iteration
method, �xed point method with a Lipschitz condition, integrating factor method, open
mapping theorem, the Gronwall inequality, power series method, the Laplace transform
method and etc.

The following works are notable. Jung [11] investigated general solution of the inho-
mogeneous Bessel di�erential equation of the form

x2y00(x) + xy0(x) + ( x2 � 
 2)y(x) =
1X

m =0

am xm ;

where the parameter
 is non-integral number.
Jung [10] solved the inhomogeneous di�erential equation of the form

xy00+ (1 � x)y0+ ny =
1X

m =0

am xm

by the power series method, wheren is positive integer, and applied this result to obtain
a partial solution to the Ulam stability of the di�erential equation

xy00+ (1 � x)y0+ ny = 0 :

Abdollahpour at al. [1] discussed the Hyers-Ulam stability of the di�erential equation

xy00+ (1 + v � x)y0+ �y =
1X

m =0

am xm

by means of the power series method. They studied the Hyers-Ulam stability of the
associated homogeneous Laguerre di�erential equation in a subclass of analytic functions.

Alqi�ary and Jung [2] investigated Hyers-Ulam stability of the di�erential equation

y(n ) (t) +
n � 1X

k=0

� k y(k ) (t) = f (t)
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by applying the Laplace transform method, where� k is a scalar.
In this paper, we investigate the Hyers-Ulam stability of Laguerre di�erential equation

of the form
xy00+ (1 � x)y0+ ny = 0 ; (1)

where n is positive integer, and Bessel di�erential equation of order zero

xy00+ y0+ xy = 0 : (2)

Motivated by the mentioned sources, the aim of this paper is to prove the Hyers-Ulam
stability of Laguerre and Bessel equations given by (1) and (2) by the Laplace transform
method. It is worth mentioning that, to the best of our knowledge, the Laplace transform
method is a very e�ective method to discuss the Hyers-Ulam stability of these equations,
equation (1) and equation (2). In addition, to the best of our information till now, the
Hyers-Ulam stability of equation (1) and equation (2) was not discussed in the literature
by the Laplace transform method. This paper is the �rst attempt in the literature on
the topic for the mentioned equations. Our results will also be di�er from those obtained
in the literature (see, [1-19] and the references therein). By this way, we mean that this
paper has made a contribution to the subject in the literature, and the paper may be
useful for researchers working on the qualitative behaviors of solutions like the Hyers-
Ulam stability to various di�erential and partially di�erential equations. In view of all the
mentioned information, the novelty and originality of the current paper can be checked.

2 Hyers-Ulam Stability of Laguerre Equation

Let I = (0 ; 1 ): Our �rst main result is the following theorem.
Theorem 1. If the function y satis�es the di�erential inequality

j xy00+ (1 � x)y0+ ny j� " (3)

for all x 2 I and for some" > 0, then there exists a solutiony0 : I ! < of equation (1)
such that

j y(x) � y0(x) j�
1
n

":

Proof. It is clear from (3) that

� " � xy00+ (1 � x)y0+ ny � ":

If we apply the Laplace transform to the last inequality, then we have

L (� " ) � L [xy00+ (1 � x)y0+ ny] � L (" ):

Hence, since a Laplace transform is linear, it is clear that

L (� " ) � L (xy00) + L ((1 � x)y0) + L (ny) � L (" ):

In view of the basic information related to the properties of a Laplace transform, it can
be written that

�
"
s

� �
d
ds

[s2Y (s) � sY (0) � Y 0(0)] + sY (s) � Y (0) +
d
ds

[sY (s) � Y (0)] + nY (s) �
"
s
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and
�

"
s

� � 2sY (s) � s2 dY
ds

+ sY (s) + Y (s) + s
dY
ds

+ nY (s) �
"
s

so that
�

"
s

� (s � s2)
dY
ds

+ ( n + 1 � s)Y (s) �
"
s

:

Assume that (s2 � s) > 0: Dividing the above inequality by ( s2 � s) and then multi-
plying the last inequality by the term sn +1

(s� 1) n , we obtain

�
"sn � 1

(s � 1)n +1 �
dY
ds

sn +1

(s � 1)n +
(s � n � 1)

(s2 � s)
sn +1

(s � 1)n Y (s) �
"sn � 1

(s � 1)n +1 :

From this, we have

�
"sn � 1

(s � 1)n +1 �
d
ds

[
sn +1

(s � 1)n Y (s)] �
"sn � 1

(s � 1)n +1 :

For any s1 > s , integrating the above inequality from s to s1; we get

�
"
n

[(
s

s � 1
)n � (

s1

s1 � 1
)n ] �

sn +1
1

(s1 � 1)n Y (s1) �
sn +1

(s � 1)n Y (s) �
"
n

[(
s

s � 1
)n � (

s1

s1 � 1
)n ]

so that

�
"
n

[(
s

s � 1
)n � 2(

s1

s1 � 1
)n ] �

sn +1
1

(s1 � 1)n Y (s1) �
sn +1

(s � 1)n Y (s) +
"
n

(
s1

s1 � 1
)n

�
"
n

(
s

s � 1
)n ;

�
"
n

(
s

s � 1
)n �

sn +1
1

(s1 � 1)n Y (s1) �
sn +1

(s � 1)n Y (s) +
"
n

(
s1

s1 � 1
)n �

"
n

(
s

s � 1
)n :

Multiplying the last inequality by the term (s� 1) n

sn +1 , we obtain

�
"

ns
�

sn +1
1

(s1 � 1)n Y (s1)
(s � 1)n

sn +1 +
"
n

(
s1

s1 � 1
)n (s � 1)n

sn +1 � Y (s) �
"

ns
:

Appling the inverse Laplace transform, we have

L � 1(�
"

ns
) � L � 1[

sn +1
1

(s1 � 1)n Y (s1)
(s � 1)n

sn +1 ] + L � 1[
"
n

(
s1

s1 � 1
)n (s � 1)n

sn +1 ] � L � 1[Y (s)]

� L � 1(
"

ns
)

and
�

"
n

� [
"
n

+ s1Y (s1)](
s1

s1 � 1
)n L � 1[

(s � 1)n

sn +1 ] � y(x) �
"
n

:

Since

L � 1[
(s � 1)n

sn +1 ] = 1 � nx +
�

n
2

�
x2

2!
�

�
n
3

�
x3

3!
+ ::: + ( � 1)n +1 xn

n!
;
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it follows that

�
"
n

� [
"
n

+ s1Y (s1)](
s1

s1 � 1
)n [1 � nx +

�
n
2

�
x2

2!
�

�
n
3

�
x3

3!
+ ::: + ( � 1)n +1 xn

n!
] � y(x)

�
"
n

:

Then, we can write
j y(x) � y0(x) j�

"
n

;

where

y0(x) = ( s1Y (s1) �
"
n

)(
s1

s1 � 1
)n (1 � nx +

�
n
2

�
x2

2!
�

�
n
3

�
x3

3!
+ ::: + ( � 1)n +1 xn

n!
):

This completes the proof of Hyers-Ulam stability of solutions of equation (1).
Our second and last main result is the following theorem.
Theorem 2. Let " 2 < ; " > 0: If the function y satis�es the di�erential inequality

j xy00+ y0+ xy j� " (4)

for all x 2 I; then there exists a solutiony0 : I ! < of equation (2) such that

j y(x) � y0(x) j� 2":

Proof. It is clear from (4) that

� " � xy00+ y0+ xy � ":

When we apply the Laplace transform to the last inequality, we get

L (� " ) � L (xy00) + L (y0) + L (xy) � L (" ):

Then, it follows that

�
"
s

� �
d
ds

[s2Y (s) � sY (0) � Y 0(0)] + sY (s) � Y (0) �
d
ds

Y (s) �
"
s

:

Hence
�

"
s

� � s2Y 0(s) � 2sY (s) + Y (0) + sY (s) � Y (0) � Y 0(s) �
"
s

so that
�

"
s

� � (s2 + 1) Y 0(s) � sY (s) �
"
s

:

Multiplying the last inequality with the term � 1p
s2 +1

, we arrive at

�
"

s
p

s2 + 1
�

p
s2 + 1Y 0(s) +

s
p

s2 + 1
Y (s) �

"
s
p

s2 + 1

so that
�

"
s
p

s2 + 1
�

d
ds

(
p

s2 + 1Y (s)) �
"

s
p

s2 + 1
:
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For any s1 > s , integrating the above inequality from s to s1; we get

� " [ln(
p

s2 + 1 + 1
s

) � ln(
p

s2
1 + 1 + 1

s1
)] �

q
s2

1 + 1Y (s1) �
p

s2 + 1Y (s)

� " [ln(
p

s2 + 1 + 1
s

) � ln(
p

s2
1 + 1 + 1

s1
)]:

In view of the last inequality, we can write

� " ln(
p

s2 + 1 + 1
s

) �
q

s2
1 + 1Y (s1) �

p
s2 + 1Y (s) � " ln(

p
s2 + 1 + 1

s
):

Multiplying the last inequality with term 1p
s2 +1

, we obtain

�
"

p
s2 + 1

ln(
p

s2 + 1 + 1
s

) �
p

s2
1 + 1

p
s2 + 1

Y (s1) � Y (s) �
"

p
s2 + 1

ln(
p

s2 + 1 + 1
s

):

Sinces > 0; we can write

�
"

p
s2 + 1

p
s2 + 1 + 1

s
�

p
s2

1 + 1
p

s2 + 1
Y (s1) � Y (s) �

"
p

s2 + 1

p
s2 + 1 + 1

s
so that

�
2"
s

�
p

s2
1 + 1

p
s2 + 1

Y (s1) � Y (s) �
2"
s

:

If we apply the inverse Laplace transform, then we obtain

L � 1(�
2"
s

) � L � 1(
p

s2
1 + 1

p
s2 + 1

Y (s1)) � L � 1(Y (s)) � L � 1(
2"
s

)

so that
� 2" �

q
s2

1 + 1Y (s1)J0(x) � y(x) � 2";

where

J0(x) = 1 �
1
1!

�
x
2

� 2

+
1

(2!)2

�
x
2

� 4

�
1

(3!)2

�
x
2

� 6

+ ::::

From this,we can obtain
j y(x) � y0(x) j� 2";

where
y0(x) = �

q
s2

1 + 1Y (s1)J0(x):

This completes the proof of Hyers-Ulam stability of solutions of equation (2).

3 Conclusion

A kind of linear di�erential equations of second order, namely Laguerre and Bessel equa-
tions, is considered. Su�cient conditions are established guaranteeing the Hyers -Ulam
stability of solutions of these equations. To prove the main results here, we bene�t from
the Laplace transform method. The results obtained essentially complement the results
in the literature.
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Abstract: In this paper, we present the output tracking for a class of non-minimum
phase nonlinear uncertain systems. To achieve the output tracking, we will apply the
modi�ed steepest descent control. To apply the modi�ed steepest descent control,
the output of the system will be rede�ned so that the system will become minimum
phase with respect to a new output.

Keywords: relative degree of system; minimum phase system; non-minimum phase
system; modi�ed steepest descent control.
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1 Introduction

In the output tracking theory, the input-output linearization is one of the most available
methods [1]. Output tracking problems for nonlinear non-minimum phase systems are
a rather di�cult issue in control theory. Most of researchers restrict their research to
some special nonlinear classes only. The stable inversion proposed in [2], [3] is an iter-
ative solution to the tracking problem with the unstable zero dynamics. This method
requires the system to have well de�ned relative degree and hyperbolic dynamics, i.e.
no eigenvalues on the imaginary axis. In [4], control design procedure for the output
tracking was proposed. The design procedure consists of two steps. At the �rst step, the
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standard input-output linearization is applied. At the second step, we group an output
with the internal dynamics as one subsystem, which is usually nonlinear, and the rest of
the output as the other subsystem that is linear, the nonlinear subsystem is linearized
about its equilibrium. In [5], the asymptotic output tracking which is a class of causal
non-minimum phase uncertain nonlinear systems is achieved by using higher order sliding
modes (HOSM) without reduction of the input-output dynamics order. Results on stabi-
lization of non-minimum phase system in the output feedback form have been presented
in [6], [7], [8]. The main idea in [6], [7], [8] is output reconstruction such that the system
becomes minimum phase with respect to a new output. Results on output tracking of
some class non-minimum phase nonlinear system have been presented in [9], [10]. In [9],
the design of the input control is based on the exact linearization.

In this paper, we will modify the steepest descent control for output tracking of a class
of non-minimum phase nonlinear uncertain systems, with relative degree beingn � 1, n
is the dimension of the system. The modi�cation is the addition of an arti�cial input
of the steepest descent control. The design of descent control can not be initiated from
the output causing the system to be non-minimum phase. In this paper, to solve the
problem, we transform the system into a normal form which is minimum phase with
respect to a virtual output, which is a linear combination of state variables.

2 Problem Statement

Consider nonlinear uncertain system

_x = A x + � (y) + � (y) + bu; x(t) 2 R n ; u(t) 2 R ; (1)
y = x1; (2)

in which � (x) is smooth vector �eld in R n , with � (0) = 0, � (y) =
[� 1(y); � 2(y); : : : ; � n (y)]T ,  (0) = 0, � (y) = [ � 1(t) 1(y); � 2(t) 2(y); : : : ; � n (t) n (y)],
b = [0 ; : : : ; 0; bn � 1; bn ]T ,

bn � 1 6= 0 ; bn � 1 = � bn and A =

0

BBB@

0 1 : : : 0
...

...
. . .

...
0 0 : : : 1
0 0 : : : 0

1

CCCA
.

The relative degree of the system (1)-(2) isn � 1.
The system (1)-(2) can be transformed to

_z1 = z2 + � 1(t) (x1); (3)
_zk = zk+1 + ’ k � 1(t; x 1; : : : ; xk � 1); k = 2 ; : : : ; n � 2; (4)

_zn � 1 = a(z ; � ) + b(z ; � )u + ’ (t; x 1; : : : ; xn � 2); (5)
_� = _x1 + _x2 + : : : + _xn

= � � z1 + � 1(y) + : : : + � n (y) + � 1(t) 1(y) + : : : + � n (t) n (y);
y = z1;

with the internal dynamics

_� = � � z1 + � 1(y) + : : : + � n (y) + � 1(t) 1(y) + � � � + � n (t) n (y): (6)

Then the zero dynamics of the system (1)-(2) is

_� = �:
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Thus the system (1)-(2) is non-minimum phase.
Our objective is to make the output system (2) track the desired output. To make the

system (1)-(2) track the desired output, we will use the dynamic feedback control. The
design of the dynamic control is based on the modi�cation of the steepest descent control.
By "Trajectory Following Method" [11], the steepest descent control is determined from
the di�erential equation _u = � @F

@u, where F is a descent function which has a variable
as the solution of internal dynamics system. So, the modi�cation of the steepest descent
control can not be initiated from the output causing the system to be non-minimum
phase. Therefore, the output of the system will be rede�ned so that the system will
become minimum phase with respect to a new output.

3 Main Results

We consider system (1). Consider now a new output� = t1x, with t1 = ( � 1 1 : : : 1).
The relative degree of system (1) with respect to� is n � 1. The system (1) with respect
to � , can be transformed to

_z1 = z2 + c� (t) (x1); (7)
_zk = zk+1 + ! i � 1(t; x 1; : : : ; x i � 1); k = 2 ; : : : ; n � 2; (8)

_zn � 1 = a(z ; � ) + b(z ; � )u + ! (t; x 1; : : : ; xn � 2); (9)
_� = _x1 + _x2 + : : : + _xn

= � � x1 + � 1(x1) + : : : + � n (x1) + � 1(t) 1(x1) + : : : + � n (t) n (x1);
y = � = z1:

Furthermore

� _� = � (� � x1 + � 1(x1) + : : : + � n (x1) + � 1(t) (x1) + � � � + � n (t) n (x1): (10)

Assumption 3.1  i (x1) � j x1j, 8x1, i = 1 ; 2; : : : ; n.

Case 1 : if � 1(x1) + � 2(x1) + � � � + � n (x1) = 0.
Then

� _� = � 2 � �x 1 + �� 1(t) 1(x1) + � � � + �� n (t) n (x1)
� � 2 � �x 1 + j� jjx1j (j� 1(t)j + j� 2(t)j + : : : + j� n (t)j)

= � 2 � �
�

z1 � �
� � 1

�
+ j� j

����
z1 � �
� � 1

���� (j� 1(t)j + j� 2(t)j + : : : + j� n (t)j) :

Then if z1 = 0 and 0 < � < 1, we have

� _� � � 2
�

� � + ( j� 1(t)j + j� 2(t)j + : : : + j� n (t)j)
j� � 1j

�
: (11)

If j� 1(t)j + j� 2(t)j + : : : + j� n (t)j < � , then � _� < 0. Therefore, the zero dynamics (1)
with respect to output � is asymptotically stable. Thus the system (1) with respect to
output � is minimum phase.
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Case 2 : if � 1(x1) + � 2(x1) + � � � + � n (x1) = h(x1) 6= 0.
We have

� _� = � (� � x1 + h(x1) + � 1(t) (x1) + � � � + � n (t) n (x1)
� � 2 � �x 1 + �h (x1) + j� jjx1j (j� 1(t)j + j� 2(t)j + : : : + j� n (t)j)

= � 2 � �
�

z1 � �
� � 1

�
+ �h

�
z1 � �
� � 1

�
+ j� j

����
z1 � �
� � 1

���� (j� 1(t)j + : : : + j� n (t)j) :

If z1 = 0, 8t and 0 < � < 1, then

� _� � � 2
�

� � + ( j� 1(t)j + j� 2(t)j + : : : + j� n (t)j)
j� � 1j

�
+ �h

�
� �

� � 1

�
: (12)

Assumption 3.2 We consider system (1). Choose� 1(x1), � 2(x1), : : :, � n (x1) so
that

�h
�

� �
� � 1

�
< 0:

If j� 1(t)j + j� 2(t)j + : : : + j� n (t)j � � and by Assumption 3.2, we have� _� < 0.
Therefore the system (1) with respect to output � is minimum phase.

Lemma 3.1 Consider system (1). Then there exists a linear combination of the state
variables � = �x 1 + x2 + x3 + : : : + xn such that the relative degree of the system (1) with
respect to output � is n � 1. Furthermore due to Assumption 3.1 we obtain
(i) If � (x1)+ � � � + � n (x1) = 0 , the system (1) with respect to output� is minimum phase,
with j � 1(t) j + j � 2(t) j + : : : + j � n (t) j < � , 0 < � < 1.
(ii) If � (x1) + � � � + � n (x1) 6= 0 and by Assumption 3.2, the system (1) with respect to
output � is minimum phase, with 0 < � < 1 and j � 1(t) j + : : : + j � n (t) j � � .

Let � d be the desired output of the new output.

Assumption 3.3 Let x i = x id , i = 1 ; 2; : : : ; n � 2.

Based on Assumption 3.3, we havex2d; x3d; : : : ; x (n � 1)d, respectively. Then
_xn = f (x1; xn � 1; xn ) can be solved by substituting xn � 1 = x (n � 1)d. Thus xn = xnd .
Furthermore the de�nition error e = � � � d, with � d = �x 1d + x2d + � � � + xnd .

We design a control lawu in terms of the properties of the solution of higher order
ordinary di�erential equation. Consider a di�erential equation

ar e( r ) (t) + ar � 1e( r � 1) (t) + : : : + a1 _e(t) + a0e(t) = 0 ; (13)

where r is the relative degree of the system. If a polynomial

p(s) = ar sr + ar � 1sr � 1 + : : : + a1s + a0 (14)

is Hurwitz, then the solution of di�erential equation (13) tends to zero if t ! 1 . In this
case, for the purpose of designing the control law, an explicit relationship between input
and output is required. To this end, we de�ne a descent function as follows :

F (�; � d; _�; _� d; : : : ; � (n � 1) (t); � (n � 1)
d (t)) =

0

@
n � 1X

j =0

aj (� � � d)( j )

1

A
2

=

0

@
n � 1X

j =0

aj (e)( j )

1

A
2

: (15)
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By "Trajectory Following Method" [11], the control u is determined from the di�erential
equation

_u = �
@F
@u

= � 2an � 1

0

@
n � 1X

j =0

aj (e)( j )

1

A @(e)(n � 1)

@u
: (16)

The control law in equation (16) is called the steepest descent control.
Calculate the time derivative of the descent function (15) along the trajectory of the

extended system

_x = A x + � (y) + � (y) + bu; (17)

_u = � 2an � 1

0

@
n � 1X

j =0

aj (e)( j )

1

A @(e)(n � 1)

@u
: (18)

Then we have

_F (e; _e; : : : ; e(n � 1) ) = 2

0

@
n � 1X

j =0

aj (e)( j )

1

A

0

@
n � 2X

j =0

aj (e)( j +1)

1

A

+ 2an � 1

0

@
n � 1X

j =0

aj (e)( j )

1

A
�

@a(e+ � d; � )
@t

+
@b(e+ � d; � )

@t
u

�

� 2an � 1

0

@
n � 1X

j =0

aj (e)( j )

1

A y(n )
d �

�
@F
@u

� 2

: (19)

From equation (19), the value of the time derivative of the descent function (15) along
the trajectory of (17) can not be guaranteed to be less than zerot � 0.

Now we modify the steepest descent control (16) by adding an arti�cial input v. Then
the extended system (17) becomes

_x = A x + � (y) + � (y) + bu; (20)

_u = �
@F
@u

+ v:

In the same way, let us calculate the time derivative of the descent function (15) along
the trajectory of the extended system (20) yielding

_F (e; _e; : : : ; e(n � 1) ) = 2

0

@
n � 1X

j =0

aj (e)( j )

1

A

0

@
n � 2X

j =0

aj (e)( j +1)

1

A

+ 2an � 1

0

@
n � 1X

j =0

aj (e)( j )

1

A
�

@a(e+ � d; � )
@t

+
@b(e+ � d; � )

@t
u

�

� 2an � 1

0

@
n � 1X

j =0

aj (e)( j )

1

A y(n )
d �

�
@F
@u

� 2

+
@F
@u

v: (21)
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Consider equation (21). We will choose the arti�cial input v so that _F (e; _e; : : : ; e( r ) ) be
less then zero. We take

v =
1

@F
@u

�
� k(e; _e; : : : ; e(n � 1) )

�
; (22)

where

k(e; _e; : : : ; e(n � 1) ) = 2

0

@
n � 1X

j =0

aj (e)( j )

1

A

0

@
n � 2X

j =0

aj (e)( j +1)

1

A

+ 2an � 1

0

@
n � 1X

j =0

aj (e)( j )

1

A
�

@a(e+ � d; � )
@t

+
@b(e+ � d; � )

@t
u

�

� 2an � 1

0

@
n � 1X

j =0

aj (e)( j )

1

A y(n )
d : (23)

Then
_F (e; _e; : : : ; e(n � 1) ) = �

�
@F
@u

� 2

: (24)

We have _F (e; _e; : : : ; e(n � 1) ) < 0, if
P n � 1

j =0 aj (e1)( j ) 6= 0. Let
P n � 1

j =0 aj (e1)( j ) = 0.
From equation (24) _F (e; _e; : : : ; e(n � 1) ) = 0. Thus, the descent function (15) be-
comes minimum. The minimum value of descent function (15) is zero. Therefore
F (e; _e; : : : ; e(n � 1) ) = 0, then

P n � 1
j =0 aj (e)( j ) = 0. Thus, we chooseaj , j = 0 ; : : : ; n � 1 so

that the polynomial p(s) = a0 + a1s + � � � + ar � 1sn � 2 + sn � 1 is Hurwitz, then the error
e(t) ! 0, if t ! 1 . Thus � tends to � d if time t ! 1 . Hence the output of the original
system y = x1 tracks to the desired output yd(t).

Example 3.1

_x1 = x2 + x2
1;

_x2 = x3 � u + x2
1 + k1cos(t)

x1

1 + x2
1

; (25)

_x3 = u � 2x2
1 + k2sin (t) sin (x1);

y = x1: (26)

The zero dynamic system (25)-(26) is� = _� . Thus the system (25)-(26 is non-minimum
phase. Now rede�ne the output : z1 = �x 1 + x2 + x3, with 0 < � < 1. Furthermore

_z1 = �x 2 + ( � � 1)x2
1 + x3 + k1cos(t)

x1

1 + x2
1

+ k2sin (t) sin (x1);

�z1 = � _x2 + 2( � � 1) _x1x1 + _x3 +
d
dt

�
k1cos(t)

x1

1 + x2
1

�
+

d
dt

(k2sin (t) sin (x1)) :

Thus the relative degree of the systems (25) with respect to the outputz1 is 2. If z1 = 0,
we have

� _� �
� �

j� � 1j
� 2 +

� 2

j� � 1j
(jk1cos(t)j + jk2sin (t)j)

=
� 2

j� � 1j
(� � + ( jk1cos(t)j + jk2sin (t)j) : (27)
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If j k1cos(t) j + j k2sin (t) j < � , then � _� < 0. Thus system (25) with respect
to the output z1 is minimum phase. Let yd(t) = �= 2. Next, we choosez1d so that
if z1 tracks z1d(t), then y(t) tracks the desired output yd(t). By replacing x1 with
x1d = yd = �= 2, we getx2d = � (�= 2)2. By replacing x2 with x2d, we have the di�erential
equation _x3 � x3 = � (�= 2)2 + k2sin (t) + k1

�
�= 2

1+( �= 2) 2

�
cos(t). Thus x3d = ( �= 2)2 +

Figure 1 : Output tracking z1 to z1d .

Figure 2 : Output tracking y to yd = �= 2.

0:5sin (t)
�

k1

�
�= 2

1+( �= 2) 2

�
� k2

�
+ 0 :5cos(t)

�
� k1

�
�= 2

1+( �= 2) 2

�
� k2

�
. Now, z1d = �x 1d +

x2d + x3d = � (�= 2) + x3d. The modi�ed steepest descent control with respect to the
output z1 is

_u = �
@F
@u

= � 2a2(a0(z1 � z1d) + a1( _z1 � _z1d) + a2( �z1 � �z1d))(1 � � ) + v; (28)

where v is the same as in equation (22). Simulation results are shown in Figure 1 and in
Figure 2 for the constants a0 = 35, a1 = 12, a2 = 1, � = 0 :75, k1 = 0 :1, k2 = 0 :5. The
initial values x1(0) = 5, x2(0) = 4, x3(0) = 0, x4(0) = 0. In Figure 1, the output which
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has been selected so that the system becomes minimum phase tracks the desired output
z1d. In Figure 2, the output of the original system tracks the desired output yd = �= 2.

Example 3.2

_x1 = x2 � x3
1;

_x2 = x3 � u + 2x3
1; (29)

_x3 = � sin(x1) + u � 2x3
1;

y = x1: (30)

The zero dynamic system (25)-(26) is� = _� . Thus the system (25)-(26 is non-minimum
phase. Now rede�ne the output : z1 = �x 1 + x2 + x3, with 0 < � < 1. The zero dynamic
system (25)-(26) with respect to the output z1 is

_� = � �
�

� �
� � 1

�
�

�
� �

� � 1

� 3

+ � sin
�

� �
� � 1

�
:

We have

� _� = � 2 +
� 2

� � 1
+

� 4

(� � 1)3 + �� sin
�

� �
� � 1

�

� � 2 +
� 2

� � 1
+

� 4

(� � 1)3 + j� jj � j
����

� �
� � 1

����

=
� 2(j� j � � )

j� � 1j
+

� 4

� � 1
: (31)

If j� j � � , then � _� < 0. Thus the system (29) with respect to the output z1 is minimum
phase. Letyd(t) = �= 2. By replacing x1 with x1d = yd = �= 2, we getx2d = ( �= 2)3. By
replacing x2 with x2d, we have the di�erential equation _x3 � x3 = � . Thus x3d = � � .
Now, z1d = �x 1d + x2d + x3d = � (�= 2) + ( �= 2)3 � � . The modi�ed steepest descent

Figure 3 : Output tracking z1 to z1d .

control with respect to the output z1 is

_u = �
@F
@u

= � 2a2(a0(z1 � z1d) + a1( _z1 � _z1d) + a2( �z1 � �z1d))(1 � � ) + v; (32)
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Figure 4 : Output tracking y to yd = �= 2.

where v is the same as in equation (22). Simulation results are shown in Figure 3 and
in Figure 4 for the constants a0 = 12, a1 = 14, a2 = 6, � = 0 :75. The initial values
x1(0) = 0 ; 5, x2(0) = 1, x3(0) = 0, u(0) = 0, � (t) = 0 :6. In Figure 3, the output which
has been selected so that the system become minimum phase tracks the desired output
z1d. In Figure 4, the output of the original system tracks the desired output yd = �= 2.

4 Conclusion

In this paper, we have designed the dynamic feedback control for output tracking of
some class non-minimum phase nonlinear uncertain system (1)-(2). The design of the
dynamic control is based on the modi�cation of the steepest descent control. To apply
the modi�ed steepest descent control the system (1) is required to be minimum phase
with respect to a new output, where the new output is the linear combination of the
state variables. Furthermore, the new desired output will be set based on the desired
output of the original system. By applying the modi�ed steepest descent control, the
system output tracks the desired output.
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Abstract: In this paper, a passivity based model of a general set of bio-reactions
in open reactors with new energy functions is derived. A change of coordinates is
done, based on the stoichiometric invariance principle, which simpli�es the number
of equations to be taken care of and shows directly the passivity of the system.
The passivity based control will be obtained in terms of systematic controller design
techniques. The energy functions can be said to be in close proximity with the Gibbs
free energy function used in port-Hamiltonian model of enzymatic reactions and are
far from the traditional non-physical quadratic functions.

Keywords: Port-Hamiltonian systems; passivity; nonlinear control; bioreactors.
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1 Introduction

Passivity is a fundamental property of physical systems which are able to transform and
dissipate energy. For such systems, passivity balances the energy of a system quantifying
the external input and generated output. Hence, passivity is also related to the stability
of the system by the fact that the system is said to be passive if the input energy is
always more than or equal to the stored energy (closed systems) or output energy (open
systems). Port-Hamiltonian (PH) modelling has been one of the most physical passivity
based modelling technique which has inherent structural properties clearly de�ning the
interconnection and dissipation of energy. Bond graph (BG) modelling technique can be
considered as the graphical representation of the PH models . However, it is possible to
propose only quasi-port-Hamiltonian representations for chemical and enzymatic systems
using di�erent energy functions and subsequent controllers (entropy, enthalpy, Gibbs free
energy, etc., see e.g. [1], [2]) or pseudo bond graph models, e.g. [3].
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c
 2017 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/ http://e-ndst.kiev.ua 357

mailto:jean-yves.dieulot@polytech-lille.fr
http://e-ndst.kiev.ua


358 M. MAKKAR AND J.-Y. DIEULOT

When it comes to bioreactions, a true energetic representation becomes impossible,
as these involve a high number of microbial reactions, which are generally lumped into a
mathematical reaction term without any thermodynamical meaning. On a macroscopic
level, di�erent kinetics are being proposed based on empirical data �tting, e.g. Monod
kinetics, which re
ect energy dissipation phenomena and can contribute to passivity
based structure. [4] have tried di�erent coordinate transformations allowing a generic but
arti�cial obtention of a passive system where the examples use again quadratic energy
functions. [5] explored di�erent possibilities of unphysical Hamiltonian functions such
as constant, logarithmic and quadratic functions. Nevertheless, adequate coordinate
transformation is needed for better understanding of the mechanisms. The authors in
this paper contributed through a new speci�c passivity based model taking advantage
of the structure, based on decoupling of dynamics and the use of invariants extended
to continuous reactors in [6]. It is shown that the passivity-based model involves non
quadratic storage functions. A general formulation leads to easy application for a large
number of systems. The case of multiple equilibria and bifurcation analysis can be seen
e.g. in [7].

Passivity based control (PBC), as discussed above, exploits system’s physical prop-
erties while exploring the possibilities of managing its energy and takes into account
physical terms while choosing the control action. PBC of continuous chemical reactors
generally relies on non-physical energy functions (e.g. quadratic functions) [1] . Sub-
sequently, in [4] the authors proposed a systematic design of a real PH structure with
an e�cient control design. However, the energy function is given as a pure meaning-
less quadratic form, and the PH model is given by an arti�cial decomposition of the
nonlinear model without any real world insight. In [8] it was shown that internal en-
tropy production can be used as a storage function and also, a quasi port-controlled
Hamiltonian representation of chemical reactors was formulated. Hence, an original and
physical-based control design presented in this paper exploits the new passive model and
is applied to aniline degradation by Pseudomonas putidacells.

2 The General Dynamical Model of a Single Stream Bioreactor

Suppose there arej independent reactions involving n components, taking place inside
a perfectly mixed continuous reactor at constant volume and temperature. The biore-
actor has only one single stream for all the concentrations coming in or going out (e.g.
wastewater treatment). The inlet dilution rate is equal to outlet dilution rate to main-
tain constant volume. Dilution rate D is the control parameter. The state space of the
concentrations is:

[z ] = [ � 1; � 2 � � � � n ]T :

[z ] comprises a set of
�

S X P
� T . S represent substrates,X are biomasses,P are

products of reaction. The general dynamical model (GDM) of bioreactions is as follows:
�

dz
dt

�
= [ c] [r (z)] + [ F ] � [Dz ] ; (1)

where z represents the concentration of components,F represents the inlet 
ow rate of
component z , c represents the yield coe�cients and r (z) is the rate of reaction.

Remark 2.1 The GDM in this paper can be said to be a speci�c case of the GDM
shown in (1) in which there is only single inlet streamDz with only one feed instead of
multiple inlet 
ow rates ( F ).
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A generalised �rst order time derivative of concentration model of a set of bioreactions
in an open reactor with single dilution rate at constant volume and temperature can be
written as: �

dz
dt

�
= [ c] [r (z) ] + [ Dz in � Dzout ] ; (2)

where z are the n components,c is the matrix of constant yield coe�cients associated
with the reaction. r are the rates of reaction.z in and zout are the inlet and outlet con-
centrations of n components. z in are mostly substrates altogether coming in one stream
with dilution rate D . For the concentrations not fed from outside, such as products
and biomasses,z in will be zero. Similarly, zout is the concentration coming out of the
reactor which will be the same as the concentration inside the reactor i.e.z . The model
(2) is valid for all types of microbial kinetics. The inputs u will be: u 2 [D;D z in ].

2.1 A useful coordinate transformation

This coordinate transformation is chosen to simplify the model by �nding invariants,
making it easier to passivate. The important point here is that the new set of coordinates
will be independent of kinetics which are restricted to appear in the kinetics, extending
the work of [6] to the general dynamical model of bioreactors [9].

Suppose, state vectorz can be divided into two vectors of dimensionsj and k = n � j ,
[z ] =

�
� �

� T , [c] =
�

cj ck
�

so that:
h

_�
i

= [ cj ] [r (z) ] + [ D � in � D � ] ; (3)

h
_�
i

= [ ck ] [r (z) ] + [ D � in � D � ] : (4)

The coordinate transformation will lead to a new vector of k = n � j elements and will
be represented by stateW , where [A ] is a constant matrix:

[W ]n � j � 1 = [ A ]n � j � n

�
[� in � � ]j � 1

�
+ [ � in � � ]n � j � 1: (5)

Proposition 2.1 For the relation of W proposed in (5), j independent reactions
(cj is full rank), if matrix [A ] and functions of � in and � in are chosen in a way that
[A ] [cj ] + [ ck ] = 0 and [A ] _� in + _� in = 0 , the state space model takes the form:

� _�
_W

�
=

�
[cj ]j � j [0]j � n � j

[0]n � j � j [� D I ]n � j � n � j

�

n � n

�
r ( �;W )

W

�

n � 1
+

�
D � in � D �

0

�
: (6)

Proof : On di�erentiating (5) with respect to time we get:
h

_W
i

= [ A ]
�

_� in � _�
�

+
�

_� in � _�
�

: (7)

Further substitution for
h

_�
i
,

h
_�
i

from (3) and (4) respectively will lead to:

h
_W

i
= [ A ]n � j � j

�
� [cj ]j � j [r ( �;W ) ]j � 1 + [ D � in � D � ]j � 1

�

� [ck ]n � j � j [r ( �;W ) ]j � 1 + [ D � in � D � ] :
(8)
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Substituting [ A ] [cj ] = � [ck ] and [A ] _� in = � _� in in (8) will give:

_W = � DW : (9)

With state space as
�

� W
� T ; the bioreactor model becomes same as shown in (6).

Note that this solution necessarily needscj to be a full rank square matrix by careful
choice of the components of� . It is always possible to �nd such a matrix A by the
stoichiometric invariance principle if the j reactions are truly independent. Further, other
assumptions on inlet concentrations � in ; � in are weak, since they are always veri�ed
when these are constant, which will be assumed in the sequel.

Corollary 2.1 If 8D : D > 0, W is a reaction invariant, i.e. W will exponentially
converge to zero.

Proof : Consider a continuously di�erentiable non-negative storage function H =
1
2 W 2 and H : W ! R with H (0) = 0 . Di�erentiating H w.r.t. time and substituting
(9) will give _H = � DW 2 = � 2DH . Hence forD > 0, H and W ! 0 as t ! 1 .

Remark 2.2 For the general model (1), the representation after coordinate trans-
formation, originated from the stoichiometric invariance principle, was independent of
kinetics and was referred to as a "‘nice" representation in [9]. However, the model in
(9), which considers the case of a single stream input 
ow, also allows to �nd a reaction
invariant. Hence, the model splits the dynamics into a stable bilinear subsystem (W )
and a control a�ne subsystem ( � ) which are weakly coupled. The convergence ofW to
zero extends the so-called "useful" change of coordinates in [9].

3 Passivity Based Model

A passive system is a system which cannot store more energy than is supplied by some
source. The di�erence between the stored energy and supplied energy is the dissipated
energy:

De�nition 3.1 [4] Consider the system:

_x = f (x ) + g (x ) u ; y = h (x ) ; (10)

where u , y are the input and output of the system respectively, f (x ) , g(x ) and h (x )
are matrices and vector �elds that de�ne the interconnection between physical-meaning
elements (state, inputs, and outputs ). With a storage function V (x ):V (x � ) = 0, where
x � is the steady state value ofx and V (x ) > 0 at x 6= x � , this system is passive if:

dV
dt

� u T y : (11)

The passive system satisfying the condition presented in De�nition 3.1 is written as:

_x = Q (x ;u )
@V
@x

+ 
 (x )v ; y = 
 T (x )
@V
@x

: (12)

Here v is the modi�ed input, Q and 
 are the modi�ed interconnection matrices.
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Lemma 3.1 [4], Consider the system shown in equation (12), which with a storage
function V (x ): V (x � ) = 0 , where x � is the steady state value ofx and V (x ) > 0 at
x 6= x � , will be passive ifQ � 0.

In biochemistry, most of the microbial reactions are coupled but can be turned into
decoupled reactions either as a linear combination of functions of single state variable or
such a transformation can be achieved through decoupling process. The proposed pas-
sivization methodology is suitable for such reactions in terms of physical and structural
understanding. Decoupling also leads to further simpli�cation of the model by getting
rid of many complex terms using minor assumptions without considerable change in the
actual kinetics. The following section will explain the general process of decoupling of
coupled bioreactions and derive their passivity based model.

3.1 Decoupling of coupled bioreactions

A decoupled reaction has its rate terms depending only on single state or many states if
they can be separated (decoupled) algebraically so that they become a linear combination
of functions of single state only. It is supposed that there existj independent reactions
with a full rank stoichiometric cj which allow for the nice representation described above.
It would also be possible to achieve a partial stabilization of the system using passivity
properties [10], [11].

The bioreactor systems chosen here are single stream bioreactors having inlet concen-
tration of each component to be constant. Dilution rate D is the only control input in
such systems. We assume that we can split the rate term of� , i.e. cj r ( �;W ) into two
parts, u and c standing for uncoupled and coupledcu r u ( � u ;W ) and cc r c ( �;W ) , where
cu r u ( � u ;W ) is the sum of decoupled rate terms�cu pu ( � u ) and function f u ( � u ;W ) ,
with @(p u ) i

@(x ) j = @( f u ) i

@(x ) j = 0 if j 6= i , (:) i standing for the i th component of a vector.

cc r c ( �;W ) is the sum of a decoupled modi�ed rate term �cc r c ( � ) , where @(p c ) i

(@x ) j = 0,
if j 6= i and a remaining coupled term depends on the whole� , f c ( �;W ) . Concisely, one
can write:

2

4
_� u
_� c
_W

3

5 =

2

4
�cj 0
0 � D I

3

5

2

4
pu (� u )
pc (� c )

W

3

5 +

2

4
f u (� u ;W )
f c (� ;W )

0

3

5 +

2

4
D (� uin � � u )
D (� cin � � c )

0

3

5 : (13)

At this stage, equation (13) shows the decoupling process, as thed �rst equations are only
coupled by the vanishing reaction invariant W . In practical applications, the correspond-
ing variables are substrates concentrations, for which the kinetics is only coupled with
one or several biomass concentrations. Now, the input concentrations can be controlled
to obtain a more interesting con�guration for the coupled dynamics � c .

Lemma 3.2 Let us consider the equilibrium point � � of the system (13). If
(D � D � ) ( � cin � � c ) + D � �

� �
cin � � c

�
+ f c (� ;W ) � f c (� � ) = 0 ,
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then system(13) can be written as:
2

4
_� u
_� c
_W

3

5 =

2

4
�cj 0
0 � D I

3

5

2

4
pu (� u ) � pu

�
� �

u
�

pc (� c ) � pc
�
� �

c
�

W

3

5 +

2

4
(D � D � ) ( � uin � � u ) + D � �

� �
u � � u

�

0
0

3

5 :

(14)

Proof : At equilibrium, � � =
�

� u
� � c

� 0
�
. As _� = 0, this in

turn implies �cu pu (� u
� ) + f u (� u

� ) = � D � (� uin � � u
� ) and �ccpc (� c

� ) + f c (� � ) =
� D � (� cin

� � � c
� ).

Adding and subtracting pu (� u
� ), pc (� c

� ) in the corresponding equation (13) and
replacing the compensation yield the �nal result. The above set of equations will be
decoupled if one can cancel thef c term, using control terms. These control terms can be
either the dilution rate D , or the inlet concentrations � �

cin (provided that the equation
[A ] _� in + _� in = 0 is veri�ed). The states are only coupled by the stoichiometric matrix
�cj and W (W ! 0). The next section will show the passivization procedure using a
physical energy (storage) function.

3.2 Passivity based model of a general decoupled bioreactor

Proposition 3.1 Suppose the system:

_� u = �cj pu (� u ) � �cj pu (� u
� ) + f u (� u ;W ) � f u (� u

� )+
(� uin � � u )
| {z }

g

(D � D � )
| {z }

u

+ D � (� u
� � � u ) (15)

is passive with storage function V (� u ; t), input u and output y : y = gT @V
@� u

, and
f u (� u ;W ) � f u (� u

� ) is a vanishing perturbation: lim
t !1

f u (� u ;W ) � f u (� u
� ) = 0 . As-

sume that there exists a neighbourhoodZ of � u
� such that the reduced system:

_� u = �cj pu (� u ) � �cj pu (� u
� ) + ( � uin � � u ) (D � D � ) (16)

has � u
� as an exponentially stable equilibrium point and for�� u = � u � � u

� , the storage
function V (� u ; t) satis�es the following conditions:
9k3;k4 > 0;k3 k �� u k� @V

@� u
� k4 k �� u k;

9
 : 
 + D � > 0 k f 0(� u ;W ) � f u (� u
� ) k� (
 + D � ) k �� u k.

Then the full system (15) is also locally exponentially stable at� � if:
(� � min k3 � k3 + k4(
 + D � )� max ) < 0; where� min , � max are the minimum and maximum
eigenvalues of� �cj .

Proof : One knows from the exponential stability conditions that 3 k1;k2 > 0,
k1 k �� u k� V � k2 k �� u k. Since dV

dt = @V
@� u

@� u
@t , it follows from the assumption:

@V
@� u

T
�cj (pu (� u ) � pu (� u

� )) � (� � min � 1)k3 k �� u
2 k,

@V
@� u

T
(f u (� u ;W ) � f u (� u

� ;0)) � k4(
 + D � )� max k �� u
2 k :

Now, dV
dt � (� � min k3 � k3 + k4(
 + D � )� max ) k �� u

2 k + u T y � u T y if
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(� � min k3 � k3 + k4(
 + D � )� max ) < 0; Hence, the reduced system (16) is exponentially
stable and according toTheorem 3.12 in [12], the full system will be exponentially stable.

Now, Proposition 3.1 tells that the full system will be exponentially stable if the
reduced unperturbed system is exponentially stable. FromProposition 3.1 one can take
f u (� u ;W ) � f u (� u

� ;0) + D � (� u
� � � u ) = 0 and the system (13) is written as (17).

2

4
_� u
_� c
_W

3

5 =

2

4
�cj 0
0 � D I

3

5

2

4
pu (� u ) � pu

�
� �

u
�

pc (� c ) � pc
�
� �

c
�

W

3

5 +

2

4
(D � D � ) ( � uin � � u )

0
0

3

5 : (17)

This presentation is straightforward and physically linked to passivity.

Proposition 3.2 Consider the system(17) with �cj � 0. Assume that there exists a
neighbourhoodZ of � = � � such that:

1.
P

0

@
( � u ) iR

0
(pu ) i �

( � u ) i � �
( � u ) iR

0
(pu ) i �

( � u
� ) i �

1

A > 0

2.
P

0

@
( � c ) iR

0
(pc ) i �

( � c ) i � �
( � c ) iR

0
(pc ) i �

( � c
� ) i �

1

A > 0,

then the storage function V 0 =
nP

i =1
V 0

i =
n uP

i =1

R�
(pu ) i ( � u ) i � (pu ) i ( � �

u ) i � @( � u ) i +

n cP

i =1

R�
(pc ) i ( � c ) i � (pc ) i ( � �

c ) i � @( � c ) i +
n � jP

i =1

1
2 W i

2 will make the reduced system(17)

asymptotically stable at� = � � .

Proof : One hasV 0 being always positive around� � . On partially di�erentiating V 0

w.r.t. states � u ,� c and W :

@V0

@� u
= pu (� u ) � pu (� u

� ) :
@V0

@� c
= pc (� c ) � pc (� c

� ) :
@V0

@W
= W (18)

the system in (17) can be written in the form:

2

4
_� u
_� c
_W

3

5

| {z }
_�

=

2

4
�cj 0
0 � D I

3

5

| {z }
Q 0

2

64

@V0

@� u
@V0

@� c
@V0

@W

3

75

| {z }
@V0
@�

+

2

4
(� uin � � u ) 0 0

0 0 0
0 0 0

3

5

| {z }
g

2

4
(D � D � )

0
0

3

5

| {z }
u 0

:
(19)

The output of the system will be y 0 = gT @V
@� . The time derivative of V 0 is:

_V 0=
@V0

@�
_� =

@V0

@�

T

Q0@V0

@�
+

@V0

@�

T

gu0 =
@V0

@�

T

Q
@V0

@�
+ y 0T u 0: (20)

Since �cj � 0 and D > 0 is making matrix Q0 negative de�nite, (19) is passive. V 0
i is

minimum i.e. 0 at ( � � ) i , the system (19) has a passive equilibrium point� = � � .
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4 Passivity Based Control

Passivity based control is a generic design method which is extensively used in electro-
mechanical systems.

Proposition 4.1 [4] Consider the passive system of the form:

_x = Q (x ;u )
@V
@x

+ 
 (x )v ;y = 
 T (x )
@V
@x

; (21)

where V (x ) is the speci�ed closed-loop storage functionV (x ): V (x d ) = 0 , x d 6= 0 is the
desired steady state value ofx and V (x ) > 0, Q � 0. Suppose that the model is zero state
detectable, then the feedbackv = � C (x ; t)y with C (x ; t) � eI > 0 and constant e renders
x = x d globally asymptotically stable.

4.1 Passivity based control of a general decoupled bioreactor

The following proposition will give general formulations of passivity based control of a
decoupled bioreactor system.

Proposition 4.2 Consider the desired storage function�V , with conditions following:

�V =
nX

i =1

�Vi =
n uX

i =1

Z �
pu (� u ) � pu

�
� d

u

�� i
(@� u ) i

+
n cX

i =1

Z �
pc (� c ) � pc

�
� d

�� i
(@� c ) i +

n � jX

i =1

1
2

(W 2) i ;

(22)

1.
n uP

i =1

0

@
( � u ) iR

0
(pu ) i �

(� u ) i � �
( � u ) iR

0
(pu ) i �

(� d
u ) i �

1

A > 0,

2.
n cP

i =1

0

@
( � c ) iR

0
(pc ) i �

(� c ) i � �
( � c ) iR

0
(pc) i �

(� d
c ) i �

1

A > 0,

3. �V
�
� d �

= 0

Hence, the system(19) is passive and the feedback�u = � C (x ; t) �y with C (x ; t) � eI > 0
renders (19) globally asymptotically stable at� = � d.

Proof : After replacing the equilibrium point � � with desired equilibrium point � d ,
the system (19) can take the form:

2

4
_� u
_� c
_W

3

5

| {z }
_�

=

2

4
�cj 0
0 � D I

3

5

| {z }
Q 0

2

64

@�V
@� u
@�V
@� c
@�V
@W

3

75

| {z }
@�V
@�

+

2

4
(� uin � � u ) 0 0

0 0 0
0 0 0

3

5

| {z }
g

2

4

�
D � D d �

0
0

3

5

| {z }
�u

:
(23)

According to Proposition 3.2, this system is passive. The input of the system is�u and
the output �y is: �y = [ g]T @�V

@� . By Proposition 4.1, the feedback �u = � C (x ; t) �y with
C (x ; t) � eI > 0 will render (23) globally asymptotically stable at � = � d .
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5 Application to a Single Reaction with Monod Kinetics: Aniline Degrada-
tion by Pseudomonas Putida in CSTR

Aniline is among the toxic constituents of many industrial e�uents (e.g. wastewaters in
chemical and dyeing industries). Biological processing for aniline degradation is a cheap
and green alternative to chemical removal processes such as solvent extraction, chemi-
cal oxidation, etc. In [13] the author has studied the model of aniline degradation by
Pseudomonas putidaATCC 21812 cells in batch reactors following a Monod model.Pseu-
domonas putidagrowth X and simultaneous aniline degradationS in a CSTR equations
are:

_X = �X � DX; _S = �
�X
Y

+ D (Sin � S) ; (24)

where D is the dilution rate, Y is the cell/substrate yield coe�cient and � is the speci�c
growth rate. For Monod kinetics:

� =
� m S

K s + S
; (25)

here � m is the maximum speci�c growth rate and K s is the half velocity constant. The
state space will be [z ] =

�
S X

� T and the model can be represented as:
� _S

_X

�

| {z }
_!

=
�

� 1 0
0 1

�

| {z }
c

� �X
Y

�X

�

| {z }
r

+
�

DS in � DS
� DX

�

| {z }
D (z in � z out )

: (26)

5.1 Coordinate transformation and a passivity based model

Divide the state space into two parts � a and � b such that:
h

_�
i

=
� _S

�
= [ � 1]

| {z}
c j

�
�X
Y

�

| {z }
r

+[ DS in � DS ]
| {z }

D ( � in � � )

;
h

_�
i

=
� _X

�
= [1]

|{z}
ck

[�X ]
| {z }

r

+ [ � DX ]
| {z }

D (  in �  )

: (27)

The new coordinateW can be written as:

W = A (Sin � S) + Y (X in � X ) ; (28)

where A = 1, X in = 0 and Sin is a constant. Hence, di�erentiating (28) w.r.t. time and
substituting (27) will give _W = � DW . With the new state space

�
S W

� T and the
substitution X = Sin � S � W the bioreactor model becomes:

� _S
_W

�
=

�
� 1 0
0 � D

� �
� (Sin � S)

Y
W

�
+

�
� W

Y
0

�
+

�
D (Sin � S)

0

�
: (29)

Taking the steady state points of (S;W) as (S� ;0) and then adding and substracting

equilibrium rate term � (S� ) (Sin � S � )
Y in (29), (29) can be written as:

� _S
_W

�
=

�
� 1 0
0 � D

� "
� (Sin � S)

Y � � (S� ) (Sin � S � )
Y

W

#

+
�

� W
Y
0

�

+
�

(D � D � ) (Sin � S) + D � (S� � S)
0

�
:

(30)
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From Proposition 3.1, � W
Y + D � (S� � S) = 0. Using the storage function:

V 0=
Z

� (S)
(Sin � S)

Y
@S�

Z
� � (S� )

(Sin � S� )
Y

@S+
1
2

W 2; (31)

where � � ;S� are the steady state values of�;S , and doing some algebraic modi�cations,
the bioreactor model can be rewritten as:

� _S
_W

�

| {z }
_�

=
�

� 1 0
0 � D

�

| {z }
Q

"
@V0

@S
@V0

@W

#

+
�

Sin � S 0
0 1

�

| {z }



�
(D � D � )

0

�

| {z }
u0

:
(32)

The matrix Q will always be negative de�nite and it can be seen through careful obser-
vation that V 0 � 0 and 0 at S = S� , making the system (32) passive.

5.2 Passivity based control design

Replacing the steady stateS� with desired steady stateSd and the new storage function
�V :

�V =
Z

� (S)
(Sin � S)

Y
@S�

Z
� d

�
Sd

� �
Sin � Sd �

Y
@S+

1
2

W 2; (33)

where � d is the desired steady state values of� , and doing some algebraic modi�cations,
the bioreactor model can be rewritten as:

� _S
_W

�

| {z }
_�

=
�

� 1 0
0 � D

�

| {z }
Q

"
@�V
@S
@�V
@W

#

| {z }
@�V
@�

+
�

Sin � S 0
0 1

�

| {z }



�
(D � D d)

0

�

| {z }
�u

; �y = 
 T @�V
@�

:
(34)

Matrix Q � 0 and if �V � 0, the system (34) is passive.�V = 0 at S = Sd and W = 0.
Since the system (34) is zero state detectable if the desired concentration of substrate
Sd = 0, the feedback �u = � C �y ensures asymptotical stability at S = Sd.

5.3 Simulations

An industrial incident, where 9 tons of aniline at 70 mg=l leaked from a chemical plant
into a river is considered, and 1 mg=l or less must be reached. Monod parameters
are K s = 3 :1 mg=l, � m = :12h� 1, Y = 0 :74. The dilution rate D is the control input
and substrate concentration is the only measurement. The simulation results compare
three control strategies i.e. chemostat control with steady state dilution rate, passivity
based control and passivity based adaptive control (not discussed here but similar to the
control designed in [14]). The new coordinateW converges to zero as shown in Figure 2,
ensuring proper control. The cell concentration will obviously increase at a similar rate
as substrate concentration will decrease as can be seen in Figure 4.
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Figure 1 : Substrate Concentration; Bold:
Chemostat; Dotted: Passivity Based;
Dashed: Adaptive.
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Figure 2 : W Concentration; Bold: Chemo-
stat; Dotted: Passivity Based; Dashed:
Adaptive.
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state, Dotted: Passivity Based; Dashed:
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Chemostat; Dotted: Passivity Based;
Dashed: Adaptive.

6 Conclusion

This paper is a successful attempt to maintain the structure and physical meaning of the
passivity based model of microbial reactions with Monod kinetics in continuous reactors
by using meaningful storage functions and obvious coordinate transformation on the
grounds of passivity. The general model implies that this technique can be directly
applied to a huge set of reactions. This paper is providing a physical view for all issues
related to robust control of a bioreaction. Simulations obtained justify and validate the
model. In the future, this technique can be extended to other kinetics involved and to
di�erent types of reactors such as plug 
ow, etc. The physical meaning given to the
design of observers (as in e.g. [15]) and parameter estimation could be an interesting job
to work on.
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Abstract: A nonlinear dynamic system with several degrees of freedom, which is
represented by a system of di�erential equations with polynomial structure, is consid-
ered. The system contains non-linear polynomials. It is assumed that the spectrum
of the eigenvalues of the linear part matrix starts with a pair of complex conjugate
eigenvalues having negative real parts with minimum modulus. A polynomial trans-
formation of the equations is performed in order to simplify the mathematical model
by reducing the number of non-linear terms in the di�erential equations. Nonlinear
oscillations of an object with constant parameters are investigated. Estimations of
motion are obtained by the method of di�erential inequalities for positive de�nite
Lyapunov function at di�erent ratios between the constant parameters of the system.
An example is presented .

Keywords: autonomous dynamical system; degrees of freedom; phase state variables;
nonlinear oscillations; polynomial transformation of variables; Lyapunov function;
di�erential inequality.
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1 Introduction

The paper deals with nonlinear analysis in classical and modern mechanics [1{5].
We use a Poincare-Dulac approach [6{9] and consider a nonoscillatory nonlinear sta-

tionary mechanical system with one degree of freedom. The system has autonomous
nonlinear polynomial characteristics associated with its phase variables. This fact leads
to the linear form, alternative to the extended model method shown in [10].
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2 Transformation of Polynomial Equations

We consider a nonlinear autonomous system of equations of perturbed motion in the
case when all roots of the characteristic equation of the corresponding linear system are
di�erent [11{13]. Let us transform it into a canonical form

_ys = � sys +
mX

k=2

X

� 1 + ::: + � n = k

p( � 1 ;:::;� n )
s y� 1

1 : : : y� n
n

�
s = 1; n

�
; (1)

where ys are real and complex variables;� s are roots of the characteristic equation of
the linear part of the system; p( � 1 ;:::;� n )

s are small coe�cients; m are odd numbers.
Suppose� 1 and � 2 are complex-conjugate pure imaginary roots or roots with real

parts much less than those of the other roots and the imaginary parts of these roots

� 1;2 = � � �i; where � ? 0; j� j < �:

The real parts of the other roots are essentially negativejRe� s j < 0; s = 3; n.
It should be noted that in such case the variablesy1; y2 will be complex-conjugated.
Such systems are often used to describe nonlinear oscillations in engineering and physics.
Suppose the roots� 1 : : : � n are such that within the limits of some number of digit order
numbers k = 3; m they do not vanish at any values of indices� 1; : : : ; � n complying with
the condition (2), except for the values (3) whereRe � 1; Re � 2 are small.

� ( � 1 ;:::;� n )
s = � 1� 1 + � 2� 2 + : : : + ( � s � 1) � s + � s+1 � s+1 + : : : + � n � n ;�
s = 1; n; � 1 + : : : + � n = k; � i � 0

�
:

(2)

s = 1 ; � 1 = ( k + 1) =2; � 2 = ( k � 1) =2; k � odd;
s = 2 ; � 1 = ( k � 1) =2; � 2 = ( k + 1) =2; � 3 = : : : = � n = 0 ; k = 3; m;
s = 3; n; � 1 = � 2 = ( k � 1) =2; � s = 1 ;
� 3 = : : : = � s� 1 = � s+1 = � s+2 = : : : = � n = 0 :

(3)

With these hypotheses, we approximately integrate system (1) in the neighborhoodP n
s=1 jys j2 � "2. Let us make polynomial transformation of variables.

zs = ys +
mX

k=3

X

� 1 + ::: + � n = k

A ( � 1 ;:::;� n )
s y� 1

1 : : : y� n
n

�
s = 1; n

�
: (4)

The transformation coe�cients are constant and are de�ned from the condition that the
system (1) in new variables has the following form

_zs =

 

� s +
mX

k=3

a(k )
s r k � 1

!

zs + Z (m +1)
s ; r = jz1j =

p
z1z2: (5)

The right-hand parts of this system contain linear as well as nonlinear terms correspond-
ing to special values of indices with unde�ned coe�cients and remainder terms of (m +1)
smallness order. We make coe�cientsA ( � 1 ;:::;� n )

s corresponding to special values (3) equal
to zero (instead of them the coe�cients a(k )

s are introduced). In order to calculate all
unde�ned coe�cients, we apply

r 2 =
X

B ( � 1 ;:::;� n ) y� 1
1 : : : y� n

n ; B ( � 1 ;:::;� n ) =
X

� 0
r

A
�

�
0
1 ;:::;�

0
n

�

1 A
�

� 1 � �
0
1 ;:::;� n � �

0
n

�

2 : (6)
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Having put every sum in the form
P

Q( � 1 ;:::;� n ) y� 1
1 : : : y� n

n and equating the coe�cients
of similar powers C � 1

1 : : : C � n
n , we obtain the following equations:

� ( � 1 ;:::;� n )
s A ( � 1 ;:::;� n )

s + p( � 1 ;:::;� n )
s =

kP

k 0= �
a(k 0)

s
P

�
� ( i )

r ;� 00
r

�

k 0� 1
2Q

i =1
B

�
� ( i )

1 ;:::;� ( i )
n

�

A
�

�
00
1 ;:::;�

00
n

�

s �

�
nP

i =1

P

� 0
j

�
0

i p
�

� 1 � �
0
1 ;:::;� i � �

0
i +1 ;� i +1 � �

0
i +1 ;:::;� n � �

0
n

�

i A
�

�
0
1 ;:::;�

0
n

�

s ; s = 1; n; k0is odd:

(7)
We designate the sum of upper indices in unde�ned coe�cientsA ( � 1 ;:::;� n )

s as a coe�cient
decade. In the right-hand part of the equations the sums depend on the coe�cients with
decade smaller thank, as every factor \takes" its decade from the total \stock" of k.
The high-order digit f k0g of the coe�cients a(k 0)

s is reached when the number of factors
under the product sign is the largest, which is possible if every factor has the lowest
order. By adding correlations we de�ne that k0 = k, and by analysing every correlation
we can make sure that indexes� have special values (3). So the high-order digit of the
coe�cients equals k; besides, it may be obtained only with special values of indexes. It
is obvious that the coe�cient a(k )

s equals one.
System (7) represents a chain of linear algebraic equations which is solved starting

from the lower order k = 2 and from the lower number s = 1 to further ones. Indeed,
all equations corresponding to non-special values of indices are satis�ed when choosing
unde�ned coe�cients from the �rst term of the formula (7), and all \special" equations
where the factor A ( � 1 ;:::;� n )

s equals zero or is very small are satis�ed when choosinga(k )
s .

The remainder functions Z (m +1)
s should be equated to nonlinear terms of not lower

than (m + 1) order that are contained in the equations obtained by means of formulas
(4) and (1) in (5). These functions may be transformed tozs variables by correlations
(4) previously solved with respect to ys.

3 Transformed System Analysis

Suppose that by means of (4), (7) the system (1) is transformed to (5). The latter system
may be integrated if the remainder terms of (m + 1) order are ignored. From the �rst
two equations we obtain the equation for variables module:

_r = �r +
mX

k=3

� (k ) r k where � = Re� 1 < 0; � (k ) = Re a(k )
1 : (8)

The special points of the equation (8) are de�ned in [t0; t] by equating the right-hand
part to zero, and general solution is de�ned by means of variables separation.

r
s
r 0

�
�r +

X
� (k ) r k

� � 1
dr = t � t0 ; (k are odd numbers): (9)

The second way of equality (8) integration is given in [14]. Suppose that using one of
the methods, we found the solutionr = r (t; r 0; t0). Then the solutions of the �rst and
second equations of system (5) are as follows:

z1;2 = re� i� at � = � (t � t0) +
mX

k=3

� (k )
t
s
t 0

r k � 1dt + � 0; � (k ) = Im a(k )
1 : (10)
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The solution of the other equations is obtained according to the following formulas:

zs = zs0 exp

 

� s(t � t0) +
X

k

a(k )
s

t
s
t 0

r k � 1dt

!

; s = 3; n: (11)

In order to �nd an approximate solution in variables ys we must solve the transfor-
mation (4) with respect to ys:

ys � zs +
X

B ( � 1 ;:::;� n )
s z� 1

1 : : : z� n
n ; s = 1; n: (12)

The coe�cients B ( � 1 ;:::;� n )
s may be expressed in terms ofA ( � 1 ;:::;� n )

s by using (12) in
(4) and equating the coe�cients with similar terms. Namely, the coe�cients of lower
orders in (12) di�er from the coe�cients in (4) only by sign.

With regard to the obtained approximated solution, there is an idea that: if it is
allowed to ignore or add the terms of (m + 1) order and more in equations (1), then it
is always possible to select terms such that the obtained system will be integrated quite
accurately. These terms are selected from the condition ofZ (m +1)

s being equal to zero.

Remark 3.1 An additional condition for the characteristic coe�cients (2) may be
annulled, if we introduce additional terms corresponding to the special values of indices
into the transformed system (5), as Dulak did in a non-special case. In this case, instead
of system (5), we have:

_zs =

 

� s +
mX

k=1

a(k )
s r k � 1

!

zs +
mX

~� j

a(~� 1 ;:::; ~� s � 1 )
s z~� 1

1 : : : z~� s � 1
s� 1 + Z (m +1)

s : (13)

The equations that must be in accord with the unde�ned coe�cients are calculated from
formulas (4) and (1) in (13) and by equating the coe�cients of the corresponding terms;
they di�er from equations (7) by the additional terms. The system (13) also represents
a chain of consequent approximately integrated equations.

We note that I.G. Malkin [15] analyzed the transformation of two equations system
to the form similar to the �rst two equations of system (5) by means of substitution
reverse to substitution (4).

From the �rst two equations we can obtain an equation similar to (8) but with an
additional term of ( m + 1) order

_r = rf
�
r 2�

+ R(m +1) ; f
�
r 2�

= � +
mX

k=3

� (k ) r k � 1; (14)

where k; m are odd. Let us take Lyapunov’s function and its derivative

V = r 2 +
nX

s=3

zs �zs; _V = 2 r _r +
mX

s=3

( _zs �zs + _�zszs) :

Taking into consideration the equations (14) and (5), we obtain the inequality:
_V < 2

�
f (V ) + KV

m
2

�
V; 0 < V � "2: (15)

Function V decreases in this ring in accordance with the law
V
s
V0

dV�
f

�
V + KV m

2
��

V
> 2(t � t0); 0 < V0 < " 2: (16)
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Example 3.1 Let us integrate approximately the Van-der-Pol equation

_x = "x � y � "xy 2; _y = x: (17)

Here, � 1;2 � � � i , where � = "=2 > 0 are the complex-conjugated roots of the
characteristic equation of the corresponding linear system with small real part. Let us
put system (17) into the canonical form:

_y1 = � 1y1 + p(3 ;0)
1 y3

1 + p(2 ;1)
1 y2

1y2 + p(1 ;2)
1 y1y2

2 + p(0 ;3)
1 y3

2 ; y2 = y1: (18)

Accurate to the "2 order, we have:

p(3 ;0)
1 = p(0 ;3)

1 = � p(2 ;1)
1 = � p(1 ;2)

1 =
"
2

; y1 = x +
�

�
"
2

+ i
�

y :

Let us make transformation of variables

z1 = y1 + A (3 ;0)
1 y3

1 + A (1 ;2)
1 y1y2

2 + A (0 ;3)
1 ; y3

2 (19)

where the coe�cients are de�ned from formulas (7), (2)

(� 1� 1 + � 2� 2 � � 1) A ( � 1 ;� 2 )
1 + p( � 1 ;� 2 )

1 = 0 ; p(2 ;1)
1 = a(3)

1 (� 1 = 3 ; 1; 0; � 2 = 3 � � 1) :

Therefrom, accurate to the 2nd order, we �nd:

A (3 ;0)
1 = A (1 ;2)

1 = � A (0 ;3)
1 = �

"i
32

; a(3)
1 = �

"
8

; (20)

z1 being a variable module, according to (8), satis�es the equation:
dr
dt

�
"
2

r �
"
8

r 3;

which coincides with the equation for amplitude obtained by the method of Krylov and
Bogolyubov [16]. General solution is as follows:

r = 2
�
1 + ce� "t � � 1

2 ; where c =
4
r 2

0
� 1: (21)

From formula (10), we obtain:

z1 = rei� ; z2 = z1 = re� i� ; where � = t + � 0; (22)

where the initial value � 0 can be de�ned on the basis of (18), (20), (21).
Formulas (21), (22) show that in complex planez1 = � + i� the paths of representation

point and spiral coil from the inside and outside on the circumferencer = 2 . As this
takes place, the angular speed of vector radius r is� = 1. Based on (19) and (21) we
have:

y1 � z1 � A (3 ;0)
1 z3

1 � A (1 ;2)
1 z1z2

2 � A (0 ;3)
1 z3

2 = r ei� �
"i
32

r 3 �
2e3i� + 2e� i� � e� 3i� �

:

The original variable is determined as:

y =
y1 � y2

2i
= Im (y1) = r sin � �

"
32

r 3 (cos2� + 2cos�) ; � = t + � 0:

The results are shown in Figure 1.
As t ! 1 , all solutions, except for zero, asymptotically tend to the periodic one

y = 2 sin � �
"
2

cos� �
"
4

cos 3�; � = t + � 0:

This solution accurate to "2 terms coincides with the solution de�ned by the method
of Krylov and Bogolyubov [6,14,17].
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2 4 6 8 10
t

-2

-1

1

2

y[t]

Figure 1 : (|) denotes an exact solution y(t) of (3.1), ( � � � � � � ) stands for an approximate
solution,( � � � ) means an approximation error.

4 Conclusion

Using the non-linear transformation of the polynomial model with adopted precision we
investigate a nonlinear vibrational autonomous system with �nite degrees of freedom at
di�erent ratios between the constants.

This transformation simpli�es the form of di�erential equations, ultimately reduces
the number of non-linear terms in the model and forms a small number of high-quality
constant coe�cients of monomials. The method is modi�ed in order to exclude small
divisors. Nonlinear oscillations are investigated by means of analytical integration of the
transformed recurrence equations, as well as by integrating the di�erential inequalities
for the Lyapunov function. This method can be applied to a wide range of problems.
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Abstract: This paper is concerned with the existence of mild solutions for nonlocal
impulsive fractional order functional stochastic di�erential equations with delay. The
existence and uniqueness results are shown by using the �xed point technique in a real
Hilbert space. Finally, we illustrate the uniqueness result by an example involving
partial derivatives.
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1 Introduction

The modeling with stochastic di�erential equations has attracted many authors due to
its various applications in physics, biology, mathematical �nance, etc (see [29, 31, 33]
and references therein). The issues related to the existence and uniqueness for such
model are widely studied by many authors and one can see the contribution in [5, 7,
18, 19, 34, 35, 37] and references therein. Recently, Das et al. [15] studied a fractional
stochastic model with deviating argument and successfully applied the Faedo-Galerkin
approximation method to prove the existence results. Benchaabane et al. [7] examined
the Sobolev-type fractional stochastic model and established the existence and uniqueness
of mild solutions via Picard’s iteration technique.

Recently, the modeling with fractional di�erential equations has gained considerable
importance due to its numerous applications in various �elds of science and engineering,
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such as physics, chemistry, mechanics, system identi�cation, etc (see the monographs
[26, 30, 32]). A signi�cant and systematic development on the existence and uniqueness
of solutions for nonlinear type model of fractional di�erential equations can be seen
in [3, 4, 10, 24, 25] and references therein. The model with impulsive nature is found in
many real world problems which describe the phenomena of evolution of processes that
are subject to sudden changes in their states, for details and update work, we cite the
papers [12{14,17,20,23,28,39,40].

In some phenomena, the rate of change of the system and current status often depends
not only on the current state but also on the history of the system. Such type of problem
models are in the form of functional di�erential equations and arise in many important
�elds such as cell biology, electrodynamics, position control, etc. For more details, we
refer the reader to the monographs [22,27] and the papers [11,35{37].

The nonlocal type initial condition, which is generalization of classical initial condi-
tion, was �rstly initiated by Byszewski [8]. Further, Byszewski and Lakshmikantham
in [9], remarked that the nonlocal condition can be more useful than the standard initial
condition to describe some physical phenomena. In [41] Jhou et al. considered more gen-
eral nonlocal condition and established the existence and uniqueness of mild solutions by
using Krasnoselskii’s �xed point theorem and Banach contraction principle.

As far as solution technique is concerned, Feckan et al. [16] established a concept of
solutions for the class of impulsive fractional di�erential equations which is claimed to
be more suitable than the concept given by Agarwal et al. [2]. Recently, many authors
followed this concept and improved the existing results (see [12, 14, 36]. In this work,
we de�ne the mild solution of the system (1)-(3) using the concept introduced in papers
[16,38]. The mild solution is associated with the solution operator reformed by Mittag{
Le�er function on a Hilbert space.

Motivated by the above mentioned works as well as the papers [11,16, 35, 36, 39, 41],
we consider the following impulsive fractional functional stochastic di�erential equation
with nonlocal condition:

C D �
t u(t) = Au(t) + tn f (t; u t ) + tn g(t; u t )

dw(t)
dt

; t 2 J; t 6= tk ; (1)

u(t) + ( h(ut 1 ; ut 2 ; : : : ; ut p ))( t) = � (t); t 2 [� d;0]; (2)

� u(tk ) = I k (u(t �
k )) ; k = 1 ; 2; : : : ; m; (3)

where J = [0 ; T ]; n 2 Z + ; and C D �
t denotes Caputo’s fractional derivative of order

� 2 (0; 1). A : D (A) � H ! H is a closed linear sectorial operator de�ned on a
Hilbert space (H; k � k) and u(�) takes the values in the real separable Hilbert spaceH;
f : J � P C0

L ! H , g : J � P C0
L ! L (K ; H), h : P C0

L
p ! H and I k : H ! H are

appropriate functions; � (t) is F0- measurableH-valued random variable independent of
w. The functions u� are de�ned as u� (t) = u(� + t) for � 2 [� d;0].

In the problem under consideration, the equation (1) is very important due to its
appearance in the mathematical modeling of viscoelasticity. This fact prompts us to
study the existence and uniqueness of solutions of system (1)-(3). To the best of our
knowledge, the study of su�cient conditions for the existence of the problem (1)-(3) in
Hilbert space is an untreated topic yet.

This work has been divided in four sections, the second section provides some basic
de�nitions and preliminary results. The third section is equipped with main results
for the problem (1)-(3) and in the last section an example is presented to verify the
established results.
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2 Preliminaries

Let H; K be two real separable Hilbert spaces andL (K ; H) be the space of bounded
linear operators from K into H. For convenience, we will use the same notationk � k to
denote the norms in H; K and L (K ; H), and use (�; �) to denote the inner product of H
and K without any confusion. Let (
 ; F; f Ft gt � 0; P) be a complete �ltered probability
space satisfying the condition thatF0 contains all P-null sets of F: An H� valued random
variable is an F- measurable functionu(t) : 
 ! H and a collection of random variables
S = f u(t; ! ) : 
 ! H n t 2 J g is called the stochastic process. Usually, we writeu(t)
instead of u(t; ! ) and u(t) : J ! H in the space ofS. Let W = ( Wt )t � 0 be a Q-Wiener
process de�ned on (
 ; F; f Ft gt � 0; P) with the covariance operator Q such that T rQ < 1 :
We assume that there exist a complete orthonormal systemf ek gk � 1 in K , a bounded
sequence of nonnegative real numbers� k such that Qek = � k ek ; k = 1 ; 2; : : : ; and a
sequence of independent Brownian motionsf � k gk � 1 such that

(w(t); e)K =
1X

k=1

p
� k (ek ; e)K � k (t); e 2 K ; t � 0:

Let L 2
0 = L 2(Q 1

2 K ; H) be the space of all Hilbert-Schmidt operators fromQ 1
2 K to H with

the inner product < ’;  > L 2
0
= T r [’ Q � ].

The collection of all strongly measurable, square integrable,H-valued random vari-
ables, denoted byL 2(
 ; F; f Ft gt � 0; P; H) = L 2(
; H); is a Banach space equipped with
the norm ku(�)k2

L 2 = Eku(�; w)k2
H ; where E denotes expectation de�ned by E (h) =R


 h(w)dP. An important subspace is given by L 2
0(
; H) = f f 2 L 2(
 ; H) : f is F0- is

measurableg.
We consider the space

P C0
L = P C([� d;0]; L 2(
; H))

as a Banach space of all continuous functionsu : [� d;0] ! L 2(
; H); endowed with the
norm

kuk2
P C 0

L
= sup

t 2 J

�
Eku(t)k2

H ; u 2 P C0
L

	
:

To study the impulsive conditions, we consider

P CL = P C([� d; T]; L 2(
; H))

as a Banach space of all such continuous functionsu : [� d; T] ! L 2(
; H); which are
continuous on [0; T ] except for a �nite number of points t i 2 (0; T ); i = 1 ; 2; : : : ; m; at
which u(t+

i ) and u(t �
i ) = u(t i ) exist, endowed with the norm

kuk2
P C L

= sup
t 2 J

�
Eku(t)k2

H ; u 2 P CL
	

:

Remark 2.1 ( [21]) If � 2 (0; 1) and A 2 A � (� 0; ! 0); then for any u 2 H and t > 0
we havekT� (t)k � Me!t and kS� (t)k � Ce!t (1 + t � � 1), ! > ! 0: Thus we have

kT� (t)k � fM T and kS� (t)k � t � � 1 fM S ;

where fM T = sup0� t � T kT� (t)k and fM S = sup0� t � T Ce!t (1 + t1� � ):
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Now, we state the de�nition of mild solution of the system (1)-(3) based on the
concept introduced in [38].

De�nition 2.1 A measurable Ft � adapted stochastic processu : [� d; T] ! H
such that u 2 P CL is called a mild solution of the system (1)-(3) if u(0) = � (0) �
(h(ut 1 ; ut 2 ; : : : ; ut p ))(0) on [ � d;0]; � ujt = t k = I k (u(t �

k )) ; k = 1 ; 2; : : : ; m; the restriction
of u(�) to the interval [0 ; T )nt1; : : : ; tm ; is continuous and u(t) satis�es the following in-
tegral equation

u(t) =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

S� (t)[� (0) � (h(ut 1 ; ut 2 ; : : : ; ut p ))(0)]
+

Rt
0 T� (t � s)sn f (s; us)ds

+
Rt

0 T� (t � s)sn g(s; us)dw(s); t 2 (0; t1];
S� (t)[� (0) � (h(ut 1 ; ut 2 ; : : : ; ut p ))(0)]
+ S� (t � t1)I 1(u(t �

1 )) +
Rt

0 T� (t � s)sn f (s; us)ds
+

Rt
0 T� (t � s)sn g(s; us)dw(s); t 2 (t1; t2];

...
S� (t)[� (0) � (h(ut 1 ; ut 2 ; : : : ; ut p ))(0)]
+

P m
i =1 S� (t � t i )I i (u(t �

i )) +
Rt

0 T� (t � s)sn f (s; us)ds
+

Rt
0 T� (t � s)sn g(s; us)dw(s); t 2 (tm ; T ]:

To avoid the repetitions of the basic de�nitions, we cite them from appropriate papers
and books: for Reimann-Liouville integral operator, Mittag{Le
ler function and Caputo’s
derivative see [32], for� -resolvent family see [4], for sectorial operator see [21] and for
solution operator see [1].

3 Existence and Uniqueness of Solutions

For the forthcoming analysis, we introduce the following assumption.

(H1) Functions f ; g; h and I k are continuous and there exist positive constantsL f ; L g; L h
and L I such that

Ekf (t; � ) � f (t; ’ )k2
H � L f k� � ’ k2

P C 0
L

;

Ekg(t; � ) � g(t; ’ )k2
H � L gk� � ’ k2

P C 0
L

;

Ek(h(ut 1 ; ut 2 ; : : : ; ut p ))( t) � (h(vt 1 ; vt 2 ; : : : ; vt p ))( t)k2
H � L h Eku � vk2

H ;

EkI k (u) � I k (v)k2
H � L I Eku � vk2

H ;

for all u; v 2 H and �; ’ 2 P C0
L :

Our �rst result is based on the Banach contraction principle.

Theorem 3.1 Let the assumption (H1) hold with the positive constant

� =

(
[4fM 2

SL h + 4m fM 2
SL I + 4 fM 2

T
T 2 � + n

�
�( � )�( n +1)
�( � + n +1) L f

+4 fM 2
T T2� � 1+ n �(2 � � 1)�( n +1)

�(2 � + n ) L g]
< 1;

then the system (1)-(3) has a unique mild solution.
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Proof. De�ne the operator P : P CL ! P CL so that

(P u)( t) =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

S� (t)[� (0) � (h(ut 1 ; ut 2 ; : : : ; ut p ))(0)]
+

Rt
0 T� (t � s)sn f (s; us)ds

+
Rt

0 T� (t � s)sn g(s; us)dw(s); t 2 (0; t1];
S� (t)[� (0) � (h(ut 1 ; ut 2 ; : : : ; ut p ))(0)]
+ S� (t � t1)I 1(u(t �

1 )) +
Rt

0 T� (t � s)sn f (s; us)ds
+

Rt
0 T� (t � s)sn g(s; us)dw(s); t 2 (t1; t2];

...
S� (t)[� (0) � (h(ut 1 ; ut 2 ; : : : ; ut p ))(0)]
+

P m
i =1 S� (t � t i )I i (u(t �

i )) +
Rt

0 T� (t � s)sn f (s; us)ds
+

Rt
0 T� (t � s)sn g(s; us)dw(s); t 2 (tm ; T ]:

Now, we show that P is a contraction map.To this end we take two pointsu; u� 2 P CL ;
then for all t 2 (0; t1], we have

Ek(P u)( t) � (P u� )( t)k2
H � 3EkS� (t)[(h(ut 1 ; ut 2 ; : : : ; ut p ))(0)

� (h(u�
t 1

; u�
t 2

; : : : ; u�
t p

))(0)] k2
H

+3Ek
Z t

0
T� (t � s)sn [f (s; us) � f (s; u�

s )]dsk2
H

+3Ek
Z t

0
T� (t � s)sn [g(s; us) � g(s; u�

s )]dw(s)k2
H ;

� [3fM 2
SL h + 3 fM 2

T
T2� + n

�
�( � )�( n + 1)
�( � + n + 1)

L f

+3 fM 2
T T2� � 1+ n �(2 � � 1)�( n + 1)

�(2 � + n)
L g]ku � u� kP C L :

For t 2 (t1; t2], we get the estimate

Ek(P u)( t) � (P u� )( t)k2
H � 4EkS� (t)[(h(ut 1 ; ut 2 ; : : : ; ut p ))(0)

� (h(u�
t 1

; u�
t 2

; : : : ; u�
t p

))(0)] k2
H

+4EkS� (t � t1)[I 1(u(t �
1 )) � I 1(u� (t �

1 ))k2
H

+4Ek
Z t

0
T� (t � s)sn [f (s; us) � f (s; u�

s )]dsk2
H

+4Ek
Z t

0
T� (t � s)sn [g(s; us) � g(s; u�

s )]dw(s)k2
H ;

� [4fM 2
SL h + 4 fM 2

SL I + 4 fM 2
T

T2� + n

�
�( � )�( n + 1)
�( � + n + 1)

L f

+4 fM 2
T T2� � 1+ n �(2 � � 1)�( n + 1)

�(2 � + n)
L g]ku � u� k2

P C L
:
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Similarly, for general t 2 (t i ; t i +1 ]; i = 2 ; : : : ; m; we obtain

Ek(P u)( t) � (P u� )( t)k2
H � [4fM 2

SL h + 4k fM 2
SL I + 4 fM 2

T
T2� + n

�
�( � )�( n + 1)
�( � + n + 1)

L f

+4 fM 2
T T2� � 1+ n �(2 � � 1)�( n + 1)

�(2 � + n)
L g]ku � u� k2

P C L
:

Thus for all t 2 [0; T ], we have

Ek(P u)( t) � (P u� )( t)k2
P C L

� [4fM 2
SL h + 4m fM 2

SL I + 4 fM 2
T

T2� + n

�
�( � )�( n + 1)
�( � + n + 1)

L f

+4 fM 2
T T2� � 1+ n �(2 � � 1)�( n + 1)

�(2 � + n)
L g]ku � u� k2

P C L
;

� � ku � u� k2
P C L

:

Since � < 1 implies that the map P is a contraction map, it has a unique �xed point
u 2 P CL which is the unique mild solution of the problem (1)-(3) on J . This completes
the proof of the theorem.

Now, to prove the next result, we use Schaefer’s �xed point theorem [35] and assume
the following conditions:

(H2) Functions f and g are continuous and there exist continuous functionseL f ; eL g : J !
(0; 1 ) such that

Ekf (t; u t )k2
H � eL f (t) (Ekuk2

H);

Ekg(t; u t )k2
L 0

2
� eL g(t)’ (Ekuk2

H);

for all �; ’ 2 P C0
L :

(H3) Functions h and I k are continuous and there exist positive constantM 1 and � such
that

Ek(h(ut 1 ; ut 2 ; : : : ; ut p ))( t)k2
H � M 1; max

1� k � m
f EkI k (u)k2

Hg = � ;

for all u; v 2 H:

Theorem 3.2 Let the assumptions (H2) and (H3) hold with

Z T

0
� (s)ds �

Z 1

c

ds
 (s) + ’ (s)

; (4)

where

� (t) = max f 5fM 2
T

T �

�
(t) � � 1tn eL f (t); 5fM 2

T (t)2( � � 1) tn eL g(t)g;

c = 5 fM 2
S [Ek� (0)k2

H + M 1];

then the equation (1)-(3) has at least one mild solution onJ:
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Proof. Consider the closed subspaceH2 = f u : u 2 P CL g of all continuous pro-
cessesu; which are Ft -adapted measurable processes such that theF0-adapted processes
u(0) are endowed with a norm de�ned by

kukH 2 = (sup
t 2 J

ku(t)k2
L 2 )

1
2 :

Now, we de�ne the operator N : H2 ! H2 in the same way as in Theorem 3.1. Now,
we have to prove that the operator N has at least one �xed point for general interval
t 2 (tk ; tk+1 ]; k = 0 ; 1; : : : ; m:

With this in mind, consider a sequencef un g1
n =0 such that un ! u in H2. Then for

t 2 (tk ; tk+1 ]; k = 0 ; 1; : : : ; m; we have

Ek(Nun )( t) � (Nu)( t)k2
H � 4EkS� (t)[(h(un

t 1
; un

t 2
; : : : ; un

t p
))(0)

� (h(ut 1 ; ut 2 ; : : : ; ut p ))(0)] k2
H

+4kE kS� (t � tk )[I k (un (t �
k )) � I k (u(t �

k ))k2
H

+4Ek
Z t

0
T� (t � s)sn [f (s; un

s ) � f (s; us)]dsk2
H

+4Ek
Z t

0
T� (t � s)sn [g(s; un

s ) � g(s; us)]dw(s)k2
H ;

since the functions f; g; h and I k ; k = 1 ; 2; : : : ; m; are continuous, we get

lim
n !1

EkNun � Nuk2
H = 0 ;

which implies that the operator N is continuous onH2.
Now, we show that N maps bounded sets into bounded sets inH2. Consider

B r = f u 2 H2 : Ekuk2
H � r g for r > 0; 9 � > 0; such that Ek(Nu)( t)k2

H � �:

It is clear that B r is a closed bounded convex subset ofH2: Let u 2 B r : Then, we have

Ek(Nu)( t)k2
H � 5EkS� (t)k2[k� (0)k2

H + k(h(ut 1 ; ut 2 ; : : : ; ut p ))(0) k]2H

+5Ek
mX

i =1

S� (t � t i )I i (u(t �
i ))k2

H

+5Ek
Z t

0
T� (t � s)sn f (s; us)dsk2

H

+5Ek
Z t

0
T� (t � s)sn g(s; us)dw(s)k2

H ;

� 5fM 2
S [k� (0)k2

H + M 1] + 5m fM 2
S �

+5 fM 2
T

T �

�
 (r )

Z t

0
(t � s) � � 1sn eL f (s)ds

+5 fM 2
T ’ (r )

Z t

0
(t � s)2( � � 1) sn eL g(s)ds;

= �:
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Next, we prove that N maps bounded sets into equicontinuous sets ofB r : Let tk < x <
y � tk+1 , for each u 2 B r , we have

Ek(Nu)(x) � (Nu)(y)k2
H � 5kS� (x) � S� (y)k2[Ek� (0)k2

H

+ Ek(h(ut 1 ; ut 2 ; : : : ; ut p ))(0) k]2H

+5
mX

i =1

kS� (x � t i ) � S� (y � t i )k2EkI i (u(t �
i ))k2

H

+5Ek
Z t

0
[T� (x � s) � T� (y � s)] � sn f (s; us)dsk2

H

+5Ek
Z t

0
[T� (x � s) � T� (y � s)]sn g(s; us)dw(s)k2

H :

SinceT� (t) and S� (t) are strongly continuous,kS� (x) � S� (y)k ! 0; jS� (x � t i ) � S� (y �
t i )k ! 0 and kT� (x � s) � T� (y � s)k ! 0 as x ! y. Therefore, from the above
inequality, we get limx ! y Ek(Nu)(x) � (Nu)(y)k2

H = 0. Hence, the set f Nu; u 2 B r g
is equicontinuous. Now by Arzela-Ascoli’s theorem, we conclude that the operatorN is
compact.

Finally, we will prove that the set

R = f u 2 H2 such that u = qNu(t) for some 0< q < 1g

is bounded. Letu 2 R; then u(t) = qNu(t) for some 0< q < 1. Therefore for eacht 2 J ,
we have

u(t) = q(S� (t)[� (0) � (h(ut 1 ; ut 2 ; : : : ; ut p ))(0)] +
mX

i =1

S� (t � t i )I i (u(t �
i ))

+
Z t

0
T� (t � s)sn f (s; us)ds +

Z t

0
T� (t � s)sn g(s; us)dw(s)) ;

which shows that

Eku(t)k2
H � 5EkS� (t)[� (0) + ( h(ut 1 ; ut 2 ; : : : ; ut p ))(0)] k2

H

+5Ek
mX

i =1

S� (t � t i )I i (u(t �
i ))k2

H

+5Ek
Z t

0
T� (t � s)sn f (s; us)dsk2

H

+5Ek
Z t

0
T� (t � s)sn g(s; us)dw(s)k2

H ;

� 5fM 2
S [Ek� (0)k2

H + M 1] + 5m fM 2
S �

+5 fM 2
T

T �

�

Z t

0
(t � s) � � 1sn eL f (s) (Eku(s)k2

H)ds

+5 fM 2
T

Z t

0
(t � s)2( � � 1) sn eL g(s)’ (Eku(s)k2

H)ds:
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Let the function � (t) be de�ned as

� (t) = sup f Eku(s)k2
H ; 0 � s � tg; 0 � t � T;

� (t) � 5fM 2
S [Ek� (0)k2

H + M 1] + 5m fM 2
S �

+5 fM 2
T

T �

�

Z t

0
(t � s) � � 1sn eL f (s) (� (s))ds

+5 fM 2
T

Z t

0
(t � s)2( � � 1) sn eL g(s)’ (� (s))ds:

The last inequality in the right-hand side is denoted by � (t); then we have

� (0) = c = 5 fM 2
S [Ek� (0)k2

H + M 1]; � (t) � � (t):

On the other hand

� 0(t) = 5 fM 2
T

T �

�
(t) � � 1tn eL f (t) (� (t)) + 5 fM 2

T (t)2( � � 1) tn eL g(t)’ (� (t)) :

� 5fM 2
T

T �

�
(t) � � 1tn eL f (t) (� (t)) + 5 fM 2

T (t)2( � � 1) tn eL g(t)’ (� (t)) ;

or by equation (4) we have

Z � ( t )

� (0)

ds
 (s) + ’ (s)

�
Z T

0
� (s)ds <

Z 1

c

ds
 (s) + ’ (s)

:

This inequality shows that there is a constant C such that � (t) � C; t 2 J , and hence,
� (t) � C; for every t 2 J . Further, we get ku(t)k � � (t) � � (t) � C; t 2 J . As the
consequence of Schaefer’s �xed point theorem, we deduce thatN has a �xed point on J
which is a solution to (1)-(3). This completes the proof of the theorem.

4 Application

Consider the following nonlocal impulsive fractional partial di�erential equation of the
form

@�

@t�
u(t; x ) =

@2

@y2
u(t; x ) + t

ku(s � d; x)k
36 + ku(s � d; x)k

+ t
ku(s � d; x)k

49 + ku(s � d; x)k
dw(t)

dt
;

u(t; 0) = u(t; � ) = 0 ; t � 0; (5)

u(t; x ) +
nX

i =0

Z �

0
k(x; y)ut i (t; y )dy = ( � (t))( x); t 2 [� d;0]; x 2 [0; � ]; (6)

� u(t i )(x) =
Z t i

�1
qi (t i � s)u(s; x)ds; x 2 [0; � ]; (7)

where @�

@t� is Caputo’s fractional derivative of order � 2 (0; 1); 0 < t 1 < 1 are pre�xed
numbers and � 2 P CL 2 . Let H = L 2[0; � ] and de�ne the operator A : D (A) � H ! H
by A! = ! 00 with the domain D (A) := f ! 2 X : !; ! 0are absolutely continuous; ! 00 2
H; ! (0) = 0 = ! (� )g. Then
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A! =
P 1

n =1 n2(!; ! n )! n ; ! 2 D (A), where ! n (x) =
q

2
� sin (nx ); n 2 N is the or-

thogonal set of eigenvectors of A. It is well known that A is the in�nitesimal generator
of an analytic semigroup (T (t)) t � 0 in H and is given by

T (t)! =
1X

n =1

e� n 2 t (!; ! n )! n ; for all ! 2 H; and every t > 0:

The subordination principle of solution operator (Theorem 3.1 in [6]) implies that A is
the in�nitesimal generator of a solution operator f S� (t)gt � 0. Since S� (t) is strongly
continuous on [0; 1 ), by uniformly bounded theorem, there exists a constantM > 0;
such that kS� (t)kL (H) � M for t 2 [0; 1].

Furthermore, we can see

Ekf (t; x t ) � f (t; y t )k2
H �

1
36

Ekx � yk2
H :

Hence the function f satis�es (H 1). Similarly, we can show that the functions g; Ik ; h
satisfy (H 1): Furthermore, we have

L f =
1
36

; L g =
1
49

; L h = L I =
1
25

; fM S = fM T = 1 ; � =
3
4

; n = 1 :

It can be calculated that � = :37 < 1: Hence the condition of Theorem 3.1 is ful�lled, so
we deduce that the system (5)-(7) has a unique mild solution on [0; 1]:

5 Conclusion

Fractional order stochastic di�erential equation is an equation in which randomness is
included. In this paper, we established the su�cient conditions for the existence results
for a class of impulsive fractional functional stochastic di�erential equations with nonlocal
initial condition. To prove the stated theorems we utilized the well known �xed point
theorems with suitable setting of abstract spaces. In our subsequent study, we will try to
addressed the existence and uniqueness issue for the class of stochastic fractional neutral
integro-di�erential equation with non-instantaneous impulsive conditions.
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1 Introduction

The Gronwall-Bellman and Bellman-Bihari integral inequalities play important roles in
the study of qualitative and quantitative properties of di�erential equations [1{6]. Sim-
ilarly, discrete Gronwall and Bihari inequalities have been developed for the analysis
of di�erence equations [7]. New classes of di�erential and integral equations have been
studied using Gronwall-Bellman-Pachpatte inequalities [5,8,9]. Recently, the time scaly
theory, which was introduced in [10], gives a promising direction that uni�es continuous
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and discrete analysis in a consistent way. Using this theory, many works (see, for in-
stance, [11{16]) have investigated new Patchpatte-type and Gronwall-Bihari inequalities
for dynamic equations de�ned on arbitrary time scales.

The aim of this paper is to extend some results on Patchpatte-type and Gronwall-
Bihari inequalities for dynamic equations de�ned on time scales. On the one hand,
some Pachpatte-type inequalities, containing in the right-hand side two nonlinear in-
tegral terms involving Lipshitz kind functions, are studied. Using elementary analytic
methods, we investigate extensions of some continuous and discrete inequalities appear-
ing in [5,8,9,17,18] to an arbitrary time scale and re�ne some Pachpatte-type inequalities
given in [14,19{23]. On the other hand, some Bellman-Bihari inequalities on time scale,
including two nonlinear integral terms using class S or T functions, are introduced.
Some similar inequalities have been studied for the continuous-time case in [3,4,6]. How-
ever, there are very few results for Bellman-Bihari inequalities on arbitrary time scales
involving class S functions (see [24{26]). These inequalities can be applied to analyze
qualitative and quantitative properties of integro-di�erential equations on time scales.

The rest of this paper is as follows. In Section 2, some basics on the time scale
theory are recalled. In Section 3, some generalizations of Pachpatte-type inequalities on
arbitrary time scale are presented. In Section 4, some new Bellman-Bihari inequalities
on time scales are given. In the last section, some illustrative examples are presented to
highlight the utility of our results.

2 Preliminaries on Time Scale

Let us consider the time scaleT which is an arbitrary non-empty closed subset ofR. For
t 2 T, we can de�ne

� the forward jump operator � : T ! T by � (t) := inf f s 2 T; s > t g,

� the backward jump operator � : T ! T by � (t) := sup f s 2 T; s < t g,

� the graininess function � : T ! R+ by � (t) := � (t) � t.

An element t 2 T is said to be right-dense if� (t) = t, left-dense if � (t) = t, left-scattered
if � (t) < t . If T has a left-scattered maximal elementm, then T � = T � f mg or else
T � = T. For a function f : T ! R and t 2 T � , we de�ne the delta derivative f � (t) at t
(provided it exists) such that

f � (t) := lim
s! t;s 6= � ( t )

f (� (t)) � f (s)
� (t) � s

:

Clearly, it becomes the usual derivative whenT = R, i.e. f � (t) = f 0(t) and the usual
forward di�erence operator f � (t) = � f (t), if T = Z. A function F : T ! R is called
an antiderivative of f : T ! R provided F � (t) = f (t) hods for all t 2 T � . The Cauchy
integral of f is de�ned by

Z t

a
f (s)� s = F (t) � F (a) for all a; t 2 T:

A function f : T ! R is said to be rd-continuous (denoted byf 2 Crd := Crd (T; R)),
provided f is continuous at every right-dense points inT and lims! t � f (s) exists and
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is �nite at every left-dense point t 2 T. A function f : T � Rn ! Rn is said to be rd-
continuous if h de�ned by h(t) = f (t; x (t)) is rd-continuous for any continuous function
x : T ! Rn : A rd-continuous function f : T ! R is said to be regressive (denoted by
f 2 R := R (T; R)) if 1 + � (t)f (t) 6= 0 for all t 2 T � . R + := f f 2 R : 1 + � (t)f (t) >
0 for all t 2 Tg is the set of all positively regressive elements ofR .

Theorem 2.1 [27,28] Let t0 2 T; p 2 R . The �rst order linear dynamic equation

x � (t) = p(t)x; x (t0) = 1

has a unique solution onT called the exponential function, denoted byep(t; t 0).

To derive our main results, one must recall the Gronwall’s inequality on time scale.

Theorem 2.2 ( [29, Theorem 5.4]). Let t0 2 T, x,f 2 Crd and p 2 R + . Then

x � (t) � p(t)x(t) + f (t) for all t 2 T �

implies

x(t) � x(t0)ep(t; t 0) +
Z t

t 0

ep(t; � (� )) f (� )� � for all t 2 T:

Lemma 2.1 ( [27, Theorem 1.117]) Let t0 2 T � and assume thatL : T � T � ! R is
continuous at (t; t ), where t 2 T � with t > t 0. Also assume thatL � t (t; :) is rd{continuous
on [t0; � (t)].
Suppose that for each" > 0 there exists a neighborhoodU of t, independent of � 2
[t0; � (t)], such that

��L (� (t); � ) � L (s; � ) � L � t (t; � )( � (t) � s)
�� � " j� (t) � sj for all s 2 U;

where L � t denotes the derivative ofL with respect to the �rst variable. Then

g(t) :=
Z t

t 0

L (t; � )� �

implies

g� (t) = L (� (t); t) +
Z t

t 0

L � t (t; � )� �:

Lemma 2.2 ( [24, Lemma 2.1]) Let a; b 2 T, and a delta di�erentiable function r :
[a; b]T ! ]0; 1 [ with r � (t) � 0 on [a; b] \ T � . De�ne

G(x) =
Z x

x 0

ds
g(s)

; x > 0; x0 > 0; (1)

where g 2 C(R+ ; R+ ) is positive and nondecreasing on]0; 1 [. Then, for each t 2 [a; b]T
one has

G(r (t)) � G(r (a)) +
Z t

a

r � (� )
g(r (� ))

� �:

Lemma 2.3 ( [30, Lemma 2.1]) Assume thata � 0, p � q � 0 and p 6= 0 , then

a
q
p �

q
p

K
q � p

p a +
p � q

p
K

q
p ; for any K > 0:
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De�nition 2.1

� A nondecreasing continuous functiong : R+ ! R+ is said to belong to classF
(see [3, Section 3]) if it satis�es the following conditions:
? g(x) is positive for x � 0;
?? (1=y)g(x) � g(x=y), for x � 0 and y > 0 (or (1=y)g(x) � g(x=y), for x > 0 and
y � 1 (see [1, Section 5] as an equivalent characterization)).

� A nondecreasing continuous functiong : R+ ! R+ is said to belong to classS
(see [24]) if it satis�es the following conditions:
? g(x) is positive for x > 0;
?? (1=y)g(x) � g(x=y) for x � 0 and y � 1.

� A strictly increasing continuous function g : R+ ! R+ is said to belong to classT
if it satis�es the following conditions:
? g(x) is positive for x > 0;
?? (1=y)g(x) � g(x=y) for x � 0 and y � 1.

Remark 2.1

� Any function of class F is of classS. The converse is not true. For example,
f (x) = x � ; x 2 R+ ; � 2 [0; 1], is of classS but is not of class F .

� In [25], the authors introduce the classF as similar to classS, without distin-
guishing slight di�erence between these two classes. In [26] classS functions are
designed by the classS� .

3 Pachpatte-type Inequalities

In this section, we derive some new results on Pachpatte-type inequalities, which can be
used in the analysis of di�erential equations on arbitrary time scales. We suppose that
t � t0; t 2 T � :

Theorem 3.1 Assume that u; f 2 Crd (T; R+ ) and S : T � R+ ! R+ is a rd-
continuous function which satis�es

0 � S(t; x ) � S(t; y ) � R(t; y )(x � y) (2)

for t 2 T, x � y � 0 and
S� t (t; 0) � 0; R� t (t; 0) � 0; (3)

for t 2 T � , where R : T � R+ ! R�
+ is a rd-continuous function. If L (t; s) is de�ned as

in Lemma 2.1 so that L (t; s) � 0 and L � t (t; s) � 0 for t; s 2 T with s � t, then

u(t) � c +
Z t

t 0

f (� )
�

S(�; u (� )) +
Z �

t 0

L (�; � )S(�; u (� ))� �
�

� �; (4)

with c � 0, for all t 2 T � , implies

u(t) � c +
Z t

t 0

f (� )
� h

S(t0; 0) + R(t0; 0)c
i
eA �

1
(�; t 0) +

Z �

t 0

eA �
1
(�; � (� ))B �

1 (� )� �
�

� �;

(5)
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for all t 2 T � with

A �
1(t) = R(� (t); 0)f (t) +

R� t (t; 0)
R(t; 0)

+ L (� (t); t) +
Z t

t 0

L � t (t; � )� �; t 2 T � ;

and

B �
1 (t) = S� t (t; 0) + L (� (t); t)S(t; 0) +

Z t

t 0

L � t (t; � )S(�; 0)� �; t 2 T � :

Proof. Let us set function z(t) by the right-hand side of (4).
The Delta-derivative of z satis�es the following inequality

z� (t) � f (t)v(t)

with

v(t) = S(t; 0) + R(t; 0)z(t) +
Z t

t 0

L (t; � )[S(�; 0) + R(�; 0)z(� )]� �:

Using Lemma 2.1, one can easily obtain

v� (t) = S� t (t; 0) + R(� (t); 0)z� (t) + R� t (t; 0)z(t) +

L (� (t); t)
h
S(t; 0) + R(t; 0)z(t)

i
+

Z t

t 0

L � t (t; � )
h
S(�; 0) + R(�; 0)z(� )

i
� �:

It is easy to see thatv(t) is nonnegative nondecreasing function. Further, one gets

v� (t) � A �
1(t)v(t) + B �

1 (t):

Theorem 2.2 yields the following inequality

v(t) �
h
S(t0; 0) + R(t0; 0)c

i
eA �

1
(t; t 0) +

Z t

t 0

eA �
1
(t; � (� ))B �

1 (� )� �:

Hence, one can deduce inequality (5).
For special forms of functionS one can see that the proposed Pachpatte-type inequal-

ity is a generalization of some existing results.

Remark 3.1 Assume that S(t; u(t)) = u(t).

� Let t0 = 0 : If T = R, Theorem 3.1 implies Theorem 2.1(a1) of [9]. If T = N0,
Theorem 3.1 reduces to Theorem 2.5(c1) in [9]. If T = N0 and L (t; s) = l(s) with
l(:) being a nonnegative function, then Theorem 3.1 validates Theorem 1.4.1 of [8].

� For an arbitrary time scale T, one can easily obtain [21, Theorem 3:1]. Moreover,
whenT = T � , Theorem 3.1 includes [14, Lemma] and [19, Corrolary 4:9], if L (t; s) =
l(s) with l(:) being a nonnegative rd{continuous function.

� The inequality given in Theorem 3.1, when T = T � , solves the integral approx-
imation of Theorem 3:2 in [22] satis�ed by an rd-continuous nonnegative func-
tion u(:) designated to bound the solution of the considered nonlinear integro-
di�erential equation. In this case, L (t; :) = f (:) is Lebesgue �-integrable function
(f 2 L 1

T := L 1
T(T; R+ ), for more information about the Lebesgue �-integration

see [31]), we obtainu(t) � Mc; for all t � t0 with M = 1
2 (1 + exp(2kf kL 1

T
)) :
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� Suppose that L (t; :) = g(:), where g is a nonnegative rd{continuous function, if T
is an arbitrary time scale, with Theorem 3.1 one can obtain the inequality proved
in [26, Theorem 1].

As an extension of Theorem 3.1, one can derive an integral inequality involving positive
real powers. In the following, it is supposed that p 6= 0 ; p; q; r are real constants such
that 0 � q; r � p.

Proposition 3.1 Assume that all conditions of Theorem 3.1 are satis�ed except for
inequalities (3). Then

up(t) � c +
Z t

t 0

f (� )
�

uq(� ) +
Z �

t 0

L (�; � )S
�
�; u r (� )

�
� �

�
� �; (6)

for all t 2 T � , implies

u(t) �

 

c+
Z t

t 0

f (� )

" �
q
p

K
q � p

p c+
p � q

p
K

q
p

�
eA �

2
(�; t 0)+

Z �

t 0

eA �
2
(�; � (� ))B �

2 (� )� �

#

� �

! 1
p

;

for all t 2 T � , for any K > 0 with

A �
2(t) =

q
p

K
q � p

p f (t) +
r
q

K
r � q

p

 

L (� (t); t)R
�

t;
p � r

p
K

r
p

�

+
Z t

t 0

L � t (t; � )R
�

�;
p � r

p
K

r
p

�
� �

!

; t 2 T �

and

B �
2 (t) = L (� (t); t)S

�
t;

p � r
p

K
r
p

�
+

Z t

t 0

L � t (t; � )S
�

�;
p � r

p
K

r
p

�
� �; t 2 T � :

Proof. The proof is similar to the proof of Theorem 3.1. Hence, the details are
omitted.

One can highlight that the last result generalizes some existing works as follows.

Remark 3.2

� The result of Proposition 3.1 holds for any arbitrary time scales. Setting
S(t; u(t)) = u(t), we see that the obtained inequality is as seen in Theorem 3:1
in [20].

� Proposition 3.1 can be viewed as a generalization of some results on some particular
time scales. For example, lettingS(t; u(t)) = u(t) and T = R. If K = 1, one can
easily derive Theorem 3:1 in [17].

One can extend the result of Theorem 3.1, changing the nonnegative constant c on the
right-side of (4) by an increasing positive function.

Proposition 3.2 Assume that all conditions of Theorem 3.1 are satis�ed except for
inequalities (3). Let a(:) be a nondecreasing function inCrd (T; R�

+ ). Suppose that

S� t (t; 0)a(t) � S(t; 0)a� (t); R� t (t; 0) � 0 for all T � :
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Then,

u(t) � a(t) +
Z t

t 0

f (� )
�

S(�; u (� )) +
Z �

t 0

L (�; � )S(�; u (� ))� �
�

� �; (7)

for all t 2 T � , implies

u(t) � a(t)

 

1+
Z t

t 0

f (� )
� h

R(t0; 0)+ M (t0; 0)
i
eA �

1
(�; t 0)+

Z �

t 0

eA �
1
(�; � (� ))B �

3 (� )� �
�
� �

!

;

for all t 2 T � , with

B �
3 (t) = M � t (t; 0) + L (� (t); t)M (t; 0) +

Z t

t 0

L � t (t; � )M (�; 0)� �; t 2 T � ;

and

M (t; z) =
1

a(t)
S(t; a(t)z); z � 0; t 2 T:

Proof. Setting w(t) = u ( t )
a( t ) , one can reformulate (7) as

w(t) � 1 +
Z t

t 0

f (� )
�

M (�; w (� )) +
Z �

t 0

L (�; � )M (�; w (� ))� �
�

� �:

Clearly, M veri�es relation (2), i.e.

M (t; x ) � M (t; y ) � R1(t; y )(x � y); x � y � 0; t 2 T;

where R1(t; y ) = R(t; a(t)y). From our hypothesis we see thatS and R1 verify relation
(3). Using Theorem 3.1, it yields

w(t) � 1 +
Z t

t 0

f (� )
� h

R(t0; 0) + M (t0; 0)
i
eA �

1
(�; t 0) +

Z �

t 0

eA �
1
(�; � (� ))B �

3 (� )� �
�
� �:

This concludes the proof.
This proposition generalizes some well known inequalities.

Remark 3.3 Assume that S(t; u(t)) = u(t).

� Take a special case in references [8,21,26] witha(:) 6= 0.
For an arbitrary time scale T, inequalities in Proposition 3.2 reduce to [21, Theorem
3.2]. If L (t; s) = g(s) with g 2 Crd (T; R+ ), then Proposition 3.2 includes [26,
Theorem 2 (a)]. For T = N0 and t0 = 0, the result [8, Theorem 1.4.2] is a particular
case of Proposition 3.2 whereL (t; s) = c(s) with c(.) being a nonnegative function
de�ned on N0.

� If T = R+ and t0 = 0, then Proposition 3.2 generalizes [5, Theorem 1.7.4] when
L (t; s) = g(s) with g(:) being a nonnegative continuous function onR+ .
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4 Bihari-type Inequalities

In this part, some new Gronwall-Bellman-Bihari type inequalities, containing in the right-
hand side two nonlinear integral terms involving classS or T functions, are introduced.
These inequalities can be applied to analyze qualitative and quantitative properties of
integro-di�erential equations on time scales. In this section it is assumed thatt � t0; t 2
T.

Let us begin with the following inequality which will be used in the proof of the next
results.

Theorem 4.1 Let us consider u; f 2 Crd (T; R+ ) and c is a positive constant. Let
g : R+ ! R+ be a continuous function which is nondecreasing positive on]0; + 1 [,

L : T � T ! R+ be a rd-continuous function andG be given by (1). If

u(t) � c +
Z t

t 0

f (� )
�

g(u(� )) +
Z �

t 0

L (�; � )g(u(� ))� �
�

� �; (8)

for t 2 T, then for all t 2 T satisfying

G(c) +
Z t

t 0

f (� )
�
1 +

Z �

t 0

L (�; � )� �
�

� � 2 Dom(G� 1);

we have

u(t) � G� 1
�

G(c) +
Z t

t 0

f (� )
�
1 +

Z �

t 0

L (�; � )� �
�

� �
�

;

where G� 1 is the inverse function of G.

Proof. Let us de�ne function z(t) by the right-hand side of (8). Then, we have
z(t0) = c and

u(t) � z(t):

As g is a nondecreasing function, the Delta-derivative ofz(t) satis�es the following in-
equality

z� (t) � f (t)g(z(t))
�
1 +

Z t

t 0

L (t; � )� �
�

:

Dividing both sides by g(z(t)), one can get

z� (t)
g(z(t))

� f (t)
�
1 +

Z t

t 0

L (t; � )� �
�

:

Sincez(t) is nondecreasing, from Lemma 2.2, one can obtain

G(z(t)) � G(c) +
Z t

t 0

f (� )
�
1 +

Z �

t 0

L (�; � )� �
�

� �:

Further

z(t) � G� 1
�

G(c) +
Z t

t 0

f (� )
�
1 +

Z �

t 0

L (�; � )� �
�

� �
�

:

This concludes the proof.
In the following, some results which can be considered as some extensions of Theorem

4.1 are investigated. The next corollary allows us to get a relaxed integral bound of an
unknown function using the image of a continuous increasing function.
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Corollary 4.1 Let us consider u; f 2 Crd (T; R+ ) and c is a positive constant. Let
g : R+ ! R+ be a continuous strictly increasing function with g([0; + 1 [) = [0 ; + 1 [ and
L : T � T ! R+ be a rd-continuous function. De�ne

F (y) =
Z y

y0

1
g� 1(s)

ds; y > 0; y0 > 0; (9)

where g� 1 is the inverse function of g. If

g(u(t)) � c +
Z t

t 0

f (� )
�

u(� ) +
Z �

t 0

L (�; � )u(� )� �
�

� �; (10)

for t 2 T, then for all t 2 T satisfying

F (c) +
Z t

t 0

f (� )
�

1 +
Z �

t 0

L (�; � )� �
�

� � 2 Dom(F � 1);

and

F � 1
�
F (c) +

Z t

t 0

f (� )
�

1 +
Z �

t 0

L (�; � )� �
�

� �
�

2 Dom(g� 1);

we get

u(t) � g� 1
�

F � 1
�
F (c) +

Z t

t 0

f (� )
�

1 +
Z �

t 0

L (�; � )� �
�

� �
��

;

where F � 1 is the inverse function of F .

Proof. Let us de�ne function z(t) by the right-hand side of (10). Using the properties
of g, one can get

z(t) � c +
Z t

t 0

f (� )
�

g� 1(z(� )) +
Z �

t 0

L (�; � )g� 1(z(� ))� �
�

� �:

Applying Theorem 4.1, one can obtain

z(t) � F � 1
�
F (c) +

Z t

t 0

f (� )
�

1 +
Z �

t 0

L (�; � )� �
�

� �
�

:

Inspired by the concept of inequality in [26, Theorem 7], one can derive a Bihari type
bound of an integral inequality in the next corollary using functions of classS (introduced
in Section 2).

Corollary 4.2 Assume that u; f 2 Crd (T; R+ ), a : T ! R+ is a rd-continuous non-
decreasing function. Let g : R+ ! R+ be of classS, L : T � T ! R+ be a rd-continuous
function and G be de�ned by (1). If

u(t) � a(t) +
Z t

t 0

f (� )
�

g(u(� )) +
Z �

t 0

L (�; � )g(u(� ))� �
�

� �; (11)

for t 2 T, then for all t 2 T satisfying

G(1) +
Z t

t 0

f (� )
�
1 +

Z �

t 0

L (�; � )� �
�

� � 2 Dom(G� 1);
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we obtain

u(t) � max(a(t); 1)G� 1
�

G(1) +
Z t

t 0

f (� )
�
1 +

Z �

t 0

L (�; � )� �
�

� �
�

:

Proof. De�ne function b by b(t) = max( a(t); 1). Then, from (11) we get

u(t)
b(t)

� 1 +
Z t

t 0

f (� )
b(� )

�
g(u(� )) +

Z �

t 0

L (�; � )g(u(� ))� �
�

� �:

Set w(t) := u ( t )
b( t ) . As g 2 S , we deduce the following inequality

w(t) � 1 +
Z t

t 0

f (� )
�

g(w(� )) +
Z �

t 0

L (�; � )g(w(� ))� �
�

� �:

A suitable application of Theorem 4.1 gives

w(t) � G� 1
�

G(1) +
Z t

t 0

f (� )
�
1 +

Z �

t 0

L (�; � )� �
�

� �
�

:

It is equivalent to the desired inequality, in view of the fact that u(t) = w(t)b(t).
By a similar reasoning as in Corollary 4.1, an integral approximation of an unknown

function using its image by a function of classT is derived in the next corollary.

Corollary 4.3 Let u; a; f , L be as de�ned in Corollary 4.2 andF be as given in (9).
Suppose thatg 2 T with g([0; + 1 [) = [0 ; + 1 [. If

g(u(t)) � a(t) +
Z t

t 0

f (� )
�

u(� ) +
Z �

t 0

L (�; � )u(� )� �
�

� �; (12)

then for all t 2 T satisfying

F (1) +
Z t

t 0

f (� )
�

1 +
Z �

t 0

L (�; � )� s
�

� � 2 Dom(F � 1);

and

F � 1
�
F (1) +

Z t

t 0

f (� )
�

1 +
Z �

t 0

L (�; � )� �
�

� �
�

2 Dom(g� 1);

we have

u(t) � max(a(t); 1)g� 1
�

F � 1
�
F (1) +

Z t

a
f (� )

�
1 +

Z �

a
L (�; � )� �

�
� �

��
:

Proof. Take b(t) = max( a(t); 1); then (12) can be written as

g(u(t))
b(t)

� 1 +
Z t

t 0

f (� )
b(� )

�
u(� ) +

Z �

t 0

L (�; � )u(� )� s
�

� �: (13)

Set w(t) = u ( t )
b( t ) on T. Taking into account the fact that g is a nondecreasing function of

classT and g([0; + 1 [) = [0 ; + 1 [, from (13), one can get

g(w(t)) � 1 +
Z t

t 0

f (� )
�

w(� ) +
Z �

t 0

L (�; � )w(� )� �
�

� �:

Applying Corollary 4.1 the requested inequality is obtained.
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5 Illustrative Examples

In this section, we apply some inequalities obtained in the previous sections to investigate
certain properties of the solutions of dynamic equations on arbitrary time scales.

Example 5.1 Using a straightforward extension of Theorem 3.1, let us discuss the
boundedness behavior of the solution of the nonlinear dynamic equation de�ned as:

8
<

:

�
xp(t)

� � = P
�

t; S
�
t; x q(� (t))

�
;
Z t

t 0

H
�

t; s; S
�
s; xr (s)

� �
� s

�
; t0; t 2 T � ;

xp(t0) = c;

where t � t0, c 6= 0 a real constant, P : T � R � R ! R, H : T � T � R ! R are
rd-continuous functions and p; q and r are real constants such thatp 6= 0 ; 0 � q; r � p:
We shall assume that the proposed initial value problem has a unique solutionx(t). We
also consider that functions P and H satisfy

jP(t; U; V )j � f (t)( jU j + jV j); t 2 T; U; V 2 R; (14)

jH( t; s; U )j � L (t; s)jU j; t; s 2 T; U 2 R; (15)

where f and L are as mentioned in Theorem 3.1. Let us assume that functionsS; R :
T � R ! R+ satisfy the following properties

S(t; y ) � S(t; x ); t 2 T; y � x; x; y 2 R; (16)

S(t; x ) � S(t; y ) � R(t; y )(x � y); t 2 T; 0 � y � x: (17)

Suppose that there existsK > 0 such that

R� t
�

t;
p � q

p
K

q
p

�
� 0; S� t

�
t;

p � q
p

K
q
p

�
� 0; (18)

for all t 2 T � and � q
p K

q � p
p R

�
:; p� q

p K
q
p

�
f (:) 2 R + .

Clearly, the solution x(t) of the system under consideration satis�es the following
integral equation

xp(t) = c +
Z t

t 0

P
�

�; S
�
�; x q(� (� ))

�
;
Z �

t 0

H
�

�; �; S
�
�; x r (� )

� �
� �

�
� �: (19)

It follows from relations (14)-(19) that

jx(t)jp � j cj +
Z t

t 0

f (� )
�

S
�
�; jx(� (� )) jq

�
+

Z �

t 0

L (�; � )S
�
�; jx(� )jr

�
� �

�
� �:

Then, following a similar approach as in Theorem 3.1, one can easily obtain

jx(t)j �

 

jcj +
Z t

t 0

f � (� )

" �
q
p

K
q � p

p R
�

t0;
p � q

p
K

q
p

�
jcj

+ S
�

t0;
p � q

p
K

q
p

� �
eA �

4
(�; t 0) +

Z �

t 0

eA �
4
(�; � (� ))B �

4 (� )� �

#

� �

! 1
p

;
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where

f � (t) =
f (t)

1 � � (t) q
p K

q � p
p R

�
t; p� q

p K
q
p

�
f (t)

;

A �
4(t) =

q
p

K
q � p

p R
�

� (t);
p � q

p
K

q
p

�
f � (t) +

R� t

�
t; p� q

p K
q
p

�

R
�

t; p� q
p K

q
p

�

+
r
q

K
r � q

p

0

@L (� (t); t)
R

�
t; p� r

p K
r
p

�

R
�

t; p� q
p K

q
p

� +
Z t

t 0

L � t (t; � )
R

�
�; p� r

p K
r
p

�

R
�

�; p� q
p K

q
p

� � �

1

A

and

B �
4 (t) = S� t

�
t;

p � q
p

K
q
p

�
+ S

�
t;

p � r
p

K
r
p

�
L (� (t); t) +

Z t

t 0

L � t (t; � )S
�

�;
p � r

p
K

r
p

�
� �:

In the following example, applying Theorem 4.1, an integral approximation of the
solution of a dynamical system is presented below.

Example 5.2 Let us consider the following initial value problem on an arbitrary
time scale

8
<

:
x � (t) = f (t)

�
g(x(t)) +

Z t

t 0

L (t; � )g(x(� ))� �
�

t0; t 2 T;

x(t0) = c;

where t � t0, c 6= 0 a real constant, f , L are as de�ned in Theorem 4.1 andg : R ! R+
a continuous function and nondecreasing positive onR� . Assume that x(t) is the unique
solution of the system under investigation, then it can be expressed as

x(t) = c +
Z t

t 0

f (� )
�

g(x(� )) +
Z t

t 0

L (�; � )g(x(� ))� �
�

� �:

Further,

jx(t)j � j cj +
Z t

t 0

f (� )
�

g(ju(� )j) +
Z t

t 0

L (�; � )g(jx(� )j)� �
�

� �:

Applying Theorem 4.1, one can obtain

jx(t)j � G� 1
�

G(jcj) +
Z t

t 0

f (� )
�

1 +
Z �

t 0

L (�; � )� �
�

� �
�

:

where G, as given by (1), is such that

G(jcj) +
Z t

t 0

f (� )
�

1 +
Z �

t 0

L (�; � )� �
�

� � 2 Dom(G� 1):

6 Conclusion

In this work, some new inequalities of Pachpatte and Bellman-Bihari types were derived
on arbitrary time scales. As discussed in the paper, they can be thought of as general-
izations and re�nements of many existing results. These inequalities help us in the study
of some classes of integral and integro-di�erential equations. They can be used in the
stability analysis of some classes of dynamical systems on time scales.
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Abstract: In this paper, we attempt to investigate the ultimate bound and posi-
tively invariant set for the new modi�ed hyperchaotic Pan system using a technique
combining the generalized Lyapunov function theory and optimization. For this sys-
tem, we derive a four-dimensional ellipsoidal ultimate bound and positively invariant
set. Furthermore, the two-dimensional parabolic ultimate bound with respect to x � z
is established. Finally, a numerical example is provided to illustrate the main result.

Keywords: Pan system; upper bounds.
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1 Introduction

In the last four decades, chaos as a very interesting nonlinear phenomenon has been
intensively studied. Hyperchaotic system is usually de�ned as a chaotic system with
more than one positive Lyapunov exponent. It is even more complicated than chaotic
systems and has more unstable manifolds. At the same time, due to its theoretical
and practical applications in technological �elds, such as secure communications, lasers,
nonlinear circuits, control, synchronization, hyperchaos has recently become a central
topic in the research of nonlinear sciences.

In particular, the ultimate boundedness is very important for the study of the qualita-
tive behavior of a chaotic system. If one can show that a chaotic or a hyperchaotic system
under consideration has a globally attractive set, one knows that the system cannot have
the equilibrium points, periodic or quasi-periodic solutions, or other chaotic or hyper-
chaotic attractors existing outside the attractive set. This greatly simpli�es the analysis
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of dynamics of the system of a chaotic or hyperchaotic system [7]. The boundedness of a
chaotic system also plays an important role in chaos control and chaos synchronization.

Such an estimation is quite di�cult to achieve technically, however, several works on
this topic were realized for some 3D and 4D dynamical systems [2,4{6,8{15].

Furthermore, there are no uni�ed methods for constructing the Lyapunov functions
to study the boundedness of the chaotic systems. Therefore, it is necessary to study
the boundedness of the hyperchaotic systems. In the present paper, we investigate the
ultimate bound and positively invariant set for the new modi�ed hyperchaotic Pan system
using a technique combining the generalized Lyapunov function theory and optimization.
First, we derive an ellipsoidal ultimate bound and positively invariant set. Then we obtain
a two-dimensional parabolic ultimate bound with respect to x � z. Finally, a numerical
example is provided to illustrate the main result.

2 The Ultimate Bound and Positively Invariant Set for the New Modi�ed
Hyperchaotic Pan System

� Consider the system
:

X = f (X ) , (1)

where X 2 Rn , f : Rn ! Rn , X = ( x1; x2; :::; xn )T , t0 � 0 is the initial time,
and X (t; t 0; X 0) is a solution to system (1) satisfyingX (t0; t0; X 0) = X 0, which for
simplicity is denoted by X (t): Assume 
 2 Rn is a compact set.

� De�ne the distance between the solution X (t; t 0; X 0) and the set 
 by
� (X (t; t 0; X 0); 
) = inf

Y 2 

kX (t; t 0; X 0) � Yk, and denote 
 " = f X=� (X; 
) < " g,

Clearly, 
 � 
 " .

De�nition 2.1 Suppose that there is a compact set 
 � Rn . If, for every x0 2 Rn =
,
lim

t !1
� (x (t) ; 
) = 0, that is, for any " > 0, there is a T > t 0, such that for t � T ,

x(t; t 0; x0) � 
 " , then the set 
 is called an ultimate bound for system (1). If, for any
x0 2 
 and all t � t0, x(t; t 0; x0) � 
, then 
 is called the positively invariant set for
system (1).

Consider the new modi�ed hyperchaotic Pan system [1] :

8
>><

>>:

x
0

= ay � ax;
y0 = cx � xz + u;

z0 = xy � bz;
u0 = � dy;

(2)

wherea, b, c, d are real parameters. System (2) displays a typical hyperchaotic attractor

when (a; b; c; d) =
�

10;
8
3

; 28; 10
�

, the corresponding three-dimensional phase diagrams

in (x � y � z), (x � z � u) spaces are shown in Fig. 1.
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Figure 1: Hyperchaotic attractor of the new modi�ed hyperchaotic Pan system (2) with

(a; b; c; d) =
�

10;
8
3

; 28; 10
�

and the initial value ( x0 ; y0 ; z0 ; w0) = (1 ; 1; 1; 1) :

Some basic dynamical properties of the new modi�ed hyperchaotic Pan system (2) were
studied in [1]. But many properties of the system (2) remain to be uncovered. In the
following, we will discuss the boundedness of the new modi�ed hyperchaotic Pan system
(2).

Theorem 2.1 Denote


 =
�

(x; y; z; u) =x2 + dy2 + d
�

z � c �
a
d

� 2
+ u2 � R2

�
; (3)

where

R2 =

8
>><

>>:

b2 (dc+ a)2

4ad (b � a)
, si b � 2a

(cd+ a)2

d
, si b < 2a:

(4)

If a > 0, b > 0, c > 0 and d > 0, then all orbits of system(2), including hyperchaotic
attractors, are trapped into a bounded region, and so the hyperellipsoid
 is an ultimate
bound and positively invariant set for system(2).

Proof. De�ne the following Lyapunov function

V = x2 + dy2 + d
�

z � c �
a
d

� 2
+ u2: (5)

Then, its time derivative along the orbits of system (2) is

1
2

:
V = � ax2 � dbz2 + b(cd+ a) z = 0 : (6)

That is to say, for a > 0, b > 0, d > 0, the surface, de�ned by

� =

(

(x; y; z; u) =ax2 + db
�

z �
cd+ a

2d

� 2

=
b(cd+ a)2

4d
;

)

(7)
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is an ellipsoid in 4D space for certain values ofa, b, c and d. Outside �, we have
:

V < 0,
while inside �, we have

:
V > 0. Since the functionV = x2 + dy2 + d

�
z � c � a

d

� 2 + u2 is
continuous on the closed set �, V can reach its maximum on the surface �. Denote the
maximum value of V by R2, that is R2 = max V(x;y;z;u )2 � . Next, we use the Lagrange
multiplier method to obtain the optimal value of V on �. De�ne

F = x2 + dy2 + d
�

z � c �
a
d

� 2
+ u2 + �

"

ax2 + db
�

z �
cd+ a

2d

� 2

�
b(cd+ a)2

4d
;

#

(8)

and let
8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

@F(x; y; z; u)
@x

= 2x + 2 �ax = 0 ;

@F(x; y; z; u)
@y

= 2dy = 0 ;

@F(x; y; z; u)
@z

= 2d
�

z � c �
a
d

�
+ 2 �db

�
z �

cd+ a
2d

�
= 0 ;

@F(x; y; z; u)
@u

= 2u = 0 ;

@F(x; y; z; u)
@�

= ax2 + db
�

z �
cd+ a

2d

� 2

�
b(cd+ a)2

4d
= 0 :

. (9)

Thus,

(i ) When � 6=
� 1
a

, we have (x; y; z; u) = (0 ; 0; 0; 0) or (x; y; z; u) =
�

0; 0;
cd+ a

d
; 0

�
and

R2 =
(cd+ a)2

d
or R2 = 0 correspondingly.

(ii ) When � =
� 1
a

, and b � 2a, we have (x; y; z; u) =
�

�
b(cd+ a)

p
b � 2a

2
p

ad (a � b)
; 0;

(cd+ a) (2a � b)
2d (a � b)

; 0
�

and R2 =
b2 (dc+ a)2

4ad (b � a)
. Summariz-

ing (i ){( ii ) above, we have

R2 =

8
>><

>>:

b2 (dc+ a)2

4ad (b � a)
, if b � 2a;

(cd+ a)2

d
, if b < 2a:

(10)

For the set 
, as shown in (3), we have � � 
. Next, we will show

lim
t !1

� (X (t) ; 
) = 0 ; (11)

using the reduction to absurdity, where X (t) = ( x(t); y(t); z(t); u(t)). If (11) does not
hold, we can conclude that the orbits of system (2) are outside 
 permanently, thus

:
V <

0. Therefore,V (X (t)) monotonously decreases outside 
, which leads to the following
result lim

t !1
V (X (t)) = v� > l: Let s = inf

X 2 D

�
�

:
V (X (t))

�
where D = f X (t)=V � �

V (X (t)) � V (X (t0))g, while t0 is the initial time. Consequently, we have that s, V �

are positive constants, and
dV (X (t))

dt
� � s: As t ! 1 , we have 0 � V (X (t)) �
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V (X (t0)) � s (t � t0) ! �1 this is inconsistent. Therefore (11) actually holds, that is
to say, 
 is the ultimate bound of system (2). Finally, to see that 
 is also the positively
invariant set, reason as follows. SupposeV attains its maximum value on surface �
at point P0 (bx0; by0; bz0; bu0). Since � � 
, for any point X (t) on 
 and X (t) 6= P0, we
have

:
V (X ) < 0, thus, any orbit X (t) (X (t) 6= P0) of system (2) will go into 
. When

X (t) = P0, by the continuation theorem [3], X (t) will also go into 
. Summarizing the
above, we conclude that 
 is the positively invariant set of system (2).

Corollary 2.1 For a > 0, b > 0, c > 0 and d > 0, the solution of the system(2) is
bounded by the conditions

8
>>>>><

>>>>>:

jx j � R;

jyj �
R

p
d

;

cd+ a
d

�
R

p
d

� z �
R

p
d

+
cd+ a

d
;

juj � R:

(12)

Proof. Direct consequence of the previous theorem.

3 The Estimation of the Two-Dimensional Parabolic Ultimate Bound with
Respect to x{z

Theorem 3.1 When b < 2a, the system (2) has the following two-dimensional
parabolic ultimate bound

z �
x2

2a
: (13)

Proof. De�ne

V (t) =
1
2a

x2 (t) � z (t) :

Then, its time derivative along the orbits of system (2) is
:

V =
1
a

x :x � :z = � x2 + bz:

Thus,
:

V + bV = � x2 + bz+
b

2a
x2 � bz =

�
b

2a
� 1

�
x2:

When b < 2a, we have
:

V + bV � 0:
For any initial value V (t0) = V0, according to the comparison theorem, we have

V (t) � V0e� b( t � t 0 ) ! 0 (t ! 1 )

Thus
lim

t !1
V (t) = lim

t !1

�
1
2a

x2 (t) � z (t)
�

� 0:

So, we get that system orbits satisfy the parabolic ultimate bound

z �
x2

2a
:

This completes the proof.
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4 Example

Consider the system (2), whena = 10, b =
8
3

, c = 28 and d = 10.
We have

V (x; y; z; u) = x2 + 10y2 + 10 (z � 29)2 + u2;

� =

(

(x; y; z; u) =10x2 +
80
3

�
z �

29
2

� 2

=
20
3

� 292

)

and

R2 = max V(x;y;z;u )2 � =
(cd+ a)2

d
= 10 � 292:

Therefore, the estimate of ultimate bound for system (2) is


 =
n

(x; y; z; u) =x2 + 10y2 + 10 (z � 29)2 + u2 � 10 � 292
o

:

Consequently, we have 8
>><

>>:

jx j � 29 �
p

10;
jyj � 29;

0 � z � 58;
juj � 29 �

p
10:

.

It is obvious that the orbits of system (2) locate in the section wherez � 0.

5 Conclusion

In this paper, we have investigated the ultimate bound and positively invariant set for
the new modi�ed hyperchaotic Pan system. We have �rst derived a four-dimensional
ellipsoidal ultimate bound and positively invariant set. Then, we have obtained a two-
dimensional parabolic bound with respect to x � z, which shows that, in the four-
dimensional space, the orbits of the system are located inside the parabolic cylinder

z �
x2

2a
, accordingly, we have also gotz � 0. Finally, a numerical example is provided to

illustrate the main result.
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1 Introduction

In recent years, fractional di�erential equations with almost automorphic solutions have
gained considerable interest. This is due to the fact that fractional di�erential equations
are powerful tools to describe the hereditary properties and memory of various materi-
als. Fractional di�erential equations have great applications in nonlinear oscillations of
earthquakes, fractal theory, di�usion in porous media, viscoelastic panel in super sonic
gas 
ow. For more details, we refer to the papers [2,3,8,9,18] and references therein.

The concept of almost automorphy was �rst introduced by Bochner [6]. Afterwards,
being a most attractive topic in qualitative theory of di�erential equations, the theory
of classical almost automorphy has been studied extensively by numerous authors and
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generalized further in di�erent ways using measure theory and weighted functions, see
[4,5,14{16].

More recently, a new concept of the so-called (�; � )-pseudo almost automorphy was
introduced by Diagana et. al. [10] and Abdelkarim et. al. [1], which is an interesting
generalization of both � -pseudo almost automorphy and weighted pseudo almost auto-
morphy. Further, Chang et. al. [8] proposed the concept of Stepanov-like� -pseudo almost
automorphic mild solutions to semilinear functional di�erential equations. In this paper,
stimulated by [1, 4, 8, 10], we will introduce the concept of Stepanov-like (�; � )-almost
automorphic functions.

In this paper, we investigate the existence of (�; � )-pseudo almost automorphic mild
solutions to the following fractional di�erential equation of order 1 < � < 2;

D �
t y(t) = Ay (t) + D � � 1

t F
�

t; y (t);
Z t

�1
K (t � s)h(s; y(s))ds

�
; t 2 R; (1)

where A : D (A) � E ! E is a densely de�ned linear operator of sectorial type! < 0 on
a complex Banach spaceE . The functions h, F are Stepanov-like (�; � )-pseudo almost
automorphic. Here the derivative is taken in Riemann-Liouville sense andK 2 L 1(R)
with jK (t)j � CK e� bt ; b > 0.

The rest of this paper is organized as follows: Section 2 provides some basic de�nitions,
lemmas and theorems. In Section 3, we obtain main results by using Leray-Schauder
alternate theorem �xed point theorem.

2 Preliminaries

Let (E; k � k) be a Banach space andC; R; and N stand for complex number, real number
and natural numbers respectively. C(R; E ) and BC (R; E ) represent the sets of continuous
functions and bounded continuous functions, respectively. For a linear operatorA on E;
let %(A); � (A); D(A) and R (A ) stand for the spectrum, the resolvent set, the domain and
the range ofA, respectively.

Now, we recall some de�nitions on fraction calculus (for more details, see [18]).

De�nition 2.1 The fractional integral of a function � : R+ ! E with the lower limit
zero of order � > 0 is given by

I � � (t) =
1

�( � )

Z t

0
(t � � ) � � 1� (� )d�;

where �( �) denotes the Gamma function.

De�nition 2.2 The Riemann-Liouville fractional derivative of a function � : R+ !
E with the lower limit zero of order � > 0 is given by

D � � (t) =
1

�( n � � )
dn

dtn

Z t

0
(t � � )n � � � 1� (� )d�; n � 1 < � < n; n 2 N:

De�nition 2.3 A densely de�ned closed linear operatorA with domain D(A) in a
Banach spaceE is said to be sectorial of type! and angle � if there exists

� 2 (0;
�
2

); M > 0; ! 2 R;
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such that its resolvent exists outside the sector! + � � := f ! + � : � 2 C; jarg(� � )j < � g;
and

k(� � A) � 1k �
M

j� � ! j
; � =2 ! + � � :

It is easy to verify that an operator A is sectorial of type ! if and only if !I � A is
sectorial of type 0. For more details on sectorial operators see [13].

De�nition 2.4 Let 1 < � < 2 and A be a closed linear operator de�ned on the
domain D(A) in a Banach space E. Then we sayA is the generator of solution operator
if there exists a ! 2 R and a strongly continuous function S� : R+ ! L (E ) such that
f � � : Re� > ! g � %(A) and

� � � 1(� � � A) � 1y =
Z 1

0
e� �t S� (t)ydt; Re� > !; y 2 E:

In this case,S� (t) is called the solution operator generated byA and one can deduce that
if A is sectorial of type ! with 0 < � < � (1 � �

2 ), then A generates the solution operator
given by

S� (t)y =
1

2�i

Z

�
e� �t � � � 1(� � � A) � 1ydt; (2)

where � is a suitable path lying outside the sector ! + � � (see [9]).
Recently, Cuesta in [9] has shown that ifA is a sectorial operator of type ! for some
M > 0 and 0< � < � (1 � �

2 ), then there exists a constantC > 0 depending solely on�
and � such that

kS� (t)kL (E ) �
CM

1 + j! jt � ; t � 0:

In boundary case, when� = 1, this is analogous to the statement that A is the generator
of exponentially stable C0-semigroup. Next, if � > 1, then solution family S� (t) decays
t � � , in fact, S� (t) is integrable on (0; 1 ) i.e.

Z 1

0

1
1 + j! js� ds =

j! j �
1
� �

� sin( �
� )

; 1 < � < 2: (3)

De�nition 2.5 A continuous function f : R ! E is almost automorphic (in
Bochner’s sense) if for each sequence of real numbersf � 0

n g, there exist a subsequence
f � n g and a function : R ! E such that

g(t) = lim
n !1

f (t + � n ); is well de�ned for each t 2 R; and f (t) = lim
n !1

g(t � � n ):

The set of all almost automorphic functions is denoted byAA (E ) and constitutes a
Banach space endowed with the supnorm.

De�nition 2.6 A function f : R � E ! E is said to be almost automorphic if
f (�; x) 2 AA (R; E ) for all x 2 E , and f is uniformly continuous in second variable on
each compact setK of E . The set of all such functions is denoted byAA (R � E; E ).

Next we recall some de�nitons and basic results on Stepanov-like almost automorphic
functions(for more details, see [8,11,20]).
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De�nition 2.7 The Bochner transform f b(t; s); s 2 [0; 1]; t 2 R; of a function f :
R ! E is de�ned by f b(t; s) = f (t + s):

De�nition 2.8 The space of all Stepanov-like bounded functions denoted by
BSp(R; E ) consists of all measurable functionsf : R ! E , with exponent p 2 [1; 1 )
such that f b 2 L 1 (R; L p([0; 1]; E )) and constitutes a Banach space with the norm

kf kSp = kf bkL 1 (R;L p ) = sup
t 2 R

� Z t +1

t
kf (� )kpd�

� 1
p

:

De�nition 2.9 The space of Stepanov-like almost automorphic functions denoted
by SpAA (R; E ) consists of all f 2 BSp(R; E ) such that

f b 2 AA (R; L p([0; 1]; E )) :

In other words, a function f 2 L p
loc (R; E ) is a Stepanov-like almost automorphic function

if its Bochner transform f b : R ! L p([0; 1]; E ) is almost automorphic in the sense
that every sequencef � 0

n g of real numbers contains a subsequencef � n g and a function
g 2 L p

loc ([0; 1]; E ) such that

lim
n !1

� Z t +1

t
kf (s+ � n )� g(s)kpds

� 1
p

! 0; and lim
n !1

� Z t +1

t
kg(s� � n )� f (s)kpds

� 1
p

! 0;

for all t 2 R.

De�nition 2.10 A function f : R � E ! E; with f (�; y) 2 L p(R; E ) for each y 2 K
is said to be Stepanov-like almost automorphic function int 2 R; uniformly for y 2 K ,
if t ! f (t; y ) is Stepanov-like almost automorphic for eachy 2 K .

Remark 2.1 [7] It can be observed that if f is almost automorphic, then f is
Stepanov-like almost automorphic, i.e. AA (R; E ) � SpAA (R; E ) [1]. Moreover, let
1 � p � q < 1 ; if f 2 SqAA (R; E ) implies that f 2 SpAA (R; E ).

Throughout this paper, we denote the Lebesgue� -�eld of R by B , and the set of
all positive measures� on B by M satisfying � (R) = 1 and � ([a; b]) < 1 ; for all
a; b2 R(a � b):

Next, we de�ne new ergodic space and the notion of Stepanov-like (�; � )-pseudo
almost automorphic functions with positive measures�; � 2 M .

De�nition 2.11 [10] Let �; � 2 M and p 2 [1; 1 ). A function  2 BSp(R; E ) is
said to be (�; � )-ergodic if

lim

 !1

1
� (Q
 )

Z

Q 


� Z t +1

t
k (s)kpds

� 1
p

d� (t) = 0 ;

where Q
 = [ � 
; 
 ] and � (Q
 ) =
R

Q 

d� (t). We denote all such functions by

Ep(R; E; �; � ):

De�nition 2.12 Let �; � 2 M : A function f 2 C(R; E ) is said to be (�; � )-pseudo
almost automorphic function, if it can be decomposed asf = � +  , where � 2 AA (R; E )
and  2 E1(R; E; �; � ). The collection of all such functions by P AA (R; E; �; � ) is a
Banach space equipped with sup norm.
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De�nition 2.13 Let �; � 2 M : A function f 2 BSp(R; E ) is said to be Stepanov-like
(�; � )-pseudo almost automorphic function, if it can be decomposed asf = � +  , where
� 2 SpAA (R; E ) and  2 Ep(R; E; �; � ). We denote the collection of all such functions
by SpP AA (R; E; �; � ):

De�nition 2.14 [10] A continuous function f : R � E ! E is said to be (�; � )-
ergodic in t 2 R uniformly with respect to y 2 E , if the following conditions are true:

(i ) f (:; y) 2 Ep(R � E; E; �; � ); for all y 2 E;

(ii ) The function f (:; y) is uniformly continuous with the second variable in a compact
set K in E .

We denote the collection of all such functions byEpU(R � E; E; �; � ):

De�nition 2.15 The function f 2 BSp(R � E; E ) is said to be Stepanov-like (�; � )-
pseudo almost automorphic, if it has decomposition of the formf = � +  , where
� 2 SpAAU (R � E; E ) and  2 EpU(R � E; E; �; � ). We denote the set of all such
functions by SpP AAU (R � E; E; �; � ):

We assume the following:

(M 1) Let �; � 2 M ; then lim

 !1

� (Q
 )
� (Q
 )

< 1 :

(M 2) For all s 2 R and � 2 M ; there exist a bounded interval I and � > 0 such that
� (f a + s; a 2 Dg) � �� (D ) if D 2 B satis�es D \ I = ; :

Theorem 2.1 [10] Assume that �; � 2 M and (M 1) � (M 2) hold. Then
SpP AA (R; E; �; � ) is translation invariant and the set (SpP AA (R; E; �; � ); k:kSp ) is the
Banach space.

Theorem 2.2 Let �; � 2 M , f = � +  2 SpP AAU (R � E � E; E; �; � ) with � 2
SpAAU (R� E � E; E ),  2 EpU(R� E � E; E; �; � ). Suppose that the following conditions
hold:

(i ) � is uniformly continuous on a bounded subset
 � E � E for all t 2 R.

(ii ) f is uniformly continuous on a bounded subset
 � E � E for all t 2 R.

(iii ) � = � + �; � = u + v 2 SpP AA (R; E; �; � ) with �; u 2 SpAA (R; E ) and �; v 2
Ep(R; E; �; � ) and f � (t) 2 Rg; f u(t) 2 Rg are compact in E.

Then t 7! f (t; � (t); � (t)) 2 SpP AA (R; E; �; � ).

Proof. The proof is similar to the proof of Theorem 3:2 in [21] and hence the details
are omitted here.

Lemma 2.1 Let y = y1 + y2; 2 SpP AA (R; E; �; � ) and Ry = f y1(t) : t 2 Rg be
a compact set in E . Suppose thath = � +  ; 2 SpP AAU (R � E; E; �; � ); with � 2
SpAAU (R � E; E ),  2 EpU(R � E; E; �; � ) satisfying

kh(t; y ) � h(t; z)k � L h ky � zk and k� (t; y ) � � (t; z)k � L � ky � zk; y; z 2 E; t 2 R;

where L � ; L h > 0 are constants. Then

	 h (t) :=
Z t

�1
K (t � s)h(s; y(s))ds 2 SpP AA (R; E; �; � ): (4)
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Proof. The proof is similar to the proof of Lemma 3:2 in [19] and hence the details
are omitted here.

Lemma 2.2 Let (M 1) and (M 2) hold and let f 2 SpP AA (R; E; �; � ). Then the
function is de�ned by

� f (t) =
Z t

�1
S� (t � s)f (s)ds 2 P AA (R; E; �; � ):

Proof. Since f 2 SpP AA (R; E; �; � ), there exist � 2 SpAA (R; E ) and  2
Ep(R; E; �; � ), such that f (t) = � (t) +  (t): Now consider

� f (t) =
Z t

�1
S� (t � s)f (s)ds = � � (t) + �  (t);

where

� � (t) =
Z t

�1
S� (t � s)� (s)ds and �  (t) =

Z t

�1
S� (t � s) (s)ds:

First, we show � � 2 AA (R; E ). De�ne a sequence of integral operators forn = 1 ; 2; 3; : : : ;

� n
� (t) =

Z t � n +1

t � n
S� (t � s)� (s)ds:

Using Holder’s inequality, we have k� n
� (t)k < 1 . Now by Weierstrass’ theorem, the

series � � (t) =
1X

n =1

� n
� =

Z t

�1
S� (t � s)� (s)ds converges uniformly onR. Moreover,

k� � (t)k �
1X

n =1

k� n
� k � k � n kSp CM

1X

n =1

�
1

1 + j! j(n � 1)�

�
< 1 ) � � 2 C(R; E ):

Further, for n = 1 ; 2; 3; ::: we show that � n
� 2 AA (R; E ). Since � 2 SpAA (R; E ),

this implies that every sequencef � 0
n g of real numbers contains a subsequencef � n g and

a function e� 2 L p
loc ([0; 1]; E ) such that

� Z t +1

t
k� (s + � n ) � e� (s)kpds

� 1
p

! 0; and
� Z t +1

t
ke� (s � � n ) � � (s)kpds

� 1
p

! 0; (5)

as n ! 0 and t 2 R. Consider

k� n
� (t + � n ) � � n

e� (t)k �
Z n

n � 1
kS� (s)[� (t + � n � s) � e� (t � s)]kds

�
� Z n

n � 1
kS� (s)kq

� 1
q
� Z n

n � 1
k� (t + � n � s) � e� (t � s)kp

� 1
p

�CM
�

1
1 + j! j(n � 1)�

�� Z n

n � 1
k� (t + � n � s) � e� (t � s)kp

� 1
p

:
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It is obvious from (5), that the last inequality goes to 0 as n ! 1 on R. Similarly one
can show that

k� e� (s � � n ) � � � (s)k ! 0; (6)

as n ! 1 on R. Thus we conclude that � � 2 SpAA (R; E ).

Next, we show that �  2 E(R; E; �; � ): To complete this task we consider the integral
operator for n = 1 ; 2; 3; : : :

� n
 (t) =

Z t � n +1

t � n
S� (t � s) (s)ds =

Z n

n � 1
S� (s) (t � s)ds:

Now, we get

k� n
 (t)k �

� Z n

n � 1
kS� (s)kqds

� 1
q
� Z n

n � 1
k (t � s)kpds

� 1
p

�k  kSp CM
� Z n

n � 1

�
1

1 + j! j(s) �

� q

ds
� 1

q

�k  kSp CM
�

1
1 + j! j(n � 1)�

�

< 1 ;

where q = p=(p � 1). Further, for 
 > 0;

lim

 !1

1
� (Q
 )

Z

Q 


k� n
 (t)kd� (t)

�
CM

1 + j! j(n � 1)� lim

 !1

1
� (Q
 )

Z

Q 


� Z t � n +1

t � n
k (s)kpds

� 1
p

d� (t):

Since  2 Ep(R; E; �; � ), the above estimation leads to � n
 2 Ep(R; E; �; � ) for n =

1; 2; 3; : : :. The above inequality also implies that the seriesCM
1X

n =1

�
1

1 + j! j(n � 1)�

�
is

convergent, then we deduce in view of Weierstrass test that the series
1X

n =1

� n
 (t) converges

uniformly on R and

�  (t) =
1X

n =1

� n
 (t) =

Z t

1
S� (t � s) (s)ds:

Further, from � n
 2 Ep(R; E; �; � ) and

1
� (Q
 )

Z

Q 


k�( t)kd� (t) �
CM

1 + j! j(n � 1)�
1

� (Q
 )

Z

Q 






 �  (s) �
NX

n =1

� n
 (s)





 d� (s)

+
NX

n =1

CM
1 + j! j(n � 1)�

1
� (Q
 )

Z

Q 


k� n
 (s)kd� (s);
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it follows that uniform limit �( t) =
1X

n =1

� n
 (t) 2 E(R; E; �; � ).

Now, before moving further we brie
y describe compactness criteria and the Leray-
Schauder alternate theorem. LetH : R ! R be continuous such that H (t) ! 1 as
jt j ! 1 and H (t) � 1 for all t 2 R: We de�ne a Banach space

CH (R; E ) = f v 2 C(R; E ) : lim
j t j!1

v(t)=H (t) = 0 g;

equipped with the norm kvkH = sup
t 2 R

(kv(t)k=H (t)) :

Lemma 2.3 [17] A set K � CH (R; E ) is relative compact in CH (R; E ), if the
following conditions hold:

(a1) The set K (t) = f v(t) : v 2 K; t 2 Rg is relative compact in E .

(a2) The set K is equicontinuous.

(a3) For each � > 0, there exists a constantL > 0 such that kv(t)kH � � H (t) for all
jt j > L and u 2 K .

Lemma 2.4 ( [12]Leray-Schauder Alternate Theorem) Let D be a closed convex sub-
set of a Banach spaceE such that 0 2 D . Let f : D ! D be a completely continuous
map. Then the set f y 2 D : y = �f (y); 0 < � < 1g is unbounded or the mapf has a
�xed point in D:

3 Main Results

In this section, we investigate the existence of (�; � )-pseudo almost automorphic mild
solutions to (1).

De�nition 3.1 [2] A function y 2 C(R; E ) is said to be a mild solution of (1) if the
function s 7! S � (s)F (s; y(s); 	 y(s)) is integrable on (�1 ; s) for each s 2 R and

y(t) =
Z t

�1
S� (t � s)F (s; y(s); 	 h y(s))ds;

where S� (t) is a solution operator and 	 h is de�ned by 	 h y(t) =Rt
�1 K (t � s)h(s; y(s))ds.

To establish the existence results, we consider the following assumptions:

(L 1) Suppose that F = � +  2 SpP AAU (R � E � E; E; �; � ) with � 2 SpAAU (R �
E � E; E ),  2 EpU(R � E � E; E; �; � ) is uniformly continuous on a bounded set
V � X � X for all t 2 R and fF (t; y; z) : y; z 2 Vg is bounded in SpP AAU (R �
E � E; E; �; � ).

(L 2) There exist a nondecreasing continuous functionW : [0; 1 ) ! [0; 1 ) such that

kF (t; y; z)k � W (kyk + kzk); for each t 2 R; y; z 2 E:
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Theorem 3.1 Let A be a sectorial operator of type! < 0 and (M 1) and (M 2) hold.
Assume thatF : R � E � E ! E is a function satisfying (L 1) and (L 2) and the following
additional conditions hold:

(L 3) For k; a � 0,

lim
j t j!1

Z t

�1

W ((1 + k)aH (s))
1 + j! j(t � s) � ds = 0 ;

where H is de�ned in Lemma 2.3. We set

� (a) := CM






Z t

�1

W ((1 + k)aH (s))
1 + j! j(t � s) � ds





 :

(L 4) For every y; z 2 CH (R; E ) and each� > 0 there exists a� > 0 such thatky � zk � �
implies that

CM
Z t

�1

kF (s; y(s); 	 h y(s)) � F (s; z(s); 	 h z(s))k
1 + j! j(t � s) � ds � �:

(L 5) lim inf
s!1

s
� (s)

> 1:

(L 6) The set f f (s; y(s); 	 h y(s)) : c � s � d; y 2 CH ; kykH � � g is relatively compact in
E for c; d 2 R; c < d and � > 0:

Then equation (1) admits a (�; � )-pseudo almost automorphic mild solution.

Proof. Let us de�ne an operator � F : CH (R; E ) ! CH (R; E ) by

� F y(t) =
Z t

�1
S� (t � s)F (s; y(s); 	 h y(s))ds:

Now, we need only to show that � F has a �xed point in P AA (R; E; �; � ). For the
sake of convenience, we provide the proof in several steps.
Step 1 :� F is well de�ned.

For y 2 CH (R; E ) with ( L 1) we have

k� F y(t)k �CM
Z t

�1

W (ky(s)k + k	 h y(s)k)
1 + j! j(t � s) � ds

�CM
Z t

�1

W [(1 + k	 h k)kykH H (s)]
1 + j! j(t � s) � ds:

Hence by (L 3) � F is well de�ned.
Step 2 : The operator � F is continuous. In fact, let y; z 2 CH (R; E ). For any � > 0 we
take � > 0 such that ky � zk � � , then

k� F y(t) � � F z(t)k � CM
Z t

�1

kF (s; y(s); 	 h y(s)) � F (s; z(s); 	 h z(s))k
1 + j! j(t � s) � ds � �;

which shows the assertion.
Step 3 : Next, we show that � F is completely continuous. Let B � (E ) denote a closed
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ball in a spaceE with radius � and center at 0. Let us denoteU = � F (B � (CH (E ))) and
w = � F (v) for v 2 B � (CH (E )). Now, we show that U is a relative compact subset ofE .
The condition (L 3) implies that W ((1+ k 	 h k) � H ( t � s))

1+ j ! j (s) � is integrable on [0; 1 ). Hence, for

� > 0, we can chose� � 0 such that CM
R1

0
W ((1+ k 	 h k) � H ( t � s))

1+ j ! j (s) � ds � �:
Since

w(t) =
Z �

0
S� (s)F (t � s; y(t � s); 	 h y(t � s))ds

+
Z 1

�
S� (s)F (t � s; y(t � s); 	 h y(t � s))ds;

and






Z �

0
S� (s)F (t � s; y(t � s); 	 h y(t � s))ds





 � CM
Z 1

�

W ((1 + k	 h k)aH (t � s))
1 + j! j(s) � ds � �;

we deduce that w(t) 2 � C0(M ) + B � (E ); where C0(M ) denotes the convex hull ofM
and

M = fS � (s)f (�; (� )y; 	 h (� )y) : 0 � s � �; t � � � � � t; kykH � � g:

By the strong continuity of S� and (L 6) we deduce that M is relatively compact set and
U 2 � C0(M ) + B � (E ) which establishes the assertion.

Further, we show that U is equicontinuous. In fact, we can decompose

w(t + h) � w(t) =
Z h

0
S� (s)F (t + h � s; y(t + h � s); 	 h y(t + h � s))ds

+
Z �

0
[S� (h + s) � S � (s)]F (t � s; y(t � s); 	 h y(t � s))ds

+
Z 1

�
[S� (h + s) � S � (s)]F (t � s; y(t � s); 	 h y(t � s))ds:

For each � > 0; we can take � > 0 and � 1 such that






Z h

0
S� (s)F (t + h � s;y(t + h � s); 	 h y(t + h � s))ds

+
Z 1

�
[S� (h + s)�S � (s)]F (t � s; y(t � s); 	 h y(t � s))







�CM
� Z s

0

W ((1 + k	 h k)� H (t + h � s))
1 + j! j(s) � ds

+
Z 1

�

W ((1 + k	 h k)� H (t � s))
1 + j! j(s) � ds

�
�

�
2

;

for h � � 1: Moreover, sinceS� is strongly continuous and fF (t � s; y(t � s); 	 h y(t � s)) :
0 � s � �; y 2 (B � (CH (E ))) gis relative compact, we can take� 2 > 0 such that

k[S� (h + s) � S � (s)]F (t � s; y(t � s); 	 h y(t � s))k �
�

2�
;

for h � � 2. We have from the above estimation that kw(t + h) � w(t)k � � for small �
and is independent ofy 2 B � (CH (E )) :
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Finally, from ( L 3) we deduce

kw(t)k
H (t)

�
CM
H (t)

Z 1

0

W ((1 + k	 h k)� H (s))
1 + j! j(t � s) � ds ! 0; as jt j ! 1 ;

uniformly and is independent of y 2 B � (CH (E )) : Thus, by Lemma 2.3, U is a relatively
compact set in CH (E ).
Step 4 : Let for some 0< � < 1, y� (�) be a solution of the equationy = � � F (y� ):

Then, we have the estimate

ky� (t)k � �
Z t

�1
kS� (t � s)F (s; y� (s); 	 h y� (s))kds

�CM
Z t

�1

W [(1 + k	 h k)ky� kH H (s)]
1 + j! j(t � s) � ds

� � (ky� kH )H (t):

It leads to

ky� (t)k
� (ky� kH )

< 1:

We deduce from the above relation and (L 5) that the set f y� : y� = � � F (y� ); 0 < � < 1g
is a bounded set.
Step 5 : We deduce form Remark 2.1, (L 1) and Theorem 2.2 that the function
t 7! F (t; y (t); 	 h y(t)) 2 SpP AA (R; E; �; � ), whenever y 2 P AA (R; E; �; � ) �
SpP AA (R; E; �; � ). Further, by Lemma 2.2, we get � F (P AA (R; E; �; � )) �
P AA (R; E; �; � ) and notice that P AA (R; E; �; � ) is a closed subspace ofCH (R; E ). Now,
using the Steps 1� 4, we obtain that the map � F is completely continuous. Applying
Lemma 2.4, we infer that mapping � F has a �xed point in P AA (R; E; �; � ).
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Abstract: In this paper we introduce a notion of renormalized solution for nonlinear

parabolic problems whose model is
@b(u)

@t
� � A (u) � div (�( x; t; u )Du ) = � in Q;

where b is a strictly increasing C1-function de�ned on R; and A (z) =
Z z

0
a(s)ds. The

function a(s) is continuous on an interval ] � 1 ; m[ of R such that a(u) blows up for
a �nite value m of the unknown u, � is a Carath�eodory function and � is a di�use
measure.

Keywords: nonlinear parabolic equations; renormalized solutions; soft measure.

Mathematics Subject Classi�cation (2010): Primary 47A15, Secondary 46A32,
47D20.

1 Introduction

Let 
 be a bounded open set of RN (N � 1), T be a positive real number, andQ =

 � (0; T ).

In this paper we deal with the existence of a renormalized solution for a class of
nonlinear parabolic equations of the type

@b(u)
@t

� � A(u) � div (�( x; t; u )Du ) = � in Q; (1)

b(u(t = 0)) = b(u0) in 
 ; (2)

u = 0 on @
 � (0; T ): (3)
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In problem (1)-(3), the function b is assumed inC1(R), such that it is strictly increasing,

and A(z) =
Z z

0
a(s)ds; where the function a 2 C0(

�
�1 ; m[; R+ ) (m is a positive real

number) such that lim
s! m �

a(s) = + 1 : The function � is Carath�eodory on Q � R with

values in R+ and u0 2 L 1(
) such that u0 � m a.e. in 
 :
We study problem (1)-(3) in the presence of di�use measure data�: We call a �nite

measure � di�use if it does not charge sets of zero 2-capacity andM 0(Q) will denote
the set of all di�use measures inQ (see, [14]). In [9] the authors proved that for every
� 2 M 0(Q) there exist f 2 L 1(Q); g 2 L 2(0; T ; H 1

0 (
)) and G 2 L 2(0; T ; H � 1(
)) such
that � = f + G + gt in D0(Q): For v = b(u) � g, equation (1) is equivalent in D0(Q) to
@v
@t

� div
�

a(b� 1(v+ g))D (b� 1(v+ g))
�

� div
�

�( x; t; b� 1(v+ g))D (b� 1(v+ g))
�

= f + G with
f + G 2 L 1(Q)+ L 2(0; T ; H � 1(
)). The �rst di�culty in solving this equation is de�ning
the �eld a(b� 1(v+ g))D (b� 1(v+ g)) on the subset f (x; t ); v+ g = b(m)g of Q, since on this
set, a(b� 1(v + g)) = + 1 . In addition, the �eld �( x; t; b� 1(v + g))D (b� 1(v + g)) =2 D 0(Q)
in general, sinceg =2 L 1 (Q) in general.

The second di�culty is represented here by the presence of the measure data� and the
nonlinear term b(u). To overcome these di�culties, we use in this paper the framework
of renormalized solutions. A large number of papers was then devoted to the study of
renormalized (or entropy) solution of parabolic problems with rough data under various
assumptions and in di�erent contexts: in addition to the references already mentioned,
see, e.g., [1,3,6{8,10,11].

The existence of a renormalized solution of (1)-(3) has been proved in [2] in the
stationary case where �(x; t; u ) = 0 and � 2 L 2(
).

The existence and uniqueness of renormalized solution of (1)-(3) have been proved
in [9], in the case whereu0 2 L 1(
) and � A(u) is replaced byp-Laplacian operator � pu;
�( x; t; u ) = 0 and for every measure� 2 M 0(Q). In the case whereb(u) = u; � A(u) is
replaced by � div (a(t; x; u; r u)), �( x; t; u ) = �( u) and � = f + div g where f 2 L 1(Q)
and g 2 (L p0

(Q))N , the existence of renormalized solution has been proved in [5].
When b is assumed to satisfy 0< b0 � b0(r ) � b1, 8r 2 R; and � A(u) is replaced

by div (a(x; t; r u)) ; �( x; t; u ) = 0 and � 2 M 0(Q), the existence and uniqueness of
renormalized solution have been established in [4].

In the stationary and evolution cases of ut � div (A(x; t; u )r u) = f in Q, where
the matrix A(x; t; s ) blows up (uniformly with respect to ( x; t )) as s ! m� and where
f 2 L 1(Q), the existence of renormalized solution has been proved in [3].

In the case ofut � div (d(u)Du ) = �; where the coe�cients d(s) = ( di (s)) are con-
tinuous on an interval ] � 1 ; m[ of R (with m > 0) with value in R+ ; u0 2 L 1(
) and
� 2 M 0(Q), the existence of renormalized solution has been proved in [15]. Our goal is
to extend the approach from [15].

The organization of the paper is the following. In Section 2, we give some preliminaries
on the concept ofp-capacity and set out the main notation we will use throughout the
paper. Section 3 will be devoted to the exposition of our main assumptions and to the
de�nition of renormalized solution of (1)-(3). In Section 4 (Theorem 4.1) we establish the
existence of such a solution. In Section 5 (Appendix), we provide the proof of Theorem
2.2. Section 6 is devoted to an example which illustrates our abstract result.
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2 Preliminaries on Parabolic Capacity and Measures

For every open subsetU � Q the 2-parabolic capacity of U is given by (for fur-
ther details see, [9, 14]): cap2(U) = inf

n
kukW : u 2 W; u � � U a:e: in Q

o
;

where W =
n

u 2 L 2(0; T ; H 1
0 (
)) ; ut 2 L 2(0; T ; H � 1(
))

o
; endowed with the norm

kukW = kukL 2 (0 ;T ;H 1
0 (
)) + kut kL 2 (0 ;T ;H � 1 (
)) : The 2-parabolic capacity is then extended

to arbitrary Borel set B � Q as cap2(B ) = inf
n

cap2(U) : U open set of Q; B � U
o

:
We will denote by M (Q) the set of all Radon measures with bounded variation onQ,
while, as we have already mentioned,M 0(Q) will denote the set of all measures with
bounded variation over Q that do not charge the sets of zero 2� capacity, that is: if
� 2 M 0(Q) then � (E ) = 0 for all E � Q such that cap2(E ) = 0.

In [9] the authors proved the following decomposition theorem:

Theorem 2.1 Let � be a bounded measure onQ. If � 2 M 0(Q), then there exists
(f; G; g ) such that f 2 L 1(Q); G 2 L 2(0; T ; H � 1(
)) ; g 2 L 2(0; T ; H 1

0 (
)) and

Z

Q
� d� =

Z

Q
f � dx dt +

Z T

0
hG; � i dt �

Z T

0
h� t ; gi dt � 2 C1

c (
 � [0; T ]):

Such a triplet (f; G; g ) will be called a decomposition of� .

Note that the decomposition of � is not uniquely determined.
The following theorem will be a key point in the existence result given in the next

section. The proof follows the arguments in Theorem 1.2 in [13].

Theorem 2.2 Let a 2 C0(R) \ L 1 (R); b 2 C1(R) with 0 < � � b0 � 
; � be a
Carath�eodory function such that � 2 L 1 (Q � R), � 2 M 0(Q) \ L 2(0; T ; H � 1(
)) and
u0 2 L 2(
) , let u 2 W be the (unique) weak solution of

8
>><

>>:

@b(u)
@t

� � A(u) � div (�( x; t; u )Du ) = � in Q,

b(u (t = 0)) = b(u0) in 
 ,
u = 0 on @
 � (0; T ).

(4)

Then, cap2fj uj > K g �
C

p
K

8 K � 1; where C > 0 is a constant depending on

k� kM (Q ) and ku0kL 2 (
) .

Proof. The proof of Theorem 2.2 is postponed to the Appendix in Section 5. 2

De�nition 2.1 A sequence of measures (� n ) in Q is equidi�use if for every � > 0
there exists � > 0 such that cap2(E ) < � =) j � n j(E ) < � 8 n � 1:

The following result is proved in [13]:

Lemma 2.1 Let � n be a sequence of molli�ers onQ. If � 2 M 0(Q), then the
sequence(� n � � n ) is equidi�use.
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Here are some notations we will use throughout the paper. For any nonnegative real
number K we denote byTK (r ) = min( K; max(r; � K )) the truncation function at level
K for every r 2 R. We consider the following smooth approximation of TK (s): for
m > 0; � 2 ]0; 1[ and � 2 ]0; 1[, we de�ne Sm

K;� ; Tm
K : R �! R by

Sm;�
K;� (s) =

8
><

>:

1 if � K � s � m � � ,
0 if s � � K � � or s � m,
a�ne otherwise,

and Tm
K (s) =

8
><

>:

s if � K � s � m,
� K if s � � K ,
m if s � m;

(5)

and let us denoteTm;�
K;� (z) =

Z z

0
Sm;�

K;� (s) ds.

3 Main Assumptions and De�nition of Renormalized Solution

Throughout the paper, we assume that the following assumptions hold true: 
 is a
bounded open set onRN (N � 2), T > 0 is given and we setQ = 
 � (0; T ).

b : R ! R is a strictly increasing C1 � function such that 0 < � � b0 and b(0) = 0 ; (6)

a 2 C0(]�1 ; m[ ; R+ ) with a(s) < + 1 8 s < m; (7)

9 � > 0 such that : a(s) � � ; 8s 2 ] � 1 ; m[; (8)

lim
s! m �

a(s) = + 1 and
Z m

0
a(s) ds < + 1 ; (9)

� : Q � R ! R+ is a Carath�eodory function such that �( x; t; 0) = 0 ; (10)

max
fj r j<K g

j�( x; t; r )j 2 L 1 (Q) for all K > 0; (11)

� 2 M 0(Q); (12)

u0 2 L 1(
) such that u0 � m a.e. in 
 : (13)

We now give the de�nition of a renormalized solution of problem (1)-(3).

De�nition 3.1 A function u 2 L 1(Q) is a renormalized solution of problem (1)-(3)
if

u � m a.e. in Q and TK (u) 2 L 2(0; T ; H 1
0 (
)) 8K > 0; (14)

a(u)DT m
K (u)� f u<m g 2 (L 2(Q))N 8K > 0; (15)

if there exist a sequence of nonnegative measures �K 2 M (Q) and a nonnegative measure
� m 2 M (Q) such that

lim
K ! + 1

k� K kM (Q ) = 0 ; (16)
Z

Q
’ d � m = 0 8’ 2 C1

0 ([0; T [); (17)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 17 (4) (2017) 421{432 425

and if, for every K > 0

@Bm
K (u)
@t

� div
�

a(u)DT m
K (u)� f u<m g

�
� div

�
�( x; t; T m

K (u))DT m
K (u)

�
(18)

= � + � K + � m in D0(Q);

where B m
K (z) =

Z z

0
b0(s)(Tm

K )0(s) ds.

Remark 3.1 1/ Note that, in view of (14), (15) and (16), all terms in (18) are well
de�ned. 2/ Let us point out that, in (17), the function ’ 2 C1

0 ([0; T [) does not depend
on the variable x, we are not able to prove (17) with any function ’ 2 L 2(0; T ; H 1(
)) \
L 1 (Q) such that D’ = 0 a.e. in f (x; t ) ; u(x; t ) = mg because of a lack of regularity on
u with respect to t in the parabolic case.

4 Existence of a Renormalized Solution

This section is devoted to establishing the following existence theorem.

Theorem 4.1 Under assumptions (6)-(13) there exists at least one renormalized so-
lution of problem (1)-(3) in the sense of De�nition 3.1.

Proof. The proof is divided into 4 steps. At Step 1, we introduce an approximate
problem. Step 2 is devoted to establishing a fewa priori estimates and we prove thatu
satis�es (14) and (15) of De�nition 3.1. At last, Step 3 and Step 4 are aimed to prove that
u satis�es (16), (17) and (18) of De�nition 3.1. 2
? Step 1 . A regularized problem.

Let us introduce the following regularization of the data: for n � 1 �xed

bn (s) = b(Tn (s)) +
1
n

s and an (s) = a
�

Tm � 1
n

1
n

(s)
�

8 s 2 R; (19)

un
0 2 C1

c (
) : bn (un
0 ) ! b(u0) strongly in L 1(
) as n tends to + 1 ; (20)

� n (x; t; s ) = � ( x; t; T n (s)) 8s 2 R: (21)

We consider a sequence of molli�ers (� n ), and we de�ne the convolution � n � � for every

(x; t ) 2 Q by � n (x; t ) = � n � � (x; t ) =
Z

Q
� n (x � y; t � s)d� (y; s): Let us now consider the

following regularized problem

@bn (un )
@t

� � An (un ) � div (� n (x; t; u n )Du n ) = � n in Q; (22)

bn (un (t = 0)) = bn (un
0 ) in 
 ; (23)

un = 0 on @
 � (0; T ): (24)

As a consequence, proving existence of a weak solutionun 2 L 2(0; T ; H 1
0 (
)) of (22)-(24)

is an easy task (see e.g. [12]).

? Step 2 . A priori estimates. Taking TK (un ) as a test function in (22) gives
Z



B n

K (un )(T ) dx +
Z

Q
DA n (un ) DTK (un ) dx dt (25)



426 K. ZAKI AND H. REDWANE

+
Z

Q
� n (x; t; u n ) Du n DTK (un ) dx dt =

Z

Q
� n TK (un ) dx dt +

Z



B n

K (un
0 ) dx;

where B n
K (z) =

Z z

0
b0

n (s)TK (s) ds. We deduce

Z



B n

K (un )(T ) dx +
Z

Q
(an (un ) + � n (x; t; u n )) jDTK (un )j2 dx dt � CK (26)

sincek� n kL 1 (Q ) and kbn (un
0 )kL 1 (
) are bounded. We deduce for anyK � 0

TK (un ) is bounded in L 2(0; T ; H 1
0 (
)) ; (27)

and
an (un )

1
2 DTK (un ) is bounded in (L 2(Q))N : (28)

Now, using
1
r

Tr (un )� (0 ;t ) as a test function in (22) we obtain

Z




1
r

B n
r (un ) dx +

1
r

Z t

0

Z



(an (un ) + � n (x; t; u n )) jDT r (un )j2 dx dt � C; (29)

where B n
r (z) =

Z z

0
b0

n (s)Tr (s) ds: The second term in the left-hand side of the

above inequality is nonnegative. Taking the limit in (29) as r tends to 0 we ob-
tain bn (un ) is bounded in L 1 (0; T ; L 1(
)) : According to (7)-(9), we have for any

K � 0;
���
Z u n

0
an (s)� f� K � s� m g dx

��� �
Z m

� K
a(s) ds � CK < + 1 ; then we can use

Z u n

0
an (s)� f� K � s� m g ds in L 2(0; T ; H 1

0 (
)) \ L 1 (Q) as a test function in (22), we have

�
Z




Z u n

0

Z z

0
an (s)� f� K � s� m g ds dz dx (30)

+
Z

Q

�
(an (un ))2 + � n (x; t; u n )an (un )

�
jDT m

K (un )j2 � (k� n kL 1 + kbn (un
0 )kL 1 )

Z m

� K
a(s) ds:

Since
Z




Z u n

0

Z z

0
an (s)ds dz dx and

Z

Q
� n (x; t; u n )an (un ) jDT m

K (un )j2 dx dt are positives,

k� n kL 1 (Q and kbn (un
0 )kL 1 (
) are bounded, we deduce from (30) that

an (un )DT m
K (un ) is bounded in (L 2(Q))N : (31)

For any integer M � 1; let SM be an increasing function ofC1 (R) and suchSM (r ) = r for

jr j �
M
2

and SM (r ) = Msg(r ) for jr j � M . Note that for any M; supp S0
M � [� M; M ] :

We will show that for any �xed integer M the sequenceSM (bn (un )) satis�es

SM (bn (un )) is bounded in L 2(0; T ; H 1
0 (
)) ; (32)

and
@SM (bn (un ))

@t
is bounded in L 1(Q) + L 2(0; T ; H � 1(
)) (33)
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independently of n: Due to the de�nition of bn , it is clear that for jbn (un )j �
M we have jb(Tn (un )j � M and jun j < K M as soon asn > K M and where
K M = max

�
b� 1(M );

��b� 1(� M )
�� 	 : As a �rst consequence we obtainDSM (bn (un )) =

S0
M (bn (un ))b0

n (un )DTK M (un ) as soon asn > K M ; since S0
M (bn (un )) = 0 on the set

fj bn (un )j > M g ; and K M = max f� b� 1(M ); jb� 1(� M )jg: Secondly, the following esti-
mate holds true kS0

M (bn (un ))b0
n (un )kL 1 (Q ) � k S0

M kL 1 (R)

�
max

j r j� K M
jb0(r )j + 1

�
as soon as

n > K M . Sinceb0 is continuous onR, it follows that for any integer M; S 0
M (bn (un ))b0

n (un )
is bounded in L 1 (Q) independently of n as soon asn > K M . As a consequence of (27)
we then obtain (32).

To show that (33) holds true, we multiply the equation (22) by S0
M (bn (un )) to obtain

@SM (bn (un ))
@t

= div
�

S0
M (bn (un ))an (un )Du n

�
� S00

M (bn (un ))b0
n (un )an (un ) jDu n j2 (34)

+ div
�

S0
M (bn (un ))� n (x; t; u n )Du n

�
� S00

M (bn (un ))b0
n (un )� n (x; t; u n ) jDu n j2+ � n S0

M (bn (un ))

in D0(Q). Each term in the right-hand side of (34) is bounded either inL 2(0; T ; H � 1(
))
or in L 1(Q). Indeed, sincesuppS0

M and suppS00
M are both included in [� M; M ], un may

be replaced byTK M (un ) in each of these terms.
Proceeding as in [5] we see that estimates (32) and (33) imply that, for a subsequence

still indexed by n; bn (un ) ! � almost everywhere inQ: Since b� 1 is continuous on R;
b� 1

n converges everywhere tob� 1 when n goes to1 , so that un ! u = b� 1(� ) a.e. in Q
and using (27), (28) and (31), we obtain

bn (un ) �! b(u) almost everywhere inQ; (35)

TK (un ) * T K (u) weakly in L 2(0; T ; H 1
0 (
)) ; (36)

(an (un ))
1
2 DTK (un ) * X K weakly in (L 2(Q))N ; (37)

an (un )DT m
K (un ) * Y K weakly in (L 2(Q))N : (38)

By using the admissible test function Tn +
2m (un ) � Tn +

m (un ) in (22) we have
Z

Q
(an (un ) + � n (x; t; u n ))

��D
�
Tn +

2m (un ) � Tn +
m (un )

� ��2 dx dt � Cm: (39)

Now, since � n (x; t; u n ) � 0, and in view of (19) and the Poincar�e inequality we deduce

a(m �
1
n

)
Z

Q

��Tn +
2m (un ) � Tn +

m (un )
��2 dx dt � Cm: (40)

According to (9) and (20) (since dp(m � 1
n ) ! + 1 as n tends to + 1 ) passing to the

limit in (40) as n tends to + 1 , we deduce thatT+
2m (u) � T+

m (u) = 0 a.e. in Q, hence

u � m a.e. in Q: (41)

In view of (37), (38) and (41) we deduce for anyK � 0

X K = ( a(u))
1
2 DTK (u) and YK = a(u)DT m

K (u) a.e. in f (x; t ) 2 Q = u(x; t ) < m g: (42)
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We de�ne, for any �xed K � 1; 0 < � < 1 and 0< � < 1, the functions HK;� and Zm;�
by

HK;� (s) =

8
><

>:

� 1; if s � � K � �;
0; if s � � K;
a�ne ; otherwise,

and Zm;� (s) =

8
><

>:

0; if s � m � �;
1; if s � m;
a�ne ; otherwise.

(43)

We use the admissible test functionsHK;� (un ) and Zm;� (un ) in (22) to get
Z



H K;� (un )(T ) dx +

Z

Q
DA n (un )DH K;� (un ) dx dt (44)

+
Z

Q
� n (x; t; u n ) Du n DH K;� (un ) dx dt =

Z

Q
HK;� (un )� n dx dt +

Z



H K;� (un

0 ) dx;

and Z



Z m;� (un )(T ) dx +

Z

Q
DA n (un )DZ m;� (un ) dx dt (45)

+
Z

Q
� n (x; t; u n ) Du n DZ m;� (un ) dx dt =

Z

Q
Zm;� (un )� n dx dt +

Z



Z m;� (un

0 ) dx;

where H K;� (r ) =
Z r

0
b0

n (s)HK;� (s)ds � 0 for r � 0 and Z m;� (r ) =
Z r

0
b0

n (s)Zm;� (s) ds �

0 for r � 0: Hence, using (43) and dropping a nonnegative term, we obtain

1
�

Z

f� K � � � u n �� K g
(an (un ) + � n (x; t; u n )) jDu n j2 dx dt (46)

�
Z

f u n �� K g
j� n j dx dt +

Z

f u n
0 �� K g

jbn (un
0 )j dx � C1;

and

1
�

Z

f m � � � u n � m g
(an (un ) + � n (x; t; u n )) jDu n j2 dx dt � k � n kL 1 (Q ) + kbn (un

0 )kL 1 (
) � C2:

(47)
Thus, there exists a bounded Radon measure	 n

K , as � tends to zero

	 n
K;� �

1
�

(an (un ) + � n (x; t; u n )) jDu n j2 � f� K � � � u n �� K g * 	 n
K � � weakly in M (Q):

(48)
? Step 3 . At this step we prove that u satis�es (18). Let Sm;�

K;� be the function de�ned
by (5) for all real numbers � > 0; � > 0 and K > 0: Sincesupp(Sm;�

K;� )0 � [� K � �; � K ][
[m � �; m ], we multiply the equation (22) by Sm;�

K;� (un ) to get

@Bn;m;�
K;� (un )

@t
� div

�
DA n (un ) Sm;�

K;� (un )
�

+ DA n (un )DSm;�
K;� (un ) (49)

� div
�

� n (x; t; u n )Du n Sm;�
K;� (un )

�
+� n (x; t; u n ) Du n DSm;�

K;� (un ) = � n Sm;�
K;� (un ) in D0(Q);
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where B n;m;�
K;� (z) =

Z z

0
b0

n (s)Sm;�
K;� (s)ds. Let

� n
m;� �

1
�

(an (un ) + � n (x; t; u n )) jDu n j2 � f m � � � u n � m g: (50)

From (48), (50) and (49), we deduce that

@Bn;m;�
K;� (un )

@t
� div

�
DA n (un ) Sm;�

K;� (un )
�

� div
�

� n (x; t; u n )DT m;�
K;� (un )

�
(51)

= � n +
�

Sm;�
K;� (un ) � 1

�
� n � 	 n

K;� + � n
m;� in D0(Q):

Passing to the limit in (51) as � tends to zero, we deduce

@Bn;m
K;� (un )

@t
� div

�
DA n (un )Sm

K;� (un )
�

� div
�
� n (x; t; u n )DT m

K;� (un )
�

(52)

= � n � � n � f u n < � K g � Zm;� (un )� n � 	 n
K + � n

m;� in D0(Q):

We de�ne the measures �n
K = � � n � f u n < � K g � 	 n

K and � n
m;� = � Zm;� (un )� n + � n

m;� :
Now, using the properties of convolution � n = � n � � and in view of (46), (47), (48) and
(50), we deduce that � n

K and � n
m;� are bounded in L 1(Q) independently of n, so that

there exist bounded measures �K and � m;� such that � n
K * � K � � weakly in M (Q)

and � n
m;� * � m;� � � weakly in M (Q): We deduce from (35), (36), (38), (41) (42) and

(52) that u satis�es

B m
K;� (u)t � div

�
a(u)DT m

K (u)Sm
K;� (u)� f u<m g

�
(53)

� div
�

�( x; t; T m
K (u))DT m

K;� (u)
�

= � + � K + � m;� in D0(Q):

To end the proof of (18), we use
Z

Q
j� m;� j dx dt � lim inf

n ! + 1

Z

Q

�� � n
m;�

�� dx dt � 2k� kM (Q ) + kb(u0)kL 1 (
)

so that there exists a bounded measure �m such that � m;� converges to �m � � weakly
in M (Q). Therefore, as � tends to zero in (53), we obtain in D0(Q)

@Bm
K (u)
@t

� div
�
a(u)DT m

K (u) � f u<m g
�
� div (�( x; t; T m

K (u)DT m
K (u)) = � +� K +� m ; (54)

where B m
K (z) =

Z z

0
b0(s)(Tm

K )0(s)ds; and (18) is then established.

? Step 4 . At this step we prove that � K and � m satisfy (16) and (17). From (46) and
(48), it follows that

k� n
K kL 1 (Q ) = k � � n � f u n < � K g+ 	 n

K kL 1 (Q ) � 2
Z

f u n < � K g
j� n j dx dt+

Z

f u n
0 < � K g

jbn (un
0 )j dx:

(55)
Since k� K kM (Q ) � lim inf

n ! + 1
k� n � f u n < � K g + 	 n

K kM (Q ) , the sequence (� n ) is equidi�use,

and the function bn (un
0 ) converges tob(u0) strongly in L 1(
), we deduce from theorem
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2.2 and (55) that k� K kM (Q ) tends to zero asK tends to in�nity, then we obtain (16).
To prove (17), we can write for all ’ 2 C

1

0 ([0; T [)
Z

Q
’ d � m = lim

� ! 0

Z

Q
’ d � m� = lim

� ! 0
lim

n ! + 1

Z

Q
’ � n

� dx dt; (56)

where � n
m;� = � n

m;� � Zm;� (un )� n : Taking the admissible test function Zm;� (un )’ in
(22), we have

�
Z

Q
Z m;� (un )’ t dx dt �

Z



Z m;� (un

0 )’ (0) dx +
Z

Q
DA n (un )D (Zm;� (un )’ ) dx dt (57)

+
Z

Q
�( x; t; u n )D (Zm;� (un )’ ) dx dt =

Z

Q
Zm;� (un )� n ’ dx dt;

where Z m;� (r ) =
Z r

0
b0

n (s)Zm;� (s)ds: We deduce from (57) that

�
Z

Q
Z m;� (un )’ t dx dt �

Z



Z m;� (un

0 )’ (0) dx (58)

=
Z

f m � � � u n � m g

1
�

(an (un ) + � n (x; t; u n )) jDu n j2 ’ dx dt �
Z

Q
Zm;� (un )� n ’ dx dt:

In the sequel we pass to the limit in (58) whenn tends to in�nity and then � tends to zero.
Note that Z m;� (un ) converges toZ m;� (u) strongly in L 1(Q) and Z m;� (un

0 ) converges to
Z m;� (u0) strongly in L 1(
) as n tends to in�nity. Moreover, since Z m;� (u) converges to
(b(u) � b(m))+ as � tends to zero,u � m and u0 � m almost everywhere, then it is easy
to see that

lim
� ! 0

lim
n ! + 1

Z

Q
Z m;� (un )’ t dx dt = 0 and lim

� ! 0
lim

n ! + 1

Z



Z m;� (un

0 )’ (0) dx = 0 : (59)

Then, from (56), (58) and (59) we deduce (17).
As a conclusion of step 1 to step 4, the proof of Theorem 4.1 is complete.

5 Appendix

Here we prove Theorem 2.2.
Proof. Let b(u) = v, then equation (4) is equivalent to

8
><

>:

vt � div (G(x; t; v )Dv ) = � in Q;
v(x; 0) = b(u(x; 0)) in 
 ;
v = 0 on @
 � (0; T );

(60)

whereG(x; t; v ) =
a

�
b� 1(v)

�
+ �

�
x; t; b� 1(v)

�

b0(b� 1(v))
: For simplicity we assume that � � 0 and

u0 � 0. We use the admissible test functionTK (u) in (60) to get
Z



TK (v) dx +

Z

Q

���(G(x; t; v )
1
2 DTK (v)

���
2

dx dt � K
�

k� kM (Q ) + kb(u0)kL 1 (
)

�
� KM;

(61)
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where TK (r ) =
Z r

0
TK (s)ds: Since

1
2

T2
K (r ) � TK (r ) � Kr; � � b0 � 
 and G(x; t; v ) �

�



; we deduce that max
n

kTK (v)k2
L 1 (0 ;T ;L 2 (
)) ; kG(x; t; v ) 1

2 DTK (v)k2
L 2 (Q )

o
� KM and

kTK (v)k2
L 2 (0 ;T ;H 1

0 (
)) � 

KM

�
. Let z 2 W be the solution of

8
><

>:

� zt � div (G(x; t; v )Dz ) = � 2 div (G(x; t; v )DTK (v)) in Q;
z = 0 on (0; T ) � @
 ;
z(t = T ) = TK (v(t = T )) in 
 :

(62)

Taking the admissible test function z in (62) and integrating between � and T;
we have by Young’s inequality that max

n
kzk2

L 1 (0 ;T ;L 2 (
)) ; kDzk2
L 2 (Q )

o
� CKM:

Moreover, the equation (62) implies that kzt kL 2 (0 ;T ;H � 1 (
)) � C
�

kzkL 2 (0 ;T ;H 1
0 (
)) +

kTK (v)kL 2 (0 ;T ;H 1
0 (
))

�
: Hence we deduce thatkzkW � C

p
K: Since � � 0; b(u0) � 0

and G(x; t; v ) � 0; we havevt � div (G(x; t; v )Dv ) � 0 and v � 0 in Q; and by a non-
linear version of Kato’s inequality for parabolic equations (see [13]), we deduce that
TK (v)t � div (G(x; t; v )DTK (v)) � 0: Then we conclude that � zt � div (G(x; t; v )Dz ) �
� TK (v)t � div (G(x; t; v )DTK (v)) in D0(Q). Now, using the standard comparison argu-
ment, we easily see thatz � TK (v) a.e. in Q, hencez � K a.e. on f v > K g, and we

conclude that cap2f v > K g �





z
K





W

�
C

p
K

, the proof of Theorem 2.2 is complete.2

6 Example

Let us consider the following special case:b(s) = s(es + 1) ; a(s) =
1

(m � s) 1
3

for s < m

and �( x; t; s ) = L (x; t )es2
, where L (x; t ) 2 L 1 (Q). Note that A(s) =

Z s

0
a(r ) dr =

3
2

(m
2
3 � (m � s)

2
3 ) and A(m) = 3

2 m 2
3 < + 1 . Finally, it is easy to show that the

hypotheses of Theorem 4.1 are satis�ed. Therefore, for all� 2 M 0(Q) and u0 2 L 1(
)
with u0 � m, there exists at least one renormalized solution of problem (1)-(3), and then
u satis�es

u 2 L 1(Q); u � m a.e. in Q and TK (u) 2 L 2(0; T ; H 1
0 (
)) 8K > 0; (63)

1
(m � u) 1

3
DT m

K (u)� f u<m g 2 (L 2(Q))N 8K > 0: (64)

There exist a sequence of nonnegative measures �K 2 M (Q) and a nonnegative measure
� m 2 M (Q) such that

lim
K ! + 1

k� K kM (Q ) = 0 and
Z

Q
’ d � m = 0 8’ 2 C1

0 ([0; T [); (65)

and for every K > 0

@Bm
K (u)
@t

� div
� 1

(m � u) 1
3

DT m
K (u)� f u<m g

�
� div

�
L (x; t )e(T m
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= � + � K + � m in D0(Q);

where B m
K (z) =

Z z

0
(1 + es + ses)(Tm

K )0(s) ds.
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