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Abstract: In this paper, we investigate the coupled KdV system of fractional order,
which describes a resonant interaction of two wave modes in shallow stratified liquid.
The Lie group analysis method is applied for this coupled system. Then the corre-
sponding invariant solutions are obtained using infinitesimal generators. Finally, we
determined the reduced fractional ODE system corresponding to the fractional PDE
system.
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1 Introduction

Fractional partial differential equations (FPDEs) are becoming increasingly popular due
to their practical applications in various fields of science and engineering, such as polymer
physics, viscoelasticity materials, control theory, signal processing, systems identification
and electrochemistry [1–5].

So it is necessary to obtain exact solutions or numerical solutions for FPDEs. During
last few decades several analytical numerical and semi-analytical methods have been used
for solving FPDEs [6, 7, 9, 10,20].

Lie group analysis originally advocated by Sophus Lie has proven to be an efficient
approach for PDEs [8], with the increasing applications of FPDEs, principle procedure of
Lie group analysis was extended to FPDEs for finding the exact solution of the equation
[11–13].

∗ Corresponding author: mailto:jafari.usern@gmail.com

c© 2018 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 22

mailto: jafari.usern@gmail.com
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (1) (2018) 22–28 23

Jafari et al. [14, 15] applied Lie group method to solve the time-fractional Kaup-
Kupershmidt equation and time-fractional Boussinesq equation. In [18], Adem and
Khalique have applied Lie symmetry analysis for Korteweg-de Vries(KdV) system given
by  ut + uxxx − 7

4uux − vvx + 5
4 (uv)x = 0,

vt + vxxx − 5
4uux −

7
4vvx + 2(uv)x = 0.

(1)

The result for time fractional KdV-type equation has been obtained by Hu et al. [16].
Chen and Jiang [17] have applied the methods to simplify successfully two classes of
FPDEs.

In this paper, we study Lie group method for solving the KdV system of fractional
order  Dα

t u+ uxxx − 7
4uux − vvx + 5

4 (uv)x = 0,

Dα
t v + vxxx − 5

4uux −
7
4vvx + 2(uv)x = 0,

(2)

where α (0 < α 6 1) is a parameter describing the order of the fractional derivative,
when α = 1 , the KdV system (2) becomes the KdV system (1).

The paper is organized as follows. In Section 2, we present the analysis of the Lie
symmetry group of FPDEs system. We obtain the Lie point symmetries of fractional
KdV system in Section 3. Then, in Section 4, we obtain invariant solutions and reduced
equations of this system. Finally, conclusions are given in Section 5.

2 Preliminaries

We give some basic definitions and properties of the fractional Lie group method for
finding infinitesimal function of the PDE system of fractional order.

Definition 2.1 The Riemann-Liouville fractional derivative of order α [2, 19], is de-
fined by

Dα
t u(x, t) =

∂αu(x, t)

∂tα
=


∂nu(x,t)
∂tn ; n ∈ N,

1
Γ(n−α)

dn

dtn

∫ t
0

u(x,τ)
(t−τ)α+1−n dτ ; n− 1 < α < n.

For fractional PDE system with two independent variables we have

∂αu(x, t)

∂tα
= F (x, t, u, v, u(1), v(1), · · · ), 0 < α < 1,

∂αv(x, t)

∂tα
= G(x, t, u, v, u(1), v(1), · · · ).

According to Lie’s algorithm, the infinitesimal generator of the symmetry group admitted
by (2) is given by

X = ξx(x, t, u, v)
∂

∂x
+ ξt(x, t, u, v)

∂

∂t
+ ηu(x, t, u, v)

∂

∂u
+ ηv(x, t, u, v)

∂

∂v
, (3)

in which ξx,ξt,ηu,ηv are infinitesimal functions of the group variables.
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Since the KdV system of fractional order has at most α-order derivatives, the α-
prolongation of the generator should be considered in the form

X(α) = ξx(x, t, u, v)
∂

∂x
+ ξt(x, t, u, v)

∂

∂t
+ ηu(x, t, u, v)

∂

∂u
+ ηv(x, t, u, v)

∂

∂v

+ η
(1)u
i (x, t, u, v, u(i), v(i))

∂

∂ui
+ η

(1)v
i (x, t, u, v, u(i), v(i))

∂

∂vi
+ · · ·

+ η
(k)u
i1···ik(x, t, u, v, u(1), v(1), · · · , u(k), v(k))

∂

∂ui1,··· ,ik

+ η
(k)v
i1···ik(x, t, u, v, u(1), v(1), · · · , u(k), v(k))

∂

∂vi1,··· ,ik

+ η
(α)u
t (x, t, u, v, · · · , u(α), · · · )

∂

∂uαt
+ η

(α)v
t (x, t, u, v, · · · , v(α), · · · )

∂

∂vαt
, (4)

where

η
(α)u
t = Dα

1t(η
u) + ξxDα

1t(ux)−Dα
1t(ξ

xux) +Dα
1t(D1t(ξ

t)u)−Dα+1
1t (ξtu) + ξtDα+1

1t u,

η
(α)v
t = Dα

2t(η
v) + ξxDα

2t(vx)−Dα
2t(ξ

xvx) +Dα
2t(D2t(ξ

t)v)−Dα+1
2t (ξtv) + ξtDα+1

2t v.

D1t and D2t are the total derivative operators defined as

D1t =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ uxxt

∂

∂uxx
+ · · · ,

D2t =
∂

∂t
+ vt

∂

∂v
+ vxt

∂

∂vx
+ vtt

∂

∂vt
+ vxxt

∂

∂vxx
+ · · · .

Definition 2.2 A vector X given by (3) is said to be Lie point symmetry vector field
for system (2), if

X(α)
[
Dα
t u+ uxxx −

7

4
uux − vvx +

5

4
(uv)x

]
= 0,

X(α)
[
Dα
t v + vxxx −

5

4
uux −

7

4
vvx + 2(uv)x

]
= 0.

3 Lie Symmetry for Coupled KdV System of Fractional Order

In this section, we investigate the infinitesimal generator of the KdV system of fractional
order (2).

Theorem 3.1 Lie symmetries of (2) are

1. If α 6= 1
2 ,

1
3 , then we have:

ξx(x, t, u, v) = c1 + c2αx, ξt(x, t, u, v) = 3c2t,

ηu(x, t, u, v) = −2c2αu, ηv(x, t, u, v) = −2c2αv,

where c1 and c2 are two arbitrary constants. Hence, the infinitesimal generators
are given by

Xa1 =
∂

∂x
, Xa2 = αx

∂

∂x
+ 3t

∂

∂t
− 2αu

∂

∂u
− 2αv

∂

∂v
.
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2. If α = 1
2 , then we have:

ξx(x, t, u, v) = c1 − c2x, ξt(x, t, u, v) = −6c2t,

ηu(x, t, u, v) = 2c2αu, ηv(x, t, u, v) = 2c2αv,

where c1 and c2 are two arbitrary constants. Hence

Xb1 =
∂

∂x
, Xb2 = −x ∂

∂x
− 6t

∂

∂t
+ 2αu

∂

∂u
+ 2αv

∂

∂v
.

3. If α = 1
3 , then we have:

ξx(x, t, u, v) = c1 + c2x, ξt(x, t, u, v) = 9c2t,

ηu(x, t, u, v) = −2c2αu, ηv(x, t, u, v) = −2c2αv,

where c1 and c2 are two arbitrary constants. Hence

Xc1 =
∂

∂x
, Xc2 = x

∂

∂x
+ 9t

∂

∂t
− 2αu

∂

∂u
− 2αv

∂

∂v
.

Proof. Let us consider a one parameter Lie group of infinitesimal transformation in
x, t, u, v given by

x −→ x+ εξx(x, t, u, v), t −→ t+ εξt(x, t, u, v),

u −→ u+ εηu(x, t, u, v), v −→ v + εηv(x, t, u, v), (5)

with a small parameter ε� 1, and the symmetry group of KdV system will be generated
by the vector field (3), now we find the coefficient functions ξx, ξt, ηu, ηv in (5).

By applying the X(α) to both sides of (2), we have

X(α)
[
Dα
t u+ uxxx −

7

4
uux − vvx +

5

4
(uv)x

]
= 0,

X(α)
[
Dα
t v + vxxx −

5

4
uux −

7

4
vvx + 2(uv)x

]
= 0. (6)

Expanding (6), and solving the obtained system using a mathematical software, we obtain
the Lie point symmetries.

1. If α 6= 1
2 ,

1
3 , then we have:

ξx(x, t, u, v) = c1 + c2αx, ξt(x, t, u, v) = 3c2t,

ηu(x, t, u, v) = −2c2αu, ηv(x, t, u, v) = −2c2αv.

Hence, the infinitesimal generators are given by

Xa1 =
∂

∂x
, Xa2 = αx

∂

∂x
+ 3t

∂

∂t
− 2αu

∂

∂u
− 2αv

∂

∂v
.

2. If α = 1
2 , then

ξx(x, t, u, v) = c1 − c2x, ξt(x, t, u, v) = −6c2t,

ηu(x, t, u, v) = 2c2αu, ηv(x, t, u, v) = 2c2αv.

Therefore

Xb1 =
∂

∂x
, Xb2 = −x ∂

∂x
− 6t

∂

∂t
+ 2αu

∂

∂u
+ 2αv

∂

∂v
.
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3. If α = 1
3 , then

ξx(x, t, u, v) = c1 + c2x, ξt(x, t, u, v) = 9c2t,

ηu(x, t, u, v) = −2c2αu, ηv(x, t, u, v) = −2c2αv.

Therefore

Xc1 =
∂

∂x
, Xc2 = x

∂

∂x
+ 9t

∂

∂t
− 2αu

∂

∂u
− 2αv

∂

∂v
.

4 Symmetry Reduction

In the previous section, we obtained the infinitesimal generators Xij (i = a, b, c, j = 1, 2).
Here we want to obtain similarity variables and their reduction equations. Then by using
these variables the system (2) transforms into a system of fractional ODE.

One has to solve the associated Lagrange equations

dx

ξx(x, t, u, v)
=

dt

ξt(x, t, u, v)
=

du

ηu(x, t, u, v)
=

dv

ηv(x, t, u, v)
.

We consider the following cases.

• Case 1: 0 < α < 1, α 6= 1
2 ,

1
3 , Xa1 = ∂

∂x .
In this case the symmetry Xa1 gives rise to the group-invariant solution:

r = t, u = F (r), v = G(r), (7)

substituting (7) into (2) results in the fact that F (r) and G(r) satisfy the following
differential equations:

dαF (t)

dtα
= 0,

dαG(t)

dtα
= 0,

by using Laplace transformation we get

F (t) =
k

Γ(α)
tα−1, G(t) =

k

Γ(α)
tα−1,

where k is a constant, therefore

u(x, t) =
k

Γ(α)
tα−1, v(x, t) =

k

Γ(α)
tα−1.

• Case 2: 0 < α < 1, α 6= 1
2 ,

1
3 , Xa2 = αx ∂

∂x + 3t ∂∂t − 2αu ∂
∂u − 2αv ∂

∂v .
In this case, the group-invariant solution is:

r = tx
−3
α , u = F (r)x−2, v = G(r)x−2, (8)

substituting (8) into (2) leads to the following fractional ODE system:

Dα
r F + k1F (r) + k2rF

′(r) + k3r
2F ′′(r) + k4r

3F (3)(r) + k5F
2(r)

+k6rF (r)F ′(r) + k7G
2(r) + k8rG(r)G′(r) + k9F (r)G(r)

+k10rF
′(r)G(r) + k11rF (r)G′(r) = 0,

Dα
rG+ k

′

1G(r) + k
′

2rG
′(r) + k

′

3r
2G′′(r) + k

′

4r
3G(3)(r) + k

′

5F
2(r)

+k
′

6rF (r)F ′(r) + k
′

7G
2(r) + k

′

8rG(r)G′(r) + k
′

9F (r)G(r)

+k
′

10rF
′(r)G(r) + k

′

11rF (r)G′(r) = 0,

where ki = hi(α) and k
′

i = gi(α), (i = 1, 2, · · · , 11) are constants.
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• Case 3:α = 1
2 , Xb2 = −x ∂

∂x − 6t ∂∂t + 2u ∂
∂u + 2v ∂

∂v .
For this case, the group-invariant solution is:

r = tx−6, u = F (r)x−2, v = G(r)x−2. (9)

Again by substituting (9) into (2), we have:

D
1
2
r F − 24F (r)− 696rF ′(r)− 405r2F ′′(r)− 216r3F 3(r) + 7

2F
2(r)

+ 21
2 rF (r)F ′(r) + 2G2(r) + 6rG(r)G′(r)− 5F (r)G(r)

− 15
2 rF

′(r)G(r)− 15
2 rF (r)G′(r) = 0,

D
1
2
r G− 24G(r)− 696rG′(r)− 405r2G′′(r)− 216r3G3(r) + 5

2F
2(r)

+ 15
2 rF (r)F ′(r) + 7

2G
2(r) + 21

2 rG(r)G′(r)− 8F (r)G(r)
−12rF ′(r)G(r)− 12rF (r)G′(r) = 0.

• Case 4:α = 1
3 , Xc2 = x ∂

∂x + 9t ∂∂t − 2u ∂
∂u − 2v ∂

∂v .
In this case, the group-invariant solution is:

r = tx−9, u = F (r)x−2, v = G(r)x−2, (10)

substituting (10) into (2) results in the fact that F (r) and G(r) satisfy the following
fractional ODE system

D
1
3
r F − 24F (r)− 1692.09rF ′(r)− 2430r2F ′′(r)− 729r3F 3(r) + 7

2F
2(r)

+ 63
4 rF (r)F ′(r) + 2G2(r) + 9rG(r)G′(r)− 5F (r)G(r)− 45

4 rF
′(r)G(r)

− 45
4 rF (r)G′(r) = 0,

D
1
3
r G− 24G(r)− 1692.09rG′(r)− 2430r2G′′(r)− 729r3G3(r) + 5

2F
2(r)

+ 45
4 rF (r)F ′(r) + 7

2G
2(r) + 63

4 rG(r)G′(r)− 8F (r)G(r)
−18rF ′(r)G(r)− 18rF (r)G′(r) = 0.

Note. For α = 1, the Lie point symmetries provide is similar results to those obtained
by Adem and Khalique in [18].

5 Conclusion

In this paper, we carry out the Lie symmetry group analysis for a fractional PDE system.
First, we apply Lie symmetries method for the KdV system of fractional order (2), and
get its infinitesimal generators. Then, we use similarity variables to obtain reduction
equations. Finally, we have shown that the KdV system of fractional order can be
transformed into a fractional ODE system.
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