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Abstract: We study the existence of homoclinic orbits for second order non-
autonomous damped vibration system

q̈(t) + Bq̇(t) + V ′(t, q(t)) = f(t),

where B is a skew-symmetric constant matrix, t ∈ R, q ∈ RN and V ∈ C1(R×RN ,R),
V (t, q) = −K(t, q) + W (t, q) is T -periodic with respect to t, T > 0. We assume
that W (t, q) satisfies an assumption weaker than the global Ambrosetti-Rabinowitz
condition and that the norm of B is sufficiently small. This homoclinic orbit is
obtained as a limit of 2kT -periodic solutions of a certain sequence of second order
differential equations. This result generalizes and improves some existing findings in
the known literature.
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1 Introduction and Main Results

We consider the following system

q̈(t) +Bq̇(t) + V ′(t, q(t)) = f(t), (DS)

where B is a skew-symmetric constant matrix, V : R × RN → R, (t, x) → V (t, x) is a
continuous function, T -periodic in the first variable with T > 0 and differentiable with
respect to the second variable such that V ′(t, x) = ∂V

∂x (t, x) is continuous on R × RN
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and f : R → RN is a continuous and bounded function. We say that a solution x(t) of
(DS) is a nontrivial homoclinic(to 0) if x 6≡ 0 and x(t)→ 0 as t→ ±∞. The importance
of the study of the existence of homoclinic orbits for damped vibration systems has
been recognized by Poincaré at the end of the 19th century. Therefore, the existence
of homoclinic orbits has become one of the most important problems in the research of
damped vibration systems. Firstly, when B ≡ 0 and f ≡ 0 the system (DS) is just the
following second order non-autonomous Hamiltonian system:

q̈(t) + V ′(t, q(t)) = 0. (1)

In 1990, Rabinowitz [14] showed the existence of homoclinic orbits for system (1)
by taking the limit of 2kT -periodic solutions of approximating problems under the well
known Ambrosetti-Rabinowitz condition: there exists a constant µ > 2 such that for
every t ∈ R and q ∈ RN\{0}

0 < µV (t, q) ≤ V ′(t, q).q.

By using the same approach, the existence of homoclinic orbits for the system (1) has
been intensively studied by many mathematicians via variational methods in critical point
theory, see( [4], [5], [6], [8], [9], [13], [14], [16]) and the references therein. Particularly,
in [10], Izydorek and Janczewska considered a more general Hamiltonian system

q̈(t) + V ′(t, q(t)) = f(t), (2)

where V (t, q) = −K(t, q) + W (t, q). If V is neither autonomous nor periodic in t, the
problem of the existence of homoclinic orbits of (1) is more complicated because the
compactness arguments derived from Sobolev imbedding theorem are not available for
the study of (1), see, for example, ( [1], [4], [5], [6], [8], [10], [11], [15]). Secondly, if B 6≡0,
f 6≡0 and V = −K +W the existence of homoclinic orbits for system (DS) has not been
previously studied. Our aim in this paper is to study the existence of homoclinic orbits for
the system (DS), where K is a quadratic growth function and W satisfies an assumption
weaker than the global Ambrosetti-Rabinowitz condition. Here and subsequently, (.,.):
RN × RN → R denotes the standard inner product and |.| is the induced norm in RN .

Definition 1.1 A vector field v defined on RN is called positive if v(x).x > 0 for
all x ∈ RN\{0}. We call v a normalized positive vector field if v is positive, linear and
satisfies the following condition:

v(x).x = x.x, ∀x ∈ RN . (v1)

Our basic hypotheses on V and f are the following:
(V1) There exist normalized positive vector field v and constant b1, b2 > 0 such that

b1|x|2 ≤ K(t, x) ≤ b2|x|2, K(t, x) ≤ K ′(t, x).v(x) ≤ 2K(t, x)

for all (t, x) ∈ R× RN ,
(V2) W ′(t, x) = o(|x|) as |x| → 0 uniformly in t ∈ R,
(V3) There exists a constant µ > 2 such that for every t ∈ R and x ∈ RN\{0}

0 < µW (t, x) ≤W ′(t, x).v(x),
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(V4) W (t, x) ≤M |x|µ, for all t ∈ R and |x| ≤ 1, where M = sup
t∈R,|x|=1

W (t, x).

(V5) b̄1 = min{1, 2b1} > 2M and

(∫
R
|f(t)|2dt

)1/2

≤ β
2C , where 0 < β < b̄1 − 2M, and

C is a positive constant defined in [10].

Remark 1.1 We see that if v(x) = x, then (V1) becomes (H3) and (V3) becomes
(H5) in [10]. From (V2)-(V4) we see that W (t, x) = o(|x|2) as |x| → 0 uniformly in
t and W (t, 0) = 0,W ′(t, 0) = 0. Moreover, from (V1) we conclude that K(t, 0) = 0,
K ′(t, 0) = 0. Example 1.1 below shows that (V3) is weaker than the global Ambrosetti-
Rabinowitz condition.

In addition, we need the following hypothesis on B.

(V6) ‖B‖ < min
{
b̄1 − β − 2M, µ−2

µ+2b b̄1,
1
b ,

b1
b

}
, where b = ‖v‖ is the norm of the operator

v.

Now, we state our existence result of homoclinic orbits for problem (DS).

Theorem 1.1 Suppose that K and W are T-periodic with respect to t, T > 0 sat-
isfying (V1) − (V6), then the system (DS) possesses a nontrivial homoclinic solution
q ∈W 1,2(R,RN ) such that q̇(t)→ 0, as t→ ±∞.

Example 1.1 Let θ(x) be the argument of x = (ξ1, ξ2) ∈ R2\{0} defined by

θ(x) =


arctan(ξ2/ξ1), if ξ1 > 0, ξ2 ≥ 0,
π
2 , if ξ1 = 0, ξ2 > 0,
arctan(ξ2/ξ1) + π, if ξ1 < 0,
3π
2 , if ξ1 = 0, ξ2 < 0,

arctan(ξ2/ξ1) + 2π, if ξ1 > 0, ξ2 < 0.

Define a function K ∈ C1(R× RN ,R) as follows:

K(t, x) =

{
|x|2

exp(2 sin 4(ln |x|+θ(x))) , if x 6= 0,

0, if x = 0.

Define a normalized positive vector field v by

v(x) =

(
1 1
−1 1

)
x.

An easy computation shows that K satisfies (V1).

For any µ > 2, define a function W ∈ C1(R× RN ,R) as follows:

W (t, x) =

{
|x|µ

exp(µ(2 sin 4(ln |x|+θ(x)))) , if x 6= 0,

0, if x = 0.

A direct computation (see [3]) shows that W satisfies (V2), (V3) and (V4). Moreover, W
does not satisfy the global Ambrosetti-Rabinowitz condition.
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2 Variational Setting and Preliminaries

Similarly to [10] and [14], we will prove the existence of homoclinic orbits for (DS) as the
limit of 2kT -periodic solutions of the following systems of differential equations:

q̈(t) +Bq̇(t) + V ′(t, q(t)) = fk(t), (DSk)

where fk : R→ RN is a bounded continuous function, 2kT -periodic extension of f to the
interval [−kT, kT ], k ∈ N. For each k ∈ N, let L2

2kT be the Hilbert space of 2kT -periodic
functions on R with values in RN equipped with the norm

‖q‖L2
2kT

=

(∫ kT

−kT
|q(t)|2dt

) 1
2

,

and L∞2kT be the space of 2kT−periodic essentially bounded functions from R into RN
equipped with the norm

‖q‖L∞2kT = esssup {|q(t)| : t ∈ [−kT, kT ]} .

Denote by Ek := W 1,2
2kT the Hilbert space of 2kT -periodic functions on R with values

in RN under the norm

‖q‖Ek =

[∫ kT

−kT
|q(t)|2dt+

∫ kT

−kT
|q̇(t)|2dt

]1/2

.

Next, we need the following lemma.

Lemma 2.1 ( [10]). There is a positive constant C such that for each k > 0 and
q ∈ Ek the following inequality holds:

‖q‖L∞2kT ≤ C‖q‖Ek . (3)

Let ηk : Ek → [0,+∞[ be given by

ηk(q) =

(∫ kT

−kT
[|q̇(t)|2 + 2K(t, q(t))]dt

)1/2

. (4)

By using (V1), we have

b̄1‖q‖2Ek ≤ η
2
k(q) ≤ b̄2‖q‖2Ek , (5)

where b̄2 = max{1, 2b2}. Let Ik : Ek → R be the functional defined by

Ik(q) =

∫ kT

−kT

[
1

2
|q̇(t)|2 +

1

2
Bq(t).q̇(t) +K(t, q(t))−W (t, q(t)) + fk(t).q(t)

]
dt

=
1

2
η2
k(q) +

∫ kT

−kT

[
1

2
Bq(t).q̇(t)−W (t, q(t)) + fk(t).q(t)

]
dt. (6)

It is easy to check that Ik ∈ C1(Ek,R) and by using the skew-symmetry of B, we have
for every q, v ∈ Ek

I ′k(q)v =

∫ kT

−kT
[q̇(t).v̇(t)−Bq̇(t).v(t)− V ′(t, q(t)).v(t) + fk(t).v(t)] dt. (7)
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It is known that the critical points of Ik in Ek are the classical 2kT -periodic solution of
(DSk). We will obtain a critical point of Ik by using a standard version of the mountain
pass theorem:

Lemma 2.2 ( [13]). Let H be a real Banach space and I ∈ C1(H,R) satisfying the
Palais-Smale condition. If I satisfies the following conditions:
(i) I(0) = 0,
(ii) there exist constants ρ, α > 0 such that I|∂Bρ(0) ≥ α,
(iii) there exists e ∈ H\Bρ(0) such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ = {g ∈ C([0, 1], H) : g(0) = 0, g(1) = e}.

Lemma 2.3 ( [4]). There exist a1, a2 > 0 such that

W (t, x) ≥ a1|x|µ − a2, ∀ t ∈ R, ∀x ∈ RN . (8)

Let v be the normalized positive vector field in (V1) and (V3) of Theorem 1.1. Then
v is an invertible linear operator from RN to RN . Let a = 1

‖v−1‖ , b = ‖v‖, where ‖v‖ and

‖v−1‖ are operator norms. For any x ∈ RN , one has

a|x| ≤ |v(x)| ≤ b|x|. (9)

Define a vector field ṽ on Ek by

(ṽ(x))(t) = v(x(t)). (10)

Using condition (v1) and Fourier series, we perform direct computation to show the
following lemma.

Lemma 2.4 ( [4]). For any x ∈ Ek,∫ kT

−kT
|ẋ(t)|2dt =

∫ kT

−kT
ẋ(t).

˙︷ ︸︸ ︷
v(x(t))dt. (11)

a‖x‖Ek ≤ ‖ṽ(x)‖Ek ≤ b‖x‖Ek . (12)

From (V1), (7), (10) and (11) we have

I ′k(q).ṽ(q) ≤ η2
k(q)−

∫ kT

−kT
[Bq̇(t).v(q(t))−W ′(t, q(t)).v(q(t))] dt

+

∫ kT

−kT
fk(t).v(q(t))dt. (13)

Lemma 2.5 Under the assumptions (V1)–(V6), for every k ∈ N the system (DSk)
possesses a 2kT -periodic solution qk ∈ Ek.
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Proof. Step 1. We will show that Ik satisfies the Palais-Smale condition. Assume
that {qj}j∈N ⊂ Ek, {qj}j∈N has a convergent subsequence if {Ik(qj)}j∈N is bounded and
I ′k(qj)→ 0 as j → +∞. Then there exists a constant Mk > 0 such that

|Ik(qj)| ≤Mk, ‖I ′k(qj)‖E∗k ≤Mk (14)

for every j ∈ N. We firstly prove that {qj}j∈N is bounded in Ek. Without loss of
generality, we may assume that ‖qj‖Ek 6= 0. Then by (V3) and (6), it follows that

η2
k(qj) ≤ 2Ik(qj) +

∫ kT

−kT
Bq̇j(t).qj(t)dt+

2

µ

∫ kT

−kT
W ′(t, qj(t)).v(qj(t))dt

− 2

∫ kT

−kT
fk(t).qj(t)dt. (15)

From (13) and (15) we obtain

(
1−2

µ

)
η2
k(qj) ≤ 2Ik(qj)−

2

µ
I ′k(qj).ṽ(qj(t))+

∫ kT

−kT
Bq̇j(t).qj(t)dt+

2

µ

∫ kT

−kT
Bqj(t).

˙︷ ︸︸ ︷
v(qj(t))dt

−2

∫ kT

−kT
fk(t).qj(t)dt+

2

µ

∫ kT

−kT
fk(t).v(qj(t))dt. (16)

Moreover, by (5), (9) and (16) it follows that[(
1− 2

µ

)
b1 −

(
1 +

2b

µ

)
‖B‖

]
‖qj‖2Ek ≤ 2Ik(qj) +

2b

µ
‖I ′k(qj)‖E∗k‖qj‖Ek

+2

(∫ kT

−kT
|fk(t)|2dt

) 1
2

‖qj‖Ek +
2b

µ

(∫ kT

−kT
|fk(t)|2dt

) 1
2

‖qj‖Ek . (17)

By (14), (17) and (V5) we get[(
1− 2

µ

)
b1 −

(
1 +

2b

µ

)
‖B‖

]
‖qj‖2Ek ≤ 2Mk +

(
2bMk

µ
+
β

C
(1 +

b

µ
)

)
‖qj‖Ek . (18)

Since µ > 2 and (V6) imply that
[
(1− 2

µ )b1 − (1 + 2b
µ )‖B‖

]
> 0, inequality (18) shows

that {qj}j∈N is bounded in Ek. Going if necessary to a subsequence, we can assume that
there exists q ∈ Ek such that qj ⇀ q, as j → +∞ in Ek, which implies that qj → q as
j → +∞ uniformly on [−kT, kT ]. By Proposition 4.3 in [17], we can prove that {qj}j∈N
has a convergent subsequence in Ek. Hence, Ik satisfies the Palais-Smale condition.

Step 2. We prove that there exist constants ρ, α > 0 independent of k such that
Ik satisfies the assumption (ii) of Lemma 2.2. Letting ρ = 1

C and ‖q‖Ek = ρ, we have
‖q‖L∞2kT ≤ 1, where C > 0 is defined in (3). It follows from (V4) that∫ kT

−kT
W (t, q)dt ≤M

∫ kT

−kT
|q(t)|2dt ≤M‖q‖2Ek . (19)
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In consequence, combining this with (5), (V5) and Hölder’s inequality, we obtain

Ik(q) =

∫ kT

−kT

[
1

2
|q̇(t)|2 +

1

2
Bq(t).q̇(t) +K(t, q(t))−W (t, q(t)) + fk(t).q(t)

]
dt

≥ 1

2
b̄1‖q‖2Ek −

1

2
‖B‖‖q‖2Ek −M‖q‖

2
Ek
− ‖fk‖L2

2kT
‖q‖L2

2kT

≥
(

1

2
b̄1 −

1

2
‖B‖ −M

)
‖q‖2Ek −

β

2C
‖q‖Ek

≥ 1

2

(
b̄1 − β − 2M − ‖B‖

)
‖q‖2Ek +

β

2
‖q‖2Ek −

β

2C
‖q‖Ek . (20)

Note that (V6) implies
(
b̄1 − β − 2M − ‖B‖

)
> 0.

We set α = b̄1−β−2M−‖B‖
2C2 , than the inequality (20) implies that

Ik|∂Bρ
≥ α > 0 for k ∈ N.

Step 3. It remains to show that Ik satisfies assumption (iii) of Lemma 2.2. By (5),
(6) and (8), for every s ∈ R\{0} and q ∈ RN\{0}, we have

Ik(sq) ≤ b̄2s
2

2
‖q‖2Ek + s2‖B‖‖q‖2Ek − a1|s|µ

∫ kT

−kT
|q(t)|µdt

+ |s|‖fk‖L2
2kT
‖q‖L2

2kT
+ 2kTa2. (21)

Take Q ∈ E1 such that Q(T ) = Q(−T ) = 0. Since µ > 2 and a1 > 0, (21) implies that
there exists s0 ∈ R\{0} such that ‖s0Q‖E1

> ρ and I1(s0Q) < 0. Set e1(t) = s0Q(t) and

ek(t) =

{
e1(t) for |t| ≤ T,
0 for T < |t| ≤ kT, (22)

for k > 0. Then ek ∈ Ek, ‖ek‖Ek = ‖e1‖E1
> ρ and Ik(ek) = I1(e1) < 0 for every k ∈ N.

By Lemma 2.2, Ik possesses a critical value ck ≥ α given by

ck = inf
g∈Γk

max
s∈[0,1]

Ik(g(s)), (23)

where

Γk = {g ∈ C([0, 1], Ek) : g(0) = 0, g(1) = ek} .

Hence for every k ∈ N, there exists qk ∈ Ek such that

Ik(qk) = ck, I ′k(qk) = 0. (24)

The function qk is a desired classical 2kT−periodic solution of (DSk) for k ∈ N. Since
ck > 0, qk is a nontrivial solution even if f ≡ 0. The proof of Lemma 2.5 is complete.

Lemma 2.6 Let (qk)k∈N be the solution of system (DSk) which satisfies (24) for
k ∈ N. Then there exists a positive constant M1 independent of k such that

‖qk‖Ek ≤M1, ∀k ∈ N. (25)
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Proof. For k ∈ N, let gk : [0, 1] → Ek be a curve given by gk(s) = sek, where ek
is defined by (22). Then gk ∈ Γk and Ik(gk(s)) = I1(g1(s)) for all k ∈ N and s ∈ [0, 1].
Therefore, by (23)

ck = inf
g∈Γk

max
s∈[0,1]

Ik(g(s)) ≤ max
s∈[0,1]

Ik(g1(s)) ≡M0, ∀k ∈ N, (26)

where M0 is independent of k. Since I ′k(qk) = 0, we get from (V1), (V3), (6) and (11)

ck = Ik(qk)− 1

2
I ′k(qk).ṽ(qk) ≥ (

µ

2
− 1)

∫ kT

−kT
W (t, qk(t))dt+

1

2

∫ kT

−kT
Bqk(t).q̇k(t)dt

+
1

2

∫ kT

−kT
Bq̇k(t).v(qk(t))dt+

∫ kT

−kT
fk(t).qk(t))dt− 1

2

∫ kT

−kT
fk(t).v(qk(t))dt.

Then we have

∫ kT

−kT
W (t, qk(t))dt ≤ 1

µ− 2

∫ kT

−kT
Bq̇k(t).qk(t)dt+

1

µ− 2

∫ kT

−kT
Bqk.

˙︷ ︸︸ ︷
v(qk(t))

− 2

µ− 2

∫ kT

−kT
fk(t).qk(t)dt+

2ck
µ− 2

+
1

µ− 2

∫ kT

−kT
fk(t).v(qk(t)dt. (27)

Combining (27) with (5), (6), (12), (26), (V5) and (V6) we obtain(
b̄1
2
− 1 + b

µ− 2
‖B‖

)
‖qk‖2Ek ≤

µM0

µ− 2
+

β(µ+ b)

2C(µ− 2)
‖qk‖Ek . (28)

Since (V6) implies that b̄1
2 −

1+b
µ−2‖B‖ > 0 and all coefficients of (28) are independent of

k, there exists a constant M1 > 0 independent of k such that

‖qk‖Ek ≤M1, ∀k ∈ N. (29)

The proof of Lemma 2.6 is complete. 2

Let Cploc(R,RN ) (p ∈ N) denote the space of Cp functions on R with values in RN
under the topology of almost uniformly convergence on compact subintervals of R and all
derivatives up to order p. Using the Arzelà-Ascoli theorem, we can prove the following
lemma.

Lemma 2.7 Let {qk}k∈N be the 2kT−periodic solution of problem (1) which satisfies
(29) for k ∈ N. Then there exists a subsequence {qkj} convergent to q in C1

loc(R,RN ).

Proof. Arguing as in Theorem 2.1 in [11], we conclude from the fact

|qk(t2)− qk(t1)| ≤
∫ t2

t1

|q̇k(t)|dt ≤ (t2 − t1)1/2

(∫ t2

t1

|q̇k(t)|2dt
)1/2

that the sequence (qk) is equicontinuous on every interval [−lT, lT ] ⊂ [−kT, kT ]. By (29)
and Arzelà-Ascoli theorem, the sequence (qk) has a uniformly convergent subsequence
on each [−lT, lT ].
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Let (q1
km

) be a subsequence of (qk) that converges on [−T, T ]. Then (q1
km

) is equicon-
tinuous and uniformly bounded on [−2T, 2T ]. So we can choose a subsequence (q2

km
) of

(q1
km

) that converges uniformly on [−2T, 2T ]. Repeat this procedure for all k and take

the diagonal sequence (qmkm). It is obvious that (qmkm)m is a subsequence of (qikm) for any
1 ≤ i ≤ m. Hence, it converges uniformly to a function q(t) on any bounded interval. In
the following, for simplicity, we also denote the subsequence (qmkm) by (qk). The proof of
Lemma 2.7 is complete. 2

Lemma 2.8 Let q : R → RN be the function given in Lemma 2.7. Then q is the
desired nontrivial homoclinic solution of (DS) such that u̇(t)→ 0, as t→ ±∞.

Proof. Firstly, we will show that q is a solution of (1). Let {qkj}k∈N be defined in
Lemma 2.7, then we have

q̈kj (t) +Bq̇kj (t) + V ′(t, qkj (t)) = fkj (t) (30)

for every j ∈ N and t ∈ [−kjT, kjT ]. Take a, b ∈ R such that a < b. There exists j0 ∈ N
such that for all j > j0 and t ∈ [a, b] ⊂ [−kjT, kjT ], we have

q̈kj (t) = −Bq̇kj (t)− V ′(t, qkj (t)) + fkj (t). (31)

Hence, q̈kj (t) is continuous in [a, b] and q̈kj (t) is a classical derivative of q̇kj (t) in [a, b] for
every j > j0. Moreover, since q̇kj → q̇ uniformly on [a, b] and

q̈kj (t) = −Bq̇kj (t)− V ′(t, qkj (t)) + fkj (t) (32)

we obtain

q̈(t) +Bq̇(t) + V ′(t, q(t)) = f(t), (33)

for every t ∈ [a, b]. Since a and b are arbitrary, we conclude that q satisfies (DS). 2

3 Proof of Theorem 1.1.

We have shown that q satisfies (1). It remains to prove that q is nontrivial and homoclinic
to 0. First, we show that q is nontrivial. Obviously, this will be the case if f 6≡ 0. Consider
the function ϕ : [0,+∞[→ [0,+∞[ defined by

ϕ(s) =

 max
t∈R,0<|x|≤s

W ′(t, x).v(x)

|x|2
, s > 0,

0, s = 0.

Then by (V2), (V3), (8) and (9) ϕ is a continuous, nondecreasing function and ϕ(s) ≥ 0
for s ≥ 0. The definition of ϕ implies that∫ kT

−kT
W ′(t, qk(t)).v(qk(t))dt ≤ ϕ(‖qk‖L∞2kT )‖qk‖2Ek (34)

for every n ∈ N. Since I ′k(qk).v(qk) = 0, we have∫ kT

−kT
W ′(t, qk(t)).v(qk(t))dt =
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−kT
|q̇k(t)|2dt−

∫ kT

−kT
Bq̇k(t).v(qk(t))dt+

∫ kT

−kT
K ′(t, qk(t)).v(qk(t))dt. (35)

From (34), (35), (V1) and (V6), we obtain

ϕ(‖qk‖L∞2kT )‖qk‖2Ek ≥
∫ kT

−kT
|q̇k(t)|2dt−

∫ kT

−kT
Bq̇k(t).v(qk(t)))dt+

∫ kT

−kT
K ′(t, qk(t))v(qk(t))dt

≥ (min{1, b1} − b‖B‖) ‖qk‖2Ek .

Since ‖qk‖Ek > 0, it follows that

ϕ(‖qk‖L∞2kT ) ≥ (min{1, b1} − b‖B‖) > 0.

If ‖qk‖L∞2kT → 0 as k → ∞, we have ϕ(0) ≥ (min{1, b1} − b‖B‖) > 0, which is a
contradiction. Passing to a subsequence of (qk) if necessary, we see that there is a
constant C1 > 0 such that

‖qk‖L∞2kT ≥ C1 (36)

for every k ∈ N. Moreover, for all j ∈ N, t 7→ qjk(t) = qk(t + jT ) is also a 2kT -periodic
solution of system (3). Hence, if the maximum of |qk| occurs in θk ∈ [−kT, kT ] then
the maximum of |qjk| occurs in τ jk = θk − jT. Then there exists a jk ∈ Z such that

τ jkk ∈ [−T, T ]. Consequently,

‖qjkk ‖L∞([−kT,kT ],RN ) = max
t∈[−T,T ]

|qjkk (t)|.

Suppose the contrary to our claim, that q ≡ 0. Then

‖qjkk ‖L∞([−kT,kT ],RN ) = max
t∈[−T,T ]

|qjkk (t)| → 0,

which contradicts (36).
Second, we now prove that q(t)→ 0 as t→ ±∞. We have, from (29)∫ kT

−kT
(|qk(t)|2 + |q̇k(t)|2)dt ≤ ‖qk‖2Ek ≤M

2
1 .

Obviously, for each i ∈ N there is ki ∈ N such that for all k ≥ ki∫ iT

−iT
(|qk(t)|2 + |q̇k(t)|2)dt ≤ ‖qk‖2Ek ≤M

2
1 .

Letting k → +∞, we obtain ∫ iT

−iT
(|q(t)|2 + |q̇(t)|2)dt ≤M2

1 .

As i→ +∞, we have ∫ +∞

−∞
(|q(t)|2 + |q̇(t)|2)dt ≤M2

1 .
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Hence we get ∫
|t|≥r

(|q(t)|2 + |q̇(t)|2)dt→ 0 as r → +∞. (37)

By Corollary 2.2 in [16], we have

|q(t)|2 ≤
∫ t+1

t−1

(|q(s)|2 + |q̇(s)|2)ds (38)

for every t ∈ R. Then, by (37) and (38) we conclude that

q(t)→ 0 as |t| → ∞.

Finally, we have to show that q̇(t)→ 0 as t→ ±∞. From Corollary 2.2 in [16] we have

|q̇(t)|2 ≤
∫ t+1

t−1

(|q(s)|2 + |q̇(s)|2)ds+

∫ t+1

t−1

|q̈(s)|2ds,

for every t ∈ R. Since q ∈W 1,2(R,RN ), we get∫ t+1

t−1

(|q(s)|2 + |q̇(s)|2)ds→ 0 as |t| → ∞.

Hence, it suffices to prove that∫ t+1

t−1

|q̈(s)|2ds→ 0 as |t| → ∞. (39)

Since q is a solution of (DS), we obtain∫ t+1

t−1

|q̈(s)|2ds ≤ ‖B‖2
∫ t+1

t−1

|q̇(s)|2ds+

∫ t+1

t−1

|V ′(t, q(s))|2ds+

∫ t+1

t−1

|f(s)|2ds

+ 2‖B‖
(∫ t+1

t−1

|q̇(s)|2ds
) 1

2
(∫ t+1

t−1

|V ′(s, q(s))|2ds
) 1

2

+ 2‖B‖
(∫ t+1

t−1

|q̇(s)|2ds
) 1

2
(∫ t+1

t−1

|f(s)|2ds
) 1

2

+ 2

(∫ t+1

t−1

|f(s)|2
) 1

2
(∫ t+1

t−1

|V ′(s, q(s))|2ds
) 1

2

ds.

By (V5), we get ∫ t+1

t−1

|f(s)|2ds→ 0, as |t| → ∞. (40)

Since

∫ t+1

t−1

|q̇(s)|2ds → 0 as |t| → ∞, q(t) → 0 as |t| → ∞ and V ′(t, q) → 0 as |q| → 0

uniformly in t ∈ R, then (39) follows. The proof of Theorem 1.1 is complete. 2
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