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1 Introduction

State and output feedback controllers design for dynamic systems with the prescribed
and desired properties is a key problem of control theory. At the same time, the pro-
perties of control systems such as asymptotic stability, robustness and optimality of the
performance indexes are in the foreground. The main problem in H∞-control theory for
continuous systems is connected with suppression of external and initial perturbations
(see, e.g., [1–6] as well as review papers [7–9]). Practical applications of many modern
methods for control systems design reduce to solving the linear matrix inequalities (LMI)
[10,11].
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In this paper, we consider classes of linear and affine discrete-time control systems
for which closed loop systems can be represented in the pseudolinear form

xt+1 = M(xt, t)xt, xt ∈ Rn, t ∈ T = {0, 1, 2, . . . },

besides, a matrix function M(x, t) can contain uncertain quantities belonging to certain
sets. Intervals, polytopes, affine families of matrices and other objects may serve as the
uncertainty sets. To define uncertainties and robust stability conditions for systems in
semiordered spaces one can use cone inequalities and intervals [6, 12, 13]. The applied
control laws are of the form of static or dynamic output feedback. It should be noted that
at the solution of many control problems the dynamic controllers have great potential as
compared with the static controllers.

Our consideration includes the following types of problems:
• output feedback stabilization of discrete-time control systems (Section 2);
• robust stabilization and optimization of discrete-time control systems with polyhe-

dral uncertainties (Section 3);
• robust stabilization and weighted perturbation suppression in discrete-time control

systems (Section 4).

Throughout the paper, the following notations are used: In is the identity n × n
matrix; 0n×m is the n ×m null matrix; X = XT > 0 (≥ 0) is the symmetric positive
definite (semidefinite) matrix X; i(X) =

{
i+, i−, i0

}
is the inertia of Hermitian matrix

X = X∗ consisting of the numbers of positive (i+(X)), negative (i−(X)) and zero (i0(X))
eigenvalues (taking into account the multiplicities); σ(A) and ρ(A) are the spectrum and
the spectral radius of A, respectively; λmax(X) and λmin(X) are the maximum and the
minimum eigenvalue of the Hermitian matrix X, respectively; A+ is the pseudoinverse
matrix; WA is a matrix whose columns make up the bases of the kernel KerA; ‖x‖
denotes the Euclidean norm of the vector x ∈ Rn; ‖w‖P denotes the weighted l2-norm
of a vector sequence wt, t ∈ T ; Co

{
A1, . . . , Aν

}
stands for a polytope in a matrix space

described as a convex hull of the set
{
A1, . . . , Aν

}
, i.e.

Co
{
A1, . . . , Aν

}
=
{
α1A1 + · · ·+ ανAν : α1 + · · ·+ αν = 1, αi ≥ 0, i = 1, ν

}
.

Note that matrix intervals and affine sets are described in terms of polytopes.

2 Output Feedback Stabilization of Nonlinear Systems

Consider the affine discrete-time control system

xt+1 = A(xt)xt +B(xt)ut, yt = C(xt)xt +D(xt)ut, (1)

where xt ∈ Rn is a state vector, ut ∈ Rm and yt ∈ Rl are input and output vectors, respec-
tively, A(x), B(x), C(x) and D(x) are continuous matrix functions in some neighborhood
S0 of the zero state xt = 0, t ∈ T . Assume that rankB(x) ≡ m and rankC(x) ≡ l in S0.

Along with (1), consider the linear system

xt+1 = Axt +But, yt = Cxt +Dut, (2)

with A = A(0), B = B(0), C = C(0) and D = D(0). Let B⊥ and C⊥ be the orthogonal
complements of B and C, respectively, i.e. BTB⊥ = 0, det

[
B,B⊥

]
6= 0, C⊥CT = 0,

det
[
CT , C⊥T

]
6= 0.
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2.1 Static controllers

Formulate stabilizability conditions of the zero state xt = 0 for systems (1) and (2)
through the static output-feedback controller

ut = Kyt, K ∈ KD, (3)

where KD = {K ∈ Rm×l : det(Im−KD) 6= 0}. Closed loop system (2), (3) has the form

xt+1 = Mxt, M = A+BD(K)C, (4)

where D(K) = (Im −KD)−1K is a nonlinear operator with the following properties:
• if K ∈ KD, then D(K) ≡ K(Il −DK)−1 and Il +DD(K) ≡ (Il −DK)−1;
• if K1 ∈ KD and K2 ∈ KD1

, then K1 +K2 ∈ KD and

D(K1 +K2) = D(K1) + (Im −K1D)−1D1(K2) (Il −DK1)−1, (5)

where D1(K2) = (Im −K2D1)−1K2, D1 = (Il −DK1)−1D;
• if −K0 ∈ KD, then K = −D(−K0) ∈ KD and D(K) = K0.

Definition 2.1 System (4) is ρ-stable if the spectrum σ(M) lies inside the circle
{λ : |λ| < ρ}, where 0 < ρ ≤ 1.

Theorem 2.1 Let rankB = m < n and rankC = l < n. Then the following state-
ments are equivalent:

1) There exists a static controller (3) ensuring ρ-stability of system (4).
2) There exists a matrix X = XT > 0 satisfying the relations

B⊥T (AXAT − ρ2X)B⊥ < 0, (6)

i(H) =
{
l,m, 0

}
, H =

[
H0 HT

1

H1 H2

]
, (7)

where H0 = B+(L−LRL)B+T, H1 = CXAT (In−RL)B+T, H2 = C(X−XATRAX)CT,
L = AXAT − ρ2X, R = B⊥S−1B⊥T , S = B⊥TLB⊥;

3) There exists a matrix X = XT > 0 satisfying the matrix inequalities (6) and

AXAT − ρ2X < AXCT (CXCT )−1CXAT . (8)

4) There exist mutually inverse matrices X = XT > 0 and Y = Y T > 0 satisfying
the relations (6) and

C⊥(ATY A− ρ2Y )C⊥T < 0. (9)

5) There exists a matrix Y = Y T > 0 satisfying the matrix inequalities (9) and

ATY A− ρ2Y < ATY B(BTY B)−1BTY A. (10)

When one of the statements 2) – 4) is true, then the controller

ut = Kyt, K = −D(−K0) ∈ KD, (11)

where K0 is a solution of one of the equivalent LMI

PT1 K0Q1+QT1K
T
0 P1 <

[
ρ2X AX
XAT X

]
, PT2 K0Q2+QT2K

T
0 P2 <

[
−H0 0

0 H−12

]
, (12)

with P1 =
[
− BT , 0

]
, Q1 =

[
0, CX

]
, P2 =

[
Im, 0

]
and Q2 =

[
H1, Il

]
ensures ρ-stability

of closed loop system (4).
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For the equivalence of the statements 1) and 2) in Theorem 2.1, see [6]. Equivalence
of the statements 2) and 3) follows from the correlations (see [12, p. 147])

H = Ĥ0 − ĤT
1 Ĥ

−1
2 Ĥ1, i+(Ĥ) = i+(H) = i+(∆), i−(Ĥ) = i−(H) + n−m = i−(∆),

where

Ĥ =

[
Ĥ0 ĤT

1

Ĥ1 Ĥ2

]
=

 B+LB+T B+AXCT B+LB⊥

CXATB+T CXCT CXATB⊥

B⊥TLB+T B⊥TAXCT S

 = W∆WT ,

∆ =

[
AXAT − ρ2X AXCT

CXAT CXCT

]
, WT =

[
B+T 0 B⊥

0 Il 0

]
, detW 6= 0.

For the equivalence of the statements 1) and 4), see also [5] and [6, Therem 6.1.2].

Theorem 2.2 Let one of the statements 2) – 4) of Theorem 2.1 hold for linear system
(2). Then relations (11) and (12) determine static controller ensuring asymptotic stability
of the state x ≡ 0 and quadratic Lyapunov function v(x) = xTX−1x of nonlinear closed
loop system (1), (11).

2.2 Dynamic controllers

The dynamic output feedback stabilization problem for system (1) is to find, if possible,
a dynamic control law described by

ξt+1 = Zξt + V yt, ut = Uξt +Kyt, t ∈ T , (13)

where ξt ∈ Rr and r ≤ n, such that the zero state of closed loop system is asymptotically
stable. Equations (1) and (13) may be represented by control system in the extended
phase space Rn+r with static controller

x̂t+1 = Â(x̂t)x̂t + B̂(x̂t)ût, ŷt = Ĉ(x̂t)x̂t + D̂(x̂t)ût, ût = K̂ŷt, (14)

where

x̂t =

[
xt
ξt

]
, ŷt =

[
yt
ξt

]
, ût =

[
ut
ξt+1

]
, K̂ =

[
K U
V Z

]
,

Â(x̂) =

[
A(x) 0

0 0

]
, B̂(x̂) =

[
B(x) 0

0 Ir

]
, Ĉ(x̂) =

[
C(x) 0

0 Ir

]
, D̂(x̂) =

[
D(x) 0

0 0

]
.

If K ∈ KD, then linear closed loop system (2), (13) has the form

x̂t+1 = M̂ x̂t, M̂ = Â+ B̂D̂(K̂)Ĉ, (15)

where Â = Â(0), B̂ = B̂(0), Ĉ = Ĉ(0), D̂ = D̂(0), D̂(K̂) = (Im+r − K̂D̂)−1K̂, and

D̂(K̂) =

[
D(K) (Im −KD)−1U

V (Il −DK)−1 Z + V D(Im −KD)−1U

]
,

M̂ =

[
M B(Im −KD)−1U

V (Il −DK)−1C Z + V D(Im −KD)−1U

]
.
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Theorem 2.3 The following statements are equivalent:
1) There exists a dynamic controller (13) of order r ≤ n ensuring ρ-stability of closed

loop system (15).
2) There exist matrices X and X0 satisfying the relations (6) and

X ≥ X0 > 0, rank (X−X0) ≤ r, AX0A
T −ρ2X0 < AX0C

T (CX0C
T )−1CX0A

T . (16)

3) There exist matrices X and Y satisfying the relations (6), (9) and

W =

[
X In
In Y

]
≥ 0, rankW ≤ n+ r. (17)

Proof of Theorem 2.3 follows from the corresponding statements of Theorem 2.1
taking into account the structure of block matrices in (15) (see [6]).

Remark 2.1 The coefficient matrices of stabilizing controller (13) in Theorem 2.3
may be defined in the form

K = (Im +K0D)−1K0, U = (Im +K0D)−1U0,

V = V0(Il +DK0)−1, Z = Z0 − V0(Il +DK0)−1DU0,
(18)

using the solution K̂0 of the LMI

P̂T K̂0Q̂+ Q̂T K̂T
0 P̂ < F̂ , (19)

where P̂ =
[
− B̂T , 0

]
, Q̂ =

[
0, ĈX̂

]
, X −X0 = XT

1 X
−1
2 X1 ≥ 0, K0 ∈ KD, 0 < ρ ≤ 1,

F̂ =

[
ρ2X̂ ÂX̂

X̂ÂT X̂

]
, K̂0 =

[
K0 U0

V0 Z0

]
, X̂ =

[
X XT

1

X1 X2

]
> 0.

For example, one can use the Cholesky factorization X−X0 = XT
1 X1 ≥ 0 with X2 = Ir.

Remark 2.2 Note, that matrices X and X0 satisfy statement 2) iff matrices X and
Y = X−10 satisfy statement 3). From (17) it follows that matrices X and Y are positive
definite. The rank restriction in (17) always holds in case of full order r = n dynamic
regulator.

Theorem 2.4 Let one of the statements 2) or 3) of Theorem 2.3 hold for linear
system (2). Then relations (18) and (19) determine dynamic controller (13) ensuring

asymptotic stability of the state x ≡ 0 and quadratic Lyapunov function v(x̂) = x̂T X̂−1x̂
of nonlinear closed loop system (1), (13).

3 Robust Stabilization and Optimization of Nonlinear Systems

We formulate an auxiliary statement that will be used in the proofs of our main results.
Consider a nonlinear operator

F(K) = W + UTD(K)V + V TDT (K)U + V TDT (K)RD(K)V (20)

with D(K) = (Im −KD)−1K and an ellipsoidal set of matrices

K =
{
K ∈ Rm×l : KTPK ≤ Q

}
, (21)

where P = PT > 0, Q = QT > 0, R = RT ≥ 0, W = WT ≤ 0, U , V and D are matrices
of suitable sizes.
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Lemma 3.1 [14] Suppose that the following matrix inequalities hold:

DTQD +R < P, Ω =

 W UT V T

U R− P DT

V D −Q−1

 ≤ 0 (< 0). (22)

Then F(K) ≤ 0 (< 0) for every matrix K ∈ K.

Note that Lemma 3.1 is a generalization of the sufficiency statement for a criterion
known as Petersen’s lemma on matrix uncertainty [15] (see also [16]).

Consider a nonlinear control system in the vector-matrix form

xt+1 = A(xt, t)xt +B(xt, t)ut, yt = C(xt, t)xt +D(xt, t)ut, (23)

where xt ∈ Rn, ut ∈ Rm and yt ∈ Rl. We construct a set of the static controllers

ut = K(xt, t) yt, K(xt, t) = K∗(xt, t) + K̃(xt, t), K̃(xt, t) ∈ K, (24)

where K is an ellipsoidal set of matrices of the form (21). We assume that the matrices
A, B, C, D, K and K∗ depend on xt and t continuously and the equilibrium state xt ≡ 0
is isolated, i.e., the neighborhood S0 = {x ∈ Rn : ‖x‖ ≤ h} does not contain other
equilibrium states of this system. If K ∈ KD, then the closed loop system (23), (24) can
be represented as

xt+1 = M(xt, t)xt, M(xt, t) = A+BD(K)C. (25)

Let the zero state of this system for K ≡ K∗ be asymptotically stable. When looking
for the stabilizing matrix K∗ in the class of autonomous systems (1), one can use Theorem
2.1 and its special cases. The problem is to construct conditions under which the zero
state of system (25) is asymptotically Lyapunov stable for every matrix K̃(xt, t) ∈ K. We
find a solution for our problem in terms of a quadratic Lyapunov function (see [6, 14]).

Theorem 3.1 Let for some matrix functions Xt = XT
t and K∗(x, t) the correlations

ε1In ≤ Xt ≤ ε2In, 0 < ε1 ≤ ε2, (26) MT
∗ Xt+1M∗ −Xt + ε0In MT

∗ Xt+1B∗ CT∗
BT∗ Xt+1M∗ BT∗ Xt+1B∗ − P DT

∗
C∗ D∗ −Q−1

 < 0, (27)

hold with ε0 > 0, M∗ = A + BD(K∗)C, B∗ = B(Im −K∗D)−1, C∗ = (Il − DK∗)−1C
and D∗ = D(Im−K∗D)−1, xt = 0 and t ∈ T . Then any control (24) ensures asymptotic
stability of the zero state xt ≡ 0 for system (25) and a common Lyapunov function
v(x, t) = xTXtx.

Consider control system (23) with quadratic quality functional

Ju(x0) =

∞∑
0

ϕt, ϕt =
[
xTt u

T
t

]
Φt

[
xt
ut

]
, (28)

where

Φt =

[
S N
NT R

]
, S ≥ NR−1NT + η In, R > 0, η > 0, t ∈ T .
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Theorem 3.2 Let for some matrix functions Xt = XT
t and K∗(xt, t) the correlations

(26) and MT
∗ Xt+1M∗ −Xt + Φ∗ + ε0In MT

∗ Xt+1B∗ +N∗ + CTKT
∗ R∗ CT∗

BT∗ Xt+1M∗ +NT
∗ +R∗K∗C BT∗ Xt+1B∗ +R∗ − P DT

∗
C∗ D∗ −Q−1

 < 0 (29)

hold with Φ∗ = LT∗ ΦL∗, L
T
∗ =

[
In, C

TDT (K∗)
]
, R∗ = (Im −K∗D)−1TR (Im −K∗D)−1,

N∗ = N(Im − K∗D)−1, ε0 > 0, xt = 0 and t ∈ T . Then any control (24) ensures
asymptotic stability of the zero state xt ≡ 0 for system (25), a common Lyapunov function
v(x, t) = xTXtx and a bound on the functional Ju(x0) ≤ v(x0, 0) = xT0X0x0.

Corollary 3.1 Let for some matrix Xt = XT
t > 0 and K∗ the system of LMI MT

ijkXt+1Mijk −Xt + Φk + ε0In MT
ijkXt+1B∗j +N∗ + CTk K

T
∗ R∗ CT∗k

BT∗jXt+1Mijk +NT
∗ +R∗K∗Ck BT∗jXt+1B∗j +R∗ − P DT

∗
C∗k D∗ −Q−1

 < 0,

hold with Mijk = Ai + BjD(K∗)Ck, B∗j = Bj(Im − K∗D)−1, Φk = LTk ΦLk, LTk =[
In, C

T
k DT (K∗)

]
, C∗k = (Il − DK∗)−1Ck, i = 1, α, j = 1, β, k = 1, γ, ε0 > 0, xt = 0,

t ∈ T . Then any control (24) ensures asymptotic stability of the zero state xt ≡ 0 for
system (25) with uncertainties A(0, t) ∈ Co{A1, . . . , Aα}, B(0, t) ∈ Co{B1, . . . , Bβ} and
C(0, t) ∈ Co{C1, . . . , Cγ}, a common Lyapunov function v(x, t) = xTXtx and a bound
on the functional Ju(x0) ≤ v(x0, 0) = xT0X0x0.

Note that the proofs of Theorems 3.1 and 3.2 follow directly from Lemma 3.1 and
the Lyapunov theorem on asymptotic stability taking into account representation of the
first difference of Lyapunov function v(x, t) with respect to system (25) in the form of a
quadratic function with matrix of the form (20) and application of formula (5) (see [6,14]).

4 Generalized H∞-control

4.1 Weighted level of perturbation suppression

Consider a dynamical system with external perturbations

xt+1 = f(xt, wt, t), yt = g(xt, wt, t), t ∈ T , (30)

where xt ∈ Rn, wt ∈ Rs and yt ∈ Rl are the state, the l2-norm-limited external pertur-
bations and the output vector, respectively.

Definition 4.1 The dynamical system (30) is called nonexpansive, if for all square-
integrable functions wt and τ > 0

τ∑
t=0

yTt Qyt ≤
τ∑
t=0

wTt Pwt + xT0X0x0,

where Q, P and X0 are weight symmetric positive definite matrices.

We introduce the performance criterion of system (30) with respect to output y:

J = sup
0<‖w‖2P+xT

0 X0x0<∞
ϕ(w, x0), (31)
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where

ϕ(w, x0) =
‖y‖Q√

‖w‖2P + xT0X0x0

, ‖y‖2Q =

∞∑
t=0

yTt Qyt, ‖w‖2P =

∞∑
t=0

wTt Pwt.

In case of x0 = 0, we denote J by J0. It is obvious that J0 ≤ J and J ≤ 1 for a
nonexpansive system. The value J describes the weighted level of external and initial
perturbation suppression in system (30). If P = Is, Q = Il and X0 = ρIn, then J and
J0 coincide with known performance criteria of dynamical systems [17].

Consider the class of linear systems

xt+1 = Axt +Bwt, yt = Cxt +Dwt, t ∈ T . (32)

Lemma 4.1 Let ρ(A) < 1. Then an evaluation J0 < γ for system (32) holds iff the
LMI

Ψγ =

[
ATXA−X + CTQC ATXB + CTQD
BTXA+DTQC BTXB +DTQD − γ2P

]
< 0 (33)

has a solution X = XT > 0. To perform the evaluation J < γ it is necessary and
sufficient that LMI (33) has a solution X such that

0 < X < γ2X0. (34)

The sufficiency assertion of Lemma 4.1 follows from the relation

∆v(xt) + yTt Qyt − γ2wTt Pwt =
[
xTt , w

T
t

]
Ψγ

[
xt
wt

]
< 0,

where ∆v(xt) = v(xt+1)−v(xt) is the first difference of Lyapunov function v(x) = xTXx
with respect to system (32). The necessity assertion of Lemma 4.1 may be established
via representation of functional ϕ(w, x0) by similar expression with the identity weight
matrices (see the proof of Lemma 5.1.1 in [6] and [17]).

Remark 4.1 If J0 < γ, then system (32) with a structured uncertainty

wt =
1

γ
Θyt, ΘTPΘ ≤ Q, t ∈ T , (35)

is robust stable and has a common Lyapunov function v(x) = xTXx. This fact follows
from Lemma 4.1 and Theorem 3.1. The functional ϕ(w, x0) on the set of functions (35)
takes the minimum value, if ΘTPΘ = Q.

It follows from Lemma 4.1 that the performance criteria J and J0 of system (32) may
be computed as the solutions of the corresponding optimization problems:

J0 = inf
{
γ : Ψγ < 0, X > 0

}
, J = inf

{
γ : Ψγ < 0, 0 < X < γ2X0

}
. (36)

Consider the affine system with norm-limited external perturbations

xt+1 = A(xt)xt +B(xt)wt, yt = C(xt)xt +D(xt)wt, t ∈ T , (37)

where A(x), B(x), C(x) and D(x) are continuous matrix functions in S0. We can for-
mulate the following statement.
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Lemma 4.2 Suppose that there exists a matrix X = XT > 0 satisfying the matrix
inequality[

AT (x)XA(x)−X + CT (x)QC(x) AT (x)XB(x) + CT (x)QD(x)
BT (x)XA(x) +DT (x)QC(x) BT (x)XB(x) +DT (x)QD(x)− γ2P

]
< 0

(38)
for all x ∈ S0. Then J0 ≤ γ and the zero state xt ≡ 0 of system (37) with a structured
uncertainty (35) is robust stable with a common Lyapunov function v(x) = xTXx. In
addition, if the restriction 0 < X ≤ γ2X0 holds, then J ≤ γ.

4.2 Static controllers with perturbations

Consider control systems (1), (2) and the performance criteria J and J0 of the form
(31). We are interested in control laws that ensure nonexpansivity property of close loop
system and minimize J and J0. A control law is said to be J-optimal, if the corresponding
close loop system has minimum performance criteria J .

Primarily, we consider the static output-feedback controller

ut = K∗yt + wt, t ∈ T , (39)

where wt ∈ Rm is a vector of l2-bounded perturbations and K∗ ∈ KD is an unknown
matrix. Assuming that det

[
Im − K∗D(x)

]
6= 0, x ∈ S0, we rewrite the corresponding

close loop systems in the form

xt+1 = A∗(xt)xt +B∗(xt)wt, yt = C∗(xt)xt +D∗(xt)wt, (40)

xt+1 = A∗xt +B∗wt, yt = C∗xt +D∗wt, (41)

where A∗(x) = A(x) +B(x)
[
Im −K∗D(x)

]−1
K∗C(x), B∗(x) = B(x)

[
Im −K∗D(x)

]−1
,

C∗(x) =
[
Il−D(x)K∗

]−1
C(x), D∗(x) =

[
Il−D(x)K∗

]−1
D(x), A∗ = A∗(0), B∗ = B∗(0),

C∗ = C∗(0), D∗ = D∗(0).

Theorem 4.1 For linear system (2), there exists an output-feedback controller (39)
such that J < γ iff the following correlations are feasible:

WT
R

[
ATXA−X + CTQC ATXB + CTQD
BTXA+DTQC BTXB +DTQD − γ2P

]
WR < 0, (42)

WT
L

[
AY AT − Y +BP−1BT AY CT +BP−1DT

CY AT +DP−1BT CY CT +DP−1DT−γ2Q−1
]
WL < 0, (43)

0 < X < γ2X0, XY = γ2In, (44)

where R = [C,D], L = [BT , DT ]. Herewith, the zero states x ≡ 0 of systems (40) and (41)
with uncertainty (35) are robust stable with common Lyapunov function v(x) = xTXx.

Remark 4.2 The gain matrix K∗ in Theorem 4.1 may be constructed in the form

K∗ = K0(Il +DK0)−1, −K0 ∈ KD, (45)

Here K0 is an arbitrary solution of the LMI

LT0K0R0 +RT0K
T
0 L0 + Ω < 0, (46)
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where

Ω =


−X 0 AT CT

0 −γ2P BT DT

A B −X−1 0
C D 0 −Q−1

 , RT0 =


CT

DT

0
0

 , LT0 =


0
0
B
D

 .
Lemma 4.3 [3] LMI (46) has a solution K0 if and only if

WT
L0

ΩWL0
< 0, WT

R0
ΩWR0

< 0, (47)

where WL0 (WR0) is a matrix whose columns make up the bases of the kernel KerL0

(KerR0).

4.3 Dynamic controllers with perturbations

Consider control systems (1) and (2) with the dynamic output-feedback controller

ξt+1 = Zξt + V yt, ut = Uξt +Kyt + wt, t ∈ T , (48)

where ξ0 = 0, wt ∈ Rm is a vector of bounded perturbations, Z, V , U and K are unknown
coefficient matrices. If K ∈ KD, then linear close loop system (2), (48) reduces to the
form

x̂t+1 = Â∗x̂t + B̂∗wt, yt = Ĉ∗x̂t + D̂∗wt, (49)

where

x̂t =

[
xt
ξt

]
, Â =

[
A 0
0 0

]
, B̂ =

[
B 0
0 Ir

]
, Ĉ =

[
C 0
0 Ir

]
,

Â∗ = Â+ B̂K̂0Ĉ, B̂∗ = B̂1 + B̂K̂0D̂1, Ĉ∗ = Ĉ1 + D̂2K̂0Ĉ, D̂∗ = D + D̂2K̂0D̂1,

B̂1 =

[
B
0

]
, Ĉ1 =

[
C 0

]
, D̂1 =

[
D
0

]
, D̂2 =

[
D 0

]
, K̂0 =

[
K0 U0

V0 Z0

]
,

K0 = D(K), U0 = (Im −KD)−1U, V0 = V (Il −DK)−1, Z0 = Z + V D(Im −KD)−1U.

We give the following auxiliary statement (see also [18] in the case of γ = 1).

Lemma 4.4 Given the matrices X > 0, Y > 0 and the number γ > 0, there are
matrices X1 ∈ Rr×n, X2 ∈ Rr×r, Y1 ∈ Rr×n and Y2 ∈ Rr×r such that

X̂ =

[
X XT

1

X1 X2

]
> 0, Ŷ =

[
Y Y T1
Y1 Y2

]
> 0, X̂Ŷ = γ2In+r, (50)

if and only if

W =

[
X γIn
γIn Y

]
≥ 0, rankW ≤ n+ r. (51)

Applying Lemmas 4.3, 4.4 and Theorem 4.1 to system (49), we get the following
result.

Theorem 4.2 There exists a dynamic controller (48) such that the evaluation J < γ
holds for linear system (49), iff the LMI system (34), (42), (43) and (51) is solvable with
respect to X = XT > 0 and Y = Y T > 0. In addition, a close loop system (49) with a
structured uncertainty (35) is robust stable.
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Remark 4.3 The coefficient matrices of dynamic controller (48) in Theorem 4.2 may

be constructed in the form (18) by solving LMI with respect to K̂0:

L̂T K̂0R̂+ R̂T K̂T
0 L̂+ Ω̂ < 0, (52)

where

Ω̂ =


−X̂ 0 ÂT ĈT1

0 −γ2P B̂T1 DT

Â B̂1 −X̂−1 0

Ĉ1 D 0 −Q−1

 , R̂T =


ĈT

D̂T
1

0
0

 , L̂T =


0
0

B̂

D̂2

 .
Here X̂ is a block matrix determined in Lemma 4.4 for X and Y satisfying Theorem 4.2.

If K ∈ KD, then det
[
Im−KD(x)

]
6= 0 for all x ∈ S0, where S0 is some neighbourhood

of the point x = 0, and nonlinear close loop system (1), (48) reduces to the form

x̂t+1 = Â∗(x̂t)x̂t + B̂∗(x̂t)wt, yt = Ĉ∗(x̂t)x̂t + D̂∗(x̂t)wt, (53)

where all coefficient matrices are continuous in S0. Therefore, the dynamic controller
(48), (18) ensures robust stability of the zero state x̂t ≡ 0 of system (53) with uncertainty

(35) and a common Lyapunov function v(x̂) = x̂T X̂x̂. To evaluate characteristics J0 and
J of system (53), we can apply Lemma 4.2.

4.4 Control systems with controlled and observed outputs

Consider the linear control system

xt+1 = Axt +B1wt +B2ut,
zt = C1xt +D11wt +D12ut,
yt = C2xt +D21wt +D22ut,

(54)

where xt ∈ Rn, ut ∈ Rm, wt ∈ Rs, zt ∈ Rk and yt ∈ Rl are the state, the control, the
norm-limited external perturbations, the controlled and observed outputs, respectively,
and t ∈ T . We are interested in static and dynamic control laws that ensure nonexpan-
sivity property of close loop system and minimize the performance criteria J and J0 with
respect to controlled output z of the form (31), where

ϕ(w, x0) =
‖z‖Q√

‖w‖2P + xT0X0x0

, ‖z‖2Q =

∞∑
t=0

zTt Qzt, ‖w‖2P =

∞∑
t=0

wTt Pwt.

4.4.1 Static controllers

If we use the static output feedback controller

ut = Kyt, K ∈ KD22 , t ∈ T , (55)

then closed loop system (54), (55) has the form

xt+1 = A∗xt +B∗wt, zt = C∗xt +D∗wt, (56)
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where A∗ = A + B2K0C2, B∗ = B1 + B2K0D21, C∗ = C1 + D12K0C2, D∗ = D11 +
D12K0D21 and K0 = (Im − KD22)−1K. To formulate an analog of Theorem 4.1 we
construct the following LMI

WT
R

[
ATXA−X + CT1 QC1 ATXB1 + CT1 QD11

BT1 XA+DT
11QC1 BT1 XB1 +DT

11QD11 − γ2P

]
WR < 0, (57)

WT
L

[
AY AT − Y +B1P

−1BT1 AY CT1 +B1P
−1DT

11

C1Y A
T +D11P

−1BT1 C1Y C
T
1 +D11P

−1DT
11−γ2Q−1

]
WL < 0, (58)

where R =
[
C2, D21

]
, L =

[
BT2 , D

T
12

]
.

Theorem 4.3 For system (54), there exists an output feedback controller (55) such
that J < γ iff the system of correlations (44), (57) and (58) is feasible. Herewith, closed
loop system (56) with a structured uncertainty

wt =
1

γ
Θzt, ΘTPΘ ≤ Q, t ∈ T , (59)

is robust stable with common Lyapunov function v(x) = xTXx.

If we use a static state feedback ut = Kxt, then C2 = In, D21 = 0 and D22 = 0. In
this case the correlations (44) and (57) can be written as[

X0 In
In Y

]
> 0,

[
P − γ−2DT

11QD11 BT1
B1 Y

]
> 0. (60)

Corollary 4.1 For system (54), there exists a state feedback controller ut = Kxt such
that J < γ iff the LMI system (58) and (60) is solvable for some matrix Y = Y T > 0.
Herewith, closed loop system (56) with uncertainty (59) is robust stable with common
Lyapunov function v(x) = γ2xTY −1x.

Remark 4.4 The gain matrix K in Theorem 4.3 and Corollary 4.1 may be con-
structed as

K = K0(Il +D22K0)−1, −K0 ∈ KD22
, (61)

where K0 is an arbitrary solution of LMI:

LT0K0R0 +RT0K
T
0 L0 + Ω < 0,

where

Ω =


−X 0 AT CT1

0 −γ2P BT1 DT
11

A B1 −X−1 0
C1 D11 0 −Q−1

 , RT0 =


CT2
DT

21

0
0

 , LT0 =


0
0
B2

D12

 .
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4.4.2 Dynamic controllers

If we use the dynamic output feedback

ξt+1 = Zξt + V yt, ut = Uξt +Kyt, t ∈ T , (62)

with ξ0 = 0 and K ∈ KD22 , then closed loop system (54), (62) has the form

x̂t+1 = Â∗x̂t + B̂∗wt, zt = Ĉ∗x̂t + D̂∗wt, (63)

where

x̂t =

[
xt
ξt

]
, Â =

[
A 0
0 0

]
, B̂2 =

[
B2 0
0 Ir

]
, Ĉ2 =

[
C2 0
0 Ir

]
,

Â∗ = Â+ B̂2K̂0Ĉ2, B̂∗ = B̂1 + B̂2K̂0D̂21, Ĉ∗ = Ĉ1 + D̂12K̂0Ĉ2, D̂∗ = D11 + D̂12K̂0D̂21,

B̂1 =

[
B1

0

]
, Ĉ1 =

[
C1, 0

]
, D̂21 =

[
D21

0

]
, D̂12 =

[
D12, 0

]
, K̂0 =

[
K0 U0

V0 Z0

]
.

Here the blocks of matrix K̂0

K0 = (Im −KD22)−1K, U0 = (Im −KD22)−1U,

V0 = V (Il −D22K)−1, Z0 = Z + V D22(Im −KD22)−1U,

are unknown, and

K = (Im +K0D22)−1K0, U = (Im +K0D22)−1U0,

V = V0(Il +D22K0)−1, Z = Z0 − V0D22(Im +K0D22)−1U0.
(64)

Applying Lemmas 4.3, 4.4 and Theorem 4.1 to system (63), we get the following
result.

Theorem 4.4 For linear system (54), there exists a dynamic controller (62) such
that J < γ iff the system of correlations (34), (51), (57) and (58) is feasible. Herewith,
closed loop system (63) with uncertainty (59) is robust stable.

Remark 4.5 The coefficient matrices of dynamic controller (62) in Theorem 4.4 may
be constructed in the form (64) by solving the LMI

L̂T K̂0R̂+ R̂T K̂T
0 L̂+ Ω̂ < 0, (65)

where

Ω̂ =


−X̂ 0 ÂT ĈT1

0 −γ2P B̂T1 DT
11

Â B̂1 −X̂−1 0

Ĉ1 D11 0 −Q−1

 , R̂T =


ĈT2
D̂T

21

0
0

 , L̂T =


0
0

B̂2

D̂12

 .
Herewith, system (63) with uncertainty (59) has common Lyapunov function v(x̂) =

x̂T X̂x̂. Here X̂ is a block matrix determined in Lemma 4.4 for X and Y satisfying
Theorem 4.4.
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We give the following algorithm for constructing stabilizing dynamic controller (62)
satisfying Theorem 4.4.

Algorithm 4.1 1) calculate the matrices WR and WL, where R =
[
C2, D21

]
and

L =
[
BT2 , D

T
12

]
;

2) find the matrices X = XT > 0 and Y = Y T > 0 satisfying (34), (51), (57) and
(58);

3) construct the expansion Z = Y − γ2X−1 = STS, S ∈ Rr×n, kerS = kerZ and
form the block matrix

X̂ =

[
X XT

1

X1 X2

]
> 0, X1 =

1

γ
SX, X2 =

1

γ2
SXST + Ir;

4) solve the LMI (65) under restriction det(Im +K0D22) 6= 0;
5) calculate the coefficient matrices of dynamic controller (62) by formula (64).

Static and dynamic output-feedback controllers (55) and (62) with K ∈ KD22 may
be applied to a class of affine systems

xt+1 = A(xt)xt +B1(xt)wt +B2(xt)ut,
zt = C1(xt)xt +D11(xt)wt +D12(xt)ut,
yt = C2(xt)xt +D21(xt)wt +D22(xt)ut.

(66)

So, close loop system (62), (66) reduces to the form

x̂t+1 = Â∗(x̂t)x̂t + B̂∗(x̂t)wt, zt = Ĉ∗(x̂t)x̂t + D̂∗(x̂t)wt. (67)

As a result, the dynamic controller (62), (64) ensures robust stability of the zero state
x̂t ≡ 0 of system (67) with uncertainty (59) and a common Lyapunov function v(x̂) =

x̂T X̂x̂. To evaluate characteristics J0 and J of system (67), we can apply Lemma 4.2.

Remark 4.6 Note that we have necessary and sufficient conditions for an evaluation
J0 < γ represented by the corresponding statements of Theorems 4.1 – 4.4 without using
additional restriction X < γ2X0. With the use of static state feedback or full order
dynamic controllers the problems under consideration are reduced to the solution of LMI
systems. We can formulate analogs of Theorems 4.1 – 4.4 for the corresponding control
systems with uncertain coefficient matrices

A ∈ Co
{
A1, . . . , Aν1

}
, B1 ∈ Co

{
B1

1 , . . . , B
ν2
1

}
,

C1 ∈ Co
{
C1

1 , . . . , C
ν3
1

}
, D11 ∈ Co

{
D1

11, . . . , D
ν4
11

}
.

In addition, sufficient statements of these theorems may be generalized for the corre-
sponding affine control systems with continuous coefficient matrices (see Lemma 4.2).
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