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Abstract: The paper is devoted to the problems of output feedback stabilization,
robust stabilization, quadratic optimization and generalized H.-control for a class of
affine discrete-time systems. The solution of robust stabilization problem and evalu-
ation of the quadratic performance criterion for a family of nonlinear nonautonomous
control systems are proposed. Methods for construction of control laws providing a
robust stability and specified evaluation of the weighted damping level of input signals
and initial perturbations are proposed for linear systems with controllable and ob-
servable outputs. The application of the main results reduces to solving the systems
of linear matrix inequalities.
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1 Introduction

State and output feedback controllers design for dynamic systems with the prescribed
and desired properties is a key problem of control theory. At the same time, the pro-
perties of control systems such as asymptotic stability, robustness and optimality of the
performance indexes are in the foreground. The main problem in H,-control theory for
continuous systems is connected with suppression of external and initial perturbations
(see, e.g., [1H6] as well as review papers [7H9]). Practical applications of many modern
methods for control systems design reduce to solving the linear matrix inequalities (LMI)
[T0,[T1).
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In this paper, we consider classes of linear and affine discrete-time control systems
for which closed loop systems can be represented in the pseudolinear form

$t+1:M(J)t,t)ﬂft, l‘tERn, tETZ{O,LQ,...},

besides, a matrix function M (x,t) can contain uncertain quantities belonging to certain
sets. Intervals, polytopes, affine families of matrices and other objects may serve as the
uncertainty sets. To define uncertainties and robust stability conditions for systems in
semiordered spaces one can use cone inequalities and intervals [6,[12,/13]. The applied
control laws are of the form of static or dynamic output feedback. It should be noted that
at the solution of many control problems the dynamic controllers have great potential as
compared with the static controllers.

Our consideration includes the following types of problems:

e output feedback stabilization of discrete-time control systems (Section ;

e robust stabilization and optimization of discrete-time control systems with polyhe-
dral uncertainties (Section ;

e robust stabilization and weighted perturbation suppression in discrete-time control
systems (Section [4]).

Throughout the paper, the following notations are used: I, is the identity n x n
matrix; Oy, is the n x m null matrix; X = X7 > 0 (> 0) is the symmetric positive
definite (semidefinite) matrix X; i(X) = {iy,i_,io} is the inertia of Hermitian matrix
X = X* consisting of the numbers of positive (i1 (X)), negative (i_ (X)) and zero (ip(X))
eigenvalues (taking into account the multiplicities); o(A) and p(A) are the spectrum and
the spectral radius of A, respectively; Apax(X) and Apin(X) are the maximum and the
minimum eigenvalue of the Hermitian matrix X, respectively; A1 is the pseudoinverse
matrix; Wy is a matrix whose columns make up the bases of the kernel Ker A4; ||z||
denotes the Euclidean norm of the vector x € R"; ||w||p denotes the weighted l3-norm
of a vector sequence wy, t € T; Co{Al, ceey AV} stands for a polytope in a matrix space
described as a convex hull of the set {Al, e ,A,,}7 ie.

Co{Ay,..., Ay} ={adi+ +a,d,: o1+ +a,=1, a;>0,i=1v}.

Note that matrix intervals and affine sets are described in terms of polytopes.

2 Output Feedback Stabilization of Nonlinear Systems
Consider the affine discrete-time control system
Tep1 = A(x)ze + B(wur,  yr = Cla)we + D(xe)ue, (1)

where 2; € R™ is a state vector, u; € R™ and y; € R! are input and output vectors, respec-

tively, A(x), B(z), C(x) and D(x) are continuous matrix functions in some neighborhood

Sp of the zero state z; = 0, t € T. Assume that rank B(z) = m and rank C(z) = in Sp.
Along with , consider the linear system

P41 = Awy + Buy,  yr = Cwy + Duy, (2)

with A = A(0), B = B(0), C = C(0) and D = D(0). Let B+ and C* be the orthogonal
complements of B and C, respectively, i.e. BTB+ = 0, det [B,Bﬂ £0, C+CT =0,
det [CT,C+T] £ 0.
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2.1 Static controllers

Formulate stabilizability conditions of the zero state x; = 0 for systems and
through the static output-feedback controller

U = Kyt: K e ICDa (3)
where Kp = {K € R™*! : det(I,, — KD) # 0}. Closed loop system , has the form
21 = Mz, M= A+ BD(K)C, (4)

where D(K) = (I,, — KD) 1K is a nonlinear operator with the following properties:
o if K € Kp, then D(K) = K(I; - DK) ! and I, + DD(K) = (I, - DK)~};
o if K1 € Kp and Ky € Kp,, then K1 + Ky € Kp and

D(K, + K») = D(K,) + (I, - K1D)™'Dy(K;) (I, - DK;)™!, (5)
where Dl(KQ) = (Im — K2D1)71K2, D1 = (Il — DKl)ilD;
o if —Ky € Kp, then K = —D(—Ko) € Kp and D(K) = Kj.

Definition 2.1 System is p-stable if the spectrum o(M) lies inside the circle
{N |\ < p}, where 0 < p < 1.

Theorem 2.1 Let rank B = m < n and rankC' = [ < n. Then the following state-
ments are equivalent:

1) There exists a static controller ensuring p-stability of system .

2) There exists a matriv X = XT > 0 satisfying the relations

BYT(AX AT — p®X)B* <0, (6)
. Hy HT
i) =m0y, H=| g ] )

where Hy = BY(L—LRL)B*T, Hy = CXAT(I,—RL)B*T, Hy = C(X - X ATRAX)CT,
L=AXAT —p’X, R=B*+S"'B*T, S = B*TLB*;
3) There erxists a matriv X = XT > 0 satisfying the matriz inequalities @ and

AXAT — p’X < AXCT(cxcT)y"1ox AT. (8)

4) There exist mutually inverse matrices X = X7 > 0 and Y = YT > 0 satisfying
the relations @ and

CHATY A - p*v)CtT <. (9)
5) There exists a matriz Y = YT > 0 satisfying the matriz inequalities @ and
ATY A - p?Y < ATYB(BTYB) 'BTY A. (10)

When one of the statements 2) — 4) is true, then the controller
Uy = K?Jh K= _D(_KO) € ]CDa (11)
where Ky is a solution of one of the equivalent LMI

P’ X AX
XAT X

-Hy O

PIKoQi1+QT K Py < [ } . Py KoQa+QiKj Py < [ 0 gl ] , (12)
2

with Py = [— BT,O], Q1= [O,C’X], P = [Im,O] and Q2 = [Hl,Il] ensures p-stability
of closed loop system .
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For the equivalence of the statements 1) and 2) in Theorem see [6]. Equivalence
of the statements 2) and 3) follows from the correlations (see |12} p. 147])

H=Hy— H'H;'Hy, i (H)=i.(H) =iy (A), i_(H)=i_(H)+n—m=i_(A),

where
T g T BYLBTT  BtAXCT | BYLBt:
H=| 20 21 | =| cxATBtT  cxcT |CXATBL | =wAwWT,
H, 2 BITLBTT BITAXCT ‘ g

AXAT — p2X  AXCT BT o0 Bt

_ T _
A{ CXAT CXCT]’ W { 0 L 0 } det W #0.

For the equivalence of the statements 1) and 4), see also [5] and [6, Therem 6.1.2].

Theorem 2.2 Let one of the statements 2) —4) of Theorem hold for linear system
. Then relations and determine static controller ensuring asymptotic stability
of the state x = 0 and quadratic Lyapunov function v(x) = 27 X1z of nonlinear closed

loop system , ,

2.2 Dynamic controllers

The dynamic output feedback stabilization problem for system is to find, if possible,
a dynamic control law described by

&1 =2+ Vyy, w=U&+ Ky, teT, (13)

where & € R” and r < n, such that the zero state of closed loop system is asymptotically
stable. Equations and may be represented by control system in the extended
phase space R"" with static controller

T = g@t)@ + E(aj\t)ata U = é(i’\t)fc\t + B(Ep})ﬂt, Uy = I?gta (14)

where

/(E\t+1 = J\/th J\/Z = A\—f— Eﬁ(,{?)é\, (15)
where A = A(0), B = B(0), C = C(0), D = D(0), D(K) = (Inyr — KD)"'K, and

_ D(K) | (I, — KD)~'U
)= [ VI, -DK) ' | Z+VD(,—KD)'U } ’

— M | B(l.— KD)"'U
V({I, - DK) 'C | Z+VD({, —-KD) U |’
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Theorem 2.3 The following statements are equivalent:
1) There exists a dynamic controller of order r < n ensuring p-stability of closed

loop system .

2) There exist matrices X and X satisfying the relations @ and
X > Xy >0, rank (X —Xo) <7, AXoAT —p?X, < AXoCT(CXoCT)PC X AT. (16)
3) There exist matrices X and Y satisfying the relations @, @ and

X I,

W_[In Y

} >0, rankW <mn-+r. (17)
Proof of Theorem [2.3] follows from the corresponding statements of Theorem
taking into account the structure of block matrices in (see [6]).

Remark 2.1 The coefficient matrices of stabilizing controller in Theorem
may be defined in the form

K= (Im + KoD)_lKo, U = (Im + KoD)_on,

18
V =Vo(I; + DKy) ™1, Z:ZO—VO(Il—i—DKO)_lDUO, (18)

using the solution I?O of the LMI
PTEKoQ+QTKIP < F, (19)

where P = [~ BT,0], Q = [0,CX], X — Xo = XT X5 ' X, >0, Ko € Kp, 0 < p< 1,
22X  AX
XAT X

~

[ (R 7/ X, X,

7 [KO Uo}v A:{X X{f]>0.

For example, one can use the Cholesky factorization X — Xy = X{‘FXl > 0 with Xy = I,..

Remark 2.2 Note, that matrices X and X satisfy statement 2) iff matrices X and
Y = X, ' satisfy statement 3). From it follows that matrices X and Y are positive
definite. The rank restriction in always holds in case of full order » = n dynamic
regulator.

Theorem 2.4 Let one of the statements 2) or 3) of Theorem hold for linear
system . Then relations and determine dynamic controller ensuring

asymptotic stability of the state x = 0 and quadratic Lyapunov function v(T) = 2TX -1z

of nonlinear closed loop system , .

3 Robust Stabilization and Optimization of Nonlinear Systems

We formulate an auxiliary statement that will be used in the proofs of our main results.
Consider a nonlinear operator

F(K)=W +UTD(K)V + VDT (K)U + VI D" (K) RD(K)V (20)
with D(K) = (I,, — KD)"'K and an ellipsoidal set of matrices
K={KeR™: KTPK < Q}, (21)

where P=PT >0, Q=Q" >0, R=R" >0, W=W7" <0, U, V and D are matrices
of suitable sizes.
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Lemma 3.1 [14] Suppose that the following matriz inequalities hold:

W UT VT
DTQD+R<P, Q=| U R-P DT |<0(<0). (22)
Vv D Q!

Then F(K) <0 (< 0) for every matriz K € K.

Note that Lemma [3.1] is a generalization of the sufficiency statement for a criterion
known as Petersen’s lemma on matrix uncertainty [15] (see also [16]).
Consider a nonlinear control system in the vector-matrix form

.’[t+1 = A(xt, t)xt + B(l’t, t)ut, Yy = C(l’t, t)l’t + D(xt, t)ut, (23)

where z; € R", u; € R™ and y; € R!. We construct a set of the static controllers

up = K(xg,t) g, K(xe,t) = Ko (w6,8) + K(20,1),  K(24,t) € K, (24)

where I is an ellipsoidal set of matrices of the form . We assume that the matrices
A, B, C, D, K and K, depend on z; and ¢ continuously and the equilibrium state x; = 0
is isolated, i.e., the neighborhood Sy = {z € R™ : ||z|| < h} does not contain other
equilibrium states of this system. If K € Kp, then the closed loop system , can
be represented as

Ty = M(zy, t)zy, M(w,t) = A+ BD(K)C. (25)

Let the zero state of this system for K = K, be asymptotically stable. When looking
for the stabilizing matrix K, in the class of autonomous systems , one can use Theorem
and its special cases. The problem is to construct conditions under which the zero
state of system 1) is asymptotically Lyapunov stable for every matrix K (x4,t) € K. We
find a solution for our problem in terms of a quadratic Lyapunov function (see [6}/14]).

Theorem 3.1 Let for some matriz functions X; = X} and K.(x,t) the correlations

e1l, < Xy < eol,, 0<e; <ey, (26)
MIX, M, — X, +el, MI'X, B, cr
BT X, 1M, BT'X,..B,—-P DT <0, (27)
O* D* _Qil

hold with eg > 0, M, = A+ BD(K,)C, B, = B(I,, — K.D)™!, C. = (I, - DK.,)"'C
and D, = D(I,,, — K.D)™', 2y =0 and t € T. Then any control ensures asymptotic
stability of the zero state x; = 0 for system and a common Lyapunov function
v(z,t) = 2T Xy,

Consider control system with quadratic quality functional
Ut

Ju(x0) = i%a or = [ ui | B [ o ] ; (28)
0

where

@t:[;} ]}\” S>NR'NT +nI,, R>0, n>0, teT.
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Theorem 3.2 Let for some matriz functions X; = X} and K. (z¢,t) the correlations

and

M*TXt+1M* — Xt —+ q)* + €0In Mth+1B* -+ N* + CTKgR* CI
BT X, M, + NT + R.K.C BTX, 1B, + R, — P DT | <0 (29)
C. D, Q!

hold with ®, = LT®L,, LT = [I,,,C"D*(K,)], R, = (I, — K.D)"*" R (I,, - K.D)™*,
N, = N(I,, — K.D)™, ¢g > 0, 2, = 0 and t € T. Then any control ensures
asymptotic stability of the zero state x; = 0 for system , a common Lyapunov function
v(z,t) = 27 Xz and a bound on the functional J,(z¢) < v(xo,0) = 28 Xoxo.

Corollary 3.1 Let for some matriz X; = X} > 0 and K, the system of LMI

M X1 M, — Xy + @k + 20l MgkaB*j +N.+CIKT'R, CI,

BT X141 Myj + NI + R.K.Cy BT X141Byj + Ry — P pT | <o,
C*k D* _Q_l

hold with Mijk = Al + BJD(K*)Ck, B*j = Bj([m - K*D)_l, (I)k = Lg@Lk, Lz =
[I,,CIDT(K,)], Cop = (I = DK.)'Cy, i = L,a, j = 1,8, k= 1,7, 9 > 0, x; = 0,
t € T. Then any control ensures asymptotic stability of the zero state xy = 0 for
system with uncertainties A(0,t) € Co{As,..., Ay}, B(0,t) € Co{Bj,...,Bg} and
C(0,t) € Co{Ch,...,Cy}, a common Lyapunov function v(x,t) = z* X,z and a bound
on the functional J,(zo) < v(z0,0) = 28 Xoxo.

Note that the proofs of Theorems and follow directly from Lemma [3.1] and
the Lyapunov theorem on asymptotic stability taking into account representation of the
first difference of Lyapunov function v(z,t) with respect to system in the form of a
quadratic function with matrix of the form and application of formula (5] (see [6/14]).

4 Generalized H,,-control

4.1 Weighted level of perturbation suppression

Consider a dynamical system with external perturbations
Ti41 = f(xtawht)) Yt :g(wt7wt7t)7 te T7 (30)

where z; € R", w; € R® and y; € R are the state, the l-norm-limited external pertur-
bations and the output vector, respectively.

Definition 4.1 The dynamical system is called nonexpansive, if for all square-
integrable functions w; and 7 > 0

T T
Dyl Que <Y wi Pwy + xf Xowo,
t=0 t=0
where @, P and X are weight symmetric positive definite matrices.

We introduce the performance criterion of system with respect to output y:

J = sup o(w,xq), (31)

0<[[w]3+2 Xowo<oo
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where

[ - -
o(w, z0) = < ol =D uQue, wld = wi Pw,.

VNwll% + 28 Xz t=0 t=0

In case of xy = 0, we denote J by Jy. It is obvious that Jy < J and J < 1 for a
nonexpansive system. The value J describes the weighted level of external and initial
perturbation suppression in system . If P=1Is, Q@ =1 and Xy = pl,, then J and
Jo coincide with known performance criteria of dynamical systems [17].

Consider the class of linear systems

Ti41 = Al‘t + Bwt, Yt = Cl‘t + DU)t7 te T (32)

Lemma 4.1 Let p(A) < 1. Then an evaluation Jy < vy for system holds iff the

LMI
ATXA - X +CTQC ATXB+CTQD

Uy = BTXA+DTQC  BTXB+DTQD —+2P

<0 (33)

has a solution X = XT > 0. To perform the evaluation J < ~ it is necessary and
sufficient that LMI has a solution X such that

0< X <+2X,. (34)

The sufficiency assertion of Lemma follows from the relation
Av(xy) +y! Qi — v*wl Pw, = [x?, th] v, [ Z)’; } <0,

where Av(x;) = v(zy41) —v(x4) is the first difference of Lyapunov function v(z) = 27 X«
with respect to system . The necessity assertion of Lemma may be established
via representation of functional ¢(w,zg) by similar expression with the identity weight
matrices (see the proof of Lemma 5.1.1 in [6] and [17]).

Remark 4.1 If Jy < v, then system (32]) with a structured uncertainty
1
wy = —Oy, OTPO<Q, teT, (35)
Y

is robust stable and has a common Lyapunov function v(z) = 27 Xx. This fact follows
from Lemma [4.1| and Theorem The functional p(w, o) on the set of functions
takes the minimum value, if ©° PO = Q.

It follows from Lemmathat the performance criteria J and Jy of system may
be computed as the solutions of the corresponding optimization problems:

Jo=inf{y:¥, <0, X >0}, J=inf{y:¥,<0,0<X <y Xp}. (36)
Consider the affine system with norm-limited external perturbations
Tiv1 = Alw)ze + B(xwe,  ye = C(x)w + D(w)we, teT, (37)

where A(z), B(z), C(x) and D(zx) are continuous matrix functions in Sg. We can for-
mulate the following statement.
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Lemma 4.2 Suppose that there exists a matric X = XT > 0 satisfying the matriz
inequality

AT (2) X A(2) - X + CT(2)QC () AT (2) X B(x) + C"(2)QD(x) <0
BT(2)XA(x) + DT(1)QC(z) BT (x)XB(x) + DT (2)QD(x) — 1*P
(38)
for all x € Sg. Then Jy <~ and the zero state xy = 0 of system with a structured
uncertainty is robust stable with a common Lyapunov function v(z) = 27 Xz. In

addition, if the restriction 0 < X < 42Xq holds, then J < .

4.2 Static controllers with perturbations

Consider control systems , and the performance criteria J and Jy of the form
. We are interested in control laws that ensure nonexpansivity property of close loop
system and minimize J and Jy. A control law is said to be J-optimal, if the corresponding
close loop system has minimum performance criteria J.

Primarily, we consider the static output-feedback controller

w =Koy +w,, teT, (39)

where w; € R™ is a vector of ls-bounded perturbations and K, € Kp is an unknown
matrix. Assuming that det [Im — K*D(x)] # 0, x € Sy, we rewrite the corresponding
close loop systems in the form

Toy1 = Au(@)we + Bo()wy,  yp = Cu(x) 2y + Di(me)wy, (40)
Ter1 = Awxy + Bowy, Y = Cuxy + Diwy, (41)

where A, (z) = A(z) + B() I, — K.D(z)] "' K.C(x), B.(x) = B() I, — K.D(z)] ",
C.(z) = [[—-D()K.] 'C(x), D.(x) = [,—D(x)K.] ' D(x), A. = A.(0), B = B.(0),

Theorem 4.1 For linear system , there exists an output-feedback controller
such that J < v iff the following correlations are feasible:

ATXA - X 4+CTQC ATXB +CTQD
T
WR|: BTXA+ DTQC BTXB+ DTQD —~+*P Wgr <0, (42)
AYAT - Y + BP'BT AYCT + BP~1DT
T
WL |: CYAT —I—DpleT CYCT+ DpleT_’yQQfl Wi < 0, (43)

0< X <%Xy, XY =~21,, (44)

where R = [C, D], L = [BT, DT]. Herewith, the zero states x = 0 of systems and
with uncertainty are robust stable with common Lyapunov function v(z) = 27 Xx.

Remark 4.2 The gain matrix K, in Theorem may be constructed in the form
K. = Ko(I; + DKo)~!, —Ko € Kp, (45)
Here Ky is an arbitrary solution of the LMI

LYKoRy + RYKI Lo +Q <0, (46)
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where
-X 0 AT ct ct 0
o= 4 B ke N | =] w5
C D 0 -t 0 D
Lemma 4.3 [3] LMI has a solution Kqy if and only if
WL QW <0, Wi QWg, <0, (47)

where Wi, (Wg,) is a matriz whose columns make up the bases of the kernel Ker Lo

(Ker Ry).

4.3 Dynamic controllers with perturbations

Consider control systems and with the dynamic output-feedback controller
§1=2&+ Vy, uw=U&+Kys+wy, teT, (48)

where &y = 0, w; € R™ is a vector of bounded perturbations, Z, V, U and K are unknown
coefficient matrices. If K € Kp, then linear close loop system , reduces to the

form R R R R
./13\,54_1 = A*./ft + B*’U)t, Yt = C*./ft + D*wt, (49)

~ | wy ~ [ A0 5 0 ~ | C 0
=lala=los] o e=o n] v )
A.= A+ BE,C, B.=Bi+BKDy, C.=Ci+DyKoC, D.=D+ DyKoD,
2 ) D 3 o~ Ky Uy
| a=te vt n=[2] n-to ol m-[f 4]

Ko=D(K), Uy= (I, - KD)™'U, Vo =V (I, - DK)™', Zy = Z+VD(I,, — KD) 'U.

We give the following auxiliary statement (see also [18] in the case of v = 1).

where

Sy

Lemma 4.4 Given the matrices X > 0, Y > 0 and the number v > 0, there are
matrices X1 € R™", Xo ¢ R"™7", Y] € R™*" and Yo € R"™" such that

s [ X XlT s Y le SS9
X_[Xl X2}>0, Y—{Yl Yy >0, XY=~ (50)
if and only if
W = LA 0, rankW <n+4r (51)
~I, Y =7 = ’

Applying Lemmas and Theorem to system , we get the following
result.

Theorem 4.2 There exists a dynamic controller (48) such that the evaluation J < ~y

holds for linear system , iff the LMI system , (142), and is solvable with
respect to X = X7 >0 and Y = YT > 0. In addition, a close loop system with a

structured uncertainty s robust stable.
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Remark 4.3 The coefficient matrices of dynamic controller in Theoremmay
be constructed in the form by solving LMI with respect to Kjy:

LT"KoR+ RTKI'L+Q <0, (52)
where
X 0 AT CT oT 0
~ 0 —’72P ET DT BT ET =7 0
Q= ~ ~ e , R = Loy, L= =
A B, -X! 0 0 AB
Ch D 0 —Q_l 0 Dy

Here X is a block matrix determined in Lemma for X and Y satisfying Theorem 4.2

If K € Kp, then det [Im—KD(a:)} = 0 for all x € Sy, where Sy is some neighbourhood
of the point = = 0, and nonlinear close loop system , reduces to the form

Tig1r = Au@)E + B (@)ws, v = Cu(@)Ze + Da(@)wy, (53)

where all coefficient matrices are continuous in Sy. Therefore, the dynamic controller
(148), ensures robust stability of the zero state Z; = 0 of system with uncertainty
(35) and a common Lyapunov function v(#) = 2T XZ. To evaluate characteristics Jy and

J of system , we can apply Lemma

4.4 Control systems with controlled and observed outputs

Consider the linear control system

ZTe41 = Axy + Brwe + Bouy,
Zt = leEt + Duwt + D12ut7 (54)
yr = Comy + Daywy + Daouy,

where x; € R, u, € R™, wy € R®, 2z, € RF and Y € R! are the state, the control, the
norm-limited external perturbations, the controlled and observed outputs, respectively,
and t € 7. We are interested in static and dynamic control laws that ensure nonexpan-
sivity property of close loop system and minimize the performance criteria J and Jy with
respect to controlled output z of the form , where

oo oo
z
plw o) = 18 =3 T Qu, ulp = Y ul Pu
|wll3 + 2 Xozo t=0 P
4.4.1 Static controllers
If we use the static output feedback controller
utZKyt, KEICDZQ, tET, (55)

then closed loop system , has the form

Tip1 = Awzy + Bowy, 2z = Coxy + Dywy, (56)
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Where A* = A + BQK()CQ, B* = Bl + BgKngl, C* = Cl + D12K002, D* == D11 +
D12KoDoy and Ko = (I, — KD3) 'K. To formulate an analog of Theorem |4.1| we
construct the following LMI

ATXA- X +CTQC ATX B, + CTQD
i 1l 1 1 11
Wgr { BT XA+ DLQC, BT X By + DL,QDy; — 42P Wgr <0, (57)
AYAT —Y 4+ B P7'B] AYCY + B, P DY,
r 1 1 1 1 11
Wi { CiYAT + DyPIBY YOl +DyPiDE —2qt | W <0 (59)

where R = [CQ,DQl], L= [Bg,D%;]

Theorem 4.3 For system , there exists an output feedback controller such
that J <~ iff the system of correlations , and is feasible. Herewith, closed
loop system with a structured uncertainty

1
wy = ;@zt, oTrPeo<Q, teT, (59)

is robust stable with common Lyapunov function v(x) = 27 Xx.

If we use a static state feedback u; = Kxy, then Cy = I,,, Da; = 0 and Doy = 0. In
this case the correlations and can be written as

|: XO In :| -0 |: P—’Y_QD’{lQDll B%—'

.y B, v | >0 (60)

Corollary 4.1 For system (b4), there exists a state feedback controller uy = Kxy such
that J < v iff the LMI system (58) and (60) is solvable for some matriz Y = YT > 0.
Herewith, closed loop system (56|) with uncertainty is robust stable with common
Lyapunov function v(x) = y22TY 1a.

Remark 4.4 The gain matrix K in Theorem and Corollary may be con-
structed as

K = Ko(I; + D2 Ko) ™, —Ko € Kp,,, (61)

where K is an arbitrary solution of LMI:

LYKoRy + RYKI Ly +Q <0,

where
-X 0 AT ct ct 0
_ 0 _72P B%F D1T1 T _ D2T1 T 0
Q=1 4 B -—x1 o |» o= g | b B,

Cl Dy, 0 —Q71 0 Do
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4.4.2 Dynamic controllers

If we use the dynamic output feedback
1 =28+ Vy, w=U&+ Ky, teT, (62)
with g = 0 and K € Kp,,, then closed loop system , has the form
Tii1 = A3y + Bowy, 2= CuZy + Doy, (63)
where
A R R A B K

~ o~ ~

A, = A+ ByKCy, B, = By + ByKoDyy, C, = Cy + D13KoCy, D, = D13+ Dy3KoDoy,

= [ B] A 5 D D Ro=| %
Blz{ 01}7 Gy = [Cy,0], Dm:{ 021] D13 = [D12,0], KO:{ VOO gg]

Here the blocks of matrix IA(O
Ko= (I, — KD3) 'K, U= (I, — KDa)"'U,
Vo=V (I, — DyoK)™Y, Zy= 7+ VDos(I,, — KDs) U,
are unknown, and
K = (I, + KoD22) 'Ko, U = (I, + KoDa2) Uy,
V =Vo(l; + D2 Ko)™',  Z = Zy — VoDas(Ly, + KoDa2) ™' Up.

Applying Lemmas and Theorem to system (63), we get the following
result.

(64)

Theorem 4.4 For linear system , there exists a dynamic controller such

that J < v iff the system of correlations (34)), , and is feasible. Herewith,
closed loop system with uncertainty (59)) is robust stable.

Remark 4.5 The coefficient matrices of dynamic controller in Theoremmay
be constructed in the form by solving the LMI

LTKoR+ RTKIL+Q <o, (65)
where
-X 0 AT ot cr 0
a-| O —¢P B Di a7 — | D& gr_| 0
A B X' 0o |’ 0o |’ By
Ch D1y 0 *Qil 0 Dia

Herewith, system with uncertainty has common Lyapunov function v(Z) =
27X7. Here X is a block matrix determined in Lemma for X and Y satisfying
Theorem [£.4]
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We give the following algorithm for constructing stabilizing dynamic controller
satisfying Theorem [£.4}

Algorithm 4.1 1) calculate the matrices Wxr and Wy, where R = [Cg,Dgl] and
L= [Bg’ DTZ ] )
2) find the matrices X = X7 > 0 and Y = Y7 > 0 satisfying (34), (51), and
©3);
3) construct the expansion Z = Y —42X~! = §7§ § ¢ R"™*", kerS = kerZ and
form the block matrix
o [ X X7

1 1 r
X X } >0, Xi= 28X, Xp= SXST + 1

gl

4) solve the LMI under restriction det(l,, + KoDag) # 0;
5) calculate the coefficient matrices of dynamic controller by formula .

Static and dynamic output-feedback controllers and with K € Kp,, may
be applied to a class of affine systems

Ti41 = A(J/'t)wt + Bl (l't)TUt + Bg(xt)uh
2zt = C1(w)xy 4+ D1y (2z)wi + Dia(w)uy, (66)
Yt = C’g(xt)xt + D21(Jit)’wt + Dgg(xt)ut.

So, close loop system , reduces to the form
Tig1 = A (BT + B (F)we, 2z = Cu(@) Tt + Dy (3w (67)

As a result, the dynamic controller 7 (64) ensures robust stability of the zero state
Ty = 0 of system with uncertainty (59)) and a common Lyapunov function v(Z) =
zT X 7. To evaluate characteristics Jy and J of system , we can apply Lemma

Remark 4.6 Note that we have necessary and sufficient conditions for an evaluation
Jo < 7y represented by the corresponding statements of Theorems [4.1] - [£.4] without using
additional restriction X < +2X,. With the use of static state feedback or full order
dynamic controllers the problems under consideration are reduced to the solution of LMI
systems. We can formulate analogs of Theorems —[44 for the corresponding control
systems with uncertain coefficient matrices

Ae Co{Al,...,A”l}, By € Co{Bll,...,Bf},

Cy1 € Co{C{,...,C{*}, Diy € Co{Dyy,..., D1}

In addition, sufficient statements of these theorems may be generalized for the corre-
sponding affine control systems with continuous coefficient matrices (see Lemma [4.2)).
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