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Weak Solutions to Implicit Differential Equations

Involving the Hilfer Fractional Derivative

S. Abbas 1, M. Benchohra 2, and J. R. Graef 3∗

1 Laboratory of Mathematics, University of Säıda, P.O. Box 138, Säıda 20000, Algeria
2 Laboratory of Mathematics, University of Sidi Bel-Abbes,

P.O. Box 89, Sidi Bel-Abbès 22000, Algeria
3 Department of Mathematics, University of Tennessee at Chattanooga,

Chattanooga, TN 37403, USA
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Abstract: In this paper, the authors present some existence results for weak solu-
tions to some functional implicit fractional differential equations of Hilfer type, by
applying Mönch’s fixed point theorem associated with the technique of measure of
weak noncompactness.

Keywords: functional differential equation; left-sided mixed Pettis Riemann-
Liouville integral of fractional order; Hilfer fractional derivative; implicit; weak solu-
tion; fixed point.

Mathematics Subject Classification (2010): 26A33, 36A08, 34A09.

1 Introduction

Fractional differential equations have recently been applied in various areas of engineer-
ing, mathematics, physics, bio-engineering, and other applied sciences [15,24]. For some
fundamental results in the theory of fractional calculus and fractional differential equa-
tions, we refer the reader to the monographs of Abbas et al. [1–3], Samko et al. [23],
Kilbas et al. [18], and Zhou [27].

The notion of a measure of weak noncompactness was introduced by De Blasi [13].
The strong measure of noncompactness was developed first by Banas̀ and Goebel [7] and
subsequently developed and used in many papers; see, for example, Akhmerov et al. [5],
Alvàrez [6], Benchohra et al. [11], Guo et al. [14], and the references therein. In [11,21],
the authors considered some existence results by applying the techniques of the measure

∗ Corresponding author: mailto:John-Graef@utc.edu

c© 2018 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 1
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of noncompactness. Recently, several researchers obtained other results by applying the
technique of measure of weak noncompactness; see [3, 9, 10], and the references therein.

Implicit functional differential equations have been considered by many authors [4,8,
26]. Our intention is to extend the results to implicit differential equations of fractional
order. Recently, considerable attention has been given to the existence of solutions of
initial and boundary value problems for fractional differential equations with a Hilfer
fractional derivative; see, for example, [15–17,25]. In this paper, we discuss the existence
of weak solutions to the problem of implicit Hilfer fractional differential equation of the
form (Dα,β

0 u)(t) = f(t, u(t), (Dα,β
0 u)(t)), t ∈ I := [0, T ],

(I1−γ0 u)(t)|t=0 = φ,
(1)

where α ∈ (0, 1), β ∈ [0, 1], γ = α+β−αβ, T > 0, φ ∈ E, f : I ×E×E → E is a given
continuous function, E is a real (or complex) Banach space with norm ‖ · ‖E and dual
space E∗, such that E is the dual space of a weakly compactly generated Banach space
X, I1−γ0 is the left-sided mixed Riemann-Liouville integral of order 1 − γ, and Dα,β

0 is
the generalized Riemann-Liouville derivative operator of order α and type β introduced
by Hilfer in [15]. Our goal in this work is to give some existence results for implicit Hilfer
fractional differential equations in Banach spaces.

2 Preliminaries

Let C be the Banach space of all continuous functions v from I into E with the supremum
(uniform) norm

‖v‖∞ := sup
t∈I
‖v(t)‖E .

As usual, AC(I) denotes the space of absolutely continuous functions from I into E. We
denote by AC1(I), the space defined by

AC1(I) := {w : I → E :
d

dt
w(t) ∈ AC(I)}.

By Cγ(I) and C1
γ(I), we mean the weighted spaces of continuous functions defined by

Cγ(I) = {w : (0, T ]→ E : t1−γw(t) ∈ C}

with the norm
‖w‖Cγ

:= sup
t∈I
‖t1−γw(t)‖E ,

and

C1
γ(I) = {w ∈ C :

dw

dt
∈ Cγ}

with the norm
‖w‖C1

γ
:= ‖w‖∞ + ‖w′‖Cγ

.

In what follows, we denote ‖w‖Cγ
by ‖w‖C . Let (E,w) = (E, σ(E,E∗)) be the Banach

space E with its weak topology.

Definition 2.1 A Banach space X is called weakly compactly generated (WCG, for
short) if it contains a weakly compact set whose linear span is dense in X.
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Definition 2.2 A function h : E → E is said to be weakly sequentially continuous
if h takes each weakly convergent sequence in E to a weakly convergent sequence in E
(i.e., for any {un} in E with un → u in (E,w), we have h(un)→ h(u) in (E,w)).

Definition 2.3 ( [22]) The function u : I → E is said to be Pettis integrable on
I if and only if there is an element uJ ∈ E corresponding to each J ⊂ I such that
φ(uJ) =

∫
J
φ(u(s))ds for all φ ∈ E∗, where the integral on the right-hand side is assumed

to exist in the sense of Lebesgue (by definition, uJ =
∫
J
u(s)ds).

Let P (I, E) be the space of all E−valued Pettis integrable functions on I, and L1(I, E)
be the Banach space of Lebesgue integrable functions u : I → E. Define the class P1(I, E)
by

P1(I, E) = {u ∈ P (I, E) : ϕ(u) ∈ L1(I, E) for every ϕ ∈ E∗}.

The space P1(I, E) is normed by

‖u‖P1 = sup
ϕ∈E∗, ‖ϕ‖≤1

∫ T

0

|ϕ(u(x))|dλx,

where λ stands for a Lebesgue measure on I.
The following result is due to Pettis (see [22, Theorem 3.4 and Corollary 3.41]).

Proposition 2.1 ( [22]) If u ∈ P1(I, E) and h is a measurable and essentially
bounded E-valued function, then uh ∈ P1(I, E).

For all that follows, the symbol “
∫

” denotes the Pettis integral. Now, we give some
results and properties of fractional calculus.

Definition 2.4 ( [2,18,23]) The left-sided mixed Riemann-Liouville integral of order
r > 0 of a function w ∈ L1(I) is defined by

(Irθw)(t) =
1

Γ(r)

∫ t

0

(t− s)r−1w(s)ds for a.e. t ∈ I,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ) =

∫ ∞
0

tξ−1e−tdt, ξ > 0.

Notice that for all r, r1, r2 > 0 and each w ∈ C, we have Ir0w ∈ C, and

(Ir10 I
r2
0 w)(t) = (Ir1+r20 w)(t) for a.e. t ∈ I.

Definition 2.5 ( [2,18,23]) The Riemann-Liouville fractional derivative of order r ∈
(0, 1] of a function w ∈ L1(I) is defined by

(Dr
0w)(t) =

(
d

dt
I1−r0 w

)
(t)

=
1

Γ(1− r)
d

dt

∫ t

0

(t− s)−rw(s)ds for a.e. t ∈ I.
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Let r ∈ (0, 1], γ ∈ [0, 1), and w ∈ C1−γ(I). Then the following expression leads to
the left inverse operator given by

(Dr
0I
r
0w)(t) = w(t) for all t ∈ (0, T ].

Moreover, if I1−r0 w ∈ C1
1−γ(I), then the composition

(Ir0D
r
0w)(t) = w(t)− (I1−r0 w)(0+)

Γ(r)
tr−1 for all t ∈ (0, T ]

is proved in [23].

Definition 2.6 ( [2, 18, 23]) The Caputo fractional derivative of order r ∈ (0, 1] of a
function w ∈ L1(I) is defined by

(cDr
0w)(t) =

(
I1−r0

d

dt
w

)
(t)

=
1

Γ(1− r)

∫ t

0

(t− s)−r d
ds
w(s)ds for a.e. t ∈ I.

In [15], Hilfer studied applications of a generalized fractional operator having the
Riemann-Liouville and the Caputo derivatives as special cases (see also [16,17,25]).

Definition 2.7 (Hilfer derivative) Let α ∈ (0, 1), β ∈ [0, 1], w ∈ L1(I), and

I
(1−α)(1−β)
0 ∈ AC1(I). The Hilfer fractional derivative of order α and type β of w is

defined as

(Dα,β
0 w)(t) =

(
I
β(1−α)
0

d

dt
I
(1−α)(1−β)
0 w

)
(t) for a.e. t ∈ I. (2)

Properties of the Hilfer derivative. Let α ∈ (0, 1), β ∈ [0, 1], γ = α + β − αβ,
and w ∈ L1(I).

1. The operator (Dα,β
0 w)(t) can be written as

(Dα,β
0 w)(t) =

(
I
β(1−α)
0

d

dt
I1−γ0 w

)
(t) =

(
I
β(1−α)
0 Dγ

0w
)

(t) for a.e. t ∈ I.

Moreover, the parameter γ satisfies

γ ∈ (0, 1], γ ≥ α, γ > β, and 1− γ < 1− β(1− α).

2. The generalization (2) for β = 0 coincides with the Riemann-Liouville derivative,
and for β = 1, with the Caputo derivative:

Dα,0
0 = Dα

0 and Dα,1
0 = cDα

0 .

3. If D
β(1−α)
0 w exists and is in L1(I), then

(Dα,β
0 Iα0 w)(t) = (I

β(1−α)
0 D

β(1−α)
0 w)(t) for a.e. t ∈ I.

Furthermore, if w ∈ Cγ(I) and I
1−β(1−α)
0 w ∈ C1

γ(I), then

(Dα,β
0 Iα0 w)(t) = w(t) for a.e. t ∈ I.
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4. If Dγ
0w exists and is in L1(I), then

(Iα0 D
α,β
0 w)(t) = (Iγ0D

γ
0w)(t) = w(t)− I1−γ0 (0+)

Γ(γ)
tγ−1 for a.e. t ∈ I.

Corollary 2.1 Let h ∈ Cγ(I). A function u ∈ L1(I, E) is a solution of the problem{
(Dα,β

0 u)(t) = h(t), t ∈ I := [0, T ],

(I1−γ0 u)(t)|t=0 = φ,

if and only if u satisfies the Volterra integral equation

w(t) =
φ

Γ(γ)
tγ−1 + (Iα0 h)(t).

From the above corollary and Lemma 5.1 in [4], we have the following lemma.

Lemma 2.1 Let f : I × E × E → E be such that f(·, u(·), v(·)) ∈ Cγ(I) for any u,
v ∈ Cγ(I). Then problem (1) is equivalent to the problem of obtaining the solution of the
equation

g(t) = f

(
t,

φ

Γ(γ)
tγ−1 + (Iα0 g)(t), g(t)

)
;

moreover, if g(·) ∈ Cγ is the solution of this equation, then

u(t) =
φ

Γ(γ)
tγ−1 + (Iα0 g)(t).

Remark 2.1 Let h ∈ P1([I, E). For every ϕ ∈ E∗, we have

ϕ(Iα0 h)(t) = (Iα0 ϕh)(t) for a.e. t ∈ I.

Definition 2.8 ( [13]) Let E be a Banach space, ΩE be the class of all bounded
subsets of E, and B1 be the unit ball in E. The De Blasi measure of weak noncompactness
is the map β : ΩE → [0,∞) defined by

β(X) = inf{ε > 0 : there exists a weakly compact Ω ⊂ E such that X ⊂ εB1 + Ω}.

The De Blasi measure of weak noncompactness satisfies the following properties:

(a) A ⊂ B implies β(A) ≤ β(B);

(b) β(A) = 0 if and only if A is weakly relatively compact;

(c) β(A ∪B) = max{β(A), β(B)};

(d) β(A
ω

) = β(A) where A
ω

denotes the weak closure of A;

(e) β(A+B) ≤ β(A) + β(B);

(f) β(λA) = |λ|β(A);

(g) β(conv(A)) = β(A);
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(h) β(∪|λ|≤hλA) = hβ(A).

The next result follows directly from the Hahn-Banach theorem.

Proposition 2.2 Let E be a normed space and let x0 ∈ E with x0 6= 0. Then, there
exists ϕ ∈ E∗ with ‖ϕ‖ = 1 and ϕ(x0) = ‖x0‖.

For a given set V of functions v : I → E, let

V (t) = {v(t) : v ∈ V }, t ∈ I,

and
V (I) = {v(t) : v ∈ V, t ∈ I}.

Lemma 2.2 ( [14]) Let H be a bounded and equicontinuous subset of C. Then the
function t→ β(H(t)) is continuous on I,

βC(H) = max
t∈I

β(H(t))

and

β

(∫
I

u(s)ds

)
≤
∫
I

β(H(s))ds,

where H(s) = {u(s) : u ∈ H, s ∈ I}, and βC is the De Blasi measure of weak noncom-
pactness defined on the bounded sets of C.

For our purposes, we will need the following fixed point theorem.

Theorem 2.1 ( [20]) Let Q be a nonempty, closed, convex, and equicontinuous subset
of a metrizable locally convex vector space C(I, E) such that 0 ∈ Q. Suppose T : Q→ Q
is weakly-sequentially continuous. If the implication

V = conv({0} ∪ T (V )) implies V is relatively weakly compact, (3)

holds for every subset V ⊂ Q, then the operator T has a fixed point.

3 Existence of Weak Solutions

Let us start by defining what we mean by a weak solution of the problem (1).

Definition 3.1 By a weak solution of the problem (1) we mean a measurable function

u ∈ Cγ that satisfies the condition (I1−γ0 u)(0+) = φ and the equation (Dα,β
0 u)(t) =

f(t, u(t), (Dα,β
0 u)(t)) on I.

The following hypotheses will be used in the sequel.

(H1) For a.e. t ∈ I, the functions v → f(t, v, w) and w → f(t, v, w) are weakly sequen-
tially continuous.

(H2) For each v, w ∈ E, the function t→ f(t, v, w) is Pettis integrable a.e. on I.

(H3) There exists p ∈ C(I, [0,∞)) such that for all ϕ ∈ E∗, we have

|ϕ(f(t, u, v))| ≤ p(t)‖ϕ‖
1 + ‖ϕ‖+ ‖u‖E + ‖v‖E

for a.e. t ∈ I and each u, v ∈ E.
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(H4) For each bounded and measurable set B ⊂ E and for each t ∈ I, we have

β(f(t, B,Dα,β
0 B) ≤ t1−rp(t)β(B),

where Dα,β
0 B = {Dα,β

0 w : w ∈ B}.

Set

p∗ = sup
t∈I

p(t).

Theorem 3.1 Assume that conditions (H1)–(H4) hold. If

L :=
p∗T 1−γ+α

Γ(1 + α)
< 1, (4)

then the problem (1) has at least one weak solution defined on I.

Proof. Consider the operator N : Cγ → Cγ defined by

(Nu)(t) =
φ

Γ(γ)
tγ−1 + (Iα0 g)(t), (5)

where g ∈ Cγ is given by

g(t) = f

(
t,

φ

Γ(γ)
tγ−1 + (Iα0 g)(t), g(t)

)
.

First notice that by hypothesis, for each g ∈ Cγ , the function

t 7→ (t− s)α−1g(s)

is Pettis integrable over I, and the function

t 7→ f

(
t,

φ

Γ(γ)
tγ−1 + (Iα0 g)(t), g(t)

)
for a.e. t ∈ I,

is Pettis integrable. Thus, the operator N is well defined. Let R > 0 be such that

R >
p∗T 1−γ+α

Γ(1 + α)
,

and consider the set

Q =
{
u ∈ Cγ : ‖u‖C ≤ R and ‖t1−γ2 u(t2)− t1−γ1 u(t1)‖E

≤ p∗T 1−γ+α

Γ(1 + α)
(t2 − t1)α +

p∗

Γ(α)

∫ t1

0

|t1−γ2 (t2 − s)α−1 − t1−γ1 (t1 − s)α−1|ds
}
.

Clearly, the subset Q is closed, convex, and equicontinuous. We shall show that the
operator N satisfies all the assumptions of Theorem 2.1. The proof will be given in
several steps.

Step 1. N maps Q into itself.
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Let u ∈ Q and t ∈ I and assume that (Nu)(t) 6= 0. Then there exists ϕ ∈ E∗ such
that ‖t1−γ(Nu)(t)‖E = |ϕ(t1−γ(Nu)(t))|. Thus,

‖t1−γ(Nu)(t)‖E = ϕ

(
φ

Γ(γ)
+
t1−γ

Γ(α)

∫ t

0

(t− s)α−1g(s)ds

)
,

where g ∈ Cγ is given by

g(t) = f

(
t,

φ

Γ(γ)
tγ−1 + (Iα0 g)(t), g(t)

)
.

Then,

‖t1−γ(Nu)(t)‖E ≤ t1−γ

Γ(α)

∫ t

0

(t− s)α−1|ϕ(g(s))|ds

≤ p∗T 1−γ

Γ(α)

∫ t

0

(t− s)α−1ds

≤ p∗T 1−γ+α

Γ(1 + α)

< R.

Next, take t1, t2 ∈ I with t1 < t2, and let u ∈ Q with

t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1) 6= 0.

Then, there exists ϕ ∈ E∗ such that

‖t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1)‖E = |ϕ(t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1))|

and ‖ϕ‖ = 1. Hence,

‖t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1)‖E = |ϕ(t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1))|

≤ ϕ
(
t1−γ2

∫ t2

0

(t2 − s)α−1
g(s)

Γ(α)
ds− t1−γ1

∫ t1

0

(t1 − s)α−1
g(s)

Γ(α)
ds

)
,

where g ∈ Cγ satisfies

g(t) = f

(
t,

φ

Γ(γ)
tγ−1 + (Iα0 g)(t), g(t)

)
.

Therefore,

‖t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1)‖E ≤ t1−γ2

∫ t2

t1

(t2 − s)α−1
|ϕ(g(s))|

Γ(α)
ds

+

∫ t1

0

|t1−γ2 (t2 − s)α−1 − t1−γ1 (t1 − s)α−1|
|ϕ(g(s))|

Γ(α)
ds

≤ t1−γ2

∫ t2

t1

(t2 − s)α−1
p(s)

Γ(α)
ds

+

∫ t1

0

|t1−γ2 (t2 − s)α−1 − t1−γ1 (t1 − s)α−1|
p(s)

Γ(α)
ds

≤ p∗T 1−γ+α

Γ(1 + α)
(t2 − t1)α +

p∗

Γ(α)

∫ t1

0

|t1−γ2 (t2 − s)α−1 − t1−γ1 (t1 − s)α−1|ds.
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Hence, N(Q) ⊂ Q.

Step 2. N is weakly-sequentially continuous.

Let {un} be a sequence in Q such that {un(t)} → u(t) in (E,ω) for each t ∈ I. Fix

t ∈ I; since f satisfies (H1), we have f(t, un(t), (Dα,β
0 un)(t)) converges weakly uniformly

to f(t, u(t), (Dα,β
0 u)(t)). Hence, by the Lebesgue dominated convergence theorem for

Pettis integrals, (Nun)(t) converges weakly uniformly to (Nu)(t) in (E,ω) for each t ∈ I.
Thus, N(un)→ N(u), and so N : Q→ Q is weakly-sequentially continuous.

Step 3. The implication (3) holds.

Let V be a subset of Q such that V = conv(N(V ) ∪ {0}). Clearly,

V (t) ⊂ conv(NV )(t)) ∪ {0}) for each t ∈ I.

Furthermore, since V is bounded and equicontinuous, by Lemma 3 in [12] the function
t→ v(t) = β(V (t)) is continuous on I. From (H3), (H4), Lemma 2.2, and the properties
of the measure β, for any t ∈ I, we have

t1−γv(t) ≤ β(t1−γ(NV )(t) ∪ {0})
≤ β(t1−γ(NV )(t))

≤ T 1−γ

Γ(α)

∫ t

0

|t− s|α−1p(s)β(V (s))ds

≤ T 1−γ

Γ(α)

∫ t

0

|t− s|α−1s1−γp(s)v(s)ds

≤ p∗T 1−γ+α

Γ(1 + α)
‖v‖C .

Thus,
‖v‖C ≤ L‖v‖C .

From (4), we see that ‖v‖C = 0, that is, v(t) = β(V (t)) = 0 for each t ∈ I. By [19,
Theorem 2], V is weakly relatively compact in C. Applying Theorem 2.1, we conclude
that N has a fixed point that is a weak solution of the problem (1).

4 An Example

Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .) :

∞∑
n=1

|un| <∞

}
be our Banach space with the norm

‖u‖E =

∞∑
n=1

|un|.

As an application of our results, we consider the Hilfer fractional differential equation{
(D

1
2 ,

1
2

0 un)(t) = fn(t, u(t), (D
1
2 ,

1
2

0 un)(t)), t ∈ [0, 1],

(I
1
4
0 u)(t)|t=0 = (0, 0, . . . , 0, . . .),

(6)
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where

fn(t, u(t), v(t)) =
ct2

1 + ‖u(t)‖E + ‖v(t)‖E
un(t)

et+4
, t ∈ [0, 1],

with

u = (u1, u2, . . . , un, . . .), and c :=
e4

8
Γ

(
1

2

)
.

Set

f = (f1, f2, . . . , fn, . . .).

Clearly, the function f is continuous.
For each u, v ∈ E and t ∈ [0, 1], we have

‖f(t, u, v)‖E ≤ ct2
1

et+4
.

Hence, condition (H3) is satisfied with p∗ = ce−4. We shall show that condition (4) holds
with T = 1. In fact,

p∗T 1−γ+α

Γ(1 + α)
=

2ce−4

Γ( 1
2 )

=
1

4
< 1.

Simple computations show that all the conditions of Theorem 3.1 are satisfied, and so
problem (6) has at least one weak solution defined on [0, 1].
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Abstract: The paper deals with the problem of monoaxial attitude stabilization
of a rigid body. The possibility of implementing such a control system in which
the restoring torque tends to zero as time increases is studied. With the aid of the
Lyapunov direct method and the differential inequalities theory, conditions under
which an equilibrium position of the body is stable with respect to all variables as
well as with respect to a part of variables are derived. The results of a numerical
modeling are presented to demonstrate the effectiveness of the proposed approaches.
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1 Introduction

In problems of a rigid body attitude control, restoring torques are usually the basis
of control system functioning. However, attitude stabilization of a body is impossible
without damping torques ensuring suppression of a body oscillations in a neighborhood
of a stable equilibrium position. Therefore, the question how to create a damping torque
and to design a specific damping mechanism is one of the main problems that should
be solved for practical realization of attitude control systems [6, 7, 9, 14, 20, 24]. At
the same time, due to limited resources of control systems based on jet propulsion, there
arises a natural question on the possibility of implementing such a control system in
which the restoring torque tends to zero as time increases.
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A more general formulation of the problem suggests that a mechanical system with
dissipative and potential forces is given. Let the system admit an asymptotically stable
equilibrium position. Consider the case of an evolution of the potential forces. We assume
that the evolution consists of the appearance of a scalar positive time-varying multiplier
at the vector of these forces. The issue of preservation of stability of the equilibrium
position despite the evolution of potential forces is stated.

The stability problem in mechanical systems with a nonstationary parameter at po-
tential forces was considered in many works, see, for example, [1, 3, 10, 13, 15, 22, 23,
26, 28] and the references cited therein. However, it should be noted that a few results
were obtained for the case of vanishing potential forces.

In this contribution, the issue of monoaxial attitude stabilization of a rigid body is
studied. It is assumed that the body is under the action of a time-invariant essentially
nonlinear dissipative torque and a time-varying restoring torque that vanishes as time
increases. Using the differential inequalities theory [11, 16–18] and approaches proposed
in [1, 3, 23], conditions providing stability with respect to all variables as well as with
respect to a part of variables of an equilibrium position of the body are derived.

2 Statement of the Problem

Consider a rigid body rotating about its mass center O with angular velocity ω. Assume
that the axes Oxyz are principal central axes of inertia of the body. Differential equations
governing the attitude motion of the body under control torque M have the following
form

Jω̇ + ω × Jω = M, (1)

where J = diag{A,B,C} is a body inertia tensor in the axes Oxyz.

Let unit vectors s and r be given, the vector s be constant in the inertial space and
the vector r be constant in the body-fixed frame. Then the vector s rotates with respect
to the coordinate system Oxyz with angular velocity −ω. Hence,

ṡ = −ω × s. (2)

Thus, we will consider the differential system consisting of the Euler dynamic equations
(1) and the Poisson kinematic equations (2).

Let the torque M be a sum of the dissipative component Md and the restoring one
Mr: M = Md + Mr. We will assume that the dissipative torque is defined by the
formula Md = −∂W (ω)/∂ω, where W (ω) is a continuously differentiable for ω ∈ R3

positive definite homogeneous function of the order ν + 1, ν > 1. It should be noted
that mechanical systems with essentially nonlinear dissipative forces were considered, for
instance, in [19, 21]. In particular, such type forces arise when a body rotates in a viscous
medium [19]. Moreover, it is worth mentioning that essentially nonlinear control laws are
more robust with respect to the impact of delay and nonstationary perturbations than
linear ones, see [2, 5].

The restoring torque Mr should be chosen such that the torque M ensures monoaxial
stabilization of a rigid body [29]: the system of equations (1), (2) should admit the
asymptotically stable equilibrium position

ω = 0, s = r. (3)
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From the results of [25, 29] it follows that the torque Mr can be determined by the
formula

Mr = −a‖s− r‖µ−1s× r,

where µ ≥ 1, a > 0, and ‖ · ‖ denotes the Euclidean norm of a vector.
Next, consider the case where the restoring torque evolves with time, and the evolution

is expressed in the appearance of a scalar multiplier h(t) at the vector of the torque. Thus,
system (1) can be rewritten as follows

Jω̇ + ω × Jω = −∂W (ω)

∂ω
− h(t)a‖s− r‖µ−1s× r. (4)

Assume that h(t) is a positive and continuously differentiable for t ≥ 0 function, and
h(t) → 0 as t → +∞. Hence, the restoring torque vanishes as time increases. We will
look for conditions under which the equilibrium position (3) of system (2), (4) is stable
with respect to all or a part of variables.

3 Main Results

First, according to the approach proposed in [23], construct a Lyapunov function in the
form

V1 =
1

2
ω>Jω +

ah(t)

µ+ 1
‖s− r‖µ+1.

Differentiating the function with respect to system (2), (4), we obtain

V̇1 = −(ν + 1)W (ω) +
aḣ(t)

µ+ 1
‖s− r‖µ+1 ≤ ϕ(t)V1,

where ϕ(t) = max
{

0; ḣ(t)/h(t)
}

.

Thus, on the basis of the theory of differential inequalities, see [11, 16], we arrive at
the following theorem.

Theorem 3.1 If there exists a constant L > 0 such that
∫ t
0
ϕ(τ)dτ ≤ L for t ≥ 0,

then the equilibrium position (3) of system (2), (4) is stable with respect to ω.

Corollary 3.1 If ḣ(t) ≤ 0 for t ≥ 0, then the equilibrium position (3) of system (2),
(4) is stable with respect to ω.

Next, we will show that with the aid of more precise estimates of the derivative of
V1, conditions of the asymptotic stability with respect to ω of the equilibrium position
(3) can be derived.

Let ḣ(t) ≤ 0 for t ≥ 0. Denote

z1 =
1

2
ω>Jω, z2 =

ah(t)

µ+ 1
‖s− r‖µ+1.

Then V1 = z1 + z2.
Choose a positive number ∆. We obtain

V̇1 ≤ −czν+1
1 − ψ(t)zν+1

2
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for t ≥ 0, z1 ≥ 0, 0 ≤ z2 ≤ ∆, where

c = (ν + 1) min
‖ω‖=1

W (ω)

(ω>Jω/2)
ν+1
2

> 0, ψ(t) = − ḣ(t)

h(t)
∆

1−ν
2 .

Hence, the differential inequality

V̇1 ≤ −ϕ̃(t)V
ν+1
2

1 (5)

holds in a neighborhood of the equilibrium position (3) and for all t ≥ 0. Here

ϕ̃(t) = min
u1≥0, u2≥0, u1+u2=1

(
c uν+1

1 + ψ(t)uν+1
2

)
.

It can be shown that

ϕ̃(t) =
cψ(t)(

c
2

ν−1 + ψ
2

ν−1 (t)
) ν−1

2

.

Assume that for a solution (ω>(t), s>(t))> of (2), (4) the condition

ah(t)

µ+ 1
‖s(t)− r‖µ+1 ≤ ∆

is fulfilled on an interval [t0, t1], where 0 ≤ t0 < t1. Then, integrating differential
inequality (5), we obtain

1

2
ω>(t)Jω(t) +

ah(t)

µ+ 1
‖s(t)− r‖µ+1 = V̂1(t)

≤ V̂1(t0)

(
1 +

ν − 1

2
V̂

ν−1
2

1 (t0)

∫ t

t0

ϕ̃(τ)dτ

)− 2
ν−1

(6)

for t ∈ [t0, t1]. Here V̂1(t) = V1(t,ω(t), s(t)).
Thus, we arrive at the following theorem.

Theorem 3.2 If ḣ(t) ≤ 0 for t ≥ 0 and∫ t

0

ϕ̃(τ)dτ → +∞ as t→ +∞, (7)

then the equilibrium position (3) of system (2), (4) is asymptotically stable with respect
to ω.

Example 3.1 Let the nonstationary multiplier h(t) in system (4) be defined by the
formula h(t) = e−βt, where β = const > 0. Then, for any β > 0 and any ∆ > 0,
we obtain ϕ̃(t) ≡ const > 0. Hence, the equilibrium position (3) of system (2), (4) is
asymptotically stable with respect to ω.

Remark 3.1 Function ϕ̃(t) depends on the chosen number ∆. To guarantee that
the equilibrium position is asymptotically stable with respect to ω, it is sufficient to find
at least one value of ∆ for which condition (7) is fulfilled.
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Remark 3.2 It is easy to verify that, the smaller the value of ∆, the more precise
estimate (6). However, decreasing the value of ∆, we narrow the domain of initial
conditions of solutions of system (2), (4) for which the estimate can be applied.

Remark 3.3 The use of estimate (6) does not permit us to obtain conditions of
stability with respect to s.

Really, for any ∆ > 0, the inequality ϕ̃(t) ≤ ψ(t) holds for t ≥ 0. Hence,

1

h(t)

(
1 +

ν − 1

2
V̂

ν−1
2

1 (t0)

∫ t

t0

ϕ̃(τ)dτ

)− 2
ν−1

≥ 1

h(t)

(
1− ν − 1

2
V̂

ν−1
2

1 (t0)∆
1−ν
2

∫ t

t0

ḣ(τ)

h(τ)
dτ

)− 2
ν−1

=
1

h(t)

(
1− ν − 1

2
V̂

ν−1
2

1 (t0)∆
1−ν
2 log

h(t)

h(t0)

)− 2
ν−1

→ +∞ as t→ +∞.

Finally in this section, we consider one more approach to a Lyapunov function con-
struction for system (2), (4) which permits us to find stability conditions not only with
respect to ω, but also with respect to all variables.

Let

V2 =
1

2
ω>Jω +

ah(t)

µ+ 1
‖s− r‖µ+1 + γhσ(t)‖s× r‖β−1ω>J(s× r),

where γ > 0, β ≥ 1, σ > 0. Then there exist positive numbers α1, α2, α3 such that

α1‖ω‖2 +
ah(t)

µ+ 1
‖s− r‖µ+1 − α3γh

σ(t)‖ω‖‖s− r‖β ≤ V2

≤ α2‖ω‖2 +
ah(t)

µ+ 1
‖s− r‖µ+1 + α3γh

σ(t)‖ω‖‖s− r‖β .

Differentiating function V2 with respect to system (2), (4), we obtain

V̇2 = −(ν + 1)W (ω) +
aḣ(t)

µ+ 1
‖s− r‖µ+1 + σγhσ−1(t)ḣ(t)‖s× r‖β−1ω>J(s× r)

+γhσ(t)‖s× r‖β−1(s× r)>
(
−ω × Jω − ∂W (ω)

∂ω
− h(t)a‖s− r‖µ−1(s× r)

)

+γhσ(t)ω>J
∂
(
‖s× r‖β−1(s× r)

)
∂s

(−ω × s) .

Assume that ḣ(t) ≤ 0 for t ≥ 0. It is easy to verify that one can choose positive
constants α4, α5, α6 and δ such that the inequality

V̇2 ≤ −α4

(
‖ω‖ν+1 + γhσ+1(t)‖s− r‖β+µ

)
+ α5γh

σ−1(t)ḣ(t)‖s− r‖β‖ω‖

+α6γh
σ(t)

(
‖s− r‖β‖ω‖2 + ‖s− r‖β‖ω‖ν + ‖s− r‖β−1‖ω‖2

)
holds for t ≥ 0, ω ∈ R3, ‖s− r‖ < δ.
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With the aid of the substitution ξ = h
1

µ+1 ‖s− r‖, we arrive at the estimates

α1‖ω‖2 +
a

µ+ 1
ξµ+1 − α3γh

σ− β
µ+1 (t)‖ω‖ξβ ≤ V2

≤ α2‖ω‖2 +
a

µ+ 1
ξµ+1 + α3γh

σ− β
µ+1 (t)‖ω‖ξβ ,

V̇2 ≤ −α4

(
‖ω‖ν+1 + γhσ−

β−1
µ+1 (t)ξβ+µ

)
+ α5γh

σ−1− β
µ+1 (t)ḣ(t)‖ω‖ξβ

+α6γh
σ− β

µ+1 (t)
(
‖ω‖2 + ‖ω‖ν

)
ξβ + α6γh

σ− β−1
µ+1 (t)‖ω‖2ξβ−1.

Hence, if β ≥ µν, σ ≥ β/µ, γ is sufficiently small, ‖s− r‖ < δ, and

|ḣ(t)| ≤ Lh1+
β−σµ
β+µ (t) for t ≥ 0, (8)

where L = const > 0, then

1

2

(
α1‖ω‖2 +

a

µ+ 1
ξµ+1

)
≤ V2 ≤ 2

(
α2‖ω‖2 +

a

µ+ 1
ξµ+1

)
, (9)

V̇2 ≤ −
1

2
α4h

σ− β−1
µ+1 (t)

(
‖ω‖ν+1 + γξβ+µ

)
≤ −α7h

σ− β−1
µ+1 (t)V

β+µ
µ+1

2 . (10)

Here α7 is a positive constant.
Using estimates (9) and (10), we obtain that if there exist numbers β and σ such that

β ≥ µν, σ ≥ β/µ, inequality (8) is valid, and

h
β−1
µ+1 (t)

∫ t

0

hσ−
β−1
µ+1 (τ) dτ → +∞ as t→ +∞, (11)

then the equilibrium position (3) of system (2), (4) is asymptotically stable with respect
to all variables.

Denote θ = σ − β/µ. Then conditions (8) and (11) can be rewritten as follows

|ḣ(t)| ≤ Lh1−
θµ

β+µ (t) for t ≥ 0,

h
β−1
µ+1 (t)

∫ t

0

hθ+
β+µ

µ(µ+1) (τ) dτ → +∞ as t→ +∞.

It is easy to see that, to derive less conservative stability conditions, we should take
β = µν. As a result, we obtain the following theorem.

Theorem 3.3 If ḣ(t) ≤ 0 for t ≥ 0, and there exist positive numbers θ and L such
that

|ḣ(t)| ≤ Lh1−
θ

ν+1 (t) for t ≥ 0, (12)

h
µν−1
µ+1 (t)

∫ t

0

hθ+
ν+1
µ+1 (τ) dτ → +∞ as t→ +∞,

then the equilibrium position (3) of system (2), (4) is asymptotically stable with respect
to all variables.
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Corollary 3.2 If ḣ(t) ≤ 0 for t ≥ 0, there exist positive numbers θ and L such that
condition (12) is valid, and

h
µν−1
µ+1 (t)

(
1 +

∫ t

0

hθ+
ν+1
µ+1 (τ) dτ

)
≥ ρ for t ≥ 0,

where ρ = const > 0, then the equilibrium position (3) of system (2), (4) is stable with
respect to all variables and asymptotically stable with respect to ω.

Example 3.2 Let the nonstationary multiplier h(t) in system (4) be defined by the
formula h(t) = (t+1)α, where α < 0. In this case Theorem 3.3 and Corollary 3.2 provide
less conservative stability conditions for θ = 0.

We obtain that if α > −1/ν, then the equilibrium position (3) of system (2), (4)
is asymptotically stable with respect to all variables, whereas if α = −1/ν, then the
equilibrium position is stable with respect to all variables and asymptotically stable with
respect to ω.

Remark 3.4 Recently, attention was paid to the problems of synchronization in
various nonlinear systems such as dumbbell satellites [8], coupled systems [27], dissimilar
and uncoupled rotating systems [12]. As the stability properties are important in studying
oscillations in such systems, it seems that the results obtained in this paper may be
extended to the mentioned classes of nonlinear systems.

4 Results of a Numerical Simulation

In this section, we demonstrate the previous theoretical results by means of a numerical
simulation. Consider the monoaxial attitude stabilization of a rigid body with the inertia
tensor J = diag{1.0, 1.2, 0.8} in the equilibrium position (3). Denote the unit vectors of
the body-fixed frame Oxyz by r1, r2, r3 and the direction cosines of the unit vector r in
the body-fixed frame Oxyz by γ1, γ2, γ3. Let r be chosen as r = 1√

3
r1 + 1√

3
r2 + 1√

3
r3.

So, in the equilibrium position (3) the direction cosines γ1, γ2, γ3 are equal to 1/
√

3.
Assume that a positive definite homogeneous dissipative function W is defined by the

formula

W =
3

8

(
ω8/3
x + ω8/3

y + ω8/3
z

)
.

Here ωx, ωy, ωz are components of the vector ω. In this case ν = 5/3, and the dissipative

torque is Md = −
(
ω
5/3
x , ω

5/3
y , ω

5/3
z

)>
.

Choose the restoring torque as a linear function of s (µ = 1). Such approach is
commonly used for satellite attitude stabilization, see [25, 29]. In particular, in [4], it
was applied to the problem of monoaxial satellite stabilization in the orbital frame. Let

Mr = − h(t)

5
√

3
s× r,

where h(t) = (t+ 0.1)α, α = const < 0. We will consider two values of the parameter α:
1) α = −1/5 and 2) α = −12/5.

In the first case, in accordance with Theorem 3.3, the equilibrium position (3) of
system (2), (4) is asymptotically stable with respect to all variables γ1, γ2, γ3, ωx, ωy, ωz
(see Figs. 1 and 2).
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Figure 1: Angular velocity for α = −1/5. Figure 2: Direction cosines for α = −1/5.

In the second case, in accordance with Theorem 3.2, the equilibrium position is asymp-
totically stable with respect to ωx, ωy, ωz (see Fig. 3). At the same time, Fig. 4 demon-
strates that there is no asymptotic stability with respect to γ1, γ2, γ3.

Figure 3: Angular velocity for α = −12/5. Figure 4: Direction cosines for α = −12/5.

In both cases one and the same set of initial conditions was taken. The initial values of
“aircraft” angles ϕ(0) = 0.8, ψ(0) = 1.0, θ(0) = −0.6 result in the following initial values
of direction cosines: γ1(0) = 0.5646424737, γ2(0) = 0.5920595303, γ3(0) = 0.5750168603.
The initial values of angular velocity projections are ωx(0) = ωy(0) = ωz(0) = 0.3.

5 Conclusion

The method of differential inequalities is a powerful tool for the stability analysis of
nonlinear systems. In the present paper, the method is used for the investigation of the
problem of monoaxial attitude stabilization of a rigid body. The possibility of implement-
ing such a control system in which the restoring torque tends to zero as time increases is
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studied. The practical use of the investigation is connected with the challenge of propel-
lant economy in control systems. With the aid of the Lyapunov direct method and the
differential inequalities theory, stability conditions of an equilibrium position of the body
are derived. It should be noted that Theorem 3.1 provides conditions of stability with
respect to the angular velocity, in Theorem 3.2 conditions of the asymptotic stability
with respect to the angular velocity are given, whereas, under the conditions of Theorem
3.3, we can guarantee the asymptotic stability with respect to all variables.

An interesting direction for further research is the application of the proposed ap-
proaches to the problem of three-axial stabilization of a rigid body.

Acknowledgment

This work was supported by the Russian Foundation for Basic Research, grant nos. 16-
01-00587-a, 16-08-00997-a and 17-01-00672-a.

References

[1] Aleksandrov, A.Yu. The stability of the equilibrium positions of non-linear non-autonomous
mechanical systems. Journal of Applied Mathematics and Mechanics 71 (3) (2007) 324–338.

[2] Aleksandrov, A.Yu., Aleksandrova, E.B. and Zhabko, A.P. Asymptotic stability conditions
and estimates of solutions for nonlinear multiconnected time-delay systems. Circuits, Sys-
tems, and Signal Proc. 35 (2016) 3531–3554.

[3] Aleksandrov, A.Yu. and Kosov, A.A. Asymptotic stability of equilibrium positions of me-
chanical systems with a nonstationary leading parameter. J. of Computer and Systems
Sciences International 47 (3) (2008) 332–345.

[4] Aleksandrov, A.Yu. and Tikhonov, A.A. Monoaxial electrodynamic stabilization of earth
satellite in the orbital coordinate system. Automation and Remote Control 74 (8) (2013)
1249–1256.

[5] Aleksandrov, A.Yu. and Zhabko, A.P. On stability of the solutions of a class of nonlinear
delay systems. Automation and Remote Control 67 (9) (2006) 1355–1365.

[6] Antipov, K.A. and Tikhonov, A.A. Electrodynamic control for spacecraft attitude stability
in the geomagnetic field. Cosmic Research 52 (6) (2014) 472–480.

[7] Antipov, K.A. and Tikhonov, A.A. On satellite electrodynamic attitude stabilization.
Aerospace Science and Technology 33 (1) (2014) 92–99.

[8] Arriaga-Camargo, L.O., Martinez-Clark, R., Cruz-Hernandez, C., Arellano-Delgado, A.
and Lopez-Gutierrez, R.M. Synchronization of dumbbell satellites: generalized hamiltonian
systems approach. Nonlinear Dynamics and Systems Theory 15 (4) (2015) 334–343.

[9] Beletsky, V.V. Artificial Satellite Motion Relative to its Center of Mass. Moscow: Nauka,
1965. [Russian]

[10] Cantarelli, G. On the stability of the origin of a non-autonomous Lienard equation. Boll.
Un. Mat. Ital. A 7 (10) (1996) 563–573.

[11] Corduneanu, C. Application of differential inequalities to stability theory. Analele Stiintifice
Univ. Iasi VI (1960) 47–58. [Russian]

[12] Handzic, I., Muratagi, H. and Reed, K.B. Passive kinematic synchronization of dissimilar
and uncoupled rotating systems. Nonlinear Dynamics and Systems Theory 15 (4) (2015)
383–399.

[13] Hatvani, L. On the stability of the zero solution of nonlinear second order differential
equations. Acta Sci. Math. 57 (1993) 367–371.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (1) (2018) 12–21 21

[14] Ivanov, D.S., Ovchinnikov, M.Yu. and Pen’kov, V.I. Laboratory study of magnetic prop-
erties of hysteresis rods for attitude control systems of minisatellites. J. of Computer and
Systems Sciences International 52 (1) (2013) 145–164.

[15] Kozlov, V.V. On the stability of equilibrium positions in non-stationary force fields. Journal
of Applied Mathematics and Mechanics 55 (1) (1991) 8–13.

[16] Lakshmikantham, V., Leela, S. and Martynyuk, A.A. Stability Analysis of Nonlinear Sys-
tems. Marcel Dekker, New York, 1989.

[17] Martynyuk, A.A., Khusainov, D.Ya. and Chernienko, V.A. Integral estimates of solutions to
nonlinear systems and their applications. Nonlinear Dynamics and Systems Theory 16 (1)
(2016) 1–11.

[18] Melnikov, G.I. Some problems of the Lyapunov direct method. Doklady AN USSR, Math-
ematics 110 (3) (1956) 326–329. [Russian]

[19] Merkin, D.R. Introduction to the Theory of Stability. Springer, New York, 1997.

[20] Ovchinnikov, M.Yu., Pen’kov, V.I., Roldugin, D.S. and Karpenko, S.O. Investigation of the
effectiveness of an algorithm of active magnetic damping. Cosmic Research 50 (2) (2012)
170–176.

[21] Rivin, E.I. Passive Vibration Isolation. Asme Press, New York, 2003.

[22] Rouche, N., Habets, P. and Laloy, M. Stability Theory by Liapunov’s Direct Method.
Springer, New York, 1977.

[23] Rumyantsev, V.V. and Oziraner, A.S. Stability and Stabilization of Motion with Respect to
a Part of Variables. Moscow: Nauka, 1987. [Russian]

[24] Sazonov, V.V. and Sarychev, V.A. Effect of dissipative magnetic moment on rotation of a
satellite relative to the center of mass. Mechanics of Solids 18 (2) (1983) 1–9.

[25] Smirnov, E.Ya. Control of rotational motion of a free solid by means of pendulums. Me-
chanics of Solids 15 (3) (1980) 1–5.

[26] Sugie, J. and Amano, Y. Global asymptotic stability of nonautonomous systems of Lienard
type. J. Math. Anal. Appl. 289 (2004) 673–690.

[27] Tkhai, V.N. and Barabanov, I.N. Extending the property of a system to admit a family
of oscillations to coupled systems. Nonlinear Dynamics and Systems Theory 17 (1) (2017)
95–106.

[28] Vorotnikov, V.I. Partial Stability and Control. Birkhauser, Boston, 1998.

[29] Zubov, V.I. Lectures on Control Theory. Moscow: Nauka, 1975. [Russian]



Nonlinear Dynamics and Systems Theory, 18 (1) (2018) 22–28

Lie Symmetry Reductions of a Coupled Kdv System of

Fractional Order

Marzieh Azadi 1 and Hossein Jafari 1,2∗

1Department of Mathematics, University of Mazandaran, Babolsar, Iran
2 Department of Mathematical Sciences, University of South Africa,

P.O. Box 392, UNISA 0003, South Africa

Received: February 2, 2017; Revised: December 15, 2017

Abstract: In this paper, we investigate the coupled KdV system of fractional order,
which describes a resonant interaction of two wave modes in shallow stratified liquid.
The Lie group analysis method is applied for this coupled system. Then the corre-
sponding invariant solutions are obtained using infinitesimal generators. Finally, we
determined the reduced fractional ODE system corresponding to the fractional PDE
system.
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1 Introduction

Fractional partial differential equations (FPDEs) are becoming increasingly popular due
to their practical applications in various fields of science and engineering, such as polymer
physics, viscoelasticity materials, control theory, signal processing, systems identification
and electrochemistry [1–5].

So it is necessary to obtain exact solutions or numerical solutions for FPDEs. During
last few decades several analytical numerical and semi-analytical methods have been used
for solving FPDEs [6, 7, 9, 10,20].

Lie group analysis originally advocated by Sophus Lie has proven to be an efficient
approach for PDEs [8], with the increasing applications of FPDEs, principle procedure of
Lie group analysis was extended to FPDEs for finding the exact solution of the equation
[11–13].
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Jafari et al. [14, 15] applied Lie group method to solve the time-fractional Kaup-
Kupershmidt equation and time-fractional Boussinesq equation. In [18], Adem and
Khalique have applied Lie symmetry analysis for Korteweg-de Vries(KdV) system given
by  ut + uxxx − 7

4uux − vvx + 5
4 (uv)x = 0,

vt + vxxx − 5
4uux −

7
4vvx + 2(uv)x = 0.

(1)

The result for time fractional KdV-type equation has been obtained by Hu et al. [16].
Chen and Jiang [17] have applied the methods to simplify successfully two classes of
FPDEs.

In this paper, we study Lie group method for solving the KdV system of fractional
order  Dα

t u+ uxxx − 7
4uux − vvx + 5

4 (uv)x = 0,

Dα
t v + vxxx − 5

4uux −
7
4vvx + 2(uv)x = 0,

(2)

where α (0 < α 6 1) is a parameter describing the order of the fractional derivative,
when α = 1 , the KdV system (2) becomes the KdV system (1).

The paper is organized as follows. In Section 2, we present the analysis of the Lie
symmetry group of FPDEs system. We obtain the Lie point symmetries of fractional
KdV system in Section 3. Then, in Section 4, we obtain invariant solutions and reduced
equations of this system. Finally, conclusions are given in Section 5.

2 Preliminaries

We give some basic definitions and properties of the fractional Lie group method for
finding infinitesimal function of the PDE system of fractional order.

Definition 2.1 The Riemann-Liouville fractional derivative of order α [2, 19], is de-
fined by

Dα
t u(x, t) =

∂αu(x, t)

∂tα
=


∂nu(x,t)
∂tn ; n ∈ N,

1
Γ(n−α)

dn

dtn

∫ t
0

u(x,τ)
(t−τ)α+1−n dτ ; n− 1 < α < n.

For fractional PDE system with two independent variables we have

∂αu(x, t)

∂tα
= F (x, t, u, v, u(1), v(1), · · · ), 0 < α < 1,

∂αv(x, t)

∂tα
= G(x, t, u, v, u(1), v(1), · · · ).

According to Lie’s algorithm, the infinitesimal generator of the symmetry group admitted
by (2) is given by

X = ξx(x, t, u, v)
∂

∂x
+ ξt(x, t, u, v)

∂

∂t
+ ηu(x, t, u, v)

∂

∂u
+ ηv(x, t, u, v)

∂

∂v
, (3)

in which ξx,ξt,ηu,ηv are infinitesimal functions of the group variables.
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Since the KdV system of fractional order has at most α-order derivatives, the α-
prolongation of the generator should be considered in the form

X(α) = ξx(x, t, u, v)
∂

∂x
+ ξt(x, t, u, v)

∂

∂t
+ ηu(x, t, u, v)

∂

∂u
+ ηv(x, t, u, v)

∂

∂v

+ η
(1)u
i (x, t, u, v, u(i), v(i))

∂

∂ui
+ η

(1)v
i (x, t, u, v, u(i), v(i))

∂

∂vi
+ · · ·

+ η
(k)u
i1···ik(x, t, u, v, u(1), v(1), · · · , u(k), v(k))

∂

∂ui1,··· ,ik

+ η
(k)v
i1···ik(x, t, u, v, u(1), v(1), · · · , u(k), v(k))

∂

∂vi1,··· ,ik

+ η
(α)u
t (x, t, u, v, · · · , u(α), · · · )

∂

∂uαt
+ η

(α)v
t (x, t, u, v, · · · , v(α), · · · )

∂

∂vαt
, (4)

where

η
(α)u
t = Dα

1t(η
u) + ξxDα

1t(ux)−Dα
1t(ξ

xux) +Dα
1t(D1t(ξ

t)u)−Dα+1
1t (ξtu) + ξtDα+1

1t u,

η
(α)v
t = Dα

2t(η
v) + ξxDα

2t(vx)−Dα
2t(ξ

xvx) +Dα
2t(D2t(ξ

t)v)−Dα+1
2t (ξtv) + ξtDα+1

2t v.

D1t and D2t are the total derivative operators defined as

D1t =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ uxxt

∂

∂uxx
+ · · · ,

D2t =
∂

∂t
+ vt

∂

∂v
+ vxt

∂

∂vx
+ vtt

∂

∂vt
+ vxxt

∂

∂vxx
+ · · · .

Definition 2.2 A vector X given by (3) is said to be Lie point symmetry vector field
for system (2), if

X(α)
[
Dα
t u+ uxxx −

7

4
uux − vvx +

5

4
(uv)x

]
= 0,

X(α)
[
Dα
t v + vxxx −

5

4
uux −

7

4
vvx + 2(uv)x

]
= 0.

3 Lie Symmetry for Coupled KdV System of Fractional Order

In this section, we investigate the infinitesimal generator of the KdV system of fractional
order (2).

Theorem 3.1 Lie symmetries of (2) are

1. If α 6= 1
2 ,

1
3 , then we have:

ξx(x, t, u, v) = c1 + c2αx, ξt(x, t, u, v) = 3c2t,

ηu(x, t, u, v) = −2c2αu, ηv(x, t, u, v) = −2c2αv,

where c1 and c2 are two arbitrary constants. Hence, the infinitesimal generators
are given by

Xa1 =
∂

∂x
, Xa2 = αx

∂

∂x
+ 3t

∂

∂t
− 2αu

∂

∂u
− 2αv

∂

∂v
.
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2. If α = 1
2 , then we have:

ξx(x, t, u, v) = c1 − c2x, ξt(x, t, u, v) = −6c2t,

ηu(x, t, u, v) = 2c2αu, ηv(x, t, u, v) = 2c2αv,

where c1 and c2 are two arbitrary constants. Hence

Xb1 =
∂

∂x
, Xb2 = −x ∂

∂x
− 6t

∂

∂t
+ 2αu

∂

∂u
+ 2αv

∂

∂v
.

3. If α = 1
3 , then we have:

ξx(x, t, u, v) = c1 + c2x, ξt(x, t, u, v) = 9c2t,

ηu(x, t, u, v) = −2c2αu, ηv(x, t, u, v) = −2c2αv,

where c1 and c2 are two arbitrary constants. Hence

Xc1 =
∂

∂x
, Xc2 = x

∂

∂x
+ 9t

∂

∂t
− 2αu

∂

∂u
− 2αv

∂

∂v
.

Proof. Let us consider a one parameter Lie group of infinitesimal transformation in
x, t, u, v given by

x −→ x+ εξx(x, t, u, v), t −→ t+ εξt(x, t, u, v),

u −→ u+ εηu(x, t, u, v), v −→ v + εηv(x, t, u, v), (5)

with a small parameter ε� 1, and the symmetry group of KdV system will be generated
by the vector field (3), now we find the coefficient functions ξx, ξt, ηu, ηv in (5).

By applying the X(α) to both sides of (2), we have

X(α)
[
Dα
t u+ uxxx −

7

4
uux − vvx +

5

4
(uv)x

]
= 0,

X(α)
[
Dα
t v + vxxx −

5

4
uux −

7

4
vvx + 2(uv)x

]
= 0. (6)

Expanding (6), and solving the obtained system using a mathematical software, we obtain
the Lie point symmetries.

1. If α 6= 1
2 ,

1
3 , then we have:

ξx(x, t, u, v) = c1 + c2αx, ξt(x, t, u, v) = 3c2t,

ηu(x, t, u, v) = −2c2αu, ηv(x, t, u, v) = −2c2αv.

Hence, the infinitesimal generators are given by

Xa1 =
∂

∂x
, Xa2 = αx

∂

∂x
+ 3t

∂

∂t
− 2αu

∂

∂u
− 2αv

∂

∂v
.

2. If α = 1
2 , then

ξx(x, t, u, v) = c1 − c2x, ξt(x, t, u, v) = −6c2t,

ηu(x, t, u, v) = 2c2αu, ηv(x, t, u, v) = 2c2αv.

Therefore

Xb1 =
∂

∂x
, Xb2 = −x ∂

∂x
− 6t

∂

∂t
+ 2αu

∂

∂u
+ 2αv

∂

∂v
.
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3. If α = 1
3 , then

ξx(x, t, u, v) = c1 + c2x, ξt(x, t, u, v) = 9c2t,

ηu(x, t, u, v) = −2c2αu, ηv(x, t, u, v) = −2c2αv.

Therefore

Xc1 =
∂

∂x
, Xc2 = x

∂

∂x
+ 9t

∂

∂t
− 2αu

∂

∂u
− 2αv

∂

∂v
.

4 Symmetry Reduction

In the previous section, we obtained the infinitesimal generators Xij (i = a, b, c, j = 1, 2).
Here we want to obtain similarity variables and their reduction equations. Then by using
these variables the system (2) transforms into a system of fractional ODE.

One has to solve the associated Lagrange equations

dx

ξx(x, t, u, v)
=

dt

ξt(x, t, u, v)
=

du

ηu(x, t, u, v)
=

dv

ηv(x, t, u, v)
.

We consider the following cases.

• Case 1: 0 < α < 1, α 6= 1
2 ,

1
3 , Xa1 = ∂

∂x .
In this case the symmetry Xa1 gives rise to the group-invariant solution:

r = t, u = F (r), v = G(r), (7)

substituting (7) into (2) results in the fact that F (r) and G(r) satisfy the following
differential equations:

dαF (t)

dtα
= 0,

dαG(t)

dtα
= 0,

by using Laplace transformation we get

F (t) =
k

Γ(α)
tα−1, G(t) =

k

Γ(α)
tα−1,

where k is a constant, therefore

u(x, t) =
k

Γ(α)
tα−1, v(x, t) =

k

Γ(α)
tα−1.

• Case 2: 0 < α < 1, α 6= 1
2 ,

1
3 , Xa2 = αx ∂

∂x + 3t ∂∂t − 2αu ∂
∂u − 2αv ∂

∂v .
In this case, the group-invariant solution is:

r = tx
−3
α , u = F (r)x−2, v = G(r)x−2, (8)

substituting (8) into (2) leads to the following fractional ODE system:

Dα
r F + k1F (r) + k2rF

′(r) + k3r
2F ′′(r) + k4r

3F (3)(r) + k5F
2(r)

+k6rF (r)F ′(r) + k7G
2(r) + k8rG(r)G′(r) + k9F (r)G(r)

+k10rF
′(r)G(r) + k11rF (r)G′(r) = 0,

Dα
rG+ k

′

1G(r) + k
′

2rG
′(r) + k

′

3r
2G′′(r) + k

′

4r
3G(3)(r) + k

′

5F
2(r)

+k
′

6rF (r)F ′(r) + k
′

7G
2(r) + k

′

8rG(r)G′(r) + k
′

9F (r)G(r)

+k
′

10rF
′(r)G(r) + k

′

11rF (r)G′(r) = 0,

where ki = hi(α) and k
′

i = gi(α), (i = 1, 2, · · · , 11) are constants.
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• Case 3:α = 1
2 , Xb2 = −x ∂

∂x − 6t ∂∂t + 2u ∂
∂u + 2v ∂

∂v .
For this case, the group-invariant solution is:

r = tx−6, u = F (r)x−2, v = G(r)x−2. (9)

Again by substituting (9) into (2), we have:

D
1
2
r F − 24F (r)− 696rF ′(r)− 405r2F ′′(r)− 216r3F 3(r) + 7

2F
2(r)

+ 21
2 rF (r)F ′(r) + 2G2(r) + 6rG(r)G′(r)− 5F (r)G(r)

− 15
2 rF

′(r)G(r)− 15
2 rF (r)G′(r) = 0,

D
1
2
r G− 24G(r)− 696rG′(r)− 405r2G′′(r)− 216r3G3(r) + 5

2F
2(r)

+ 15
2 rF (r)F ′(r) + 7

2G
2(r) + 21

2 rG(r)G′(r)− 8F (r)G(r)
−12rF ′(r)G(r)− 12rF (r)G′(r) = 0.

• Case 4:α = 1
3 , Xc2 = x ∂

∂x + 9t ∂∂t − 2u ∂
∂u − 2v ∂

∂v .
In this case, the group-invariant solution is:

r = tx−9, u = F (r)x−2, v = G(r)x−2, (10)

substituting (10) into (2) results in the fact that F (r) and G(r) satisfy the following
fractional ODE system

D
1
3
r F − 24F (r)− 1692.09rF ′(r)− 2430r2F ′′(r)− 729r3F 3(r) + 7

2F
2(r)

+ 63
4 rF (r)F ′(r) + 2G2(r) + 9rG(r)G′(r)− 5F (r)G(r)− 45

4 rF
′(r)G(r)

− 45
4 rF (r)G′(r) = 0,

D
1
3
r G− 24G(r)− 1692.09rG′(r)− 2430r2G′′(r)− 729r3G3(r) + 5

2F
2(r)

+ 45
4 rF (r)F ′(r) + 7

2G
2(r) + 63

4 rG(r)G′(r)− 8F (r)G(r)
−18rF ′(r)G(r)− 18rF (r)G′(r) = 0.

Note. For α = 1, the Lie point symmetries provide is similar results to those obtained
by Adem and Khalique in [18].

5 Conclusion

In this paper, we carry out the Lie symmetry group analysis for a fractional PDE system.
First, we apply Lie symmetries method for the KdV system of fractional order (2), and
get its infinitesimal generators. Then, we use similarity variables to obtain reduction
equations. Finally, we have shown that the KdV system of fractional order can be
transformed into a fractional ODE system.
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1 Introduction

In recent years much attention has been drawn to the stability and boundedness of
solutions of ordinary scalar and vector nonlinear differential equations of third order. See
Afuwape [1,2],Omeike [9,10] Ezeilo [4,5], Remili [11–14] and the references cited therein
for a comprehensive treatment of the subject. Lyapunov’s second (direct) method has
been used as a basic tool to verify the results established in these works.

In 2009, Tunç [17] proved two results, for the cases P = 0 and P 6= 0, respectively,
on the stability and boundedness of solutions to the vector differential equations of third
order

X ′′′(t) + Ψ(X ′(t))X ′′(t) +BX ′(t) + cX(t) = P (t). (1)

∗ Corresponding author: mailto:remilimous@gmail.com
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Recently, in 2014, for the same cases, Omeike [9] discussed the global asymptotic stability
and boundedness of solutions to nonlinear vector differential equations of third order

X ′′′(t) + Ψ(X ′(t))X ′′(t) + Φ(X(t))X ′(t) + cX(t) = P (t). (2)

The purpose of this paper is to study the uniform asymptotic stability, bounded-
ness and square integrability of solutions of the third order nonlinear vector differential
equations of the form

(Ω(X(t)))X ′(t))′′ + Ψ(X ′(t))X ′′(t) +G(X(t))X ′(t) + cX(t) = P (t), (3)

where X ∈ Rn, t ∈ R and c is a positive constant, Ψ and G are n × n−symetric
and differentiable matrix functions; Ω is an n×n−symetric differentiable and inversible
matrix function. P : R→ Rn is a continuous function with respect to t. Let

Ω′ = Ω′(X(t)) =
d

dt
(µi,j(X(t)), and G′ = G′(X(t)) =

d

dt
(gi,j(X(t)) (i, j = 1, 2, ..., n),

where µi,j(X(t)) and gi,j(X(t)) are the components of Ω(X) and G(X) respectively. On
the other hand X(t), Y (t), Z(t), Ω(X(t))), G(X(t))) and Ψ(X ′(t))) are, respectively,
abbreviated as X,Y , Z, Ω, G and Ψ throughout the paper. Additionally, the symbol
〈X,Y 〉 corresponding to any pair X and Y in Rn stands for the usual scalar product
n∑
i=1

xiyi, that is, 〈X,Y 〉 =
n∑
i=1

xiyi, Thus 〈X,X〉 = ‖X‖2 .

Let us, for convenience, replace (3) by the equivalent differential system X ′ = Ω−1(X)Y,
Y ′ = Z,
Z ′ = −ΨΩ−1(X)Z −ΨθY −GΩ−1(X)Y − cX + P (t),

(4)

which was obtained by setting

X ′ = Ω−1(X)Y,

X ′′ = θ(t)Y + Ω−1(X)Z,

where
θ(t) =

(
Ω−1(X)

)′
= −Ω−1(X)Ω′(X)Ω−1(X). (5)

This paper is organized as follows: in Section 2, we will recall briefly some basic
definitions and preliminary facts which will be used throughout the following sections.
In Section 3 we give stability results. In Section 4 boundedness of solutions is discussed.
Finally, in Section 5 sufficient conditions for the square integrability of solutions are
given.

2 Preliminaries

In order to reach our main results, we dispose some well-known algebraic results which
will be required in the proofs.

Lemma 2.1 [4] Let D be a real symmetric positive definite n×n matrix. Then for
any X in Rn, we have

δd ‖ X ‖2≤ 〈DX,X〉 ≤ ∆d ‖ X ‖2,

where δd, ∆d are the least and the greatest eigenvalues of D, respectively.
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Lemma 2.2 [4] Let Q,D be any two real n× n commuting matrices. Then

(i) The eigenvalues λi (QD) (i = 1, 2..., n) of the product matrix QD are all real and
satisfy

min
1≤j,k≤n

λj (Q)λk (D) ≤ λi (QD) ≤ max
1≤j,k≤n

λj (Q)λk (D) .

(ii) The eigenvalues λi (Q+D) (i = 1, 2..., n) of the sum of matrix Q and D are all real
and satisfy

min
1≤j≤n

λj (Q) + min
1≤k≤n

λk (D) ≤ λi (Q+D) ≤ max
1≤j≤n

λj (Q) + max
1≤k≤n

λk (D) .

Lemma 2.3 [4] Let H be a continuous matrix function with H(0) = 0. Then

d

dt

∫ 1

0

σ〈H(σX)X,X〉dσ = 〈H(X),
dX

dt
〉.

Lemma 2.4 Let H(X) be a continuous vector function with H(0) = 0. Then

δh ‖ X ‖2≤
∫ 1

0

〈H (σX) , X〉 dσ ≤ ∆h ‖ X ‖2,

where δh, ∆h are the least and the greatest eigenvalues of Jh(X) (Jacobian matrix of H),
respectively.

Definition 2.1 We define the spectral radius ρ (A) of a matrix A by

ρ (A) = max {|λ| : λ is the eigenvalue of A} .

Lemma 2.5 For any A ∈ Rn×n, we have the norm ‖A‖ =
√
ρ (ATA). If A is

symmetric, then ‖A‖ = ρ (A) .

We shall note all the equivalent norms by the same notation ‖X‖ for X ∈ Rn and
‖A‖ for a matrix A ∈ Rn×n.

In the sequel we will assume :
H1) There are positive constants ω0, ω1, a0, a1, b0, b1 such that the following conditions
are satisfied

b0 ≤ λi(G) ≤ b1, a0 ≤ λi(Ψ) ≤ a1, ω0 ≤ λi(Ω) ≤ ω1.

H2) The n×n differentiable matrices Ω, Ω−1, Ψ and G are symmetric, associative and
commute pairwise.

3 Stability

Our study of (3) here is concerned primarily with the problems of the stability for the case
P (t) = 0. For the ease of exposition throughout this paper we will adopt the following
notation :

δ(t) =‖ Ω′(X(t)) +G′(X(t)) ‖ . (6)
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Theorem 3.1 In addition to the fundamental assumptions imposed on Ω, Ψ and G,
we suppose there exist positive constants β and δ0 such that

i)
c

a0b0
< β <

1

ω1
,

ii)
∫ +∞
0

δ(s)ds ≤ δ0 <∞.

Then every solution of (4) satisfies

lim
t→∞

X(t) = lim
t→∞

Y (t) = lim
t→∞

Z(t) = 0.

Proof. To prove this theorem, we define a Lyapunov functional W = W (t,X, Y, Z)
as

W = V exp(−µ(t)), (7)

where

µ(t) =
1

d

∫ t

0

δ(s)ds,

V =
1

2
〈cX, cX〉+

1

2
βb0

〈
Y,GΩ−1Y

〉
+ β

b0
2
〈 Z,Z〉+ 〈cΩ−1Y,Z〉

+β〈cX, b0 Y 〉+

∫ 1

0

σ〈cΨ(σΩ−1Y )Ω−1Y,Ω−1Y 〉dσ, (8)

d is some positive constant which will be specified later. It is clear by (8) that
W (t, 0, 0, 0) = 0. Note that ω0 ≤ λi(Ω) ≤ ω1 implies that 1

ω1
≤ λi(Ω−1) ≤ 1

ω0
. Hence by

(H1), Lemma 2.1 and Lemma 2.2, we have

c

∫ 1

0

σ〈Ψ(σΩ−1Y )Ω−1Y,Ω−1Y 〉dσ ≥ ca0
2ω2

1

‖ Y ‖2

and
1

2
βb0

〈
Y,GΩ−1Y

〉
≥ βb20

2ω1
‖ Y ‖2 .

Hence

V ≥ c2

2
‖ X ‖2 +β〈cX, b0Y 〉+ β

b0
2
‖ Z ‖2 +〈cΩ−1Y,Z〉+

(βb20
2ω1

+
ca0
2ω2

1

)
‖ Y ‖2 .

Thus, we clearly have

c2

2
‖ X ‖2 +β〈cX, b0Y 〉 =

1

2
‖cX + βb0Y ‖2 −

β2b20
2
‖ Y ‖2

and

βb0
2
‖ Z ‖2 +〈cΩ−1Y,Z〉 =

βb0
2
‖Z +

c

βb0
Ω−1Y ‖2 − c2

2βb0
〈Ω−1Y,Ω−1Y 〉

≥ βb0
2
‖Z +

c

βb0
Ω−1Y ‖2 − c2

2βω2
1b0
‖ Y ‖2 .
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Combining the preceding estimates, we find

V ≥ 1

2
‖ cX + βb0Y ‖2 +

βb0
2
‖ Z +

c

βb0
Ω−1Y ‖2 +∆ ‖ Y ‖2,

where

∆ =
βb20
2ω1

+
ca0
2ω2

1

− β2b20
2
− c2

2βω2
1b0

.

Condition (i) implies

∆ = c
β a0b0 − c

2βb0ω2
1

+ βb20(
1

2ω1
− β

2
) ≥ c

2βb0ω2
1

(β a0b0 − c) > 0.

It is evident, from the terms included in the last inequality, that there exists a sufficiently
small positive constant k0 such that

V ≥ k0
(
‖ X ‖2 + ‖ Y ‖2 + ‖ Z ‖2

)
. (9)

Finally, by condition (ii) and (7) we get

W ≥ K0

(
‖ X ‖2 + ‖ Y ‖2 + ‖ Z ‖2, (10)

where K0 = k0 exp(−δ0
d

).

Now, we show that W ′(4) is negative definite function.

First, by Lemma 2.3, from the integral term in (8) we have the following derivative

d

dt

∫ 1

0

σ〈cΨ(σΩ−1Y )Ω−1Y,Ω−1Y 〉dσ = c〈ΨΩ−1Y, θY + Ω−1Z〉.

Hence, the time derivative of functional V along the system (4) leads to

V ′(4) = V1 + V2 + V3,

where

V1 = βcb0〈Ω−1Y, Y 〉 − c
〈
Y,GΩ−2Y

〉
,

V2 = c
〈
Ω−1Z,Z

〉
− βb0〈Z,ΨΩ−1Z〉,

V3 = c 〈θY, Z〉 − βb0〈Z,ΨθY 〉+
1

2
βb0 〈Y,GθY 〉+

1

2
βb0

〈
Y,G′Ω−1Y

〉
.

By virtue of (H1), Lemma 2.1 and Lemma 2.2 it follows

V1 =
〈
Y, (βcb0I − cGΩ−1)Ω−1Y

〉
≤ −cb0

ω0
(

1

ω1
− β) ‖ Y ‖2,

V2 =
〈
Z, (cI − βb0Ψ)Ω−1Z

〉
≤ − 1

ω0
(βa0b0 − c) ‖ Z ‖2 .

Finally, by (5), Lemma 2.5 and the inequality 2 ‖ UV ‖≤‖ U ‖2 + ‖ V ‖2 we get

‖ θ(t) ‖ = ‖ Ω−1(X)Ω′(X)Ω−1(X) ‖≤ 1

ω2
0

‖ Ω′(X) ‖, (11)

V3 = c 〈θY, Z〉 − βb0〈Z,ΨθY 〉+
1

2
βb0 〈Y,GθY 〉+

1

2
βb0

〈
Y,G′Ω−1Y

〉
≤

[ 1

ω2
0

(
c

2k0
+
βb0a1
2k0

+
1

2k0
βb0b1

)
‖ Ω′ ‖ +

1

2k0
βb0 ‖ G′ ‖

]
V

≤ K1δ(t)V,
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where K1 = max

{
1

2k0ω2
0

(
c+ βb0a1 + βb0b1

)
;
βb0
2k0

}
. Hence, we conclude that

V ′(4) ≤ −M ‖ Z ‖
2 −N ‖ Y ‖2 + K1δ(t)V. (12)

Clearly, from condition (i) of Theorem 3.1 we have

N =
cb0
ω0

(
1

ω1
− β) > 0 and M =

1

ω0
(βa0b0 − c) > 0.

Now, from (7) and (12) we obtain

W ′(4) =

[
V ′ − 1

d
δ(t)V

]
exp(−µ(t))

≤
[
−M ‖ Z ‖2 −N ‖ Y ‖2 +(K1 −

1

d
)δ(t)V

]
exp(−µ(t)).

Choosing K1 −
1

d
= 0, the last inequality becomes

W ′(4) ≤ −C(‖ Z ‖2 + ‖ Y ‖2), (13)

where C = exp(− δ0d ) min
{
M, N

}
. In view of (10) and (13), it follows that the

solution
(
X(t), Y (t), Z(t)

)
of (4) is uniformly stable.

Now E = {(X,Y, Z) : W ′(4)(X,Y, Z) = 0} = {(X, 0, 0) : X ∈ Rn} and the largest

invariant set contained in E is F = {(0, 0, 0)}. By LaSalle’s invariance principe

lim
t→∞

X(t) = lim
t→∞

Y (t) = lim
t→∞

Z(t) = 0.

This fact completes the proof of Theorem 3.1.

4 Boundedness

Our main theorem in this section is stated with respect to P (t) 6= 0 as follows :

Theorem 4.1 Assume that all the conditions of Theorem 3.1 are satisfied and there
exist positive constants d1 and D1 such that :

I1) ‖ P (t) ‖≤ λ(t) < d1,

I2)
∫ t
0
λ(s)ds < D1,

I3) lim
t→∞

‖ Ω′(X(t)) ‖ exists.

Then there exists a positive constant D5 such that any solution X(t) of (3) and their
derivatives X ′(t), and X ′′(t) satisfy

‖ X(t) ‖≤ D5, ‖ X ′(t) ‖≤ D5, ‖ X ′′(t) ‖≤ D5. (14)

Proof. For the case P (t) 6= 0, on differentiating (8) along the system (4) we obtain

V ′(4) ≤ −J +K1δ(t)V + c〈Ω−1Y, P (t)〉+ 〈βb0Z,P (t)〉

≤ −J +K1δ(t)V + λ(t)
(
c ‖ Ω−1 ‖ ‖ Y ‖ +βb0 ‖ Z ‖

)
.
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Using Lemma 2.5 we get

V ′(4) ≤ −J +K1δ(t)V +K2λ(t)(‖ Y ‖ + ‖ Z ‖),

where K2 = max

{
c

ω0
, βb0

}
and J = M ‖ Z ‖2 +N ‖ Y ‖2 .

Now, the inequalities ‖ Y ‖ ≤ ‖ Y ‖2 +1 and ‖ Z ‖ ≤ ‖ Z ‖2 +1 lead to

V ′(4) ≤ −J +K1δ(t)V +K2λ(t)(‖ Y ‖2 + ‖ Z ‖2 +2). (15)

From (7) we have

W ′(4) =

[
V ′ − 1

d
δ(t)V

]
exp(−µ(t)). (16)

Since K1 −
1

d
= 0, it follows that

W ′(4) ≤
[
−J +K2λ(t)(‖ Y ‖2 + ‖ Z ‖2 +2)

]
exp(−µ(t)).

In view of (13) and ( 10), the above estimates imply that

W ′(4) ≤ −C(‖ Y ‖2 + ‖ Z ‖2) +
K2

K0
λ(t) W +K3λ(t), (17)

with K3 = 2K2. Integrating both sides (17) from 0 to t, one can easily obtain

W (t)−W (0) ≤ K3

∫ t

0

λ(s)ds+
K2

K0

∫ t

0

W (s)λ(s)ds.

Let
D2 = W (0) +K3D1. (18)

Thus

W (t) ≤ D2 +
K2

K0

∫ t

0

W (s)λ(s)ds.

By the Gronwall inequality it follows

W (t) ≤ D2 exp
(K2

K0

∫ t

0

λ(s)ds
)
≤ D3, (19)

where D3 = D2 exp
(
K2

K0
D1

)
. This result implies that there exists a constant D4 such

that
‖ X(t) ‖≤ D4, ‖ Y (t) ‖≤ D4, ‖ Z(t) ‖≤ D4.

From (4) we have

‖ X ′(t) ‖ = ‖ Ω−1Y (t) ‖
≤

∥∥Ω−1
∥∥ ‖ Y (t) ‖

≤ D4

ω0
.
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Since lim
t→∞

‖ Ω′(X(t)) ‖ exists, we have

‖ Ω′
(
X(t)

)
‖< q1, (20)

for some positive constant q1. So, from (11) we get

‖ θ(t) ‖≤ q1
ω2
0

. (21)

Hence

‖ X
′′
(t) ‖ = ‖ θ(t)Y (t) + Ω−1Z(t) ‖

≤ ‖ θ(t)Y (t) ‖ + ‖ Ω−1Z(t) ‖

≤
( q1
ω2
0

+
1

ω0

)
D4.

Therefore, there exists a positive constant D5 such that

‖ X(t) ‖≤ D5, ‖ X ′(t) ‖≤ D5, ‖ X ′′(t) ‖≤ D5, (22)

for all t ≥ 0, where D5 = max
{( q1
ω2
0

+
1

ω0

)
D4, D4

}
. This completes the proof of

Theorem 4.1.

5 Square Integrability

Our next result concerns the square integrability of solutions of equation (3).

Theorem 5.1 In addition to the assumptions of Theorem 4.1, we assume that

I4) c− (
a1 + b1

2
) > 0.

Then all the solutions of (3) and their derivatives are elements of L2[0,+∞).

Proof. Define H(t) as

H(t) = W (t) + ε

∫ t

0

(‖ Z(s) ‖2 + ‖ Y (s) ‖2)ds, (23)

where ε > 0 is a constant to be specified later. By differentiating H(t) and using (17) we
obtain

H ′(t) ≤ (ε− C)(‖ Z(t) ‖2 + ‖ Y (t) ‖2) +
(
K2W +K3

)
λ(t).

If we choose ε− C < 0, then from (19) we get

H ′(t) ≤ K4λ(t), (24)

where K4 = K2D3 + K3. Integrating (24) from 0 to t, t ≥ 0, and using condition (I2)
of Theorem 4.1 we obtain

H(t)−H(0) =

∫ t

0

H ′(s)ds ≤ K4D1.
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Using (18) and equality H(0) = W (0) we get

H(t) ≤ K4D1 +D2 −K3D1.

We can conclude by (23) that∫ t

0

(‖ Z(s) ‖2 + ‖ Y (s) ‖2)ds <
K4D1 +D2 −K3D1

ε
,

which implies the existence of positive constants σ1 and σ2 such that∫ t

0

‖ Z(s) ‖2 ds ≤ σ2 and

∫ t

0

‖ Y (s) ‖2 ds ≤ σ1.

From (4) we have ∫ t

0

‖ X ′(s) ‖2 ds =

∫
‖ Ω−1Y (s) ‖2 ds

≤
∫ ∥∥Ω−1

∥∥2 ‖ Y (s) ‖2 ds

≤ σ1
ω2
0

= β1. (25)

Also ∫ t

0

‖ X
′′
(s) ‖2 ds =

∫ t

0

(
‖ θ(s)Y (s) + Ω−1Z(s) ‖2

)
ds

≤
∫ t

0

(
‖ θ(s) ‖2 + ‖ θ(s) ‖ ‖ Ω−1 ‖

)
‖ Y (s) ‖2 ds

+

∫ t

0

(
‖ Ω−1 ‖2 + ‖ θ(s) ‖ ‖ Ω−1 ‖

)
‖ Z(s) ‖2 ds.

From (21) and (20) we have∫ t

0

(
‖ θ(s) ‖2 + ‖ θ(s) ‖ ‖ Ω−1 ‖

)
‖ Y (s) ‖2 ds ≤ q1

ω2
0

( q1
ω2
0

+
1

ω0

) ∫ t

0

‖ Y (s) ‖2 ds

≤ q1
ω2
0

( q1
ω2
0

+
1

ω0

)
σ1,

and∫ t

0

(
‖ Ω−1 ‖2 + ‖ θ(s) ‖ ‖ Ω−1 ‖

)
‖ Z(s) ‖2 ds ≤ 1

ω0

( 1

ω0
+
q1
ω2
0

) ∫ t

0

‖ Y (s) ‖2 ds

≤ 1

ω0

( 1

ω0
+
q1
ω2
0

)
σ2.

It follows ∫ t

0

‖ X
′′
(s) ‖2 ds ≤ q1

ω2
0

( q1
ω2
0

+
1

ω0

)
σ1 +

1

ω0

( 1

ω0
+
q1
ω2
0

)
σ2 = β2. (26)
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Next, multiplying (3) by X(t), we obtain〈(
Ω(X)X ′

)′′
, X
〉

+ 〈Ψ(X ′)X ′′, X〉+ 〈G(X)X ′, X〉+ c ‖ X ‖2= 〈X,P (t)〉. (27)

Integrating (27) from 0 to t we have

c

∫ t

0

‖ X(s) ‖2 ds = L1(t) + L2(t) + L3(t), (28)

where

L1(t) = −
∫ t

0

〈(
Ω(X(s))X ′(s)

)′′
, X(s)

〉
ds,

L2(t) = −
∫ t

0

〈(
Ψ(X ′(s))X ′′(s) +G(X(s))X ′(s)

)
, X(s)

〉
ds,

L3(t) =

∫ t

0

〈X(s), P (s)〉ds.

Integrating by parts and using (25) and (26), we obtain

L1(t) = −〈Ω′X ′(t), X(t)〉 − 〈ΩX ′′(t), X(t)〉

+ 〈ΩX ′(t), X ′(t)〉 −
∫ t

0

〈ΩX ′(s), X ′′(s)〉 ds

≤ | − 〈Ω′X ′(t), X(t)〉 − 〈ΩX ′′(t), X(t)〉+ 〈ΩX ′(t), X ′(t)〉 |

+

∫ t

0

ω1

2

(
‖ X ′(s) ‖2 + ‖ X ′′(s) ‖2

)
ds

≤ | − 〈Ω′X ′(t), X(t)〉 − 〈ΩX ′′(t), X(t)〉+ 〈ΩX ′(t), X ′(t)〉 | +ω1

2
(β1 + β2).

In view of (20) and (22) we get

|− 〈Ω′X ′(t), X(t)〉 − 〈ΩX ′′(t), X(t)〉+ 〈ΩX ′(t), X ′(t)〉| ≤ D2
5

(
q1 + 2ω1

)
,

for all t ≥ 0. Consequently, there exists a constant l1 such that L1(t) < l1, with
l1 = D2

5

(
q1 + 2ω1

)
+ ω1

2 (β1 + β2). Similarly we have

L2(t) = −
∫ t

0

〈(
ΨX ′′(s)−GX ′(s)

)
, X(s)

〉
ds

≤
∫ t

0

(
‖ Ψ ‖ ‖ X ′′(s) ‖ + ‖ G ‖ ‖ X ′(s) ‖

)
‖ X(s) ‖ ds

≤
∫ t

0

‖ Ψ ‖ ‖ X ′′(s) ‖ ‖ X(s) ‖ ds+

∫ t

0

‖ G ‖ ‖ X ′(s) ‖ ‖ X(s) ‖ ds

≤ a1
2

∫ t

0

‖ X ′′(s) ‖2 ds+ (
a1 + b1

2
)

∫ t

0

‖ X(s) ‖2 ds+
b1
2

∫ t

0

‖ X ′(s) ‖2 ds

≤ a1
2
β2 +

b1
2
β1 + (

a1 + b1
2

)

∫ t

0

‖ X(s) ‖2 ds.
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Next

L3(t) ≤
∫ t

0

‖ X(s) ‖ ‖ P (s) ‖ ds

≤ D5

∫ t

0

λ(s)ds

≤ D1D5.

By (28) and condition (I4) of the Theorem 5.1 we obtain(
c− (

a1 + b1
2

)
)∫ t

0

‖ X(s) ‖2 ds ≤ K,

where K = l1 +
a1
2
β2 +

b1
2
β1 +D1D5. This fact completes the proof of theorem.

Example 5.1 As a special case consider the following equation

(Ω(X(t))X ′(t))′′ + Ψ(X ′)X ′′(t) +G(X)X ′(t) + cX(t) = P (t), (29)

where

Ω
(
X
)

=

( sin x
1+x2 + 2 0

0 2
10

cos y
1+y2 + 2

)
, Ψ(Y ) =

(
9 + 1

1+y2 1

1 9 + 1
1+y2

)
,

G(X) =

(
1

3+x2 + 2 0

0 2

)
, P (t) =

(
sin t
1+t2
cos t
1+t2

)
, c = 7 .

Clearly, Ψ (Y ) , G(X) and Ω(X) are symmetric matrices and commute pairwise. Then,
by an easy calculation, we obtain eigenvalues of the matrices Ψ (Y ) , G(X) and Ω(X) as
follows:

ω0 = 1 ≤ λi (Ω(X)) ≤ 2.2 = ω1,

a0 = 8 ≤ λi (Ψ(Y )) ≤ 11 = a1,

b0 = 2 ≤ λi (G(X)) ≤ 7

3
= b1,

for i ∈ {1, 2}. For t ∈ [0,+∞) a straightforward calculation gives∫ t

0

‖ Ω′(X(s)) ‖ du =

∫ t

0

∣∣∣∣∣( cosx

1 + x2
− 2x sinx

(1 + x2)
2

)
x′(s)

∣∣∣∣∣ ds
+

∫ t

0

∣∣∣∣∣(− sin y

1 + y2
− 2y cos y

(1 + y2)
2

)
y′(s)

∣∣∣∣∣ ds
≤

∫ θ2(t)

θ1(t)

∣∣∣∣∣( cosu

1 + u2
− 2u sinu

(1 + u2)
2 )

∣∣∣∣∣ du
+

∫ ϕ2(t)

ϕ1(t)

∣∣∣∣∣(− sin v

1 + v2
− 2v cos v

(1 + v2)
2 )

∣∣∣∣∣ dv
<

(∫ +∞

−∞

∣∣∣∣∣1 + u2 + 2u

(1 + u2)
2

∣∣∣∣∣ du+

∫ +∞

−∞

∣∣∣∣∣1 + u2 + 2u

(1 + u2)
2

∣∣∣∣∣ du
)

= (π + 2),
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where
θ1(t) = min{x(0), x(t)}, θ2(t) = max{x(0), x(t)},

ϕ1(t) = min{y(0), y(t)}, ϕ2(t) = max{y(0), y(t)}.

Similarly ∫ +∞

−∞
‖G′(X(s))‖ds =

∫ +∞

−∞

∣∣∣∣ −2u

(3 + u2)2

∣∣∣∣ du =
2

3
.

Now, we have

‖ P (t) ‖=

√
sin2 t

1 + t2
+

cos2 t

1 + t2
=

1

1 + t2
<

2

1 + t2
= λ(t) < 2 = d1.

So, ∫ t

0

‖ λ(s) ‖ ds =

∫ t

0

2

1 + s2
ds <

∫ +∞

0

2

1 + s2
ds = π = D1.

By taking β = 0.44, it follows easily that

0.4375 =
7

16
=

c

a0b0
< β <

1

ω1
= 0.45455.

We have also

c− a1 + b1
2

=
1

3
> 0.

Thus, all the conditions of Theorem 5.1 are satisfied.
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Abstract: The great difficulty facing the optimization algorithms is the easiness of
trapping into local optima. Many researchers have benefited from the good character-
istics of chaotic mappings to overcome this difficulty, but for some complex functions
the problem persists. In this paper, we attempt to avoid this problem by proposing
a new chaos optimization technique based on partition of data set in global research
step. The numerical results show that the proposed algorithm provides the best
results as compared to other ones.
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1 Introduction

Chaos theory has been successfully developed since its early years through wide ap-
plications in other sciences such as physics, mechanics, electronics, biology, economy,
astronomy, meteorology, optimization, secure communication, ... etc [1–7]. As far as
optimization problems of some usual functions that are continuously differentiable are
concerned, some traditional optimization algorithms such as the Newton method, the
gradient method and the Hessians method [8, 9] can get their global optimal points
with the advantage of speed convergence and high precision. However, these traditional
optimization algorithms will easily trap into local optimum when solving optimization
problems of some multi-modal functions.
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This is due to the several important dynamical characteristics of chaos, namely: the
sensitive dependence on initial conditions, ergodicity, pseudo-randomness, and strange
attractor with self-similar fractal pattern. Many researchers use the chaotic mappings in
the optimization algorithm in order to avoid falling into local optimum [10,11].

Recently, researchers have focused on developing the hybrid algorithms by combin-
ing heuristic algorithms with chaos searching technique to solve non linear system of
equations and optimization problems such as chaotic Monte Carlo optimization, chaotic
BFGS, chaotic particle swarm optimization, chaotic genetic algorithms, chaotic harmony
search algorithm, chaotic simulated annealing, gradient based methods and so on [12–14].

Among those who tried to find a solution to the problem of trapping in local minima
are L.S. Coelho in [15] and T. Hamaizia et al in [16]. They have resolved this problem for
a large range of objective functions but for some complex functions the problem persists
as we will explain later. In this paper, we recall the algorithm proposed by T. Hamaizia
et al in [16] and we propose some modifications in order to improve it. The chaotic
variables are generated by using the Lozi map [17] defined by the function L as follows:

L

(
x
y

)
=

L1

(
x
y

)
L2

(
x
y

)
 =

(
1− a | x | +by

x

)
. (1)

It is a 2−d invertible iterated map that gives a chaotic attractor called the Lozi attractor
which is obtained for a = 1.4 and b = 0.3 as shown in Figure 1 (a). Numerical computa-
tion of the density ρ(s) of iterated values x(k) is displayed in Figure 1 (b). In this figure,

the iterated values x(k) are normalized in the range [0, 1] i.e.
∫ 1

0
ρ(x) dx = 1 and we no-

tice that the highest value of ρ(x) is approximately 1.8 when x is in the neighbourhood
of 0.6.
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)

(b)

Figure 1: (a) Chaotic attractor of Lozi map (1) and its attractive basin obtained for a = 1.7 and
b = 0.5. (b) Density of x(k) in (1) over the interval [0, 1] splitted into 100 boxes for 10, 000, 000
iterated values.

2 The ICOLM Algorithm

In [16] T. Hamaizia and R. Lozi have used a sampling mechanism to coordinate the
research methods based on chaos theory, and they refined the final solution using a
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second method of local search. The obtained results show that the ICOLM algorithm
is fast and converges to a good optimum compared with the COLM algorithm. But for
some complex functions the problem persists. In order to avoid this problem, we will give
some modifications of this method so that to improve it. We can describe this algorithm
as follows:

Firstly, we choose a map and adopt it to have a chaotic behavior in order to use it to
generate several sequences of points by using different initial conditions.

Secondly, every sequence {y(i), i = 1, 2, ..., n} is normalized in the range [0, 1] as
follows:

z(i) =
y(i)− α
β − α

for all i = 1, 2, ...n, where α = min{(y(i), i ≥ 1}, β = max{(y(i), i ≥ 1}. The rest are:

Algorithm 2.1 Inputs:
Mg: max number of iterations of chaotic global search.
Mgl1: max number of iterations of first chaotic local search in global search.
Mgl2: max number of iterations of second chaotic local search in global search.
Ml: max number of iterations of chaotic local search.
Mt = Mg(Mgl1 + Mgl2) + Ml: stopping criterion of chaotic optimization method in
iterations.
λgl1: step size in first global-local search.
λgl2: step size in second global-local search.
λ: step size in chaotic local search.

Outputs:
x̄: best solution from current run of chaotic search.
f̄ : best objective function (minimization problem).

Step 1: Initialization of the numbers Mg, Mgl1, Mgl2, Ml of steps of chaotic search
and initialization of parameters λgl1, λgl1, λ and initial conditions. Set k = 1, y1(1),
y2(1), a = 1.7 and b = 0.3. Set the initial best objective function f̄ = +∞.

-Step 2: Algorithm of chaotic global search:
while k ≤Mg do
xi(k) = Li + zi(k)(Ui − Li), i = 1, 2, ..., n
if f(x(k)) < f̄ , then
x̄ = x(k), f̄ = f(x(k))
end if

-Step 2-1: Sub algorithm of first chaotic global-local search:
while j ≤Mgl1 do
for i = 1 to n do
if r ≤ 0.5 then (where r is a uniformly distributed random variable with range
[0, 1])
xi(j) = x̄i + λgl1zi(j)(Ui − x̄i)
else
xi(j) = x̄i − λgl1zi(j)(x̄i − Li)
end if
end for
if f(x(j)) < f̄ , then
x̄ = x(j), f̄ = f(x(j))
end if
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j = j + 1
end while

- Step 2-2: Sub algorithm of second chaotic global-local search:
while s ≤Mgl2 do
for i = 1 to n do
if r ≤ 0.5 then
xi(s) = x̄i + λgl2zi(s)(Ui − x̄i)
else
xi(s) = x̄i − λgl2zi(s)(x̄i − Li)
end if
end for
if f(x(s)) < f̄ , then
x̄ = x(s), f̄ = f(x(s))
end if
s = s+ 1
end while
k = k + 1
end while

- Step 3: Algorithm of chaotic local search:
while k ≤Ml do
for i = 1 to n do
if r ≤ 0.5 then
xi(k) = x̄i + λzi(k)(Ui − x̄i)
else
xi(k) = x̄i − λzi(k)(x̄i − Li)
end if
end for
if f(x(k)) < f̄ , then
x̄ = x(k), f̄ = f(x(k))
end if
k = k + 1
end while.

Although this method was developed to find a solution to trapping into local opti-
mization when solving optimization problems of some multi-modal functions, the success
was partial because if the objective function is not smooth, this method will easily trap
into local minima as we are going to clarify. If in step k in global search the optimal
solution of our problem is f(x∗), then all the points x(s), s > k in the red part of Figure
2 will be ignored during the search; but it is possible that the global minima will be in
the neighbourhood of one point of the red part. To solve this problem we suggest to
divide the number of iterations in global search into packs and at the beginning of each
pack we set the best objective function f̄ = +∞.

On the other hand, due to the non-repetition of chaos, the chaotic research can carry
out overall searches at higher speed than stochastic ergodic searches that depend on
probabilities. Motivated by this idea, we will replace the step of local search (random
step) by a chaotic local search as we will explain later. This is why we will call this new
method Pure Chaotic Optimization Algorithm (PCOA).
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Global m inim um  

x(k) 

Figure 2: Example of the trapping into local minima.

3 Pure Chaotic Optimization Algorithm

As mentioned in the previous section, the fundamental changes that will be undertaken
on the ICOLM are:

At first, we divide the data set that will be used in global search into packs and at
the beginning of each pack we set the best objective function f̄ = +∞ in order to go out
of the local minima.

The second change is in the global local search and local search where we use chaotic
search instead of random search. To apply the global local search, we use a linear
transformation to project the points of chaotic sequences in the neighbourhood of the
point of global search and the same idea will be used in the local search. In the following
we give an example to illustrate this idea.

Example 3.1 In order to facilitate the process suppose that the search domain is
[l, u] = [0, 1] and we need to do a local search in the neighbourhood of the point x∗ = 0.5
(i.e. the interval of local search is [x∗ − λ, x∗ + λ], but if x∗ − λ < l (resp x∗ + λ > u),
the interval of local search is [l, x∗ + λ] (resp [x∗ − λ, u])). To project all the points in
the neighbourhood of the point x∗ = 0.5 we use the following linear transformation:

T (x) =
2λ

u− l
x+ (x∗ − λ).

Figure 3 (a) shows the plot of transformation T where we see that all the points of the
interval [l, u] are transformed into the interval [x∗ − λ, x∗ + λ] (λ = 0.01) and Figure 3
(b) shows the probability density function of T (L1).

In the following we are going to describe the pure chaotic optimization algorithm.

Algorithm 3.1 Inputs:
N : max number of iterations of chaotic global search.
Np: max number of packets of global search.
Mg: max number of iterations of chaotic global search for any packets.
Mgl: max number of iterations of chaotic local search in global search.
Ml: max number of iterations of chaotic local search.
Mt = Np(MgMgl +Ml): stopping criterion of chaotic optimization method in iterations.
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Figure 3: (a) Transformation T . (b) Probability density function of T (L1).

λgl: the width of the interval in chaotic local search in global search.
λ: the width of the interval in chaotic local search.

Outputs:
x̄: best solution from current run of chaotic search.
f̄ : best objective function (minimization problem).

Step 1: Initialization of the numbers Mg, Mgl, Ml of steps of chaotic search and
initialization of parameters λgl, λ and initial conditions. The Lozi map (1) is adopted to
have a chaotic behavior in order to use it for generating several sequences of points by
using different initial conditions (the number of sequences is equal to dimension of the
objective function) after every sequence {y(i), i = 1, 2, ...n} is normalized in the range
[0, 1] as follows:

z(i) =
y(i)− α
β − α

for all i = 1, 2, ...n, where α = min{(y(i), i ≥ 1}, β = max{(y(i), i ≥ 1}.
-Step 2-1: Algorithm of chaotic global search:

for t = 1 : Np

Set the initial best objective function ¯f(t) = +∞.
while k ≤Mg do
xi(k) = Li + zi(k)(Ui − Li), i = 1, 2, ..., n
if f(x(k)) < f̄ , then
x̄ = x(k), f̄ = f(x(k))

- Step 2-2: Sub algorithm of chaotic global-local search:
Transform the points generated by Lozi map in the neighbourhood of the point x̄ and
we begin the search
while j ≤Mgl do
if f(x(j)) < f̄ , then
x̄ = x(j), f̄ = f(x(j))
end if
j = j + 1
end while
end if
k = k + 1
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end while
end for

- Step 3: Algorithm of chaotic local search:
Transform the points generated by logistic map in the neighbourhood of the point x̄ and
we begin the search
while k ≤Ml do
if f(x(k)) < f̄ , then
x̄ = x(k), f̄ = f(x(k))
end if
k = k + 1
end while.

During the chaotic local search, the step size λ (resp λgl) is an important parame-
ter in convergence behavior of optimization method which adjusts small ergodic ranges
around X*. The step sizes λ and λgl are employed to control the impact of the current
best solution on generating a new trial solution. The small λ and λgl tend to perform
exploitation to refine results by local search, while the large ones tend to facilitate a
global exploration of search space.

4 Numerical Examples and Discussion

In order to test this new method vs the previous one in very tough conditions, the
simulation results are obtained with the following four objective functions.

4.1 Some test functions

1.

f1(x1, x2, ..., xn) =

n∑
i=1

(x4i − 16x2i + 5xi)

2
,

where −5 ≤ xi ≤ 5 for 1 ≤ i ≤ n.

2.

f2(x1, x2) = x41 − 7x21 + x42 − 9x22 − 5x2 + 11x21x
2
2 + 99 sin(71x1)

+ 137 sin(97x1x2) + 131 sin(51x2),

where −10 ≤ x1 ≤ 10 and −10 ≤ x2 ≤ 10.

3.

f3(x1, x2) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)]×
[30 + (2x1 − 3x2)2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)],

where −2 ≤ x1 ≤ 2 and −2 ≤ x2 ≤ 2.

4.

f4(x1, x2) = 100
√
|x2 − 0.01x21|+ 0.01 |x1 + 10| ,

where −15 ≤ x1 ≤ −5 and −3 ≤ x2 ≤ 3.
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Figure 4: (a) Styblinski-Tang’s function f1. (b) Magnification of Styblinski-Tang’s function
f1. (c) Function f2. (d) Magnification of function f2. (e) Goldstein-Price function f3. (f) Bukin
function f4.

Figures 4 (a) and (b) show the 3D plots of the Styblinski-Tang function f1 which is a d-
dimensional function, usually evaluated on the hypercube xi ∈ [−5, 5], for all i = 1, ..., d.
It has a global minimum

−39.16617× d ≤ f4(−2.903534, ...,−2.903534) ≤ −39.16616× d.

Concerning f2 shown in Figures 4 (c) and (d), it possesses hundreds of local minima [16],
but its global minimum is not yet theoretically known.

f3 is the Goldstein-Price function usually evaluated on the rectangle

(x1, x2) ∈ [−2, 2]× [−2, 2],

it has a lot of local minima and one global minimum f3(0,−1) = 3 and the 3D plot of
this function is in Figure 4 (e).

f4 is the Bukin function which is usually evaluated on the rectangle

(x1, x2) ∈ [−15,−5]× [−3, 3],

it has a lot of local minima and one global minimum f4(−10, 1) = 0, see Figure 4 (f).
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4.2 Numerical experiments

In order to enrich our study, we are going to use different values of step sizes and different
values of the number of iterations for both methods that are presented in Tables 1 and 2.
Each optimization method was implemented in Matlab (MathWorks). All the programs
were run on a 2.53 GHz, i3 processor with 4 GB of random access memory. Since the
ICOLM algorithm gives random results, in each case study 50 independent runs are
made involving 50 different initial trial conditions and all the results are summarised
in Table 3; however the pure chaotic optimization algorithm is a deterministic method,
therefore one run is made involving 50 different initial trial conditions and all the results
are summarised in Table 4.

We generally believe that the use of large number of steps will lead us closer to the
global minimum for all test functions. But this is not true as shown in Table 3 because
of the trap of local minima mentioned in Section 2.

Concerning the optimization results by using the PCOA we have:

• For the function f3 the global minimum is easily reached in few steps and little
time compared with the ICOLM algorithm as explained in Tables 3 and 4.

• Concerning f1, the global minimum is obtained by using configurations C3.

• For f2 which possesses hundreds of local minima, the best result is obtained using
configurations C3 and the global minimum is not yet theoretically known.

• Finally, the best result for f4 is obtained using configurations C3.
We note that the PCOA converges faster than the ICOLM as shown in Tables 3
and 4.

λ λgl1 λgl2 Mg Mgl1 Mgl2 Ml

C1 0.01 0.04 0.01 30 5 5 20

C2 0.01 0.04 0.01 100 5 5 50

C3 0.001 0.04 0.01 500 10 10 100

Table 1: The set of parameter values for every run of the ICOLM algorithm.

λ λgl Np Mg Mgl Ml

C1 0.001 0.01 100 10 100 100

C2 0.002 0.05 100 100 200 200

C3 0.005 0.08 1000 100 200 200

Table 2: The set of parameter values for every run of the PCOA algorithm.
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T Fun Case Op So Op Pts Mean val Std.Dev T/s

C1 -103.3610 ( 2.7455, -2.8977,-2.9069) -103.3383 0.0136 6.461655
f1 C2 -117.4956 ( -2.8970,2.9005,-2.8926) -117.4806 0.0114 20.458741

C3 -117.4983 (-2.9046, -2.9000,-2.9038) -117.4867 0.0082 180.311540

C1 -392.9923 (0.2443,2.0614) -383.8462 7.6147 7.619080
f2 C2 -395.8094 (0.2434,2.0632) -389.7800 5.6617 27.695888

C3 -395.7769 (0.2434,2.0640) -387.4540 6.1347 253.251734

C1 3.0669 (0.0108,-1.0068) 3.7525 0.2849 3.561953
f3 C2 3.0004 ( -0.0007, -1.0010) 3.0064 0.0052 11.280039

C3 3.0001 ( 0.0006, -1.0001) 3.0039 0.0026 105.905089

C1 0.1027 ( -9.4415,0.8914) 0.7547 0.4245 3.562340
f4 C2 0.02794 (-9.4132,0.8861) 0.4295 0.1159 12.257843

C3 0.0487 (-9.5870,0.9191) 0.3587 0.2091 109.698371

Table 3: Optimization results over 50 runs for 3 parameter configurations using ICOLM algo-
rithm.

Test Function Cases Optimal solution Optimal point T/s

C1 -117.4772 ( -2.8830, -2.8759, -2.9111) 2.648436
f1 C2 -117.4924 ( -2.8869,-2.8949,-2.9014) 8.289850

C3 -117.4985 ( -2.9034, -2.9026,-2.8952) 47.761714

C1 -390.2672 (0.0622,1.8189) 2.237673
f2 C2 -395.8622 ( 0.2433,2.0638) 5.072239

C3 -395.8742 (0.2432,2.0636) 49.7400

C1 3.0000 ( -0.0001,-0.9999) 1.202800
f3 C2 3.0000 ( -0.0000, -1.0000) 3.343877

C3 3.0000 ( -0.0000, -1.0000) 18.763473

C1 0.0322 ( -10.7807,1.1622) 1.122277
f4 C2 0.0108 ( -9.6809, 0.9372) 2.754711

C3 0.0086 (-10.2723,1.0552) 25.725318

Table 4: Optimization results over one run for 3 parameter configurations using PCOA algo-
rithm.

5 Conclusion

In this paper, we have presented a new technique of chaotic optimization algorithm
inspired by ICOLM methods [16]. In order to test the numerical performance of this new
technique, the four non linear multi modal benchmark functions are employed. More
detailed analysis on this new technique by using other maps and testing them on a large
number of test functions in higher dimension will be provided in near future.
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1 Introduction

Integral inequalities are a necessary tool in the study of various classes of equations. In
1919, Gronwall [10] introduced the famous Gronwall inequality in the study of the solu-
tions of differential equations. Since then, many contributions have been made (see [1]-
[3]). The applications of integral inequalities were developed in a remarkable way in
the study of the existence, the uniqueness, the comparison, the stability and continuous
dependence of the solution in respect to data. In the last few years, a series of gen-
eralizations of these inequalities appeared. The problem of stability can be solved by
Lyapunov techniques for differential equations (see [12]- [14]), or in terms of nonlinear
integral inequalities. These inequalities can be used in the analysis of various problems
in the theory of nonlinear differential equations and control systems (see [3] and ref-
erences therein). There is an extensive literature on the inequalities, for example, the
Barbalats lemma is an integral inequality used in applied nonlinear control. The second
Lyapunov method has long played an important role in the history of stability theory,
and it will with no doubt continue to serve as an indispensable tool in future research
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papers (see [14]). V. I. Zubov studied the boundaries of the asymptotic stability domain
in which he proved the theorem of the asymptotic stability domain. This result is now
known as Zubov’s theorem (see [17], [6]). The concepts of stability and boundedness of
solutions have been studied extensively by Taro Yoshizawa (see [18], [19], [7]).

In a recent paper [11], I.A. Rus has formulated ten problems of interest in the theory
of Gronwall lemmas. One of them concerns finding examples of Gronwall-type lemmas in
which the upper bounds are fixed points of the corresponding operator A (Problem 5).
The new inequalities, derived in this paper, are useful in many applications, in particular
to the stability of dynamical systems. We propose new sufficient conditions to ensure the
global uniform asymptotic stability of time-varying systems described by the following
equation:

ẋ = f(t, x) + g(t, x), (1)

where f : R+ × Rn −→ Rn and g : R+ × Rn −→ Rn are piecewise continuous in t and
locally Lipschitz in x on R+ × Rn, and the associated nominal system is given by:

ẋ = f(t, x). (2)

For all x0 ∈ Rn and t0 ∈ R+, we will denote by x(t; t0, x0), or simply by x(t), the
unique solution at time t0 starting from the point x0.

Unless otherwise stated, we assume throughout the paper that the functions encoun-
tered are sufficiently smooth. We often omit arguments of functions to simplify notation,
‖.‖ stands for the Euclidean norm vectors. We recall now some standard concepts from
stability and practical stability theory; any book on Lyapunov stability can be consulted
for these; particularly good references are [4]: K is the class of functions R+ → R+

which are zero at the origin, strictly increasing and continuous. K∞ is the subset of K
functions that are unbounded. L is the set of functions R+ → R+ which are continuous,
decreasing and converging to zero as their argument tends to +∞. KL is the class of
functions R+ × R+ −→ R+ which are class K on the first argument and class L on the
second argument. A positive definite function R+ → R+ is the one that is zero at the

origin and positive otherwise. We define the closed ball Br :=
{
x ∈ Rn : ‖x‖ ≤ r

}
.

2 Abstract Gronwall Lemma

To present our problem we need some standard notations of Nonlinear Analysis. Let X
be a nonempty set and A : X → X be an operator. We denote by FA = {x ∈ X/Ax = x}
the fixed point set of the operator A. The symbol, FA = {x∗A}, has the following meaning:
the operator A has a unique fixed point and we denote this unique fixed point by x∗A. In
general, throughout this paper we follow the notation and terminology from I.A. Rus [15]
and [16].

Definition 2.1 (I.A. Rus [15]). Let (X,→) be an L-space. An operator f : X → X
is, by definition, a Picard operator if:
i) Ff = {x∗}.
ii) (fn(x))n∈N → x∗ as n→∞, for all x ∈ X.

In terms of the Picard operators, a classical result in metric fixed point theory has
the following form ( [13], [9]).
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Proposition 2.1 (Contraction principle). Let (X, d) be a complete metric space and
let f : X → X be an a-contraction, i.e., a ∈]0, 1[ and d(f(x), f(y)) ≤ a.d(x, y), for each
x, y ∈ X. Then f is a Picard operator.

Proposition 2.2 (Abstract Gronwall lemma). Let (X,→,≤) be an ordered L-space
and A : X → X be an operator. We suppose that:
i) A is a Picard operator (FA = {x∗A}).
ii) A is an increasing operator.
Then we have:
a) x ∈ X, x ≤ A(x)⇒ x ≤ x∗A.
b) x ∈ X, x ≥ A(x)⇒ x ≥ x∗A.

3 Main Results

In this section we point out some Gronwall-type inequalities using some results concerning
Picard operator theory.

The following result is well known from the book of A.N. Filatov (see [8]), here we
will give a new proof of it using the theory of operators.

Theorem 3.1 Let x ∈ C([a, b],R+) be such that

x(t) ≤ δ2(t− a) + δ1

∫ t

a

x(s)ds+ δ3, ∀t ∈ [a, b], (3)

where δ1 > 0, δ2 and δ3 are real numbers, then

x(t) ≤
(
δ2
δ1

+ δ3

)
exp δ1(t− a)− δ2

δ1
, ∀t ∈ [a, b]. (4)

Proof. Let (X,→,≤) = (C[a, b], ‖.‖τ−−−→,≤), where ‖.‖τ is the Bielecki norm on C[a, b],
i.e., τ is a positive real number and

‖x‖τ = max
a≤t≤b

(|x(t)| exp(−τ(t− a))) .

We consider on X = C[a, b] the operator A : X → X defined by

A(x)(t) = δ2(t− a) + δ1

∫ t

a

x(s)ds+ δ3, t ∈ [a, b].

Suppose that x is a fixed point of A, then A(x) = x or, equivalently,

x(t) = δ2(t− a) + δ1

∫ t

a

x(s)ds+ δ3, t ∈ [a, b].

By differentiation, we get
x′(t) = δ1x(t) + δ2,

which is an ordinary differential equation ( added to an initial condition, this ODE admits
a unique solution according to the Cauchy-Lipschitz theorem ). Since x(a) = δ3, it comes
out that

x(t) =

(
δ2
δ1

+ δ3

)
exp δ1(t− a)− δ2

δ1
.



56 T. GHRISSI AND M.A. HAMMAMI

Conversly, we can easily verify that A(x) = x and using the fact that A admits a unique
fixed point, we get

x∗A(t) =

(
δ2
δ1

+ δ3

)
exp δ1(t− a)− δ2

δ1
, t ∈ [a, b].

One can easily check that A is an increasing operator: let x, y ∈ C[a, b], if x ≤ y, then
A(x) ≤ A(y). The last point is to show that A is a contraction with respect to ‖.‖τ . We
have

|A(x)(t)−A(y)(t)|e−τ(t−a) ≤ δ1e
−τ(t−a)

∫ t

a

|x(s)− y(s)|ds

≤ ‖x− y‖τδ1e−τ(t−a)
∫ t

a

eτ(s−a)ds

≤ ‖x− y‖τ
δ1
τ

[
1− e−τ(t−a)

]
≤ ‖x− y‖τ

δ1
τ

[
1− e−τ(b−a)

]
.

Then ‖A(x) − A(y)‖τ ≤ ‖x − y‖τ
δ1
τ

[
1− e−τ(b−a)

]
and A is a contraction with τ

suitably chosen. Finally, the proof follows from Proposition 2.2. 2

Remark 3.1 If δ2 ≥ 0, then there is a direct proof for this well known Gronwall-type
lemma.

Theorem 3.2 Let x ∈ C([a, b],R+) be such that

x(t) ≤ δ2(t− a) + δ1

∫ t

a

x(s)ds+ ϕ(t), ∀t ∈ [a, b], (5)

where δ1 > 0, δ2, δ3 are real numbers and ϕ is a continuous function on [a, b], then

x(t) ≤ δ2
δ1

exp δ1(t− a) + δ1

∫ t

a

ϕ(s) exp δ1(t− s)ds+ ϕ(a)− δ2
δ1
, ∀t ∈ [a, b]. (6)

Proof. We use the same notations as in the last proof. Let the operator A be defined
by

A(x)(t) = δ2(t− a) + δ1

∫ t

a

x(s)ds+ ϕ(t), t ∈ [a, b].

Suppose that x is a fixed point of A, then A(x) = x or, equivalently,

x(t) = δ2(t− a) + δ1

∫ t

a

x(s)ds+ ϕ(t), t ∈ [a, b].

By differentiation, we get
x′(t) = δ1x(t) + δ2 + ϕ′(t),

which is an ordinary differential equation. Since x(a) = ϕ(a), it comes out that

x(t) =
δ2
δ1

exp δ1(t− a) + δ1

∫ t

a

ϕ(s) exp δ1(t− s)ds+ ϕ(a)− δ2
δ1
.
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Conversly, we can easily verify that A(x) = x and using the fact that A admits a unique
fixed point, we get

x∗A(t) =
δ2
δ1

exp δ1(t− a) + δ1

∫ t

a

ϕ(s) exp δ1(t− s)ds+ ϕ(a)− δ2
δ1
, ∀t ∈ [a, b].

One can easily check that A is an increasing operator: let x, y ∈ C[a, b], if x ≤ y, then
A(x) ≤ A(y). On the other hand, by the same calculation as in the previous theorem,
one can easily check that A is a contraction with respect to ‖.‖τ , with τ suitably chosen.
Finally, the proof follows from Proposition 2.2. 2

Remark 3.2 If the function ϕ is a constant, then we get the particular case of
Theorem 3.1.

Theorem 3.3 Let x ∈ C([a, b],R+) be such that

x(t) ≤ α(t) + β(t)

∫ t

a

x(s)ds, ∀t ∈ [a, b], (7)

where α is continuous and β is a continuous function on [a, b], then

x(t) ≤ α(t) + β(t)

∫ t

a

α(s) exp

(∫ t

s

β(u)du

)
ds, ∀t ∈ [a, b]. (8)

Proof. Using the same notations, let the operator A be defined by

A(x)(t) = α(t) + β(t)

∫ t

a

x(s)ds, t ∈ [a, b].

Suppose that x is a fixed point of A, then A(x) = x or, equivalently,

x(t) = α(t) + β(t)

∫ t

a

x(s)ds, t ∈ [a, b].

By differentiation, we get

β(t)x′(t) =
[
β′(t) + β2(t)

]
x(t) + α′(t)β(t)− β′(t)α(t),

which is an ordinary differential equation. Since x(a) = α(a), it comes out that

x(t) = α(t) + β(t)

∫ t

a

α(s) exp

(∫ t

s

β(u)du

)
ds.

Conversly, we can easily verify that A(x) = x and using the fact that A admits a unique
fixed point, we get

x∗A(t) = α(t) + β(t)

∫ t

a

α(s) exp

(∫ t

s

β(u)du

)
ds, ∀t ∈ [a, b].

One can easily check that A is an increasing operator: let x, y ∈ C[a, b], if x ≤ y, then
A(x) ≤ A(y). The last point is to show that A is a contraction with respect to ‖.‖τ . We
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have

|A(x)(t)−A(y)(t)|e−τ(t−a) ≤ β(t)e−τ(t−a)
∫ t

a

|x(s)− y(s)|ds

≤ ‖x− y‖τβ(t)e−τ(t−a)
∫ t

a

eτ(s−a)ds

≤ ‖x− y‖τ
β(t)

τ

[
1− e−τ(t−a)

]
≤ ‖x− y‖τ

‖β‖∞
τ

[
1− e−τ(b−a)

]
.

Then ‖A(x)−A(y)‖τ ≤ ‖x− y‖τ
‖β‖∞
τ

[
1− e−τ(b−a)

]
and A is a contraction with τ

suitably chosen. Finally, the proof follows from Proposition 2.2. 2

Remark 3.3 If α(t) = δ3 and β(t) = δ1, then we get the particular case of Theorem
3.1.

The following result is well known from the book of Filatov and Scharova (1976), here
we will give a new proof of it using the theory of operators.

Theorem 3.4 Let x ∈ C([a, b],R+) be such that

x(t) ≤ α(t) + β(t)

∫ t

a

k(s)x(s)ds, ∀t ∈ [a, b], (9)

where α is continuous, β and k are continuous functions on [a, b], then

x(t) ≤ α(t) + β(t)

∫ t

a

α(s)k(s) exp

(∫ t

s

β(u)k(u)du

)
ds, ∀t ∈ [a, b]. (10)

Proof. Using the same notations, let the operator A be defined by

A(x)(t) = α(t) + β(t)

∫ t

a

k(s)x(s)ds, t ∈ [a, b].

Suppose that x is a fixed point of A, then A(x) = x or, equivalently,

x(t) = α(t) + β(t)

∫ t

a

k(s)x(s)ds, t ∈ [a, b].

By differentiation, we get

x′(t) =

[
β(t)k(t) +

β′(t)

β(t)

]
x(t) + α′(t)− α(t)

β′(t)

β(t)
,

which is an ordinary differential equation. The solutions of the homogenous equation are

x(t) = λβ(t) exp

(∫ t

a

β(s)k(s)ds

)
.
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A particular solution can be obtained using the method of variation of the constant, then
the solutions of our ODE are

x(t) = λβ(t) exp

(∫ t

a

β(s)k(s)ds

)
+ α(t) + β(t)

∫ t

a

α(s)k(s) exp

(∫ t

s

β(u)k(u)du

)
ds.

Since x(a) = α(a), it comes out that

x(t) = α(t) + β(t)

∫ t

a

α(s)k(s) exp

(∫ t

s

β(u)k(u)du

)
ds.

Conversly, we can easily verify that A(x) = x and using the fact that A admits a unique
fixed point, we get

x∗A(t) = α(t) + β(t)

∫ t

a

α(s)k(s) exp

(∫ t

s

β(u)k(u)du

)
ds, ∀t ∈ [a, b].

One can easily check that A is an increasing operator: let x, y ∈ C[a, b], if x ≤ y, then
A(x) ≤ A(y). On the other hand, A is a contraction with respect to ‖.‖τ . We have

|A(x)(t)−A(y)(t)|e−τ(t−a) ≤ β(t)e−τ(t−a)
∫ t

a

k(s)|x(s)− y(s)|ds

≤ ‖x− y‖τβ(t)e−τ(t−a)
∫ t

a

k(s)eτ(s−a)ds

≤ ‖x− y‖τ
β(t)

τ
‖k‖∞

[
1− e−τ(t−a)

]
≤ ‖x− y‖τ

‖β‖∞‖k‖∞
τ

[
1− e−τ(b−a)

]
.

Then ‖A(x) − A(y)‖τ ≤ ‖x − y‖τ
‖β‖∞‖k‖∞

τ

[
1− e−τ(b−a)

]
and A is a contraction

with τ suitably chosen. Finally, the proof follows from Proposition 2.2. 2

Theorem 3.5 Let x(t) be continuous and nonnegative on [0, h] and satisfy

x(t) ≤ a(t) +

∫ t

0

(a1(s)x(s) + b(s)) ds, (11)

where a1(t) and b(t) are nonnegative integrable functions. Then, on [0, h]

x(t) ≤ a(t) +

∫ t

0

(a1(s)a(s) + b(s)) exp

(∫ t

s

a1(ξ)dξ

)
ds. (12)

Proof. Using the same notations, let the operator A be defined by

A(x)(t) = a(t) +

∫ t

0

(a1(s)x(s) + b(s)) ds, t ∈ [0, h].

We note that FA = {x∗A}, where

x∗A(t) = a(t) +

∫ t

0

(a1(s)a(s) + b(s)) exp

(∫ t

s

a1(ξ)dξ

)
ds, ∀t ∈ [0, h].



60 T. GHRISSI AND M.A. HAMMAMI

One can easily check that A is an increasing operator: let x, y ∈ C[a, b], if x ≤ y, then
A(x) ≤ A(y). On the other hand, A is a contraction with respect to ‖.‖τ , with τ suitably
chosen. Finally, the proof follows from Proposition 2.2. 2

For the following results we will use another norm, the rest of data are the same.

Theorem 3.6 Let x(t) be bounded continuous in J = [α,∞), and suppose

x(t) ≤ ae−γ(t−α) +

∫ ∞
α

be−γ|t−s|x(s)ds, t ∈ J, (13)

where a ≥ 0, b ≥ 0, and γ > 0 are constants and b <
γ

2
. Then

x(t) ≤ a

b
(γ − δ)e−δ(t−α), t ∈ J, (14)

where δ =
√
γ2 − 2bγ.

Proof. Let (X,→,≤) = (C(J),
‖.‖−−→,≤), where C(J) is the Banach space of functions

x which are bounded and continuous in J = [α,∞) with norm ‖x‖ = sup
t∈J
|x(t)|. Using

the same notations, let the operator A be defined by

A(x)(t) = ae−γ(t−α) +

∫ ∞
α

be−γ|t−s|x(s)ds, t ∈ J,

Suppose that x is a fixed point of A, then A(x) = x or, equivalently,

x(t) = ae−γ(t−α) +

∫ ∞
α

be−γ|t−s|x(s)ds

= ae−γ(t−α) + be−γt
∫ t

α

eγsx(s)ds+ beγt
∫ ∞
t

e−γsx(s)ds.

By differentiation, we get

x′(t) = −2aγe−γ(t−α) + γx(t)− 2bγe−γt
∫ t

α

eγsx(s)ds,

we derive once again, it comes out that

x′′(t) = (γ2 − 2bγ)x(t),

which is an ordinary differential equation. Using x(α) and x′(α), we get

x(t) =
a

b
(γ − δ)e−δ(t−α).

Conversly, we can easily verify that A(x) = x and using the fact that A admits a unique
fixed point, we arrive at

x∗A(t) =
a

b
(γ − δ)e−δ(t−α), t ∈ J.
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One can easily check that A is an increasing operator: let x, y ∈ C[a, b], if x ≤ y, then
A(x) ≤ A(y). If x, y ∈ C(J) and ‖x− y‖ = L, it is easy to see that

|A(x)(t)−A(y)(t)| ≤
∫ t

α

bLe−γ(t−s)ds+

∫ ∞
t

bLeγ(t−s)ds ≤ 2b

γ
L =

2b

γ
‖x− y‖,

whence we conclude that A(x) ∈ C(J) and A is a contraction. Finally, the proof follows
from Proposition 2.2. 2

Theorem 3.7 Let x(t) be a continuous function for α ≤ t ≤ β, and suppose

x(t) ≤ ae−γ(β−t) +

∫ β

α

be−γ|t−s|x(s)ds, α ≤ t ≤ β, (15)

where a ≥ 0, b ≥ 0, and γ > 0 are constants and b <
γ

2
. Then

x(t) ≤ a

b
(γ − δ)e−δ(β−t), α ≤ t ≤ β, (16)

where δ =
√
γ2 − 2bγ.

Proof. Since the proof of this result follows by the similar arguments as in the last
theorem, we omit the details. 2

Remark 3.4 We use the condition b <
γ

2
to prove that the operator A is a con-

traction but we can omit this condition and use the Gronwall lemma to prove the last
proposition.

4 Application to Stability of Dynamical Systems

We consider the following system:

ẋ = f(t, x), x(t0) = x0, (17)

where t ∈ R+, x ∈ Rn and f : R+ × Rn → Rn is continuous in t and locally Lipschitz
in x. We begin by giving the definition of uniform boundedness and uniform stability
(see [14], [18], [19], [7]).

Definition 4.1 (uniform boundedness) A solution of (17) is said to be globally uni-
formly bounded if for every α > 0 there exists c = c(α) such that, for all t0 ≥ 0,

‖x0‖ ≤ α⇒ ‖x(t)‖ ≤ c(α), ∀ t ≥ t0.

Definition 4.2 (uniform stability)
(i) The origin x = 0 is uniformly stable if for all ε > 0, there exists δ = δ(ε) > 0, such
that for all t0 ≥ 0,

‖x0‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ t0.

(ii) The origin x = 0 is globally uniformly stable if it is uniformly stable and the solutions
of system (17) are globally uniformly bounded.
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We recall in the following definition the notion of practical stability ( see [5]).

Definition 4.3 (practical stability) The system (17) is said to be (PS1) uniformly
practically stable if, given (λ,A) with 0 < λ < A, we have

‖x0‖ < λ⇒ ‖x(t)‖ < A, t ≥ t0, ∀t0 ∈ R+.

(PS2) quasi-uniformly asymptotically stable (in the large) if ∀ε > 0, α > 0, t0 ∈ R+,
there exists a positive number T = T (ε, α) such that

‖x0‖ ≤ α⇒ ‖x(t)‖ < ε, t ≥ t0 + T.

(PS3) uniformly practically asymptotically stable if (PS1) and (PS2) hold at the same
time.

As application to stability, let us consider the nonlinear dynamical system:

ẋ = A(t)x+ g(t, x), (18)

where t ≥ 0, x(t) ∈ Rn, the matrix A(.) is continuous and bounded, g : R+×Rn → Rn is
continuous in (t, x), locally Lipschitz in x such that g(t, 0) = 0. We suppose that x = 0
is globally uniformly asymptotically stable equilibrium point for the nominal system
ẋ = A(t)x, this is equivalent to saying that

‖Φ(t, t0)‖ ≤ k exp−γ(t− t0), ∀t ≥ t0, k > 0, γ > 0, (19)

where Φ(t, t0) is the state transition matrix associated to A(t). The solution of this system
with the initial condition (t0, x0) is given by:

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, s)g(s, x(s))ds. (20)

We have

‖x(t)‖ ≤ k exp−γ(t− t0)‖x(t0)‖+
∫ t

t0

ke−γ(t−s)‖g(s, x(s))‖ds. (21)

It follows that

eγt‖x(t)‖ ≤ keγt0‖x(t0)‖+
∫ t

t0

keγs‖g(s, x(s))‖ds. (22)

We will impose a restriction on g to study the practical stability.
If we suppose that for all (t, x),

‖g(t, x)‖ ≤ ρ(t),

with ρ being a nonnegative continuous function which tends to zero as t→∞, then (22)
becomes

eγt‖x(t)‖ ≤ keγt0‖x(t0)‖+
∫ t

t0

keγsρ(s)ds.

The assumption on ρ means that: ∀ε > 0, ∃T > 0/ ∀t ≥ t0 + T, ρ(t) < ε. We
have also ∃β/ ∀t ∈ [t0, t0 + T ], ρ(t) ≤ β.
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Then, ∀t ≥ t0 + T ,

eγt‖x(t)‖ ≤ keγt0‖x(t0)‖+
∫ t0+T

t0

keγsρ(s)ds+

∫ t

t0+T

keγsρ(s)ds

≤ keγt0‖x(t0)‖+kβ
∫ t0+T

t0

eγsds+ kε

∫ t

t0+T

eγsds

≤ keγt0‖x(t0)‖+kβ

γ

[
eγ(t0+T ) − eγt0

]
+
kε

γ

[
eγt − eγ(t0+T )

]
,

or equivalently, ∀t ≥ t0 + T

‖x(t)‖ ≤ ke−γ(t−t0)‖x(t0)‖+kβ

γ
e−γ(t−t0)

[
eγT − 1

]
+
kε

γ
.

We see that the function : t 7→ ke−γ(t−t0)‖x(t0)‖+kβ

γ
e−γ(t−t0)

[
eγT − 1

]
vanishes,

then
‖x(t)‖ ≤Mε, ∀t ≥ t0 + T ′,

for a certain T ′ > T > 0, this shows the practical stability of the system.
Another approach is to study the asymptotic behavior of the system in a small neigh-

borhood of the origin. For the rest of our presentation, we need the following definitions
which are related to stability.

Definition 4.4 (uniform stability of Br)
(i) Br is uniformly stable if for all ε > r, there exists δ = δ(ε) > 0 such that for all t0 ≥ 0,

‖x0‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ t0.

(ii) Br is globally uniformly stable if it is uniformly stable and the solutions of system
(4.1) are globally uniformly bounded.

Definition 4.5 (uniform attractivity) The origin x = 0 is globally uniformly attrac-
tive if for all ε > 0 and c > 0, there exists T (ε, c) > 0, such that for all t0 ≥ 0,

‖x(t)‖ < ε, ∀ t ≥ t0 + T (ε, c), ‖x0‖ < c.

Definition 4.6 (Class K function) A continuous function α : [0, a)→ [0,+∞) is said
to belong to class K, if it is strictly increasing and α(0) = 0. It is said to belong to class
K∞ if a = +∞ and α(r)→ +∞ as r → +∞.

Definition 4.7 (Class KL function) A continuous function β : [0, a) × [0,+∞) →
[0,+∞) is said to belong to class KL, if for each fixed point s, the mapping β(r, s) belongs
to class K with respect to r and for each fixed r, the mapping β(r, s) is decreasing with
respect to s and β(r, s)→ 0 as s→ +∞.

The following proposition provides a characterization of global uniform attractivity
and global uniform stability.

Proposition 4.1 If there exists a class KL function β, a class K∞ α, a constant
r > 0 such that, given any initial state x0, the solution satisfies

‖x(t)‖ ≤ β(‖x0‖, t) + r, ∀t ≥ 0,

then Br is globally uniformly attractive and globally uniformly stable.
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Note that, if the class KL-function β in the above relation is of the form β(r, s) =
kre−λt, with λ, k > 0 we say that the ball Br is globally uniformly exponentially stable.
It is also worth noting that if, in the above definitions, we take r = 0, then one deals
with the standard concept of GUAS and GUES of the origin (see [4] for more details).
Moreover, in the rest of this paper, we study the asymptotic behavior of a small ball
centered at the origin for 0 ≤‖ x(t) ‖ −r, so that if r = 0, we find the classical definition
of the uniform asymptotic stability of the origin viewed as an equilibrium point.

Other applications to stability will be done in the following example by considering
the system (18), we keep the same assumptions.

Example 4.1 1) Suppose that condition (22) holds and for all (t, x),

‖g(t, x)‖ ≤ η(t)‖x‖,

with η being an integrable function, then (22) becomes

eγt‖x(t)‖ ≤ keγt0‖x(t0)‖+
∫ t

t0

kη(s)eγs‖x(s)‖ds.

Let u(t) = eγt‖x(t)‖, then the last inequality becomes

u(t) ≤ ku(t0) +

∫ t

t0

kη(s)u(s)ds,

using Theorem 3.4 we get

u(t) ≤ ku(t0) +

∫ t

t0

k2u(t0)η(s)

(
exp

∫ t

s

kη(u)du

)
ds,

then
u(t) ≤ kMu(t0), where M = 1 + k‖η‖1ek‖η‖1 .

One can obtain an estimation on the trajectories as follows, for all t ≥ t0,

‖x(t)‖ ≤ kM‖x(t0)‖e−γ(t−t0).

Then the origin is a globally uniformly exponentially stable equilibrium point for the
system.

2) If we suppose that for all (t, x),

‖g(t, x)‖ ≤ η(t)‖x‖+ η′,

with η being an integrable function and η′ > 0, then (22) becomes

eγt‖x(t)‖ ≤ keγt0‖x(t0)‖+
∫ t

t0

keγs{η(s)‖x(s)‖+ η′}ds.

Let u(t) = eγt‖x(t)‖, then the last inequality becomes

u(t) ≤ ku(t0) +

∫ t

t0

{kη(s)u(s) + kη′eγs}ds,
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using Theorem 3.5 we get

u(t) ≤ ku(t0) +

∫ t

t0

{k2u(t0)η(s) + kη′eγs}
(

exp

∫ t

s

kη(u)du

)
ds,

then u(t) ≤ kMu(t0) + reγt, where M = 1 + k‖η‖1ek‖η‖1 and r = kη′

γ e
k‖η‖1 .

One can obtain an estimation on the trajectories as follows, for all t ≥ t0,

‖x(t)‖ ≤ kM‖x(t0)‖e−γ(t−t0) + r.

Then Br is globally uniformly exponentially stable.

In the following example g(t, 0) is not necessarily zero, in such a situation x = 0 is no
longer an equilibrium point.

3) We suppose that for all (t, x),

‖g(t, x)‖ ≤ η(t)‖x‖+ η′(t),

with η being integrable and η′ being a piecewise continuous function, then (22) becomes

eγt‖x(t)‖ ≤ keγt0‖x(t0)‖+
∫ t

t0

keγs{η(s)‖x(s)‖+ η′(s)}ds.

Let u(t) = eγt‖x(t)‖, then the last inequality becomes

u(t) ≤ ku(t0) +

∫ t

t0

{kη(s)u(s) + kη′(s)eγs}ds,

using Theorem 3.5 we get

u(t) ≤ ku(t0) +

∫ t

t0

{k2u(t0)η(s) + kη′(s)eγs}
(

exp

∫ t

s

kη(u)du

)
ds,

then u(t) ≤ kMu(t0)+ε(t), where M = 1+k‖η‖1ek‖η‖1 and ε(t) = kek‖η‖1
∫ t
t0
η′(s)eγsds.

Finally, we get for all t ≥ t0,

‖x(t)‖ ≤ kM‖x(t0)‖e−γ(t−t0) + ε(t)e−γt.

If we suppose that the function : t 7→ ε(t)e−γt vanishes, we obtain that the system
(18) is uniformly practically asymptotically stable.

5 Conclusion

In this paper we have reduced the study of various integral inequalities to fixed point
problems. We have also derived some general Gronwall-type results and have given
examples of such results in the particular case of the Banach space C(J) using two
different norms.
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1 Introduction

In this paper, we study the following nonlinear discrete anisotropic problem

−M(A(k − 1,∆u(k − 1)))∆(a(k − 1,∆u(k − 1)))

+α(k)|u(k)|p(k)−2u(k) = δ(k)f(k, u(k)), k ∈ Z∗,

u(0) = 0, lim
k→−∞

u(k) = −1, lim
k→+∞

u(k) = 1,

(1)

where ∆u(k) = u(k + 1)− u(k) is the forward difference operator, Z∗ = {k ∈ Z : k 6= 0}
and M,a, α, δ, f, p are functions to be defined later.
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Note that difference equations can be seen as a discrete counterpart of partial differential
equations and are usually studied in connection with numerical analysis. In this way, the
main operator in problem (1)

∆(a(k − 1,∆u(k − 1)))

can be seen as a discrete counterpart of the anisotropic operator

N∑
i=1

∂

∂xi
a

(
x,

∂

∂xi
u

)
.

The first study in this direction for constant exponents was done by Cabada et al. [2] and
for variable exponent by Mihailescu et al. [8] (see also [6]). In [6], the authors studied
the following problem{

−∆
(
a
(
k − 1,∆u(k − 1)

))
+ α(k)g

(
k, u(k)

)
= δ(k)f

(
k, u(k)

)
, k ∈ Z∗,

u(0) = 0, lim
k→−∞

u(k) = −1, lim
k→+∞

u(k) = 1,
(2)

where

g(k, ξ) = |ξ − 1|p(k)−2(ξ − 1)χZ+(k) + |ξ + 1|p(k)−2(ξ + 1)χZ−(k).

The authors in [6] proved an existence result of weak heteroclinic solutions of problem
(2).

In this paper, we consider the same boundary conditions as in [6], but the function

M(A(k − 1,∆u(k − 1)))

which appears in the left-hand side of problem (1) is more general than the one which
appears in [6]. Indeed, if we take M(t) = 1 in the problem (1), we obtain the probem
studied by Guiro et al in [6].

To prove an existence result of problem (1), we define other new spaces and new
associated norms and we adapt the classical minimization methods used for the study of
anisotropic PDEs. The idea is to transfer the problem of the existence of solutions for (1)
into the problem of the existence of a minimizer for some associated energy functional.

The study of heteroclinic connections for boundary value problems got a certain
impulse in recent years, motivated by applications in various biological, physical and
chemical models, such as phase-transition, physical processes in which the variable
transits from an unstable equilibrium to a stable one, or front-propagation in reaction-
diffusion equations. Indeed, heteroclinic solutions are often called transitional solutions
(see [3,7]). Problem (1) involves variable exponents due to their use in image restoration
(see [4]), in electrorheological and thermorheological fluids dynamic (see [5, 9, 10]).

The remaining part of this paper is organized as follows: Section 2 is devoted to
mathematical preliminaries. The main existence result is stated and proved in Section 3.

2 Preliminaries and Assumptions

We use the notations

p+ = sup
k∈Z

p(k), p− = inf
k∈Z

p(k)
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and we set
Z+ := {k ∈ Z : k ≥ 0}; Z− := {k ∈ Z : k ≤ 0};
Z+
∗ := {k ∈ Z : k > 0}; Z−∗ := {k ∈ Z : k < 0}.

In order to present the main result, for each p(.) : Z→ (0,+∞) and β ≥ 1, we introduce
the following spaces:

L1 :=

{
u : Z→ R;

∑
k∈Z
|u(k)| < +∞

}
,

L∞ :=

{
u : Z→ R; sup

k∈Z
|u(k)| < +∞

}
,

Lp(.)0 :=

{
u : Z→ R; u(0) = 0 and ρp(.)(u) :=

∑
k∈Z
|u(k)|p(k) < +∞

}
,

Lp(.)0,+ :=

{
u : Z→ R; u(0) = 0 and ρp+(.)(u) :=

∑
k∈Z+

|u(k)|p(k) < +∞
}
,

Lp(.)0,− :=

{
u : Z→ R; u(0) = 0 and ρp−(.)(u) :=

∑
k∈Z−

|u(k)|p(k) < +∞
}
,

Lp(.)0,α(.) :=

{
u : Z→ R; u(0) = 0 and ρα(.),p(.)(u) :=

∑
k∈Z

α(k)|u(k)|p(k) < +∞
}
,

Lp(.)0,+,α(.) :=

{
u : Z→ R; u(0) = 0 and ρα(.),p+(.)(u) :=

∑
k∈Z+

α(k)|u(k)|p(k) < +∞
}
,

Lp(.)0,−,α(.) :=

{
u : Z→ R; u(0) = 0 and ρα(.),p−(.)(u) :=

∑
k∈Z−

α(k)|u(k)|p(k) < +∞
}
,

W1,p(.)
0,α(.) :=

{
u : Z→ R; u(0) = 0, ρ1,α(.),p(.)(u) :=

∑
k∈Z

α(k)|u(k)|p(k)

+

(∑
k∈Z
|∆u(k)|p(k)

)β
< +∞

}
,

W1,p(.)
0,+,α(.) :=

{
u : Z→ R; u(0) = 0, ρ1,α(.),p+(.)(u) :=

∑
k∈Z+

α(k)|u(k)|p(k)

+

( ∑
k∈Z+

|∆u(k)|p(k)

)β
< +∞

}
and

W1,p(.)
0,−,α(.) :=

{
u : Z→ R; u(0) = 0, ρ1,α(.),p−(.)(u) :=

∑
k∈Z−

α(k)|u(k)|p(k)

+

( ∑
k∈Z−

|∆u(k)|p(k)

)β
< +∞

}
.
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For the data a, f, α and δ, we assume the following.

(H1) :

{
a(k, .) : R→ R, k ∈ Z and there exists a mapping A(., .) : Z× R→ R which

satisfies a(k, ξ) = ∂
∂ξA(k, ξ) and A(k, 0) = 0, for all k ∈ Z.

(H2) : |ξ|p(k) ≤ a(k, ξ)ξ ≤ p(k)A(k, ξ), for all k ∈ Z and ξ ∈ R.

(H3): There exists a positive constant C1 such that |a(k, ξ)| ≤ C1(j(k) + |ξ|p(k)−1), for
all

k ∈ Z and ξ ∈ R, with j ∈ Lq(.)0,α(.), where 1
p(k) + 1

q(k) = 1.

(H4) :
(
ai(x, ξ) − ai(x, η)

)
(ξ − η) > 0 for all k ∈ Z and ξ, η ∈ R such that

ξ 6= η.

(H5) : f : Z× R −→ R and there exists a constant C2 > 0 such that

|f(k, t)| ≤ C2

(
1 + |t− 1|p(k)−1

)
χZ+(k) + C2

(
1 + |t+ 1|p(k)−1

)
χZ−

∗
(k),

for all k ∈ Z, t ∈ R, where χA(k) = 1 if k ∈ A and χA(k) = 0 if k /∈ A.

Assumption (H5) implies that{
|f(k, t+ 1)| ≤ C2(1 + |t|p(k)−1) if k ≥ 0,

|f(k, t− 1)| ≤ C2(1 + |t|p(k)−1) if k < 0.
(3)

So by denoting

F (k, t) =

∫ t

0

f(k, s)ds for k ∈ Z, t ∈ R,

we deduce that there exists a positive constant C3 > 1 such that{
|F (k, t+ 1)| ≤ C3(1 + |t|p(k)) if k ≥ 0,

|F (k, t− 1)| ≤ C3(1 + |t|p(k)) if k < 0.
(4)

(H6) :

α : Z→ R and δ : Z→ R are such that α(k) ≥ α0 > 0 for all k ∈ Z,
0 < δ(k) ≤ δ̄ = sup

k∈Z
|δ(k)| < +∞ and δ ∈ L1.

(H7) : α0 > δ̄p+C3.
This condition means that the parameter α(.) should be bigger than the parameter

δ̄ and is called the competition phenomenon between α(.) and δ(.).
We also assume that

(H8) : p : Z −→ (1,+∞) with 1 < p− ≤ p+ < +∞.

(H9) : M : (0,+∞) −→ (0,+∞) is continuous, nondecreasing and there exist
three positive real numbers B1, B2, β with B1 ≤ B2, and β ≥ 1 such that

B1t
β−1 ≤M(t) ≤ B2t

β−1, for all t > 0.

Example 2.1 We can give the following functions which satisfy assumptions (H1)−
(H4):
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• A(k, ξ) =
1

p(k)
|ξ|p(k), where a(k, ξ) = |ξ|p(k)−2ξ, ∀k ∈ Z and ξ ∈ R.

• A(k, ξ) =
1

p(k)

((
1+ |ξ|2

)p(k)/2−1

)
, where a(k, ξ) =

(
1+ |ξ|2

)(p(k)−2)/2
ξ, ∀ k ∈ Z

and ξ ∈ R.

We introduce on Lp(.)0,+ and Lp(.)0,+,α(.) the Luxemburg norms

||u||p+(.) := inf

{
λ > 0;

∑
k∈Z+

∣∣∣∣u(k)

λ

∣∣∣∣p(k)

≤ 1

}
,

||u||α(.),p+(.) := inf

{
λ > 0;

∑
k∈Z+

α(k)

∣∣∣∣u(k)

λ

∣∣∣∣p(k)

≤ 1

}
and we define, on the space W1,p(.)

0,+,α(.), the norm

||u||1,α(.),p+(.) := inf

{
λ > 0;

∑
k∈Z+

α(k)

∣∣∣∣u(k)

λ

∣∣∣∣p(k)

+

( ∑
k∈Z+

∣∣∣∣∆u(k)

λ

∣∣∣∣p(k))β
≤ 1

}
.

We replace Z+ by Z− to get the norms on Lp(.)0,−, L
p(.)
0,−,α(.) and W1,p(.)

0,−,α(.).

Remark 2.1 We have the following:

Lp(.)0,+,α(.) ⊃ L
p(.)
0,α(.), L

p(.)
0,−,α(.) ⊃ L

p(.)
0,α(.), W

1,p(.)
0,+,α(.) ⊃ W

1,p(.)
0,α(.) and W1,p(.)

0,−,α(.) ⊃ W
1,p(.)
0,α(.).

Indeed, α(k)|u(k)|p(k) is nonnegative for all k ∈ Z. Therefore, if
∑
k∈Z

α(k)|u(k)|p(k) <

+∞, then
∑
k∈Z+

α(k)|u(k)|p(k) < +∞.

In the sequel, we will use the following result.

Proposition 2.1 ( [6], Proposition 2.5). If u ∈ Lp(.)0,+,α(.) and p+ < ∞, then the

following properties hold:

1. ||u||α(.),p+(.) < 1 =⇒ ||u||p+α(.),p+(.) ≤ ρα(.),p+(.)(u) ≤ ||u||p
−

α(.),p+(.);

2. ||u||α(.),p+(.) > 1 =⇒ ||u||p−α(.),p+(.) ≤ ρα(.),p+(.)(u) ≤ ||u||p
+

α(.),p+(.);

3. ||u||α(.),p+(.) < 1 (= 1;> 1) ⇐⇒ ρα(.),p+(.)(u) < 1 (= 1;> 1);

4. ||u||α(.),p+(.) −→ 0 ⇐⇒ ρα(.),p+(.)(u) −→ 0.

Lemma 2.1 ( [6], Lemma 2.8)(discrete Hölder type inequality). Let u ∈ Lp(.)0,+,α(.)

and v ∈ Lq(.)0,+,α(.) with 1
p(k) + 1

q(k) for any k in Z. Then

∑
k∈Z+

|uv| ≤
(

1

p−
+

1

q−

)
||u||α(.),p+(.)||v||α(.),q+(.). (5)
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As in [6], we have the following results.

Proposition 2.2

1. ρ1,α(.),p+(.)(u+ v) ≤ 2βp
+−1

(
ρ1,α(.),p+(.)(u) + ρ1,α(.),p+(.)(v)

)
, ∀ u, v ∈ W1,p(.)

0,+,α(.).

2. Let u ∈ W1,p(.)
0,+,α(.). Then:

i) if λ > 1, we have

λp
−
ρ1,α(.),p+(.)(u) ≤ ρ1,α(.),p+(.)(λu) ≤ λβp

+

ρ1,α(.),p+(.)(u); (6)

ii) if 0 < λ < 1, we have

λβp
+

ρ1,α(.),p+(.)(u) ≤ ρ1,α(.),p+(.)(λu) ≤ λp
−
ρ1,α(.),p+(.)(u). (7)

Theorem 2.1 Let u ∈ W1,p(.)
0,+,α(.) \ {0}. Then

||u||1,α(.),p+(.) = a if and only if ρ1,α(.),p+(.)(u/a) = 1.

Proposition 2.3 If u ∈ W1,p(.)
0,+,α(.) and p+ <∞, then the following properties hold:

1. ||u||1,α(.),p+(.) < 1 =⇒ ||u||βp
+

1,α(.),p+(.) ≤ ρ1,α(.),p+(.)(u) ≤ ||u||p
−

1,α(.),p+(.);

2. ||u||1,α(.),p+(.) > 1 =⇒ ||u||p−1,α(.),p+(.) ≤ ρ1,α(.),p+(.)(u) ≤ ||u||βp
+

1,α(.),p+(.);

3. ||u||1,α(.),p+(.) < 1 (= 1;> 1) ⇐⇒ ρ1,α(.),p+(.)(u) < 1 (= 1;> 1);

4. ||u||1,α(.),p+(.) −→ 0 ⇐⇒ ρ1,α(.),p+(.)(u) −→ 0.

3 Existence of Weak Heteroclinic Solutions

In this section we investigate the existence of weak heteroclinic solutions of problem (1)
in the following sense.

Definition 3.1 A weak heteroclinic solution of problem (1) is a function u ∈ W1,p(.)
0,α(.)

such that 
M

(∑
k∈Z

A
(
k − 1,∆u(k − 1)

))∑
k∈Z

a(k − 1,∆u(k − 1))∆v(k − 1)

+
∑
k∈Z

α(k)|u(k)|p(k)−2u(k)v(k) =
∑
k∈Z

δ(k)f
(
k, u(k)

)
v(k),

(8)

for any v ∈ W1,p(.)
0,α(.), with u(0) = 0, lim

k→−∞
u(k) = −1 and lim

k→+∞
u(k) = 1.

The main result is the following.

Theorem 3.1 Assume that assumptions (H1)-(H9) hold true. Then, there exists at
least one weak heteroclinic solution of problem (1).
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Proof. We first consider the following problem

−M(A(k − 1,∆u(k − 1)))∆(a(k − 1,∆u(k − 1)))

+α(k)|u(k)|p(k)−2u(k) = δ(k)f
(
k, u(k) + 1

)
, k ∈ Z+

∗ ,

u(0) = 0, lim
k→+∞

u(k) = 0.

(9)

Definition 3.2 A weak solution of problem (9) is a function u ∈ W1,p(.)
0,+,α(.) such that

M

( +∞∑
k=1

A
(
k − 1,∆u(k − 1)

)) +∞∑
k=1

a(k − 1,∆u(k − 1))∆v(k − 1)

+

+∞∑
k=1

α(k)|u(k)|p(k)−2u(k)v(k) =

+∞∑
k=1

δ(k)f
(
k, u(k) + 1

)
v(k),

(10)

for any v ∈ W1,p(.)
0,+,α(.).

Theorem 3.2 Assume that hypotheses (H1)-(H9) hold. Then, there exists at least
one weak solution of problem (9).

To prove Theorem 3.2, we consider the energy functional corresponding to problem

(9) defined by J :W1,p(.)
0,+,α(.) −→ R such that

J(u) = M̂

( +∞∑
k=1

A
(
k−1,∆u(k−1)

))
+

+∞∑
k=1

α(k)

p(k)
|u(k)|p(k)−

+∞∑
k=1

δ(k)F
(
k, u(k)+1

)
, (11)

where M̂(t) =

∫ t

0

M(s) ds and we present some basic properties of the functional J .

Proposition 3.1 The functional J is well defined on W1,p(.)
0,+,α(.) and is of class

C1
(
W1,p(.)

0,+,α(.),R
)

with the derivative given by

〈J ′(u), v〉 = M

( +∞∑
k=1

A
(
k − 1,∆u(k − 1)

)) +∞∑
k=1

a(k − 1,∆u(k − 1))∆v(k − 1)

+

+∞∑
k=1

α(k)|u(k)|p(k)−2u(k)v(k)−
+∞∑
k=1

δ(k)f
(
k, u(k) + 1

)
v(k),

(12)

for all u, v ∈ W1,p(.)
0,+,α(.).

Indeed, we denote

I(u) = M̂

( +∞∑
k=1

A
(
k − 1,∆u(k − 1)

))
, L(u) =

+∞∑
k=1

α(k)

p(k)
|u(k)|p(k)
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and

Λ(u) =

+∞∑
k=1

δ(k)F
(
k, u(k) + 1

)
.

We have, by using (H9), that

|I(u)| =

∣∣∣∣ ∫
+∞∑
k=1

A
(
k − 1,∆u(k − 1)

)
0

M(t)dt

∣∣∣∣
≤ B2

∣∣∣∣ ∫
+∞∑
k=1

A
(
k − 1,∆u(k − 1)

)
0

tβ−1dt

∣∣∣∣
≤ B2

β

( +∞∑
k=1

∣∣A(k − 1,∆u(k − 1))
∣∣)β .

According to (H1), (H3) and the discrete Hölder type inequality, we write

+∞∑
k=1

∣∣A(k − 1,∆u(k − 1))
∣∣ ≤

+∞∑
k=1

∫ ∆u(k−1)

0

|a(k − 1, t)|dt

≤ C1

+∞∑
k=1

(
j(k − 1) +

1

p(k − 1)
|∆u(k − 1)|p(k−1)−1

)
∆u(k − 1)

≤ C1

+∞∑
k=1

j(k − 1)|∆u(k − 1)|+ C1

p−

+∞∑
k=1

|∆u(k − 1)|p(k−1)

≤ C1

(
1

q−
+

1

p−

)
||j||q+(.)||∆u||p+(.) +

C1

p−
||∆u||p+(.)

< +∞

and we deduce that |I(u)| < +∞. We have

|L(u)| =
∣∣∣∣ +∞∑
k=1

α(k)

p(k)
|u(k)|p(k)

∣∣∣∣ ≤ 1

p−

∣∣∣∣ +∞∑
k=1

α(k)|u(k)|p(k)

∣∣∣∣ < +∞

and

|Λ(u)| =

∣∣∣∣ +∞∑
k=1

δ(k)F
(
k, u(k) + 1

)∣∣∣∣
≤

+∞∑
k=1

|δ(k)||F
(
k, u(k) + 1

)
|

≤
+∞∑
k=1

C3|δ(k)|
(
1 + |u(k)|p(k)

)
≤ C3

+∞∑
k=1

|δ(k)|+ C3δ̄

+∞∑
k=1

|u(k)|p(k)

< +∞.
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Hence, J is well-defined. Clearly, the functionals I, L and Λ are in C1
(
W1,p(.)

0,+,α(.),R
)
.

In what follows we prove (12). Let u, v ∈ W1,p(.)
0,+,α(.). Since

lim
λ→0+

I(u+ λv)− I(u)

λ

= lim
λ→0+

M̂

(+∞∑
k=1

A
(
k−1,∆u(k−1)+λ∆v(k−1)

))
−M̂

(+∞∑
k=1

A
(
k−1,∆u(k−1)

))
λ

= M

( +∞∑
k=1

A
(
k − 1,∆u(k − 1)

)) +∞∑
k=1

a
(
k − 1,∆u(k − 1)

)
∆v(k − 1),

lim
λ→0+

L(u+ λv)− L(u)

λ
= lim
λ→0+

+∞∑
k=1

|u(k) + λv(k)|p(k) − |u(k)|p(k)

p(k)λ

=

+∞∑
k=1

lim
λ→0+

|u(k) + λv(k)|p(k) − |u(k)|p(k)

p(k)λ

=

+∞∑
k=1

|u(k)|p(k)−2u(k)v(k)

and

lim
λ→0+

Λ(u+ λv)− Λ(u)

λ
= lim
λ→0+

+∞∑
k=1

δ(k)
F
(
k, u(k) + λv(k) + 1

)
− F

(
k, u(k) + 1

)
λ

=

+∞∑
k=1

δ(k) lim
λ→0+

F
(
k, u(k) + λv(k) + 1

)
− F

(
k, u(k) + 1

)
λ

=

+∞∑
k=1

δ(k)f
(
k, u(k) + 1

)
v(k),

we obtain the relation (12). �

Proposition 3.2 The functional J is weakly lower semi-continuous.

Indeed, by (H1), (H4) and (H9) we have that J is convex. Thus, it is enough to show

that J is lower semi-continuous. For this, we fix u ∈ W1,p(.)
0,+,α(.) and ε > 0. Since J is

convex, we deduce that for any v ∈ W1,p(.)
0,+,α(.),

J(v) ≥ J(u) + 〈J ′(u), v − u〉
≥ J(u) +R(u, v) + S(u, v) + T (u, v),

with

R(u, v) = M

( +∞∑
k=1

A
(
k− 1,∆u(k− 1)

)) +∞∑
k=1

a(k− 1,∆u(k− 1))
(
∆v(k− 1)−∆u(k− 1)

)
,
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S(u, v) =

+∞∑
k=1

|u(k)|p(k)−2u(k)
(
v(k)− u(k)

)
and

T (u, v) =

+∞∑
k=1

δ(k)f
(
k, u(k) + 1

)(
u(k)− v(k)

)
.

Using the discrete Hölder type inequality, there exists three nonnegative constants C4, C5

and C6 such that

R(u, v)≥ −M
( +∞∑
k=1

A
(
k−1,∆u(k−1)

))+∞∑
k=1

|a(k−1,∆u(k−1))||∆v(k−1)−∆u(k−1)|

≥ −C ′4||∆u−∆v||α(.),p+(.)

≥ −C4||u− v||1,α(.),p+(.), (13)

T (u, v) ≥ −C5||u− v||1,α(.),p+(.) (14)

and

S(u, v) ≥ −
+∞∑
k=1

|u(k)|p(k)−1|v(k)− u(k)|

≥ −
(

1

p−
+

1

q−

)∣∣∣∣|u|p(.)−1
∣∣∣∣
α(.),q+(.)

||u− v||α(.),p+(.)

≥ −C6||u− v||1,α(.),p+(.). (15)

Then, combining (13), (14) and (15), we get

J(v) ≥ J(u)−K||u− v||1,α(.),p+(.), (16)

with K = C4 + C5 + C6. Finally, for all v ∈ W1,p(.)
0,+,α(.) with ||v − u||1,α(.),p+(.) < τ =

ε

K
,

we get

J(v) ≥ J(u)− ε.

Then J is lower semi-continuous and by [1], Corollary III.8, J is weakly lower semi-
continuous. �

Proposition 3.3 The functional J is coercive and bounded from below.
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Indeed, according to (H2), (H5)− (H9) , we have

J(u) = M̂

( +∞∑
k=1

A
(
k − 1,∆u(k − 1)

))
+

+∞∑
k=1

α(k)

p(k)
|u(k)|p(k) −

+∞∑
k=1

δ(k)F
(
k, u(k) + 1

)
≥ B1

β

( +∞∑
k=1

A
(
k − 1,∆u(k − 1)

))β
+

1

p+

+∞∑
k=1

α(k)|u(k)|p(k)

−C3

+∞∑
k=1

δ(k)|u(k)|p(k) − C7

≥ B1

β

( +∞∑
k=1

1

p(k − 1)

∣∣∆u(k − 1)
∣∣p(k−1)

)β
+

1

p+

+∞∑
k=1

α(k)|u(k)|p(k)

−C3δ̄

α0

+∞∑
k=1

α(k)|u(k)|p(k)

≥ B1

β(p+)β

( +∞∑
k=1

∣∣∆u(k − 1)
∣∣p(k−1)

)β
+

(
1

p+
− C3δ̄

α0

) +∞∑
k=1

α(k)|u(k)|p(k) − C7

≥ min

{
B1

β(p+)β
;

1

p+
− C3δ̄

α0

}
ρ1,α(.),p+(.)(u)− C7.

To prove the coerciveness of the functional J , we may assume that ||u||1,α(.),p+(.) > 1
and, using Proposition 2.3, we deduce from the above inequality that

J(u) ≥ min

{
B1

β(p+)β
;

1

p+
− C3δ̄

α0

}
||u||p

−

1,α(.),p+(.) − C7.

Thus, by assumption (H7),

J(u) −→ +∞ as ||u||1,α(.),p+(.) −→ +∞,

namely J is coercive. Besides, for ||u||1,α(.),p+(.) ≤ 1, we have

J(u) ≥ min

{
B1

β(p+)β
;

1

p+
− C3δ̄

α0

}
ρ1,α(.),p+(.)(u)− C7.

≥ −C7 > −∞.

Thus J is bounded from below. �
Since J is weakly lower semi-continuous, bounded from below and coercive on

W1,p(.)
0,+,α(.), using the relation between critical points of J and problem (9), we deduce

that J has a minimizer which is a weak solution of (9).

We will show that every weak solution u of (9) is such that u(k)→ 0 as k → +∞. Let

u be a weak solution of problem (9). Since u ∈ W1,p(.)
0,+,α(.), we have

+∞∑
k=1

|u(k)|p(k) < +∞.

Denote

S1 = {k ∈ Z+
∗ ; |u(k)| < 1} and S2 = {k ∈ Z+

∗ ; |u(k)| ≥ 1}.
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Since u ∈ W1,p(.)
0,+,α(.), S2 is necessary a finite set and |u(k)| < +∞ for any k ∈ S2.

As S2 is a finite set, then
∑
k∈S2

|u(k)|p
+

< +∞.

On the other hand, we have
∑
k∈S1

|u(k)|p
+

≤
∑
k∈S1

|u(k)|p(k) ≤
+∞∑
k=1

|u(k)|p(k) < +∞.

Therefore,
+∞∑
k=1

|u(k)|p
+

=
∑
k∈S1

|u(k)|p
+

+
∑
k∈S2

|u(k)|p
+

< +∞.

Thus, lim
k→+∞

|u(k)| = 0, which completes the proof of Theorem 3.2. �

To end the proof of Theorem 3.1, let us consider the following problem

−M(A(k − 1,∆u(k − 1)))∆(a(k − 1,∆u(k − 1)))

+α(k)|u(k)|p(k)−2u(k) = δ(k)f
(
k, u(k)− 1

)
, k ∈ Z−∗ ,

u(0) = 0, lim
k→−∞

u(k) = 0.

(17)

Definition 3.3 A weak solution of problem (17) is a function u ∈ W1,p(.)
0,−,α(.) such

that 

M

( 0∑
k=−∞

A
(
k − 1,∆u(k − 1)

)) 0∑
k=−∞

a(k − 1,∆u(k − 1))∆v(k − 1)

+

0∑
k=−∞

α(k)|u(k)|p(k)−2u(k)v(k) =

0∑
k=−∞

δ(k)f
(
k, u(k)− 1

)
v(k),

(18)

for any v ∈ W1,p(.)
0,−,α(.).

By mimicking the proof of Theorem 3.2, we prove the following result.

Theorem 3.3 Assume that assumptions (H1)-(H9) hold true. Then, there exists at
least one weak solution of (17).

Now, we end the proof of Theorem 3.1. For this, we define v1 = u1 + 1, where u1 is
a weak solution of problem (9) and v2 = u2 − 1, where u2 is a weak solution of problem
(17). Therefore, according to (H5), we deduce that

u = v1χZ+ + v2χZ− (19)

is a weak heteroclinic solution of problem (1). �

Acknowledgment

The authors express their deepest thanks to the editor and anonymous referee for their
comments and suggestions on the paper.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (1) (2018) 67–79 79

References

[1] Brezis, H. Analyse Fonctionnelle: Theorie et Applications. Paris, Masson, 1983.

[2] Cabada, A., Li, C. and Tersian, S. On homoclinic solutions of a semilinear p-Laplacian
difference equation with periodic coefficients. Adv. Differ. Equ. 2010, Art. ID 195376, 17
pp.

[3] Cabada, A. and Tersian, S. Existence of heteroclinic solutions for discrete p-Laplacian
problems with a parameter. Nonlinear Anal. RWA 12 (2011) 2429–2434.

[4] Chen, Y., Levine, S. and Rao, M. Variable exponent, linear growth functionals in image
processing. SIAM J. Appl. Math. 66 (4) (2006) 1383–1406.

[5] Diening, L. Theoretical and Numerical Results for Electrorheological Fluids. Ph.D. thesis,
University of Freiburg, Germany, 2002.
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Abstract: We study the existence of homoclinic orbits for second order non-
autonomous damped vibration system

q̈(t) + Bq̇(t) + V ′(t, q(t)) = f(t),

where B is a skew-symmetric constant matrix, t ∈ R, q ∈ RN and V ∈ C1(R×RN ,R),
V (t, q) = −K(t, q) + W (t, q) is T -periodic with respect to t, T > 0. We assume
that W (t, q) satisfies an assumption weaker than the global Ambrosetti-Rabinowitz
condition and that the norm of B is sufficiently small. This homoclinic orbit is
obtained as a limit of 2kT -periodic solutions of a certain sequence of second order
differential equations. This result generalizes and improves some existing findings in
the known literature.

Keywords: vector field; homoclinic orbits; damped vibration systems; mountain pass
theorem; critical points; minimax methods.
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1 Introduction and Main Results

We consider the following system

q̈(t) +Bq̇(t) + V ′(t, q(t)) = f(t), (DS)

where B is a skew-symmetric constant matrix, V : R × RN → R, (t, x) → V (t, x) is a
continuous function, T -periodic in the first variable with T > 0 and differentiable with
respect to the second variable such that V ′(t, x) = ∂V

∂x (t, x) is continuous on R × RN
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and f : R → RN is a continuous and bounded function. We say that a solution x(t) of
(DS) is a nontrivial homoclinic(to 0) if x 6≡ 0 and x(t)→ 0 as t→ ±∞. The importance
of the study of the existence of homoclinic orbits for damped vibration systems has
been recognized by Poincaré at the end of the 19th century. Therefore, the existence
of homoclinic orbits has become one of the most important problems in the research of
damped vibration systems. Firstly, when B ≡ 0 and f ≡ 0 the system (DS) is just the
following second order non-autonomous Hamiltonian system:

q̈(t) + V ′(t, q(t)) = 0. (1)

In 1990, Rabinowitz [14] showed the existence of homoclinic orbits for system (1)
by taking the limit of 2kT -periodic solutions of approximating problems under the well
known Ambrosetti-Rabinowitz condition: there exists a constant µ > 2 such that for
every t ∈ R and q ∈ RN\{0}

0 < µV (t, q) ≤ V ′(t, q).q.

By using the same approach, the existence of homoclinic orbits for the system (1) has
been intensively studied by many mathematicians via variational methods in critical point
theory, see( [4], [5], [6], [8], [9], [13], [14], [16]) and the references therein. Particularly,
in [10], Izydorek and Janczewska considered a more general Hamiltonian system

q̈(t) + V ′(t, q(t)) = f(t), (2)

where V (t, q) = −K(t, q) + W (t, q). If V is neither autonomous nor periodic in t, the
problem of the existence of homoclinic orbits of (1) is more complicated because the
compactness arguments derived from Sobolev imbedding theorem are not available for
the study of (1), see, for example, ( [1], [4], [5], [6], [8], [10], [11], [15]). Secondly, if B 6≡0,
f 6≡0 and V = −K +W the existence of homoclinic orbits for system (DS) has not been
previously studied. Our aim in this paper is to study the existence of homoclinic orbits for
the system (DS), where K is a quadratic growth function and W satisfies an assumption
weaker than the global Ambrosetti-Rabinowitz condition. Here and subsequently, (.,.):
RN × RN → R denotes the standard inner product and |.| is the induced norm in RN .

Definition 1.1 A vector field v defined on RN is called positive if v(x).x > 0 for
all x ∈ RN\{0}. We call v a normalized positive vector field if v is positive, linear and
satisfies the following condition:

v(x).x = x.x, ∀x ∈ RN . (v1)

Our basic hypotheses on V and f are the following:
(V1) There exist normalized positive vector field v and constant b1, b2 > 0 such that

b1|x|2 ≤ K(t, x) ≤ b2|x|2, K(t, x) ≤ K ′(t, x).v(x) ≤ 2K(t, x)

for all (t, x) ∈ R× RN ,
(V2) W ′(t, x) = o(|x|) as |x| → 0 uniformly in t ∈ R,
(V3) There exists a constant µ > 2 such that for every t ∈ R and x ∈ RN\{0}

0 < µW (t, x) ≤W ′(t, x).v(x),
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(V4) W (t, x) ≤M |x|µ, for all t ∈ R and |x| ≤ 1, where M = sup
t∈R,|x|=1

W (t, x).

(V5) b̄1 = min{1, 2b1} > 2M and

(∫
R
|f(t)|2dt

)1/2

≤ β
2C , where 0 < β < b̄1 − 2M, and

C is a positive constant defined in [10].

Remark 1.1 We see that if v(x) = x, then (V1) becomes (H3) and (V3) becomes
(H5) in [10]. From (V2)-(V4) we see that W (t, x) = o(|x|2) as |x| → 0 uniformly in
t and W (t, 0) = 0,W ′(t, 0) = 0. Moreover, from (V1) we conclude that K(t, 0) = 0,
K ′(t, 0) = 0. Example 1.1 below shows that (V3) is weaker than the global Ambrosetti-
Rabinowitz condition.

In addition, we need the following hypothesis on B.

(V6) ‖B‖ < min
{
b̄1 − β − 2M, µ−2

µ+2b b̄1,
1
b ,

b1
b

}
, where b = ‖v‖ is the norm of the operator

v.

Now, we state our existence result of homoclinic orbits for problem (DS).

Theorem 1.1 Suppose that K and W are T-periodic with respect to t, T > 0 sat-
isfying (V1) − (V6), then the system (DS) possesses a nontrivial homoclinic solution
q ∈W 1,2(R,RN ) such that q̇(t)→ 0, as t→ ±∞.

Example 1.1 Let θ(x) be the argument of x = (ξ1, ξ2) ∈ R2\{0} defined by

θ(x) =


arctan(ξ2/ξ1), if ξ1 > 0, ξ2 ≥ 0,
π
2 , if ξ1 = 0, ξ2 > 0,
arctan(ξ2/ξ1) + π, if ξ1 < 0,
3π
2 , if ξ1 = 0, ξ2 < 0,

arctan(ξ2/ξ1) + 2π, if ξ1 > 0, ξ2 < 0.

Define a function K ∈ C1(R× RN ,R) as follows:

K(t, x) =

{
|x|2

exp(2 sin 4(ln |x|+θ(x))) , if x 6= 0,

0, if x = 0.

Define a normalized positive vector field v by

v(x) =

(
1 1
−1 1

)
x.

An easy computation shows that K satisfies (V1).

For any µ > 2, define a function W ∈ C1(R× RN ,R) as follows:

W (t, x) =

{
|x|µ

exp(µ(2 sin 4(ln |x|+θ(x)))) , if x 6= 0,

0, if x = 0.

A direct computation (see [3]) shows that W satisfies (V2), (V3) and (V4). Moreover, W
does not satisfy the global Ambrosetti-Rabinowitz condition.
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2 Variational Setting and Preliminaries

Similarly to [10] and [14], we will prove the existence of homoclinic orbits for (DS) as the
limit of 2kT -periodic solutions of the following systems of differential equations:

q̈(t) +Bq̇(t) + V ′(t, q(t)) = fk(t), (DSk)

where fk : R→ RN is a bounded continuous function, 2kT -periodic extension of f to the
interval [−kT, kT ], k ∈ N. For each k ∈ N, let L2

2kT be the Hilbert space of 2kT -periodic
functions on R with values in RN equipped with the norm

‖q‖L2
2kT

=

(∫ kT

−kT
|q(t)|2dt

) 1
2

,

and L∞2kT be the space of 2kT−periodic essentially bounded functions from R into RN
equipped with the norm

‖q‖L∞2kT = esssup {|q(t)| : t ∈ [−kT, kT ]} .

Denote by Ek := W 1,2
2kT the Hilbert space of 2kT -periodic functions on R with values

in RN under the norm

‖q‖Ek =

[∫ kT

−kT
|q(t)|2dt+

∫ kT

−kT
|q̇(t)|2dt

]1/2

.

Next, we need the following lemma.

Lemma 2.1 ( [10]). There is a positive constant C such that for each k > 0 and
q ∈ Ek the following inequality holds:

‖q‖L∞2kT ≤ C‖q‖Ek . (3)

Let ηk : Ek → [0,+∞[ be given by

ηk(q) =

(∫ kT

−kT
[|q̇(t)|2 + 2K(t, q(t))]dt

)1/2

. (4)

By using (V1), we have

b̄1‖q‖2Ek ≤ η
2
k(q) ≤ b̄2‖q‖2Ek , (5)

where b̄2 = max{1, 2b2}. Let Ik : Ek → R be the functional defined by

Ik(q) =

∫ kT

−kT

[
1

2
|q̇(t)|2 +

1

2
Bq(t).q̇(t) +K(t, q(t))−W (t, q(t)) + fk(t).q(t)

]
dt

=
1

2
η2
k(q) +

∫ kT

−kT

[
1

2
Bq(t).q̇(t)−W (t, q(t)) + fk(t).q(t)

]
dt. (6)

It is easy to check that Ik ∈ C1(Ek,R) and by using the skew-symmetry of B, we have
for every q, v ∈ Ek

I ′k(q)v =

∫ kT

−kT
[q̇(t).v̇(t)−Bq̇(t).v(t)− V ′(t, q(t)).v(t) + fk(t).v(t)] dt. (7)
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It is known that the critical points of Ik in Ek are the classical 2kT -periodic solution of
(DSk). We will obtain a critical point of Ik by using a standard version of the mountain
pass theorem:

Lemma 2.2 ( [13]). Let H be a real Banach space and I ∈ C1(H,R) satisfying the
Palais-Smale condition. If I satisfies the following conditions:
(i) I(0) = 0,
(ii) there exist constants ρ, α > 0 such that I|∂Bρ(0) ≥ α,
(iii) there exists e ∈ H\Bρ(0) such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ = {g ∈ C([0, 1], H) : g(0) = 0, g(1) = e}.

Lemma 2.3 ( [4]). There exist a1, a2 > 0 such that

W (t, x) ≥ a1|x|µ − a2, ∀ t ∈ R, ∀x ∈ RN . (8)

Let v be the normalized positive vector field in (V1) and (V3) of Theorem 1.1. Then
v is an invertible linear operator from RN to RN . Let a = 1

‖v−1‖ , b = ‖v‖, where ‖v‖ and

‖v−1‖ are operator norms. For any x ∈ RN , one has

a|x| ≤ |v(x)| ≤ b|x|. (9)

Define a vector field ṽ on Ek by

(ṽ(x))(t) = v(x(t)). (10)

Using condition (v1) and Fourier series, we perform direct computation to show the
following lemma.

Lemma 2.4 ( [4]). For any x ∈ Ek,∫ kT

−kT
|ẋ(t)|2dt =

∫ kT

−kT
ẋ(t).

˙︷ ︸︸ ︷
v(x(t))dt. (11)

a‖x‖Ek ≤ ‖ṽ(x)‖Ek ≤ b‖x‖Ek . (12)

From (V1), (7), (10) and (11) we have

I ′k(q).ṽ(q) ≤ η2
k(q)−

∫ kT

−kT
[Bq̇(t).v(q(t))−W ′(t, q(t)).v(q(t))] dt

+

∫ kT

−kT
fk(t).v(q(t))dt. (13)

Lemma 2.5 Under the assumptions (V1)–(V6), for every k ∈ N the system (DSk)
possesses a 2kT -periodic solution qk ∈ Ek.
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Proof. Step 1. We will show that Ik satisfies the Palais-Smale condition. Assume
that {qj}j∈N ⊂ Ek, {qj}j∈N has a convergent subsequence if {Ik(qj)}j∈N is bounded and
I ′k(qj)→ 0 as j → +∞. Then there exists a constant Mk > 0 such that

|Ik(qj)| ≤Mk, ‖I ′k(qj)‖E∗k ≤Mk (14)

for every j ∈ N. We firstly prove that {qj}j∈N is bounded in Ek. Without loss of
generality, we may assume that ‖qj‖Ek 6= 0. Then by (V3) and (6), it follows that

η2
k(qj) ≤ 2Ik(qj) +

∫ kT

−kT
Bq̇j(t).qj(t)dt+

2

µ

∫ kT

−kT
W ′(t, qj(t)).v(qj(t))dt

− 2

∫ kT

−kT
fk(t).qj(t)dt. (15)

From (13) and (15) we obtain

(
1−2

µ

)
η2
k(qj) ≤ 2Ik(qj)−

2

µ
I ′k(qj).ṽ(qj(t))+

∫ kT

−kT
Bq̇j(t).qj(t)dt+

2

µ

∫ kT

−kT
Bqj(t).

˙︷ ︸︸ ︷
v(qj(t))dt

−2

∫ kT

−kT
fk(t).qj(t)dt+

2

µ

∫ kT

−kT
fk(t).v(qj(t))dt. (16)

Moreover, by (5), (9) and (16) it follows that[(
1− 2

µ

)
b1 −

(
1 +

2b

µ

)
‖B‖

]
‖qj‖2Ek ≤ 2Ik(qj) +

2b

µ
‖I ′k(qj)‖E∗k‖qj‖Ek

+2

(∫ kT

−kT
|fk(t)|2dt

) 1
2

‖qj‖Ek +
2b

µ

(∫ kT

−kT
|fk(t)|2dt

) 1
2

‖qj‖Ek . (17)

By (14), (17) and (V5) we get[(
1− 2

µ

)
b1 −

(
1 +

2b

µ

)
‖B‖

]
‖qj‖2Ek ≤ 2Mk +

(
2bMk

µ
+
β

C
(1 +

b

µ
)

)
‖qj‖Ek . (18)

Since µ > 2 and (V6) imply that
[
(1− 2

µ )b1 − (1 + 2b
µ )‖B‖

]
> 0, inequality (18) shows

that {qj}j∈N is bounded in Ek. Going if necessary to a subsequence, we can assume that
there exists q ∈ Ek such that qj ⇀ q, as j → +∞ in Ek, which implies that qj → q as
j → +∞ uniformly on [−kT, kT ]. By Proposition 4.3 in [17], we can prove that {qj}j∈N
has a convergent subsequence in Ek. Hence, Ik satisfies the Palais-Smale condition.

Step 2. We prove that there exist constants ρ, α > 0 independent of k such that
Ik satisfies the assumption (ii) of Lemma 2.2. Letting ρ = 1

C and ‖q‖Ek = ρ, we have
‖q‖L∞2kT ≤ 1, where C > 0 is defined in (3). It follows from (V4) that∫ kT

−kT
W (t, q)dt ≤M

∫ kT

−kT
|q(t)|2dt ≤M‖q‖2Ek . (19)
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In consequence, combining this with (5), (V5) and Hölder’s inequality, we obtain

Ik(q) =

∫ kT

−kT

[
1

2
|q̇(t)|2 +

1

2
Bq(t).q̇(t) +K(t, q(t))−W (t, q(t)) + fk(t).q(t)

]
dt

≥ 1

2
b̄1‖q‖2Ek −

1

2
‖B‖‖q‖2Ek −M‖q‖

2
Ek
− ‖fk‖L2

2kT
‖q‖L2

2kT

≥
(

1

2
b̄1 −

1

2
‖B‖ −M

)
‖q‖2Ek −

β

2C
‖q‖Ek

≥ 1

2

(
b̄1 − β − 2M − ‖B‖

)
‖q‖2Ek +

β

2
‖q‖2Ek −

β

2C
‖q‖Ek . (20)

Note that (V6) implies
(
b̄1 − β − 2M − ‖B‖

)
> 0.

We set α = b̄1−β−2M−‖B‖
2C2 , than the inequality (20) implies that

Ik|∂Bρ
≥ α > 0 for k ∈ N.

Step 3. It remains to show that Ik satisfies assumption (iii) of Lemma 2.2. By (5),
(6) and (8), for every s ∈ R\{0} and q ∈ RN\{0}, we have

Ik(sq) ≤ b̄2s
2

2
‖q‖2Ek + s2‖B‖‖q‖2Ek − a1|s|µ

∫ kT

−kT
|q(t)|µdt

+ |s|‖fk‖L2
2kT
‖q‖L2

2kT
+ 2kTa2. (21)

Take Q ∈ E1 such that Q(T ) = Q(−T ) = 0. Since µ > 2 and a1 > 0, (21) implies that
there exists s0 ∈ R\{0} such that ‖s0Q‖E1

> ρ and I1(s0Q) < 0. Set e1(t) = s0Q(t) and

ek(t) =

{
e1(t) for |t| ≤ T,
0 for T < |t| ≤ kT, (22)

for k > 0. Then ek ∈ Ek, ‖ek‖Ek = ‖e1‖E1
> ρ and Ik(ek) = I1(e1) < 0 for every k ∈ N.

By Lemma 2.2, Ik possesses a critical value ck ≥ α given by

ck = inf
g∈Γk

max
s∈[0,1]

Ik(g(s)), (23)

where

Γk = {g ∈ C([0, 1], Ek) : g(0) = 0, g(1) = ek} .

Hence for every k ∈ N, there exists qk ∈ Ek such that

Ik(qk) = ck, I ′k(qk) = 0. (24)

The function qk is a desired classical 2kT−periodic solution of (DSk) for k ∈ N. Since
ck > 0, qk is a nontrivial solution even if f ≡ 0. The proof of Lemma 2.5 is complete.

Lemma 2.6 Let (qk)k∈N be the solution of system (DSk) which satisfies (24) for
k ∈ N. Then there exists a positive constant M1 independent of k such that

‖qk‖Ek ≤M1, ∀k ∈ N. (25)
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Proof. For k ∈ N, let gk : [0, 1] → Ek be a curve given by gk(s) = sek, where ek
is defined by (22). Then gk ∈ Γk and Ik(gk(s)) = I1(g1(s)) for all k ∈ N and s ∈ [0, 1].
Therefore, by (23)

ck = inf
g∈Γk

max
s∈[0,1]

Ik(g(s)) ≤ max
s∈[0,1]

Ik(g1(s)) ≡M0, ∀k ∈ N, (26)

where M0 is independent of k. Since I ′k(qk) = 0, we get from (V1), (V3), (6) and (11)

ck = Ik(qk)− 1

2
I ′k(qk).ṽ(qk) ≥ (

µ

2
− 1)

∫ kT

−kT
W (t, qk(t))dt+

1

2

∫ kT

−kT
Bqk(t).q̇k(t)dt

+
1

2

∫ kT

−kT
Bq̇k(t).v(qk(t))dt+

∫ kT

−kT
fk(t).qk(t))dt− 1

2

∫ kT

−kT
fk(t).v(qk(t))dt.

Then we have

∫ kT

−kT
W (t, qk(t))dt ≤ 1

µ− 2

∫ kT

−kT
Bq̇k(t).qk(t)dt+

1

µ− 2

∫ kT

−kT
Bqk.

˙︷ ︸︸ ︷
v(qk(t))

− 2

µ− 2

∫ kT

−kT
fk(t).qk(t)dt+

2ck
µ− 2

+
1

µ− 2

∫ kT

−kT
fk(t).v(qk(t)dt. (27)

Combining (27) with (5), (6), (12), (26), (V5) and (V6) we obtain(
b̄1
2
− 1 + b

µ− 2
‖B‖

)
‖qk‖2Ek ≤

µM0

µ− 2
+

β(µ+ b)

2C(µ− 2)
‖qk‖Ek . (28)

Since (V6) implies that b̄1
2 −

1+b
µ−2‖B‖ > 0 and all coefficients of (28) are independent of

k, there exists a constant M1 > 0 independent of k such that

‖qk‖Ek ≤M1, ∀k ∈ N. (29)

The proof of Lemma 2.6 is complete. 2

Let Cploc(R,RN ) (p ∈ N) denote the space of Cp functions on R with values in RN
under the topology of almost uniformly convergence on compact subintervals of R and all
derivatives up to order p. Using the Arzelà-Ascoli theorem, we can prove the following
lemma.

Lemma 2.7 Let {qk}k∈N be the 2kT−periodic solution of problem (1) which satisfies
(29) for k ∈ N. Then there exists a subsequence {qkj} convergent to q in C1

loc(R,RN ).

Proof. Arguing as in Theorem 2.1 in [11], we conclude from the fact

|qk(t2)− qk(t1)| ≤
∫ t2

t1

|q̇k(t)|dt ≤ (t2 − t1)1/2

(∫ t2

t1

|q̇k(t)|2dt
)1/2

that the sequence (qk) is equicontinuous on every interval [−lT, lT ] ⊂ [−kT, kT ]. By (29)
and Arzelà-Ascoli theorem, the sequence (qk) has a uniformly convergent subsequence
on each [−lT, lT ].
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Let (q1
km

) be a subsequence of (qk) that converges on [−T, T ]. Then (q1
km

) is equicon-
tinuous and uniformly bounded on [−2T, 2T ]. So we can choose a subsequence (q2

km
) of

(q1
km

) that converges uniformly on [−2T, 2T ]. Repeat this procedure for all k and take

the diagonal sequence (qmkm). It is obvious that (qmkm)m is a subsequence of (qikm) for any
1 ≤ i ≤ m. Hence, it converges uniformly to a function q(t) on any bounded interval. In
the following, for simplicity, we also denote the subsequence (qmkm) by (qk). The proof of
Lemma 2.7 is complete. 2

Lemma 2.8 Let q : R → RN be the function given in Lemma 2.7. Then q is the
desired nontrivial homoclinic solution of (DS) such that u̇(t)→ 0, as t→ ±∞.

Proof. Firstly, we will show that q is a solution of (1). Let {qkj}k∈N be defined in
Lemma 2.7, then we have

q̈kj (t) +Bq̇kj (t) + V ′(t, qkj (t)) = fkj (t) (30)

for every j ∈ N and t ∈ [−kjT, kjT ]. Take a, b ∈ R such that a < b. There exists j0 ∈ N
such that for all j > j0 and t ∈ [a, b] ⊂ [−kjT, kjT ], we have

q̈kj (t) = −Bq̇kj (t)− V ′(t, qkj (t)) + fkj (t). (31)

Hence, q̈kj (t) is continuous in [a, b] and q̈kj (t) is a classical derivative of q̇kj (t) in [a, b] for
every j > j0. Moreover, since q̇kj → q̇ uniformly on [a, b] and

q̈kj (t) = −Bq̇kj (t)− V ′(t, qkj (t)) + fkj (t) (32)

we obtain

q̈(t) +Bq̇(t) + V ′(t, q(t)) = f(t), (33)

for every t ∈ [a, b]. Since a and b are arbitrary, we conclude that q satisfies (DS). 2

3 Proof of Theorem 1.1.

We have shown that q satisfies (1). It remains to prove that q is nontrivial and homoclinic
to 0. First, we show that q is nontrivial. Obviously, this will be the case if f 6≡ 0. Consider
the function ϕ : [0,+∞[→ [0,+∞[ defined by

ϕ(s) =

 max
t∈R,0<|x|≤s

W ′(t, x).v(x)

|x|2
, s > 0,

0, s = 0.

Then by (V2), (V3), (8) and (9) ϕ is a continuous, nondecreasing function and ϕ(s) ≥ 0
for s ≥ 0. The definition of ϕ implies that∫ kT

−kT
W ′(t, qk(t)).v(qk(t))dt ≤ ϕ(‖qk‖L∞2kT )‖qk‖2Ek (34)

for every n ∈ N. Since I ′k(qk).v(qk) = 0, we have∫ kT

−kT
W ′(t, qk(t)).v(qk(t))dt =
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−kT
|q̇k(t)|2dt−

∫ kT

−kT
Bq̇k(t).v(qk(t))dt+

∫ kT

−kT
K ′(t, qk(t)).v(qk(t))dt. (35)

From (34), (35), (V1) and (V6), we obtain

ϕ(‖qk‖L∞2kT )‖qk‖2Ek ≥
∫ kT

−kT
|q̇k(t)|2dt−

∫ kT

−kT
Bq̇k(t).v(qk(t)))dt+

∫ kT

−kT
K ′(t, qk(t))v(qk(t))dt

≥ (min{1, b1} − b‖B‖) ‖qk‖2Ek .

Since ‖qk‖Ek > 0, it follows that

ϕ(‖qk‖L∞2kT ) ≥ (min{1, b1} − b‖B‖) > 0.

If ‖qk‖L∞2kT → 0 as k → ∞, we have ϕ(0) ≥ (min{1, b1} − b‖B‖) > 0, which is a
contradiction. Passing to a subsequence of (qk) if necessary, we see that there is a
constant C1 > 0 such that

‖qk‖L∞2kT ≥ C1 (36)

for every k ∈ N. Moreover, for all j ∈ N, t 7→ qjk(t) = qk(t + jT ) is also a 2kT -periodic
solution of system (3). Hence, if the maximum of |qk| occurs in θk ∈ [−kT, kT ] then
the maximum of |qjk| occurs in τ jk = θk − jT. Then there exists a jk ∈ Z such that

τ jkk ∈ [−T, T ]. Consequently,

‖qjkk ‖L∞([−kT,kT ],RN ) = max
t∈[−T,T ]

|qjkk (t)|.

Suppose the contrary to our claim, that q ≡ 0. Then

‖qjkk ‖L∞([−kT,kT ],RN ) = max
t∈[−T,T ]

|qjkk (t)| → 0,

which contradicts (36).
Second, we now prove that q(t)→ 0 as t→ ±∞. We have, from (29)∫ kT

−kT
(|qk(t)|2 + |q̇k(t)|2)dt ≤ ‖qk‖2Ek ≤M

2
1 .

Obviously, for each i ∈ N there is ki ∈ N such that for all k ≥ ki∫ iT

−iT
(|qk(t)|2 + |q̇k(t)|2)dt ≤ ‖qk‖2Ek ≤M

2
1 .

Letting k → +∞, we obtain ∫ iT

−iT
(|q(t)|2 + |q̇(t)|2)dt ≤M2

1 .

As i→ +∞, we have ∫ +∞

−∞
(|q(t)|2 + |q̇(t)|2)dt ≤M2

1 .
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Hence we get ∫
|t|≥r

(|q(t)|2 + |q̇(t)|2)dt→ 0 as r → +∞. (37)

By Corollary 2.2 in [16], we have

|q(t)|2 ≤
∫ t+1

t−1

(|q(s)|2 + |q̇(s)|2)ds (38)

for every t ∈ R. Then, by (37) and (38) we conclude that

q(t)→ 0 as |t| → ∞.

Finally, we have to show that q̇(t)→ 0 as t→ ±∞. From Corollary 2.2 in [16] we have

|q̇(t)|2 ≤
∫ t+1

t−1

(|q(s)|2 + |q̇(s)|2)ds+

∫ t+1

t−1

|q̈(s)|2ds,

for every t ∈ R. Since q ∈W 1,2(R,RN ), we get∫ t+1

t−1

(|q(s)|2 + |q̇(s)|2)ds→ 0 as |t| → ∞.

Hence, it suffices to prove that∫ t+1

t−1

|q̈(s)|2ds→ 0 as |t| → ∞. (39)

Since q is a solution of (DS), we obtain∫ t+1

t−1

|q̈(s)|2ds ≤ ‖B‖2
∫ t+1

t−1

|q̇(s)|2ds+

∫ t+1

t−1

|V ′(t, q(s))|2ds+

∫ t+1

t−1

|f(s)|2ds

+ 2‖B‖
(∫ t+1

t−1

|q̇(s)|2ds
) 1

2
(∫ t+1

t−1

|V ′(s, q(s))|2ds
) 1

2

+ 2‖B‖
(∫ t+1

t−1

|q̇(s)|2ds
) 1

2
(∫ t+1

t−1

|f(s)|2ds
) 1

2

+ 2

(∫ t+1

t−1

|f(s)|2
) 1

2
(∫ t+1

t−1

|V ′(s, q(s))|2ds
) 1

2

ds.

By (V5), we get ∫ t+1

t−1

|f(s)|2ds→ 0, as |t| → ∞. (40)

Since

∫ t+1

t−1

|q̇(s)|2ds → 0 as |t| → ∞, q(t) → 0 as |t| → ∞ and V ′(t, q) → 0 as |q| → 0

uniformly in t ∈ R, then (39) follows. The proof of Theorem 1.1 is complete. 2
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Abstract: The paper is devoted to the problems of output feedback stabilization,
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ation of the quadratic performance criterion for a family of nonlinear nonautonomous
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1 Introduction

State and output feedback controllers design for dynamic systems with the prescribed
and desired properties is a key problem of control theory. At the same time, the pro-
perties of control systems such as asymptotic stability, robustness and optimality of the
performance indexes are in the foreground. The main problem in H∞-control theory for
continuous systems is connected with suppression of external and initial perturbations
(see, e.g., [1–6] as well as review papers [7–9]). Practical applications of many modern
methods for control systems design reduce to solving the linear matrix inequalities (LMI)
[10,11].
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In this paper, we consider classes of linear and affine discrete-time control systems
for which closed loop systems can be represented in the pseudolinear form

xt+1 = M(xt, t)xt, xt ∈ Rn, t ∈ T = {0, 1, 2, . . . },

besides, a matrix function M(x, t) can contain uncertain quantities belonging to certain
sets. Intervals, polytopes, affine families of matrices and other objects may serve as the
uncertainty sets. To define uncertainties and robust stability conditions for systems in
semiordered spaces one can use cone inequalities and intervals [6, 12, 13]. The applied
control laws are of the form of static or dynamic output feedback. It should be noted that
at the solution of many control problems the dynamic controllers have great potential as
compared with the static controllers.

Our consideration includes the following types of problems:
• output feedback stabilization of discrete-time control systems (Section 2);
• robust stabilization and optimization of discrete-time control systems with polyhe-

dral uncertainties (Section 3);
• robust stabilization and weighted perturbation suppression in discrete-time control

systems (Section 4).

Throughout the paper, the following notations are used: In is the identity n × n
matrix; 0n×m is the n ×m null matrix; X = XT > 0 (≥ 0) is the symmetric positive
definite (semidefinite) matrix X; i(X) =

{
i+, i−, i0

}
is the inertia of Hermitian matrix

X = X∗ consisting of the numbers of positive (i+(X)), negative (i−(X)) and zero (i0(X))
eigenvalues (taking into account the multiplicities); σ(A) and ρ(A) are the spectrum and
the spectral radius of A, respectively; λmax(X) and λmin(X) are the maximum and the
minimum eigenvalue of the Hermitian matrix X, respectively; A+ is the pseudoinverse
matrix; WA is a matrix whose columns make up the bases of the kernel KerA; ‖x‖
denotes the Euclidean norm of the vector x ∈ Rn; ‖w‖P denotes the weighted l2-norm
of a vector sequence wt, t ∈ T ; Co

{
A1, . . . , Aν

}
stands for a polytope in a matrix space

described as a convex hull of the set
{
A1, . . . , Aν

}
, i.e.

Co
{
A1, . . . , Aν

}
=
{
α1A1 + · · ·+ ανAν : α1 + · · ·+ αν = 1, αi ≥ 0, i = 1, ν

}
.

Note that matrix intervals and affine sets are described in terms of polytopes.

2 Output Feedback Stabilization of Nonlinear Systems

Consider the affine discrete-time control system

xt+1 = A(xt)xt +B(xt)ut, yt = C(xt)xt +D(xt)ut, (1)

where xt ∈ Rn is a state vector, ut ∈ Rm and yt ∈ Rl are input and output vectors, respec-
tively, A(x), B(x), C(x) and D(x) are continuous matrix functions in some neighborhood
S0 of the zero state xt = 0, t ∈ T . Assume that rankB(x) ≡ m and rankC(x) ≡ l in S0.

Along with (1), consider the linear system

xt+1 = Axt +But, yt = Cxt +Dut, (2)

with A = A(0), B = B(0), C = C(0) and D = D(0). Let B⊥ and C⊥ be the orthogonal
complements of B and C, respectively, i.e. BTB⊥ = 0, det

[
B,B⊥

]
6= 0, C⊥CT = 0,

det
[
CT , C⊥T

]
6= 0.
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2.1 Static controllers

Formulate stabilizability conditions of the zero state xt = 0 for systems (1) and (2)
through the static output-feedback controller

ut = Kyt, K ∈ KD, (3)

where KD = {K ∈ Rm×l : det(Im−KD) 6= 0}. Closed loop system (2), (3) has the form

xt+1 = Mxt, M = A+BD(K)C, (4)

where D(K) = (Im −KD)−1K is a nonlinear operator with the following properties:
• if K ∈ KD, then D(K) ≡ K(Il −DK)−1 and Il +DD(K) ≡ (Il −DK)−1;
• if K1 ∈ KD and K2 ∈ KD1

, then K1 +K2 ∈ KD and

D(K1 +K2) = D(K1) + (Im −K1D)−1D1(K2) (Il −DK1)−1, (5)

where D1(K2) = (Im −K2D1)−1K2, D1 = (Il −DK1)−1D;
• if −K0 ∈ KD, then K = −D(−K0) ∈ KD and D(K) = K0.

Definition 2.1 System (4) is ρ-stable if the spectrum σ(M) lies inside the circle
{λ : |λ| < ρ}, where 0 < ρ ≤ 1.

Theorem 2.1 Let rankB = m < n and rankC = l < n. Then the following state-
ments are equivalent:

1) There exists a static controller (3) ensuring ρ-stability of system (4).
2) There exists a matrix X = XT > 0 satisfying the relations

B⊥T (AXAT − ρ2X)B⊥ < 0, (6)

i(H) =
{
l,m, 0

}
, H =

[
H0 HT

1

H1 H2

]
, (7)

where H0 = B+(L−LRL)B+T, H1 = CXAT (In−RL)B+T, H2 = C(X−XATRAX)CT,
L = AXAT − ρ2X, R = B⊥S−1B⊥T , S = B⊥TLB⊥;

3) There exists a matrix X = XT > 0 satisfying the matrix inequalities (6) and

AXAT − ρ2X < AXCT (CXCT )−1CXAT . (8)

4) There exist mutually inverse matrices X = XT > 0 and Y = Y T > 0 satisfying
the relations (6) and

C⊥(ATY A− ρ2Y )C⊥T < 0. (9)

5) There exists a matrix Y = Y T > 0 satisfying the matrix inequalities (9) and

ATY A− ρ2Y < ATY B(BTY B)−1BTY A. (10)

When one of the statements 2) – 4) is true, then the controller

ut = Kyt, K = −D(−K0) ∈ KD, (11)

where K0 is a solution of one of the equivalent LMI

PT1 K0Q1+QT1K
T
0 P1 <

[
ρ2X AX
XAT X

]
, PT2 K0Q2+QT2K

T
0 P2 <

[
−H0 0

0 H−12

]
, (12)

with P1 =
[
− BT , 0

]
, Q1 =

[
0, CX

]
, P2 =

[
Im, 0

]
and Q2 =

[
H1, Il

]
ensures ρ-stability

of closed loop system (4).
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For the equivalence of the statements 1) and 2) in Theorem 2.1, see [6]. Equivalence
of the statements 2) and 3) follows from the correlations (see [12, p. 147])

H = Ĥ0 − ĤT
1 Ĥ

−1
2 Ĥ1, i+(Ĥ) = i+(H) = i+(∆), i−(Ĥ) = i−(H) + n−m = i−(∆),

where

Ĥ =

[
Ĥ0 ĤT

1

Ĥ1 Ĥ2

]
=

 B+LB+T B+AXCT B+LB⊥

CXATB+T CXCT CXATB⊥

B⊥TLB+T B⊥TAXCT S

 = W∆WT ,

∆ =

[
AXAT − ρ2X AXCT

CXAT CXCT

]
, WT =

[
B+T 0 B⊥

0 Il 0

]
, detW 6= 0.

For the equivalence of the statements 1) and 4), see also [5] and [6, Therem 6.1.2].

Theorem 2.2 Let one of the statements 2) – 4) of Theorem 2.1 hold for linear system
(2). Then relations (11) and (12) determine static controller ensuring asymptotic stability
of the state x ≡ 0 and quadratic Lyapunov function v(x) = xTX−1x of nonlinear closed
loop system (1), (11).

2.2 Dynamic controllers

The dynamic output feedback stabilization problem for system (1) is to find, if possible,
a dynamic control law described by

ξt+1 = Zξt + V yt, ut = Uξt +Kyt, t ∈ T , (13)

where ξt ∈ Rr and r ≤ n, such that the zero state of closed loop system is asymptotically
stable. Equations (1) and (13) may be represented by control system in the extended
phase space Rn+r with static controller

x̂t+1 = Â(x̂t)x̂t + B̂(x̂t)ût, ŷt = Ĉ(x̂t)x̂t + D̂(x̂t)ût, ût = K̂ŷt, (14)

where

x̂t =

[
xt
ξt

]
, ŷt =

[
yt
ξt

]
, ût =

[
ut
ξt+1

]
, K̂ =

[
K U
V Z

]
,

Â(x̂) =

[
A(x) 0

0 0

]
, B̂(x̂) =

[
B(x) 0

0 Ir

]
, Ĉ(x̂) =

[
C(x) 0

0 Ir

]
, D̂(x̂) =

[
D(x) 0

0 0

]
.

If K ∈ KD, then linear closed loop system (2), (13) has the form

x̂t+1 = M̂ x̂t, M̂ = Â+ B̂D̂(K̂)Ĉ, (15)

where Â = Â(0), B̂ = B̂(0), Ĉ = Ĉ(0), D̂ = D̂(0), D̂(K̂) = (Im+r − K̂D̂)−1K̂, and

D̂(K̂) =

[
D(K) (Im −KD)−1U

V (Il −DK)−1 Z + V D(Im −KD)−1U

]
,

M̂ =

[
M B(Im −KD)−1U

V (Il −DK)−1C Z + V D(Im −KD)−1U

]
.
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Theorem 2.3 The following statements are equivalent:
1) There exists a dynamic controller (13) of order r ≤ n ensuring ρ-stability of closed

loop system (15).
2) There exist matrices X and X0 satisfying the relations (6) and

X ≥ X0 > 0, rank (X−X0) ≤ r, AX0A
T −ρ2X0 < AX0C

T (CX0C
T )−1CX0A

T . (16)

3) There exist matrices X and Y satisfying the relations (6), (9) and

W =

[
X In
In Y

]
≥ 0, rankW ≤ n+ r. (17)

Proof of Theorem 2.3 follows from the corresponding statements of Theorem 2.1
taking into account the structure of block matrices in (15) (see [6]).

Remark 2.1 The coefficient matrices of stabilizing controller (13) in Theorem 2.3
may be defined in the form

K = (Im +K0D)−1K0, U = (Im +K0D)−1U0,

V = V0(Il +DK0)−1, Z = Z0 − V0(Il +DK0)−1DU0,
(18)

using the solution K̂0 of the LMI

P̂T K̂0Q̂+ Q̂T K̂T
0 P̂ < F̂ , (19)

where P̂ =
[
− B̂T , 0

]
, Q̂ =

[
0, ĈX̂

]
, X −X0 = XT

1 X
−1
2 X1 ≥ 0, K0 ∈ KD, 0 < ρ ≤ 1,

F̂ =

[
ρ2X̂ ÂX̂

X̂ÂT X̂

]
, K̂0 =

[
K0 U0

V0 Z0

]
, X̂ =

[
X XT

1

X1 X2

]
> 0.

For example, one can use the Cholesky factorization X−X0 = XT
1 X1 ≥ 0 with X2 = Ir.

Remark 2.2 Note, that matrices X and X0 satisfy statement 2) iff matrices X and
Y = X−10 satisfy statement 3). From (17) it follows that matrices X and Y are positive
definite. The rank restriction in (17) always holds in case of full order r = n dynamic
regulator.

Theorem 2.4 Let one of the statements 2) or 3) of Theorem 2.3 hold for linear
system (2). Then relations (18) and (19) determine dynamic controller (13) ensuring

asymptotic stability of the state x ≡ 0 and quadratic Lyapunov function v(x̂) = x̂T X̂−1x̂
of nonlinear closed loop system (1), (13).

3 Robust Stabilization and Optimization of Nonlinear Systems

We formulate an auxiliary statement that will be used in the proofs of our main results.
Consider a nonlinear operator

F(K) = W + UTD(K)V + V TDT (K)U + V TDT (K)RD(K)V (20)

with D(K) = (Im −KD)−1K and an ellipsoidal set of matrices

K =
{
K ∈ Rm×l : KTPK ≤ Q

}
, (21)

where P = PT > 0, Q = QT > 0, R = RT ≥ 0, W = WT ≤ 0, U , V and D are matrices
of suitable sizes.
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Lemma 3.1 [14] Suppose that the following matrix inequalities hold:

DTQD +R < P, Ω =

 W UT V T

U R− P DT

V D −Q−1

 ≤ 0 (< 0). (22)

Then F(K) ≤ 0 (< 0) for every matrix K ∈ K.

Note that Lemma 3.1 is a generalization of the sufficiency statement for a criterion
known as Petersen’s lemma on matrix uncertainty [15] (see also [16]).

Consider a nonlinear control system in the vector-matrix form

xt+1 = A(xt, t)xt +B(xt, t)ut, yt = C(xt, t)xt +D(xt, t)ut, (23)

where xt ∈ Rn, ut ∈ Rm and yt ∈ Rl. We construct a set of the static controllers

ut = K(xt, t) yt, K(xt, t) = K∗(xt, t) + K̃(xt, t), K̃(xt, t) ∈ K, (24)

where K is an ellipsoidal set of matrices of the form (21). We assume that the matrices
A, B, C, D, K and K∗ depend on xt and t continuously and the equilibrium state xt ≡ 0
is isolated, i.e., the neighborhood S0 = {x ∈ Rn : ‖x‖ ≤ h} does not contain other
equilibrium states of this system. If K ∈ KD, then the closed loop system (23), (24) can
be represented as

xt+1 = M(xt, t)xt, M(xt, t) = A+BD(K)C. (25)

Let the zero state of this system for K ≡ K∗ be asymptotically stable. When looking
for the stabilizing matrix K∗ in the class of autonomous systems (1), one can use Theorem
2.1 and its special cases. The problem is to construct conditions under which the zero
state of system (25) is asymptotically Lyapunov stable for every matrix K̃(xt, t) ∈ K. We
find a solution for our problem in terms of a quadratic Lyapunov function (see [6, 14]).

Theorem 3.1 Let for some matrix functions Xt = XT
t and K∗(x, t) the correlations

ε1In ≤ Xt ≤ ε2In, 0 < ε1 ≤ ε2, (26) MT
∗ Xt+1M∗ −Xt + ε0In MT

∗ Xt+1B∗ CT∗
BT∗ Xt+1M∗ BT∗ Xt+1B∗ − P DT

∗
C∗ D∗ −Q−1

 < 0, (27)

hold with ε0 > 0, M∗ = A + BD(K∗)C, B∗ = B(Im −K∗D)−1, C∗ = (Il − DK∗)−1C
and D∗ = D(Im−K∗D)−1, xt = 0 and t ∈ T . Then any control (24) ensures asymptotic
stability of the zero state xt ≡ 0 for system (25) and a common Lyapunov function
v(x, t) = xTXtx.

Consider control system (23) with quadratic quality functional

Ju(x0) =

∞∑
0

ϕt, ϕt =
[
xTt u

T
t

]
Φt

[
xt
ut

]
, (28)

where

Φt =

[
S N
NT R

]
, S ≥ NR−1NT + η In, R > 0, η > 0, t ∈ T .
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Theorem 3.2 Let for some matrix functions Xt = XT
t and K∗(xt, t) the correlations

(26) and MT
∗ Xt+1M∗ −Xt + Φ∗ + ε0In MT

∗ Xt+1B∗ +N∗ + CTKT
∗ R∗ CT∗

BT∗ Xt+1M∗ +NT
∗ +R∗K∗C BT∗ Xt+1B∗ +R∗ − P DT

∗
C∗ D∗ −Q−1

 < 0 (29)

hold with Φ∗ = LT∗ ΦL∗, L
T
∗ =

[
In, C

TDT (K∗)
]
, R∗ = (Im −K∗D)−1TR (Im −K∗D)−1,

N∗ = N(Im − K∗D)−1, ε0 > 0, xt = 0 and t ∈ T . Then any control (24) ensures
asymptotic stability of the zero state xt ≡ 0 for system (25), a common Lyapunov function
v(x, t) = xTXtx and a bound on the functional Ju(x0) ≤ v(x0, 0) = xT0X0x0.

Corollary 3.1 Let for some matrix Xt = XT
t > 0 and K∗ the system of LMI MT

ijkXt+1Mijk −Xt + Φk + ε0In MT
ijkXt+1B∗j +N∗ + CTk K

T
∗ R∗ CT∗k

BT∗jXt+1Mijk +NT
∗ +R∗K∗Ck BT∗jXt+1B∗j +R∗ − P DT

∗
C∗k D∗ −Q−1

 < 0,

hold with Mijk = Ai + BjD(K∗)Ck, B∗j = Bj(Im − K∗D)−1, Φk = LTk ΦLk, LTk =[
In, C

T
k DT (K∗)

]
, C∗k = (Il − DK∗)−1Ck, i = 1, α, j = 1, β, k = 1, γ, ε0 > 0, xt = 0,

t ∈ T . Then any control (24) ensures asymptotic stability of the zero state xt ≡ 0 for
system (25) with uncertainties A(0, t) ∈ Co{A1, . . . , Aα}, B(0, t) ∈ Co{B1, . . . , Bβ} and
C(0, t) ∈ Co{C1, . . . , Cγ}, a common Lyapunov function v(x, t) = xTXtx and a bound
on the functional Ju(x0) ≤ v(x0, 0) = xT0X0x0.

Note that the proofs of Theorems 3.1 and 3.2 follow directly from Lemma 3.1 and
the Lyapunov theorem on asymptotic stability taking into account representation of the
first difference of Lyapunov function v(x, t) with respect to system (25) in the form of a
quadratic function with matrix of the form (20) and application of formula (5) (see [6,14]).

4 Generalized H∞-control

4.1 Weighted level of perturbation suppression

Consider a dynamical system with external perturbations

xt+1 = f(xt, wt, t), yt = g(xt, wt, t), t ∈ T , (30)

where xt ∈ Rn, wt ∈ Rs and yt ∈ Rl are the state, the l2-norm-limited external pertur-
bations and the output vector, respectively.

Definition 4.1 The dynamical system (30) is called nonexpansive, if for all square-
integrable functions wt and τ > 0

τ∑
t=0

yTt Qyt ≤
τ∑
t=0

wTt Pwt + xT0X0x0,

where Q, P and X0 are weight symmetric positive definite matrices.

We introduce the performance criterion of system (30) with respect to output y:

J = sup
0<‖w‖2P+xT

0 X0x0<∞
ϕ(w, x0), (31)
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where

ϕ(w, x0) =
‖y‖Q√

‖w‖2P + xT0X0x0

, ‖y‖2Q =

∞∑
t=0

yTt Qyt, ‖w‖2P =

∞∑
t=0

wTt Pwt.

In case of x0 = 0, we denote J by J0. It is obvious that J0 ≤ J and J ≤ 1 for a
nonexpansive system. The value J describes the weighted level of external and initial
perturbation suppression in system (30). If P = Is, Q = Il and X0 = ρIn, then J and
J0 coincide with known performance criteria of dynamical systems [17].

Consider the class of linear systems

xt+1 = Axt +Bwt, yt = Cxt +Dwt, t ∈ T . (32)

Lemma 4.1 Let ρ(A) < 1. Then an evaluation J0 < γ for system (32) holds iff the
LMI

Ψγ =

[
ATXA−X + CTQC ATXB + CTQD
BTXA+DTQC BTXB +DTQD − γ2P

]
< 0 (33)

has a solution X = XT > 0. To perform the evaluation J < γ it is necessary and
sufficient that LMI (33) has a solution X such that

0 < X < γ2X0. (34)

The sufficiency assertion of Lemma 4.1 follows from the relation

∆v(xt) + yTt Qyt − γ2wTt Pwt =
[
xTt , w

T
t

]
Ψγ

[
xt
wt

]
< 0,

where ∆v(xt) = v(xt+1)−v(xt) is the first difference of Lyapunov function v(x) = xTXx
with respect to system (32). The necessity assertion of Lemma 4.1 may be established
via representation of functional ϕ(w, x0) by similar expression with the identity weight
matrices (see the proof of Lemma 5.1.1 in [6] and [17]).

Remark 4.1 If J0 < γ, then system (32) with a structured uncertainty

wt =
1

γ
Θyt, ΘTPΘ ≤ Q, t ∈ T , (35)

is robust stable and has a common Lyapunov function v(x) = xTXx. This fact follows
from Lemma 4.1 and Theorem 3.1. The functional ϕ(w, x0) on the set of functions (35)
takes the minimum value, if ΘTPΘ = Q.

It follows from Lemma 4.1 that the performance criteria J and J0 of system (32) may
be computed as the solutions of the corresponding optimization problems:

J0 = inf
{
γ : Ψγ < 0, X > 0

}
, J = inf

{
γ : Ψγ < 0, 0 < X < γ2X0

}
. (36)

Consider the affine system with norm-limited external perturbations

xt+1 = A(xt)xt +B(xt)wt, yt = C(xt)xt +D(xt)wt, t ∈ T , (37)

where A(x), B(x), C(x) and D(x) are continuous matrix functions in S0. We can for-
mulate the following statement.
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Lemma 4.2 Suppose that there exists a matrix X = XT > 0 satisfying the matrix
inequality[

AT (x)XA(x)−X + CT (x)QC(x) AT (x)XB(x) + CT (x)QD(x)
BT (x)XA(x) +DT (x)QC(x) BT (x)XB(x) +DT (x)QD(x)− γ2P

]
< 0

(38)
for all x ∈ S0. Then J0 ≤ γ and the zero state xt ≡ 0 of system (37) with a structured
uncertainty (35) is robust stable with a common Lyapunov function v(x) = xTXx. In
addition, if the restriction 0 < X ≤ γ2X0 holds, then J ≤ γ.

4.2 Static controllers with perturbations

Consider control systems (1), (2) and the performance criteria J and J0 of the form
(31). We are interested in control laws that ensure nonexpansivity property of close loop
system and minimize J and J0. A control law is said to be J-optimal, if the corresponding
close loop system has minimum performance criteria J .

Primarily, we consider the static output-feedback controller

ut = K∗yt + wt, t ∈ T , (39)

where wt ∈ Rm is a vector of l2-bounded perturbations and K∗ ∈ KD is an unknown
matrix. Assuming that det

[
Im − K∗D(x)

]
6= 0, x ∈ S0, we rewrite the corresponding

close loop systems in the form

xt+1 = A∗(xt)xt +B∗(xt)wt, yt = C∗(xt)xt +D∗(xt)wt, (40)

xt+1 = A∗xt +B∗wt, yt = C∗xt +D∗wt, (41)

where A∗(x) = A(x) +B(x)
[
Im −K∗D(x)

]−1
K∗C(x), B∗(x) = B(x)

[
Im −K∗D(x)

]−1
,

C∗(x) =
[
Il−D(x)K∗

]−1
C(x), D∗(x) =

[
Il−D(x)K∗

]−1
D(x), A∗ = A∗(0), B∗ = B∗(0),

C∗ = C∗(0), D∗ = D∗(0).

Theorem 4.1 For linear system (2), there exists an output-feedback controller (39)
such that J < γ iff the following correlations are feasible:

WT
R

[
ATXA−X + CTQC ATXB + CTQD
BTXA+DTQC BTXB +DTQD − γ2P

]
WR < 0, (42)

WT
L

[
AY AT − Y +BP−1BT AY CT +BP−1DT

CY AT +DP−1BT CY CT +DP−1DT−γ2Q−1
]
WL < 0, (43)

0 < X < γ2X0, XY = γ2In, (44)

where R = [C,D], L = [BT , DT ]. Herewith, the zero states x ≡ 0 of systems (40) and (41)
with uncertainty (35) are robust stable with common Lyapunov function v(x) = xTXx.

Remark 4.2 The gain matrix K∗ in Theorem 4.1 may be constructed in the form

K∗ = K0(Il +DK0)−1, −K0 ∈ KD, (45)

Here K0 is an arbitrary solution of the LMI

LT0K0R0 +RT0K
T
0 L0 + Ω < 0, (46)
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where

Ω =


−X 0 AT CT

0 −γ2P BT DT

A B −X−1 0
C D 0 −Q−1

 , RT0 =


CT

DT

0
0

 , LT0 =


0
0
B
D

 .
Lemma 4.3 [3] LMI (46) has a solution K0 if and only if

WT
L0

ΩWL0
< 0, WT

R0
ΩWR0

< 0, (47)

where WL0 (WR0) is a matrix whose columns make up the bases of the kernel KerL0

(KerR0).

4.3 Dynamic controllers with perturbations

Consider control systems (1) and (2) with the dynamic output-feedback controller

ξt+1 = Zξt + V yt, ut = Uξt +Kyt + wt, t ∈ T , (48)

where ξ0 = 0, wt ∈ Rm is a vector of bounded perturbations, Z, V , U and K are unknown
coefficient matrices. If K ∈ KD, then linear close loop system (2), (48) reduces to the
form

x̂t+1 = Â∗x̂t + B̂∗wt, yt = Ĉ∗x̂t + D̂∗wt, (49)

where

x̂t =

[
xt
ξt

]
, Â =

[
A 0
0 0

]
, B̂ =

[
B 0
0 Ir

]
, Ĉ =

[
C 0
0 Ir

]
,

Â∗ = Â+ B̂K̂0Ĉ, B̂∗ = B̂1 + B̂K̂0D̂1, Ĉ∗ = Ĉ1 + D̂2K̂0Ĉ, D̂∗ = D + D̂2K̂0D̂1,

B̂1 =

[
B
0

]
, Ĉ1 =

[
C 0

]
, D̂1 =

[
D
0

]
, D̂2 =

[
D 0

]
, K̂0 =

[
K0 U0

V0 Z0

]
,

K0 = D(K), U0 = (Im −KD)−1U, V0 = V (Il −DK)−1, Z0 = Z + V D(Im −KD)−1U.

We give the following auxiliary statement (see also [18] in the case of γ = 1).

Lemma 4.4 Given the matrices X > 0, Y > 0 and the number γ > 0, there are
matrices X1 ∈ Rr×n, X2 ∈ Rr×r, Y1 ∈ Rr×n and Y2 ∈ Rr×r such that

X̂ =

[
X XT

1

X1 X2

]
> 0, Ŷ =

[
Y Y T1
Y1 Y2

]
> 0, X̂Ŷ = γ2In+r, (50)

if and only if

W =

[
X γIn
γIn Y

]
≥ 0, rankW ≤ n+ r. (51)

Applying Lemmas 4.3, 4.4 and Theorem 4.1 to system (49), we get the following
result.

Theorem 4.2 There exists a dynamic controller (48) such that the evaluation J < γ
holds for linear system (49), iff the LMI system (34), (42), (43) and (51) is solvable with
respect to X = XT > 0 and Y = Y T > 0. In addition, a close loop system (49) with a
structured uncertainty (35) is robust stable.
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Remark 4.3 The coefficient matrices of dynamic controller (48) in Theorem 4.2 may

be constructed in the form (18) by solving LMI with respect to K̂0:

L̂T K̂0R̂+ R̂T K̂T
0 L̂+ Ω̂ < 0, (52)

where

Ω̂ =


−X̂ 0 ÂT ĈT1

0 −γ2P B̂T1 DT

Â B̂1 −X̂−1 0

Ĉ1 D 0 −Q−1

 , R̂T =


ĈT

D̂T
1

0
0

 , L̂T =


0
0

B̂

D̂2

 .
Here X̂ is a block matrix determined in Lemma 4.4 for X and Y satisfying Theorem 4.2.

If K ∈ KD, then det
[
Im−KD(x)

]
6= 0 for all x ∈ S0, where S0 is some neighbourhood

of the point x = 0, and nonlinear close loop system (1), (48) reduces to the form

x̂t+1 = Â∗(x̂t)x̂t + B̂∗(x̂t)wt, yt = Ĉ∗(x̂t)x̂t + D̂∗(x̂t)wt, (53)

where all coefficient matrices are continuous in S0. Therefore, the dynamic controller
(48), (18) ensures robust stability of the zero state x̂t ≡ 0 of system (53) with uncertainty

(35) and a common Lyapunov function v(x̂) = x̂T X̂x̂. To evaluate characteristics J0 and
J of system (53), we can apply Lemma 4.2.

4.4 Control systems with controlled and observed outputs

Consider the linear control system

xt+1 = Axt +B1wt +B2ut,
zt = C1xt +D11wt +D12ut,
yt = C2xt +D21wt +D22ut,

(54)

where xt ∈ Rn, ut ∈ Rm, wt ∈ Rs, zt ∈ Rk and yt ∈ Rl are the state, the control, the
norm-limited external perturbations, the controlled and observed outputs, respectively,
and t ∈ T . We are interested in static and dynamic control laws that ensure nonexpan-
sivity property of close loop system and minimize the performance criteria J and J0 with
respect to controlled output z of the form (31), where

ϕ(w, x0) =
‖z‖Q√

‖w‖2P + xT0X0x0

, ‖z‖2Q =

∞∑
t=0

zTt Qzt, ‖w‖2P =

∞∑
t=0

wTt Pwt.

4.4.1 Static controllers

If we use the static output feedback controller

ut = Kyt, K ∈ KD22 , t ∈ T , (55)

then closed loop system (54), (55) has the form

xt+1 = A∗xt +B∗wt, zt = C∗xt +D∗wt, (56)
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where A∗ = A + B2K0C2, B∗ = B1 + B2K0D21, C∗ = C1 + D12K0C2, D∗ = D11 +
D12K0D21 and K0 = (Im − KD22)−1K. To formulate an analog of Theorem 4.1 we
construct the following LMI

WT
R

[
ATXA−X + CT1 QC1 ATXB1 + CT1 QD11

BT1 XA+DT
11QC1 BT1 XB1 +DT

11QD11 − γ2P

]
WR < 0, (57)

WT
L

[
AY AT − Y +B1P

−1BT1 AY CT1 +B1P
−1DT

11

C1Y A
T +D11P

−1BT1 C1Y C
T
1 +D11P

−1DT
11−γ2Q−1

]
WL < 0, (58)

where R =
[
C2, D21

]
, L =

[
BT2 , D

T
12

]
.

Theorem 4.3 For system (54), there exists an output feedback controller (55) such
that J < γ iff the system of correlations (44), (57) and (58) is feasible. Herewith, closed
loop system (56) with a structured uncertainty

wt =
1

γ
Θzt, ΘTPΘ ≤ Q, t ∈ T , (59)

is robust stable with common Lyapunov function v(x) = xTXx.

If we use a static state feedback ut = Kxt, then C2 = In, D21 = 0 and D22 = 0. In
this case the correlations (44) and (57) can be written as[

X0 In
In Y

]
> 0,

[
P − γ−2DT

11QD11 BT1
B1 Y

]
> 0. (60)

Corollary 4.1 For system (54), there exists a state feedback controller ut = Kxt such
that J < γ iff the LMI system (58) and (60) is solvable for some matrix Y = Y T > 0.
Herewith, closed loop system (56) with uncertainty (59) is robust stable with common
Lyapunov function v(x) = γ2xTY −1x.

Remark 4.4 The gain matrix K in Theorem 4.3 and Corollary 4.1 may be con-
structed as

K = K0(Il +D22K0)−1, −K0 ∈ KD22
, (61)

where K0 is an arbitrary solution of LMI:

LT0K0R0 +RT0K
T
0 L0 + Ω < 0,

where

Ω =


−X 0 AT CT1

0 −γ2P BT1 DT
11

A B1 −X−1 0
C1 D11 0 −Q−1

 , RT0 =


CT2
DT

21

0
0

 , LT0 =


0
0
B2

D12

 .
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4.4.2 Dynamic controllers

If we use the dynamic output feedback

ξt+1 = Zξt + V yt, ut = Uξt +Kyt, t ∈ T , (62)

with ξ0 = 0 and K ∈ KD22 , then closed loop system (54), (62) has the form

x̂t+1 = Â∗x̂t + B̂∗wt, zt = Ĉ∗x̂t + D̂∗wt, (63)

where

x̂t =

[
xt
ξt

]
, Â =

[
A 0
0 0

]
, B̂2 =

[
B2 0
0 Ir

]
, Ĉ2 =

[
C2 0
0 Ir

]
,

Â∗ = Â+ B̂2K̂0Ĉ2, B̂∗ = B̂1 + B̂2K̂0D̂21, Ĉ∗ = Ĉ1 + D̂12K̂0Ĉ2, D̂∗ = D11 + D̂12K̂0D̂21,

B̂1 =

[
B1

0

]
, Ĉ1 =

[
C1, 0

]
, D̂21 =

[
D21

0

]
, D̂12 =

[
D12, 0

]
, K̂0 =

[
K0 U0

V0 Z0

]
.

Here the blocks of matrix K̂0

K0 = (Im −KD22)−1K, U0 = (Im −KD22)−1U,

V0 = V (Il −D22K)−1, Z0 = Z + V D22(Im −KD22)−1U,

are unknown, and

K = (Im +K0D22)−1K0, U = (Im +K0D22)−1U0,

V = V0(Il +D22K0)−1, Z = Z0 − V0D22(Im +K0D22)−1U0.
(64)

Applying Lemmas 4.3, 4.4 and Theorem 4.1 to system (63), we get the following
result.

Theorem 4.4 For linear system (54), there exists a dynamic controller (62) such
that J < γ iff the system of correlations (34), (51), (57) and (58) is feasible. Herewith,
closed loop system (63) with uncertainty (59) is robust stable.

Remark 4.5 The coefficient matrices of dynamic controller (62) in Theorem 4.4 may
be constructed in the form (64) by solving the LMI

L̂T K̂0R̂+ R̂T K̂T
0 L̂+ Ω̂ < 0, (65)

where

Ω̂ =


−X̂ 0 ÂT ĈT1

0 −γ2P B̂T1 DT
11

Â B̂1 −X̂−1 0

Ĉ1 D11 0 −Q−1

 , R̂T =


ĈT2
D̂T

21

0
0

 , L̂T =


0
0

B̂2

D̂12

 .
Herewith, system (63) with uncertainty (59) has common Lyapunov function v(x̂) =

x̂T X̂x̂. Here X̂ is a block matrix determined in Lemma 4.4 for X and Y satisfying
Theorem 4.4.
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We give the following algorithm for constructing stabilizing dynamic controller (62)
satisfying Theorem 4.4.

Algorithm 4.1 1) calculate the matrices WR and WL, where R =
[
C2, D21

]
and

L =
[
BT2 , D

T
12

]
;

2) find the matrices X = XT > 0 and Y = Y T > 0 satisfying (34), (51), (57) and
(58);

3) construct the expansion Z = Y − γ2X−1 = STS, S ∈ Rr×n, kerS = kerZ and
form the block matrix

X̂ =

[
X XT

1

X1 X2

]
> 0, X1 =

1

γ
SX, X2 =

1

γ2
SXST + Ir;

4) solve the LMI (65) under restriction det(Im +K0D22) 6= 0;
5) calculate the coefficient matrices of dynamic controller (62) by formula (64).

Static and dynamic output-feedback controllers (55) and (62) with K ∈ KD22 may
be applied to a class of affine systems

xt+1 = A(xt)xt +B1(xt)wt +B2(xt)ut,
zt = C1(xt)xt +D11(xt)wt +D12(xt)ut,
yt = C2(xt)xt +D21(xt)wt +D22(xt)ut.

(66)

So, close loop system (62), (66) reduces to the form

x̂t+1 = Â∗(x̂t)x̂t + B̂∗(x̂t)wt, zt = Ĉ∗(x̂t)x̂t + D̂∗(x̂t)wt. (67)

As a result, the dynamic controller (62), (64) ensures robust stability of the zero state
x̂t ≡ 0 of system (67) with uncertainty (59) and a common Lyapunov function v(x̂) =

x̂T X̂x̂. To evaluate characteristics J0 and J of system (67), we can apply Lemma 4.2.

Remark 4.6 Note that we have necessary and sufficient conditions for an evaluation
J0 < γ represented by the corresponding statements of Theorems 4.1 – 4.4 without using
additional restriction X < γ2X0. With the use of static state feedback or full order
dynamic controllers the problems under consideration are reduced to the solution of LMI
systems. We can formulate analogs of Theorems 4.1 – 4.4 for the corresponding control
systems with uncertain coefficient matrices

A ∈ Co
{
A1, . . . , Aν1

}
, B1 ∈ Co

{
B1

1 , . . . , B
ν2
1

}
,

C1 ∈ Co
{
C1

1 , . . . , C
ν3
1

}
, D11 ∈ Co

{
D1

11, . . . , D
ν4
11

}
.

In addition, sufficient statements of these theorems may be generalized for the corre-
sponding affine control systems with continuous coefficient matrices (see Lemma 4.2).
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