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1 Introduction

Fractional differential equations have various applications in widespread fields of science,
such as engineering [5], chemistry [14,15], physics [1,8], and others [9,10]. Despite there
being a number of existence theorems for nonlinear fractional differential equations, much
as in the integer order case, this does not necessarily imply that calculating a solution
explicitly will be routine, or even possible. Therefore, it may be necessary to employ
an iterative technique to numerically approximate a needed solution. In this paper we
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construct such a method. For some existence results on fractional differential equations
we refer the reader to the papers [6,7] and the books [9,16] along with references therein.

The iterative technique we construct in this paper is a generalization of the monotone
method. Put simply, this method constructs two sequences from upper and lower solu-
tions that converge monotonically and uniformly to maximal and minimal solutions. The
advantage of the monotone method is that solutions of nonlinear differential equations
are approximated by solutions of linear differential equations. Further, the interval of
existence for the solution is guaranteed due to the nature of the upper and lower solutions
and the method is valid whether the original DE has a unique solution or not. There are
complications that arise when developing the monotone method for Riemann-Liouville
equations. A major wrinkle comes from the fact that the constructed sequences do not
converge uniformly themselves, but instead the weighted sequences {t1−qvn}, {t1−qwn}
converge uniformly to weighted maximal and minimal solutions, where q is the order of
the system.

The monotone method has been constructed for various forms of differential equa-
tions, in this paper we extend the method to approximate Riemann-Liouville fractional
integro-differential systems. Integro-differential equations generalize the problem by in-
corporating an integral transformation within the forcing function of the problem, e.g.
f(t, x,

∫ t
0
K(x, s)x(s)ds), and therefore generalize the possibilities of models, see [13]. A

generalized monotone method for the scalar form of this problem was constructed in [2],
and in this paper we extend the problem to an N -system of these equations. Moving
to finite systems allows for generalizations that include many combinations of mono-
tone properties along with upper and lower solution constructions. For example, we
can reorder the variables within f for each iterate so that it increases in some variables
and decreases in others, e.g. fi(t, x) = fi(t, [x]si , [x]ri) where fi increases in [x]si and
decreases in [x]ri . When combined with an integral transformation T we establish the
generalized system of the form

Dqxi = fi(t, xi, [x]ri , [x]si , [Tx]ρi , [Tx]σi),

where fi is split into components where it is increasing and decreasing respectively.
There is more nuance to these generalizations than described here, and we will go into

more detail in Sections 2 and 3. In the final section we will develop numerical examples
which exemplify our main results. The monotone method for more standard Riemann-
Liouville fractional differential systems and multi-order systems was established in [3,4],
and more information on the monotone method for ordinary differential equations and
systems can be found in [11].

2 Preliminary Results

In this section, we will first consider basic results regarding scalar Riemann-Liouville
(R-L) differential equations of order q, 0 < q < 1. We will recall basic definitions and
results in this case for simplicity, and we note that many of these results carry over
naturally to finite systems. In the next section, we will apply these preliminary results to
develop the monotone method for nonlinear fractional integro-differential systems. Note,
for simplicity we only consider results on the interval J = (0, T ], where T > 0. Further,
we will let J0 = [0, T ], that is J0 = J̄ .

Definition 2.1 Let p = 1− q, a function φ(t) ∈ C(J,R) is a Cp continuous function
if tpφ(t) ∈ C(J0, R). The set of Cp continuous functions is denoted Cp(J,R). Further,
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given a function φ(t) ∈ Cp(J,R), we call the function tpφ(t) the continuous extension of
φ(t).

Now we define the R-L integral and derivative of order q on the interval J .

Definition 2.2 Let φ ∈ Cp(J,R), then Dq
tφ(t) is the q-th R-L derivative of φ with

respect to t ∈ J defined as

Dq
tφ(t) =

1

Γ(1− q)
d

dt

∫ t

0

(t− s)−qφ(s)ds,

and Iqt φ(t) is the q-th R-L integral of φ with respect to t ∈ J defined as

Iqt φ(t) =
1

Γ(q)

∫ t

0

(t− s)q−1φ(s)ds.

Note that in cases where the initial value may be different or ambiguous, we will write
out the definition explicitly. The next definition is related to the solution of linear R-L
fractional differential equations and is also of great importance in the study of the R-L
derivative.

Definition 2.3 The Mittag-Leffler function with parameters α, β ∈ R, denoted Eα,β ,
is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
,

which is entire for α, β > 0.

For fractional differential equations we utilize the weighted Cp version of the Mittag-
Leffler function tq−1Eq,q(t

q), since it is its own q-th derivative. Further, it attains a
convergence result we mention in the following remark.

Remark 2.1 The Cp weighted Mittag-Leffler function

tq−1Eq,q(λt
q) =

∞∑
k=0

λktkq+q−1

Γ(kq + q)
,

where λ is a constant, converges uniformly on compacta of J . Further

Dq
[
tq−1Eq,q(λt

q)
]

= λtq−1Eq,q(λt
q),

and
Iq
[
tq−1Eq,q(λt

q)
]

= 1
λ t
q−1Eq,q(λt

q)− 1
λΓ(q) t

q−1.

The next result gives us that the q-th R-L integral of a Cp continuous function is also
a Cp continuous function. This result will give us that the solutions of R-L differential
equations are also Cp continuous.

Lemma 2.1 Let f ∈ Cp(J,R), then Iqf(t) ∈ Cp(J,R), i.e. the q-th integral of a Cp
continuous function is Cp continuous.

Note the proof of this theorem for q ∈ R+ can be found in [4].
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Remark 2.2 In [9] and [12] it was proven that if 0 < q < 1, G ⊂ R is an open
set, and f : J × G → R is such that for any x ∈ G, f ∈ Cp (J,G), then x satisfies the
fractional differential equation

Dqx = f(t, x), with initial condition tpx
∣∣
t=0

= x0, (1)

if and only if it satisfies the Volterra fractional integral equation

x(t) = x0t
q−1 +

1

Γ(q)

∫ t

0

(t− s)q−1f(s, x)ds. (2)

This relationship is especially true if f : [0, T ]×G→ R is continuous.

Now we consider results for the nonhomogeneous linear R-L differential equation,

Dq
tx(t) = λx(t) + z(t), tpx(t)

∣∣
t=0

= x0, (3)

where x0 is a constant and x, z ∈ Cp(J,R), which has unique solution

x(t) = x0Γ(q)tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)z(s) ds.

Next, we recall a result we will utilize extensively in our proceeding comparison and
existence results, and likewise in the construction of the monotone method. We note that
this result is similar to the well known comparison result found in literature, as in [12],
but we do not require the function to be Hölder continuous of order λ > q.

Lemma 2.2 Let m ∈ Cp(J,R) be such that for some t1 ∈ J we have m(t1) = 0 and
m(t) ≤ 0 for t ∈ (0, t1]. Then

Dq
tm(t)

∣∣
t=t1
≥ 0.

The proof of this lemma can be found in [4], along with further discussion as to why
and how we weaken the Hölder continuous requirement. We use this lemma in the proof
of the later main comparison result, which will be critical in the construction of the
monotone method.

Now we will consider results for finite N -systems of R-L integro-differential equations.
For simplicity, we will henceforth assume that i ∈ {1, 2, 3, . . . , N}, and that for any N
element vectors x, y, x ≤ y implies xi ≤ yi for all i. We extend the concept of Cp
continuous functions to RN in the natural way

Cp(J,R
N ) = {φ ∈ C(J,RN ) | tpφi ∈ C(J0, R), 1 ≤ i ≤ N}.

For simplicity we introduce the following notation for the scalar multiplication form of
the continuous extension xp(t) = tpx(t), so that tpx

∣∣
t=0

becomes xp(0). The system we
consider is

Dqxi = fi(t, x, Tx), xpi(0) = x0
i , (4)

where each x0
i is a constant, and Tx is a simplified notation for

Tx = {T1x1, T2x2, T3x3, . . . TNxN}, Tixi =

∫ t

0

Ki(s, t)xi(s)ds,

and where Ki is continuous and positive on J0 for each i.
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Remark 2.3 Notice that each Ki is bounded on J0 so letting K̂ be a bound for each
Ki, and using Remark 2.1, for each i we have

Tit
q−1Eq,q(λt

q) ≤ K̂

Γ(q)

∫ t

0

Γ(q)(t− s)p

(t− s)p
sq−1Eq,q(λs

q)ds

≤ K̂T p 1

Γ(q)

∫ t

0

(t− s)q−1sq−1Eq,q(λs
q)ds < K̂T pΓ(q) 1

λ t
q−1Eq,q(λt

q).

Now, we introduce the concept of quasimonotonicity, which will be a generalization
of monotonicity for our main results.

Definition 2.4 A function φ : RN → RN is said to be quasimonotone increasing
if for each i, x ≤ y and xi = yi implies φi(x) ≤ φi(y). Naturally, φ is quasimonotone
decreasing if we reverse the inequalities.

From now on, if we wish to designate standard monotonicity we will state that a
function increases or decreases traditionally. In our main result, we construct our iterative
technique from lower and upper solutions. Further, many of our preliminary results stem
from these solutions which we define below.

Definition 2.5 Let v, w ∈ Cp(J,RN ), then v, w are lower and upper solutions of (4)
respectively if

Dqvi ≤ fi(t, v, Tv), Dqwi ≥ fi(t, w, Tw), vpi(0) ≤ x0
i ≤ wpi(0).

Now we present the main comparison theorem that will form the base of our remaining
results. This result gives us conditions for when lower and upper solutions behave in a
natural way, i.e. when v ≤ w on J . Specifically, if f is quasimonotone in x and monotone
in Tx and satisfies a one-sided Lipschitz condition, then v ≤ w. The result is given below.

Theorem 2.1 Let v, w ∈ Cp(J,R
N ) be lower and upper solutions of (4). If f is

quasimonotone increasing in x and traditionally increasing in Tx, and satisfies the Lip-
schitz condition:

fi(t, x, Tx)− fi(t, y, Ty) ≤
N∑
k=1

Li(xk − yk) +MiTk(xk − yk),

then v ≤ w on J .

Proof. We start by assuming that one of the inequalities is strict, Dqvi < fi(t, v, Tv)
for each i, and vp(0) < wp(0), and we will show that v < w on J . Suppose to the contrary
that our claim is not true, then the set

Z =

N⋃
i=1

{t ∈ J : vi(t) = wi(t)}

is nonempty. So let τ = inf Z, and suppose without loss of generality, via reordering
if necessary, that v1(τ) = w1(τ). Now by the continuity of vp and wp on J0 and since
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vp(0) < wp(0), we have that vp < wp on [0, τ), and thus giving us that v ≤ w on (0, τ ].
This also gives us that Tivi(τ) ≤ Tiwi(τ) for each i.

Letting m = v − w we have by Lemma 2.2 that Dqm|t=τ ≥ 0. Now, using this and
the quasimonotone and traditional monotone properties of f we obtain:

f1(τ, v(τ), T v(τ)) > Dqvj
∣∣
t=τ
≥ Dqwj

∣∣
t=τ
≥ f1(τ, w(τ), Tw(τ))

= f1(τ, v1(τ), w2(τ), w3(τ), . . . wN (τ), Tw(τ)) ≥ f1(τ, v(τ), T v(τ)),

which is a contradiction. Therefore, v < w on J .

Now, to prove the theorem as given we will use the strict inequality case. To do so
let ε > 0, and construct functions

vεi = vi − εϕ, wεi = wi + εϕ,

where ϕ(t) = tq−1Eq,q((N + 1)Ltq) and L is defined as

L = max
1≤i≤N

{
K̂T pΓ(q), Li,Mi

}
,

where K̂ is defined as in Remark 2.3. Note that by definition vε < v and wε > w on J
since ϕ > 0 on J . To start with, note that for each i

v0
ε i = tpvεi

∣∣
t=0

= v0
i − εEq,q(0) = v0

i −
ε

Γ(q)
< v0

i ,

so v0
ε < v0. Then, for each i, we have

Dqvεi ≤ fi(t, v, Tv)− ε(N + 1)Lϕ
= fi(t, vε, T vε) + fi(t, v, Tv)− fi(t, vε, T vε)− ε(N + 1)Lϕ

≤ fi(t, vε, T vε) +

N∑
k=1

[
Lk(vk − vεk) +MkT (vk − vεk)

]
− ε(N + 1)Lϕ

≤ fi(t, vε, T vε) +NLεϕ+NLTεϕ− ε(N + 1)Lϕ

< fi(t, vε, T vε) +
NL

(N + 1)
εϕ− εLϕ < fi(t, vε, T vε).

We note that the penultimate inequality came from the application of Remark 2.3.
Further, we can similarly show that Dqwεi > fi(t, wε, Twε). Therefore, by the previous
work involving strict inequalities we have that vε < wε on J . Then letting ε → 0 we
obtain v ≤ w on J , which completes the proof. This result can be extended to linear
systems utilizing the following corrolary, the result follows from the Lipschitz nature of
linear systems.

Corollary 2.1 If g is a continuous function and v, w ∈ Cp satisfy the following
properties

Dqvi ≤ λvi + gi(t), Dqwi ≥ λwi + gi(t), vpi(0) ≤ wpi(0),

then v ≤ w on J .



136 Z. DENTON AND J.D. RAMÍREZ

3 Monotone Method

For this section we expand our general system to cover more cases. To do so we split {xi}
and {Tixi} within each fi to isolate variables where each fi is increasing or decreasing
in each i. So, for each i, let ri, si, ρi, σi be such that ri + si = N − 1 and ρi + σi = N .
Then, for each i, reorder x and Tx, using the following notation

x ={x1, x2, x3, . . . , xN} = {xi, [x]ri , [x]si},
Tx ={T1x1, T2x2, T3x3, . . . , TNxN} = {[Tx]ρi , [Tx]σi

}.

This reordering allows us to isolate the variables where each fi increases or decreases,
and each ri, si, ρi, σi represents the number of x terms with each monotone property, and
yields the following definition regarding f .

Definition 3.1 We say f possesses the mixed quasimonotonicity property if for each
i

fi(t, x, Tx) = fi(t, xi, [x]ri , [x]si , [Tx]ρi , [Tx]σi
),

and where fi is quasimonotone increasing in [x]ri , quasimonotone decreasing in [x]si ,
traditionally increasing in [Tx]ρi , and traditionally decreasing in [Tx]σi

.

Remark 3.1 Definition 3.1 generalizes standard monotone cases for system (4), since
if si = σi = 0, Definition 3.1 reduces down to f(t, x, Tx) which is quasimonotone in-
creasing in x and traditionally increasing in Tx. Similarly, Definition 3.1 reduces to
quasimonotone decreasing in x and traditionally decreasing in Tx when ri = ρi = 0.

Now, the final fractional integro-differential system we construct the monotone
method for is:

Dqxi = fi(t, xi, [x]ri , [x]si , [Tx]ρi , [Tx]σi
), xpi(0) = x0

i , (5)

where f has the mixed quasimonotonicity property. This new formulation allows us
to define new types of coupled upper and lower quasisolutions. We still have natural
upper and lower solutions as defined in Definition 2.5, but in the following definition we
introduce coupled, i.e. mixed, forms of the lower and upper solutions.

Definition 3.2 v, w ∈ Cp are Type I coupled lower and upper quasisolutions of (5)
if

Dqvi ≤ fi(t, vi, [v]ri , [w]si , [Tv]ρi , [Tw]σi), vpi(0) = v0
i ≤ x0

i

Dqwi ≥ fi(t, wi, [w]ri , [v]si , [Tw]ρi , [Tv]σi
), wpi(0) = w0

i ≥ x0
i .

v, w ∈ Cp are Type II coupled lower and upper quasisolutions of (5) if

Dqvi ≤ fi(t, wi, [w]ri , [v]si , [Tw]ρi , [Tv]σi
), vpi(0) = v0

i ≤ x0
i

Dqwi ≥ fi(t, vi, [v]ri , [w]si , [Tv]ρi , [Tw]σi
), wpi(0) = w0

i ≥ x0
i .

If the inequalities in above definitions are replaced with equal signs, then they become
coupled Type I or II quasisolutions of (5) and minimal and maximal coupled Type I or
II quasisolutions are defined in the natural way given these definitions.
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In an effort to simplify our manuscript and make it more readable we introduce the
following notation, for each i, let [v, w]i be such that

fi(t, xi, [v, w]i) = fi(t, xi, [v]ri , [w]si , [Tv]ρi , [Tw]σi
).

Thus the first component of [v, w]i corresponds with the “increasing” portion of f and
the second component corresponds with the “decreasing” portion of f . So for example,
the above coupled lower and upper quasisolutions can be rewritten as

Type I: Dqvi ≤ fi(t, vi, [v, w]i), Dqwi ≥ fi(t, wi, [w, v]i),

Type II: Dqvi ≤ fi(t, wi, [w, v]i), Dqwi ≥ fi(t, vi, [v, w]i).

Now, if we know of the existence of lower and upper solutions v and w such that
v ≤ w, we can prove the existence of a solution in the set

Ω = {(t, y) : v(t) ≤ y ≤ w(t), t ∈ J}.

We consider this result in the following theorem.

Theorem 3.1 Let v, w ∈ Cp(J,RN ) be Type I lower and upper solutions of (5) such
that v ≤ w on J and let f ∈ C(Ω, RN ), where Ω is defined as above. Then there exists a
solution x ∈ Cp(J,RN ) of (4) such that v ≤ x ≤ w on J .

This theorem is proved in the same way as seen in [4], with only minor additions
to incorporate the transformation T . In the next theorem we establish our main result.
Essentially, if there are Type I lower and upper quasisolutions that satisfy their natural
inequalities, that is v ≤ w on J , and if f satisfies the described conditions, then we can
construct sequences of linear R-L systems, where the Cp continuous extensions converge
uniformly and monotonically to maximal and minimal Type I quasisolutions.

Theorem 3.2 Let f possess the mixed quasimonotone property. Let v0, w0 ∈
Cp(J,R

N ) be Type I coupled lower and upper quasisolutions of (5) such that v0 ≤ w0

on J . For each i suppose fi satisfies the following one-sided Lipschitz condition in the
xi component:

fi(t, xi, [x, x]i)− fi(t, yi, [x, x]i) ≥ −Mi(xi − yi),

whenever v0 ≤ x ≤ w0, and v0i ≤ yi ≤ xi ≤ w0i on J and Mi ≥ 0. Then there exist
monotone sequences {vn} and {wn} such that

tpvn → tpv, tpwn → tpw,

uniformly and monotonically on J0, where v and w are Type I coupled minimal and
maximal quasisolutions of (5) on J for solutions v0 ≤ x ≤ w0.

Proof. For the construction of the sequences let η, ξ ∈ Cp(J,RN ) with v0 ≤ η, ξ ≤ w0

on J , then we start by considering the system

Dqxi = fi(t, ηi, [η, ξ]i)−Mi(xi − ηi), xpi(0) = x0
i . (6)

We note that this system is an uncoupled linear system, therefore for each η, ξ the system
has a unique solution x. Thus we can define a transformation A that yields the unique
solution of (6) for each η, ξ, that is A[η, ξ] = x. We will construct our monotone sequences
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using this transformation, so we wish to show that A has a mixed monotone property.
A is increasing in its first component and decreasing in its second component. To prove
this, let η, η̂, ξ ∈ Cp such that v0 ≤ η, η̂, ξ ≤ w0 and η ≥ η̂ on J . Now suppose xa, xb ∈ Cp
such that A[η, ξ] = xa and A[η̂, ξ] = xb.

Now, since η ≥ η̂, we have that Tη ≥ T η̂, and then by the mixed quasimonotone
property of f we have that

fi(t, η̂i, [η, ξ]i) ≥ fi(t, η̂i, [η̂, ξ]i).

So, using this, the definition of xa and the Lipschitz condition of f we obtain

Dqxai = fi(t, η̂i, [η, ξ]i) + fi(t, ηi, [η, ξ]i)− fi(t, η̂i, [η, ξ]i)−Mi(xai − ηi)
≥ fi(t, η̂i, [η, ξ]i)−Mi(xai − η̂i) ≥ fi(t, η̂i, [η̂, ξ]i)−Mi(xai − η̂i),

and by definition of xb

Dqxbi = fi(t, η̂i, [η̂, ξ]i)−Mi(xbi − η̂i).

Thus, by Theorem 2.1 we have that xb ≤ xa, i.e. A[η̂, ξ] ≤ A[η, ξ] on J . Since η, η̂ were
arbitrary, we have that A is increasing in its first component. Similarly, we can show that
A is decreasing in its second component. Therefore A has a mixed monotone property,
and with it we obtain the property that A[η, ξ] ≤ A[ξ, η] when v0 ≤ η ≤ ξ ≤ w0 on J .

The sequences {vn} and {wn} we construct are unique solutions of the fractional
systems

Dqvn+1i = fi(t, vni, [vn, wn]i)−Mi(vn+1i − vni), v0
n+1i

= x0
i ,

Dqwn+1i = fi(t, wni, [wn, vn]i)−Mi(wn+1i − wni), w0
n+1i

= x0
i ,

where v0 and w0 are as defined in the hypothesis. That is, the sequences are defined as

vn+1 = A[vn, wn], wn+1 = A[wn, vn].

With the transformation A it is far more efficient to prove that the sequences are mono-
tonic inductively, since if

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vk−1 ≤ vk ≤ wk ≤ wk−1 ≤ · · · ≤ w2 ≤ w1 ≤ w0

up to some k, then

A[vk−1, wk−1] ≤ A[vk, wk] ≤ A[wk, vk] ≤ A[wk−1, vk−1],

implying vk ≤ vk+1 ≤ wk+1 ≤ wk on J , and giving us the monotonicity of the constructed
sequences.

Now we will prove that the weighted sequences {tpvn}, {tpwn} converge uniformly,
to do so we will invoke the Arzela-Ascoli theorem. To begin, note that for all i we have
that

|tp(vi)| ≤ |tp(vi − v0)|+ |tpv0| ≤ |tp(w0 − v0)|+ |tpv0|,

giving us that {tpvn} is uniformly bounded. Now we wish to show that the weighted
sequence is uniformly continuous. For simplicity, for each i and n, let

Fi(vn+1) = fi(t, vni, [vn, wn]i)−Mi(vn+1i − vni),
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then since each vn is Cp continuous, f is continuous over J0, and since {tpvn} is uniformly
bounded, we can choose µ > 0 such that |tpFi(vn)| ≤ µ for all i and all n. Also, our
preceding argument requires analysis of the function

ϕ(t) = tp(t− s)−p,

for 0 ≤ s ≤ t ≤ T , specifically we note that ϕ is decreasing in t, to show why consider

d
dtϕ = ptp−1(t− s)−p−1(−s) ≤ 0.

Now, let ε > 0, and let t, τ ∈ (0, T ] such that, without loss of generality, 0 < t ≤ τ
and τ − t < ε1/q. Further, suppose ε is sufficiently small enough such that 1 ≤ τ

t < 2.
Then via Remark 2.2, utilizing that ϕ(τ) ≤ ϕ(t), we have for each i and n,

|τpvni(τ)− tpvni(t)|

=
∣∣∣ 1

Γ(q)

∫ τ

0

ϕ(τ)Fi(vn)ds− 1

Γ(q)

∫ t

0

ϕ(t)Fi(vn)ds
∣∣∣

≤ 1

Γ(q)

∫ τ

t

ϕ(τ)|Fi(vn)|ds+
1

Γ(q)

∫ t

0

|ϕ(τ)− ϕ(t)||Fi(vn)|ds

≤ µ

Γ(q)
τptq−1

∫ τ

t

(τ − s)q−1ds+
µ

Γ(q)

∫ t

0

(ϕ(t)− ϕ(τ))sq−1ds.

=
µ

Γ(q + 1)

(τ
t

)p
(τ − t)q +

µΓ(q)

Γ(2q)
tq − µτp

Γ(q)

∫ t

0

(τ − s)q−1sq−1ds. (7)

From here we will evaluate the third term from (7) individually, and for simplicity without
the constant µ

Γ(q) . To do so we will use the integral form of the beta funtion B(q, q),

B(q, q) =
Γ(q)Γ(q)

Γ(2q)
=

∫ 1

0

(1− α)q−1αq−1dα.

Then we will apply the transformation s = tα to obtain

−τp
∫ t

0

(τ − s)q−1sq−1ds = −τ qB(q, q) + τ qB(q, q)− τ q
∫ t/τ

0

(1− α)q−1αq−1dα

= −τ qB(q, q) + τ q
∫ 1

t/τ

(1− α)q−1αq−1dα

≤ −τ qB(q, q) + τ q(t/τ)q−1

∫ 1

t/τ

(1− α)q−1dα

= −τ qB(q, q) +
1

q

(τ
t

)p
(τ − t)q.

Putting this result back into (7) we obtain

|τpvni(τ)− tpvni(t)| <
2p+1µ

Γ(q + 1)
(τ − t)q +

µΓ(q)

Γ(2q)
(tq − τ q) < 2p+1µ

Γ(q + 1)
ε.

Thus tpvni(t) is continuous at t > 0 since the case when t ≥ τ will follow in a similar
manner. For the case when t = 0, consider

|τpvni(τ)− x0
i | ≤

µτp

Γ(q)

∫ τ

0

(τ − s)q−1sq−1ds =
µΓ(q)

Γ(2q)
τ q <

µΓ(q)

Γ(2q)
ε,
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so tpvni(t) is continuous at t = 0. Further, since ε did not depend on the arbitrary
choices of n or i, we have that the weighted sequence {tpvn} is equicontinuous on J0.

Now, since {tpvn} is monotonic, uniformly bounded, and equicontinuous on J0, by
the Arzela-Ascoli theorem we have that {tpvn} converges uniformly on J0. Note we
can prove the same result for {tpwn}, thus both weighted sequences converge uniformly.
Now, suppose that v, w ∈ Cp(J,RN ) such that tpvn → tpv and tpwn → tpw uniformly
on J0. We wish to show that Tvn → Tv and Twn → Tw uniformly on J0. To do so, let
ε > 0 and choose M such that for n ≥M, |tp(vn − v)| < εq

K̂T q
, where K̂ is defined as in

Remark 2.3. Then for all t ∈ J0 and for all n ≥M

|Tvn − Tv| ≤ K̂
∫ t

0

|vn − v|ds <
εq

T q

∫ t

0

sq−1ds =
εtq

T q
≤ ε.

Therefore Tvn → Tv uniformly on J0, similarly Twn → Tw uniformly on J0.
Now, due to the fact that fi is continuous and bounded on J0 and the nature of Cp

continuous functions, for each i there exists a function F such that

Fi(t, tpxi, [tpx]ri , [t
px]si , [Tx]ρi , [Tx]σi

) = fi(t, xi, [x]ri , [x]si , [Tx]ρi , [Tx]σi
).

So, due to all of the convergence properties we have that

tpvn+1i = 1
Γ(q) + tpFi(t, tpvni, [tpvn]ri , [t

pwn]si , [Tvn]ρi , [Twn]σi)−Mit
p(vn+1i − vni)

converges uniformly to

tpvi = 1
Γ(q) + tpFi(t, tpvi, [tpv]ri , [t

pw]si , [Tv]ρi , [Tw]σi
)

on J0, giving us that

vi = 1
Γ(q) t

q−1 + fi(t, vi, [v]ri , [w]si , [Tv]ρi , [Tw]σi
)

on J and implying that v is a coupled quasisolution of (5), and we have the similar result
for w as well.

Finally, we wish to prove that v, w are minimal and maximal coupled quasisolutions
of (5). To do so, let x be any solution of (5) with v0 ≤ x ≤ w0, we know such a solution
exists thanks to Theorem 3.1. Then note that

v1 = A[v0, w0] ≤ A[x, x] ≤ A[w0, v0] = w1,

giving us that v1 ≤ x ≤ w1, and continuing this process inductively we can show that
vn ≤ x ≤ wn for all n, which implies that v ≤ x ≤ w on J . Therefore, v, w are minimal
and maximal mixed quasisolutions of (5), which completes the proof.

Note that in the case that (5) has a unique solution, e.g. f is fully Lipschitz, then
v = x = w on J . Further, this acts as a generalization for the monotone method
constructed with natural upper and lower solutions to the system (4) where f(t, x, Tx) is
quasimonotone increasing in x and traditionally increasing in Tx. This follows directly
from considering the previous theorem where si = σi = 0.

We can also construct the monotone method beginning with Type II coupled lower
and upper quasisolutions. To do so requires a further assumption that v0 ≤ w1 and
v1 ≤ w0, further we get intertwined montone sequences that still converge to minimal
and maximal quasisolutions.
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Theorem 3.3 Suppose f satisfies the same properties as in Theorem 3.2. Let
v0, w0 ∈ Cp(J,RN ) be Type II lower and upper quasisolutions of (5) such that v0 ≤ w0.
Let {vn} and {wn} be sequences defined by

Dqvn+1i = fi(t, wni, [wn, vn]i)−Mi(vn+1i − wni), vn+1
0
i = x0

i ,

Dqwn+1i = fi(t, vni, [vn, wn]i)−Mi(wn+1i − vni), wn+1
0
i = x0

i ,

for n ≥ 1 and where v0, w0 are the given lower and upper solutions. If v0 ≤ w1 and
v1 ≤ w0, then the sequences have the following intertwined monotonic property

v0 ≤ w1 ≤ v2 ≤ . . . v2n ≤ w2n+1 ≤ v2n+1 ≤ w2n ≤ · · · ≤ w2 ≤ v1 ≤ w0,

and the weighted sequences

tpv2n, t
pw2n+1 → tpα, tpv2n+1, t

pw2n → tpβ

uniformly on J0, where α and β are Type II coupled minimal and maximal quasisolutions
of (5) on J for solutions v0 ≤ x ≤ w0.

The proof of this theorem follows in a similar manner as that of Theorem 3.2, even
with the intertwined nature the proof only requires minor adjustments for incorporating
the Type II sequences. This theorem is also a generalization for the monotone method
constructed with natural upper and lower solutions to the system (4) where f(t, x, Tx) is
quasimonotone decreasing in x and traditionally decreasing in Tx. As before, this follows
directly from considering si = σi = 0.

In the next section we will construct a numerical example that will exemplify our
results. In the example we will look at a system when N = 2 and q = 1/2.

4 Numerical Example

We finish this work by illustrating the result of Theorem 3.2 with an example. Consider
the fractional system of the form (5) with q = 1

2 ,

D1/2x1 = 1
2 + 5

8 t+ 1
32

(
x2

1 − 1
4x2

)
+ 1

16

∫ t
0
(1 + s)x1ds, xp1(0) = 0,

D1/2x2 = 1
6 + 1

5 t+ 1
20 (x1 − x2)− 1

20

∫ t
0
(1 + s)x2ds, xp2(0) = 0,

(8)

where p = 1
2 , and for simplicity we will consider the same transformation

Txi(t) =

∫ t

0

(1 + s)xi(s)ds

for i = 1, 2, and further for simplicity call

f1(t, x1, x2, Tx1, Tx2) = 1
2 + 5

8 t+ 1
32x

2
1 + 1

16Tx1, f2(t, x1, x2, Tx1, Tx2) = 1
6 + 1

5 t+ 1
20x1,

g1(t, x1, x2, Tx1, Tx2)− 1
128x2, g2(t, x1, x2, Tx1, Tx2) = − 1

20x2 − 1
20Tx2.

If J = (0, 1] and J0 = [0, 1], then fi(t, x, Tx) + gi(t, x, Tx) together, where i = 1, 2,

satisfy the mixed quasimonotonicity property. Now let v01(t) =
√
t

2 , v02(t) = 0, w01(t) =
3 and w02(t) = 3− t.
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We will illustrate graphically in Figures 1–4 that v0i(t) and w0i(t) are Type I coupled
lower and upper quasisolutions.

First note,
v0pi(0) = w0pi(0) = 0 for i = 1, 2.

Since D1/2v01 =
√
π

4 , we have

D1/2v01 =
√
π

4 ≤
1
2 + 5

8 t+ 1
32

(
v2

01 −
1
4w02

)
+ 1

16Tv01 = f1(t, v0, T v0) + g1(t, w0, Tw0).

Similarly,

D1/2w01 = 3√
πt
≥ 1

2 + 5
8 t+ 1

32

(
w2

01 −
1
4v02

)
+ 1

16Tw01 = f1(t, w0, Tw0) + g1(t, v0, T v0),

D1/2v02 = 0 ≤ 1
6 + 1

5 t+ 1
20

(
v01 − w02

)
− 1

20Tw02 = f2(t, v0, T v0) + g2(t, w0, Tw0),

D1/2w02 = 3−2t√
πt
≥ 1

6 + 1
5 t+

1
20

(
w01−v02

)
− 1

20Tv02 = f2(t, w0, Tw01, Tw0)+g2(t, v0, T v0).

We now show the graphs of these lower and upper quasisolutions in Figures 1–4.

Figure 1: Dqv01 ≤ f1 + g1. Figure 2: Dqw01 ≥ f1 + g1. Figure 3: Dqv02 ≤ f2 + g2.

After verifying that we have indeed Type I coupled lower and upper quasisolutions
we computed four iterates of {t1/2vn} and {t1/2wn}, for i = 1, 2, according to Theorem
3.2 for t ∈ J0 = [0, 1]. The results are given in Figures 5 and 6 for 0 ≤ n ≤ 4.

Finally we show a table of ten values of {t1/2v4} and {t1/2w4}, for i = 1, 2, on the
interval [0, 1].

t t1/2v41 t1/2w41 t1/2v42 t1/2w42 t t1/2v41 t1/2w41 t1/2v42 t1/2w42
0.1 0.0612153 0.0612154 0.0208512 0.0208514 0.2 0.1322313 0.1322315 0.0452015 0.0452027
0.3 0.2132962 0.2132970 0.0729141 0.0729180 0.4 0.3046777 0.3046800 0.1039346 0.1039439
0.5 0.4066788 0.4066841 0.1382209 0.1382401 0.6 0.5196440 0.1757330 0.5196553 0.1757683
0.7 0.6439644 0.6439867 0.2164287 0.5702515 0.8 0.7800823 0.7801239 0.2602622 0.2603606
0.9 0.9284960 0.9285705 0.3071838 0.3073374 1.0 1.0897658 1.0898941 0.3571390 0.3573711

We used Mathematica to compute the iterates, the graphs and the tables.

Figure 4: Dqw02 ≥ f2 + g2. Figure 5: tpvn1 ≤ tpwn1. Figure 6: tpvn2 ≤ tpwn2.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (2) (2018) 130–143 143

References

[1] Caputo, M. Linear models of dissipation whose Q is almost independent, II. Geophy. J.
Roy. Astronom. 13 (1967) 529–539.

[2] Denton, Z. and Ramı́rez, J.D. Existence of minimal and maximal solutions to RL fractional
integro-differential initial value problems. Opuscula Mathematica 37(5) (2017) 705–724.

[3] Denton, Z and Ramı́rez, J.D. Generalized monotone method for multi-order 2-systems
of Riemann-Liouville fractional differential equations. Nonlinear Dynamics and Systems
Theory 16(3) (2016) 246–259.

[4] Denton, Z. and Vatsala, A.S. Monotone iterative technique for finite systems of nonlinear
Riemann-Liouville fractional differential equations. Opuscula Mathematica 31(3) (2011)
327–339.

[5] Diethelm, K. and Freed, A.D. On the solution of nonlinear fractional differential equations
used in the modeling of viscoplasticity. In: Scientific Computing in Chemical Engineering
II: Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties (Eds.:
F. Keil, F. W. Mackens, H. Vob, and J. Werther). Springer, Heidelberg, 1999, 217–224.

[6] Galewski, M. and Molica Bisci, G. Existence results for one-dimensional fractional equa-
tions. Math. Meth. Appl. Sci. 39(6) (2016) 1480-1492.

[7] Heidarkhani, S. Multiple solutions for a nonlinear perturbed fractional boundary value
problem. Dynam. Sys. Appl. 23 (2014) 317–332.

[8] Hilfer, R. Applications of Fractional Calculus in Physics. World Scientific Publishing,
Germany, 2000.

[9] Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. Theory and Applications of Fractional
Differential Equations. Elsevier, North Holland, 2006.

[10] Kiryakova, V. Generalized Fractional Calculus and Applications. Longman-Wiley, New
York, 1994.

[11] Ladde, G.S., Lakshmikantham, V., and Vatsala, A.S. Monotone Iterative Techniques for
Nonlinear Differential Equations. Pitman Publishing Inc, 1985.

[12] Lakshmikantham, V., Leela, S., and Vasundhara, D.J. Theory of Fractional Dynamic
Systems. Cambridge Scientific Publishers, 2009.

[13] Lakshmikantham, V. and Rama Mohana Rao, M. Theory of Integro–differential Equations:
Stability and Control: Theory Methods and Applications. Vol. I. Gordon and Breach Science
Publishers, Switzerland, 1995.

[14] Metzler, R., Schick, W., Kilian,H.G., and Nonnenmacher, T.F. Relaxation in filled poly-
mers: A fractional calculus approach. J. Chem. Phy. 103 (1995) 7180–7186.

[15] Oldham, B. and Spanier, J. The Fractional Calculus. Academic Press, New York–London,
2002.

[16] Podlubny, I. Fractional Differential Equations. Academic Press, San Diego, 1999.


	Introduction
	Preliminary Results 
	Monotone Method
	Numerical Example

