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1 Introduction

Fractional differential equations (FDEs) occur in control of dynamical systems, physical
and biological sciences, see for details [14, 19, 23] and references therein. Nowadays,
many people have given attention to the existence theory of nonlinear FDEs of various
types [2–13,15–18,21,22]. Recently, existence and uniqueness of weak solutions for some
class of Hilfer-Hadamard and Hilfer fractional differential equations are obtained in [1].
Further, some attractivity and Ulam stability results are obtained [1] by applying the
fixed point theory, also one can see [12,20].

Kassim and Tatar [16] obtained the well-posedness of Cauchy-type problem{
HD

α,β
a+ x(t) = f(t, x), t > a > 0,

HI
1−γ
a+ x(a) = c, γ = α+ β(1− α),

(1)
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where c ∈ R and HD
α,β
a+ is the Hilfer-Hadamard fractional derivative [15] of order

α(0 < α < 1) and type β(0 ≤ β ≤ 1), in the weighted space of continuous functions

Cα,β1−γ [a, b] defined by

Cα,β1−γ,µ[a, b] =
{
x ∈ C1−γ,log[a, b]|HD

α,β
a+ x ∈ Cµ,log[a, b]

}
, 0 ≤ µ < 1, γ = α+ β(1− α),

(2)
where

Cγ,log[a, b] =

{
g : (a, b]→ R|

(
log

t

a

)γ
g(t) ∈ C[a, b]

}
, 0 ≤ γ < 1. (3)

They obtained the equivalence of initial value problem (IVP) (1) and integral equation

x(t) =
c

Γ(γ)

(
log

t

a

)γ−1
+

1

Γ(α)

∫ t

a

(
log

t

s

)α−1
f(s, x(s))

ds

s
, t > a, c ∈ R. (4)

Existence result for IVP (1) is proved in [16] using Banach fixed point theorem.
Motivated by these works, to avoid ambiguity of fixed point theory, we adopted the

method of successive approximations. In this paper, we study the IVP for fractional
differential equation involving Hilfer-Hadamard fractional derivative{

HD
α,β
1 x(t) = f(t, x), 0 < α < 1, 0 ≤ β ≤ 1,

lim
t→1

(
log t

)1−γ
x(t) = x0, γ = α+ β(1− α).

(5)

In this paper we prove the existence and uniqueness results for IVP (5), using some well-
known convergence criterion and Picard sequence functions [18, 24]. The computable
iterative scheme as well as the uniform convergence criterion for solution are also devel-
oped.

The rest of the paper is organised as follows. The next section covers the useful
prerequisites which include definitions and lemmas. The main results are proved in
Section 3 with the supporting illustrative example.

2 Preliminaries

We need the following basic definitions and properties from fractional calculus [19].

Definition 2.1 [19] Let (1, b), 1 < b ≤ ∞, be a finite or infinite interval of the half-
axis R+ and let α > 0. The left-sided Hadamard fractional integral HIα1 f of order α > 0
is defined by

(HIα1 f)(t) =
1

Γ(α)

∫ t

1

(log t)α−1 f(s)ds

s
, 1 < t < b, (6)

provided that the integral exists. When α = 0, we set HI0
1f = f.

Definition 2.2 [17, 19] The left-sided Hadamard fractional derivative of order
α(0 ≤ α < 1) on (1, b) is defined by

(HDα
1 f)(t) = δ(HI1−α

1 f)(t), 1 < t < b, (7)

where δ = t(d/dt). In particular, when α = 0 we have HD0
1f = f.
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Definition 2.3 [16] The left-sided Hilfer-Hadamard fractional derivative of order
α(0 < α < 1) and type β(0 ≤ β ≤ 1) with respect to t is defined by

(HD
α,β
1 f)(t) = (HI

β(1−α)
1 HD

α+β(1−α)
1 f)(t), (8)

of function f for which the expression on the right-hand side exists, where HD
α+β(1−α)
1

is the Hadamard fractional derivative.

Lemma 2.1 [19] If α > 0, β > 0 and 1 < b <∞, then

(
HIα1

(
log s

)β−1)
(t) =

Γ(β)

Γ(α+ β)

(
log t

)β+α−1
, (9)

(
HDα

1

(
log s

)β−1)
(t) =

Γ(β)

Γ(β − α)

(
log t

)β−α−1
. (10)

The following lemma plays a vital role in the proof of main results.

Lemma 2.2 [23] Suppose that x > 0. Then Γ(x) = limm→+∞
mxm!

x(x+1)(x+2)···(x+m) .

We denote D = [1, 1 + h], Dh = (1, 1 + h], I = (1, 1 + l] and J = [1, 1 + l], for h > 0.
Here we choose

l = min

{
h,
(
b
M

Γ(α+k+1)
Γ(k+1)

) 1
µ+k

}
, µ = 1− β(1− α).

Further E = {x : |x(log t)1−γ − x0| ≤ b} for b > 0 and t ∈ Dh. A function x(t) is said to
be a solution of IVP (5) if there exists l > 0 such that x ∈ C0(I) satisfies the differential

equation HD
α,β
1 x(t) = f(t, x) almost everywhere on I along with the condition

lim
t→1

(log t)
1−γ

x(t) = x0.

To prove our main results, we assume the following hypotheses:

(H1) (t, x)→ f(t, (log t)γ−1x(t)) is defined on Dh × E and satisfies:

(i) x→ f(t, (log t)γ−1x(t)) is continuous on E for all t ∈ Dh,
t→ f(t, (log t)γ−1x(t)) is measurable on Dh for all x ∈ E;

(ii) there exist k > (β(1 − α) − 1) and M ≥ 0 such that the relation
|f(t, (log t)γ−1x(t))| ≤M(log t)k holds for all t ∈ Dh and x ∈ E.

(H2) There exist A > 0 and x1, x2 ∈ E such that

|f(t, (log t)γ−1x1(t))− f(t, (log t)γ−1x2(t))| ≤ A(log t)k|x1 − x2|, for all t ∈ I.

3 Main Results

In this section, we state and prove the existence and uniqueness results for IVP (5)
for Hilfer-Hadamard FDEs. We present the iterative scheme for approximating such a
unique solution.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (2) (2018) 144–153 147

Lemma 3.1 Suppose that (H1) holds. Then x : J → R is the solution of IVP (5) if
and only if x : I → R is the solution of the Volterra integral equation of second kind:

x(t) = x0

(
log t

)γ−1
+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, x(s))
ds

s
, t > 1. (11)

Proof. First we suppose that x : I → R is the solution of IVP (5). Then

|
(

log t
)1−γ

x(t) − x0| ≤ b for all t ∈ I. From (H1), there exist a k > (β(1 − α) − 1)
and M ≥ 0 such that

|f(t, x(t))| = |f(t, (log t)
γ−1

(log t)
1−γ

x(t))| ≤M(log t)
k
, for all t ∈ I.

We have ∣∣∣∣ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, x(s))
ds

s

∣∣∣∣ ≤ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

M(log s)
k ds

s

= M(log t)
α+k Γ(k + 1)

Γ(α+ k + 1)
.

Clearly,

lim
t→1

(
log t

)1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, x(s))
ds

s
= 0.

It follows that

x(t) = x0

(
log t

)γ−1
+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, x(s))
ds

s
, t ∈ I.

Since k > (β(1− α)− 1), we see that x ∈ C0(I) is a solution of integral equation (11).
Conversely, it is easy to see the fact that x : I → R is the solution of integral equation

(11) implies that x is the solution of IVP (5) defined on J. This completes the proof.
To prove our main results, we choose a Picard function sequence as follows:

φ0(t) = x0(log t)
γ−1

, t ∈ I,

φn(t) = φ0(t)+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, φn−1(s))
ds

s
, t ∈ I, n = 1, 2, · · · .

(12)

Lemma 3.2 Suppose that (H1) holds. Then φn is continuous on I and satisfies

|(log t)
1−γ

φn(t)− x0| ≤ b.

Proof. From (H1), clearly |f(t, (log t)
γ−1

x)| ≤ M(log t)
k

for all t ∈ Dh and

|x(log t)
1−γ − x0| ≤ b. For n = 1, we have

φ1(t) = x0(log t)
γ−1

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, φ0(s))
ds

s
. (13)

Then ∣∣∣∣ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, φ0(s))
ds

s

∣∣∣∣ ≤ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

M(log s
)k ds

s

= M(log t
)α+k Γ(k + 1)

Γ(α+ k + 1)
.
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This implies φ1 ∈ C0(I) and from equation (13), we get

|(log t)
1−γ

φ1(t)− x0| ≤ (log t)
1−γ

M(log t)
α+k Γ(k + 1)

Γ(α+ k + 1)

≤Mlα+k+1−γ Γ(k + 1)

Γ(α+ k + 1)
. (14)

Now by the induction hypothesis for n = m, suppose that φm ∈ C0(J) and for all

t ∈ J, |(log t)
1−γ

φm(t)− x0| ≤ b. We have

φm+1(t) = x0(log t)
γ−1

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, φm(s))
ds

s
. (15)

From the above discussion, we obtain φm+1(t) ∈ C0(I) and from equation (15), we have

|(log t
)1−γ

φm+1(t)− x0| ≤ (log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

M(log s
)k ds

s

= M(log t)
α+k+1−γ Γ(k + 1)

Γ(α+ k + 1)

≤Mlα+k+1−γ Γ(k + 1)

Γ(α+ k + 1)
≤ b.

Thus, the result is true for n = m+ 1. By the principle of mathematical induction, the
result is true for all n. The proof is complete.

Theorem 3.1 Suppose that (H1) and (H2) hold. Consider the Picard function φn
given in (12). Then the sequence {(log t)

1−γ
φn(t)} is uniformly convergent on J.

Proof. Consider the series

(log t)
1−γ

φ0(t)+(log t)
1−γ

[φ1(t)− φ0(t)]+ · · ·+(log t)
1−γ

[φn(t)− φn−1(t)]+ · · · , t ∈ J.

By relation (14) driven in the proof of Lemma 3.2 above, we get

(log t)
1−γ |φ1(t)− φ0(t)| ≤M(log t)

α+k+1−γ Γ(k + 1)

Γ(α+ k + 1)
, t ∈ J.

From Lemma 3.2, we have

(log t)
1−γ |φ2(t)− φ1(t)| ≤ (log t)

1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

|f(s, φ1(s))− f(s, φ0(s))|ds
s

=(log t
)1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1∣∣f(s, (log s)
γ−1

(log s)
1−γ

φ1(s)
)
−

f
(
s, (log s)

γ−1
(log s)

1−γ
φ0(s)

)∣∣ds
s

≤(log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

A(log s)
k∣∣(log s)

1−γ
φ1(s)−

(log s)
1−γ

φ0(s)
∣∣ds
s

≤(log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

A(log s)
k[

(log s)
1−γ |φ1(s)− φ0(s)|

]ds
s

≤(log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

A(log s)
k[
M(log s)

α+k+1−γ Γ(k+1)

Γ(α+k+1)

]ds
s
.
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Thus

(log t)
1−γ |φ2(t)− φ1(t)| ≤ AM Γ(k + 1)

Γ(α+ k + 1)

Γ(α+ 2k + 2− γ)

Γ(2α+ 2k + 2− γ)
(log t)

2(α+k+1−γ)
.

Now suppose that for n = m

(log t)
1−γ |φm+1(t)− φm(t)| ≤

AmM(log t)
(m+1)(α+k+1−γ)

m∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.

We have

(log t)
1−γ |φm+2(t)− φm+1(t)| ≤ (log t)

1−γ

Γ(α)

∫ t

1

(
log

t

s

)α−1

|f(s, φm+1(s))−f(s, φm(s))|ds
s

= (log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1∣∣f(s, (log s)
γ−1

(log s)
1−γ

φm+1(s)
)
−

f
(
s, (log s)

γ−1
(log s)

1−γ
φm(s)

)∣∣ds
s

≤ (log t)
1−γ 1

(Γ(α))

∫ t

1

(
log

t

s

)α−1

A(log s)
k[

(log s)
1−γ |φm+1(s)− φm(s)|

]ds
s

≤ (log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

A(log s)
k

[
AmM(log s)

(m+1)(α+k+1−γ)

×
m∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ)− 1)

]
ds

s

= Am+1M(log t)
(m+2)(α+k+1−γ)

m+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.

Thus
(log t)

1−γ |φm+2(t)− φm+1(t)| ≤

Am+1Ml(m+2)(α+k+1−γ)
m+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.

The result is true for n = m + 1. By the principle of mathematical induction the result
is true for all n.

Consider

∞∑
n=1

un =

∞∑
n=1

MAn+1l(n+2)(α+k+1−γ)
n+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.

We have

un+1

un
=
MAn+2l(n+3)(α+k+1−γ)

∏n+2
i=0

Γ((i+1)k+i(α+1−γ)+1)
Γ((i+1)(α+k)+i(1−γ)+1)

MAn+1l(n+2)(α+k+1−γ)
∏n+1
i=0

Γ((i+1)k+i(α+1−γ)+1)
Γ((i+1)(α+k)+i(1−γ)+1)

= Alα+k+1−γ Γ((n+ 3)k + (n+ 2)(α+ 1− γ) + 1)

Γ((n+ 3)(k + α) + (n+ 2)(1− γ) + 1)
.
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Using Lemma 2.2, we have

un+1

un
= Alα+k+1−γ

limm→∞
m(n+3)k+(n+2)(α+1−γ)+1m!

((n+3)k+(n+2)(α+1−γ)+1)···((n+3)k+(n+2)(α+1−γ)+m+1)

limm→∞
m(n+3)(k+α)+(n+2)(1−γ)+1m!

((n+3)(k+α)+(n+2)(1−γ)+1)···((n+3)(k+α)+(n+2)(1−γ)+m+1)

= Alα+k+1−γ [limm→∞m−α ((n+3)(k+α)+(n+2)(1−γ)+1)···((n+3)(k+α)+(n+2)(1−γ)+m+1)
((n+3)k+(n+2)(α+1−γ)+1)···((n+3)k+(n+2)(α+1−γ)+m+1) ].

It is easy to see that

((n+ 3)(k + α) + (n+ 2)(1− γ) + 1) · · · ((n+ 3)(k + α) + (n+ 2)(1− γ) +m+ 1)

((n+ 3)k + (n+ 2)(α+ 1− γ) + 1) · · · ((n+ 3)k + (n+ 2)(α+ 1− γ) +m+ 1)

is bounded for all m,n. Thus lim
n→∞

un+1

un
= 0 implies

∞∑
n=1

un is convergent. Hence

(log t
)1−γ

φ0(t) + (log t)
1−γ

[φ1(t)− φ0(t)] + · · ·+ (log t)
1−γ

[φn(t)− φn−1(t)] + · · ·

is uniformly convergent for t ∈ J. Hence {(log t)
1−γ

φn(t)} is uniformly convergent on J.

Theorem 3.2 Suppose that (H1) and (H2) hold. Then the solution

φ(t) = (log t)
γ−1

lim
n→∞

(log t)
1−γ

φn(t)

is a unique continuous solution of the integral equation (11) defined on J.

Proof. Since φ(t) = (log t)
γ−1

lim
n→∞

(log t)
1−γ

φn(t) on J, and by Lemma 3.2, we have

(log t)
1−γ |φ(t)− x0| ≤ b. Then

|f(t, φn(t))− f(t, φ(t))| ≤ A(log t)
k|φn(t)− φ(t)|, t ∈ I.

Clearly, (log t)
−k|f(t, φn(t))− f(t, φ(t))| ≤ A|φn(t)− φ(t)| → 0 uniformly as n → ∞ on

I. Therefore

(log t)
1−γ

φ(t) = lim
n→∞

φn(t)

= x0 + (log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

(log s)
k

lim
n→∞

(
(log s)

−k
f(s, φn−1(s))

)ds
s

= x0 + (log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, φ(s))
ds

s
.

Then φ(t) is a continuous solution of integral equation (11) defined on J.
Now we prove uniqueness of solution φ(t). Suppose that ψ(t) is a solution of integral

equation (11). Then (log t)
1−γ |ψ(t)| ≤ b for all t ∈ I and

ψ(t) = x0(log t)
γ−1

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, φ(s))
ds

s
, t ∈ I.

We prove φ(t) ≡ ψ(t) on I. From (H1), there exist a k > (β(1−α)− 1) and M ≥ 0 such
that

|f(t, ψ(t))| =
∣∣f(t, (log t)

γ−1
(log t)

1−γ
ψ(t)

)∣∣ ≤M(log t)
k
, for all t ∈ I.
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Therefore

(log t)
1−γ |φ0(t)− ψ(t)| =(log t)

1−γ
∣∣∣∣ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, ψ(s))
ds

s

∣∣∣∣
≤ (log t)

1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

M(log s)
k ds

s

= M(log t)
α+k+1−γ Γ(k + 1)

Γ(α+ k + 1)
.

Furthermore

(log t)
1−γ |φ1(t)− ψ(t)| =(log t)

1−γ
∣∣∣∣ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

[f(s, φ0(s))− f(s, ψ(s))]
ds

s

∣∣∣∣
≤ AM Γ(k + 1)

Γ(α+ k + 1)

Γ(α+ 2k + 2− γ)

Γ(2α+ 2k + 2− γ)
(log t)

2(α+k+1−γ)
.

By the induction hypothesis, we suppose that

(log t)
1−γ |φn(t)−ψ(t)| ≤ AnM(log t)

(n+1)(α+k+1−γ)
n∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.

Then

(log t)
1−γ |φn+1(t)− ψ(t)| ≤ (log t)

1−γ
∣∣∣∣ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

[f(s, φn(s))− f(s, ψ(s))]
ds

s

∣∣∣∣
≤An+1M(log t)

(n+2)(α+k+1−γ)
n+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)

≤An+1Ml(n+2)(α+k+1−γ)
n+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.

Using the same arguments as in Theorem 3.1, we obtain the series

∞∑
n=1

An+1Ml(n+2)(α+k+1−γ)
n+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
,

which is convergent. Therefore

An+1Ml(n+2)(α+k+1−γ)
n+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
→ 0 as n→∞.

Also we observe that lim
n→∞

(log t)
1−γ

φn(t) = (log t)
1−γ

ψ(t) uniformly on J . Thus

φ(t) ≡ ψ(t) on I. The proof is complete.

Theorem 3.3 Suppose that (H1) and (H2) hold. Then the IVP (5) has a unique

continuous solution φ(t) = (log t)
γ−1

lim
n→∞

(log t)
1−γ

φn(t) on I.

Proof. From Lemma 3.1 and Theorem 3.1, we can easily obtain that the solution

φ(t) = (log t)
γ−1

lim
n→∞

(log t)
1−γ

φn(t)

is a unique continuous solution of IVP (5) defined on I. The proof is complete.
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Example 3.1 We consider the Hilfer-Hadamard fractional differential problem HD
1
2 ,

1
2

1 x(t) = f(t, x), α = 1
2 , β = 1

2 ,

lim
t→1

(
log t

) 1
4x(t) = x0, γ =

3

4
,

(16)

where f(t, x(t)) = (log t)−
1
4 sin (log t)

8(1+
√

(log t))(1+| sin (log t)|)
, for t ∈ (1, e], x ∈ R,

f(1, x(1)) = 0, for x ∈ R.

It is easy to see that f is singular at t = 1, and is a continuous function for t ∈ (1, e]. We

choose µ = 3
4 , b = 4, k = − 1

4 > −
3
4 . Thus l = min

{
1.7182,

(
4
M

Γ( 5
4 )

Γ( 3
4 )

)2}
, where

M = max
t∈[1,e]

sin (log t)

8(1 +
√

log t)(1 + | sin(log t)|)
≈ 32

with

φ0(t) = x0(log t)
− 1

4 , t ∈ (1, e],

φn(t) = φ0(t)+
1

Γ( 1
2 )

∫ t

1

(
log

t

s

)− 1
2

f(s, φn−1(s))
ds

s
, n = 1, 2, · · · .

Clearly, all the conditions of Theorem 3.3 hold. Therefore IVP (16) has the unique
continuous solution

φ(t) = (log t)−
1
4 lim
n→∞

(log t)
1
4φn(t) on [1, e].

Remark 3.1 The initial value considered in IVP (5) is more suitable than that con-
sidered in IVP (1) and nonlinear function f may be singular at t = 1.

Remark 3.2 In hypothesis (H1), if (log t)−kf(t, (log t)γ−1x(t)) is continuous on
D × E, one may choose M = maxt∈J(log t)−kf(t, (log t)γ−1x(t)) continuous on Dh × E
for all x ∈ E.
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