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Abstract: In this paper, we prove the existence of entropy solutions of anisotropic
elliptic equations Au + Zf;l gi(z,u, Vu) = f, where the operator Au is a Leray-

v
Lions anisotropic operator from I/Vol’7 (Q, &) into its dual W1 (€, JE) The critical
growth condition on g; is with respect to Vu and there is no the growth condition
with respect to u and no the sign condition. The right-hand side f belongs to L*().
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1 Introduction

Let Q be a bounded open subset of RY (N > 2) with Lipschitz continuous bound-
ary and let Au = — Zivzl 0;a;(z,u, Vu) be a degenerate anisotropic operator of Leray-
Lions type defined in the weighted anisotropic Sobolev space wL? (Q, Z?), where
= (wo, w1, -..,wn) is a vector of weight functions defined on Q and 7= (po, -, PN) 18
a vector of real number such that p; > 1 for ¢ =0,...,N.

We consider the following nonlinear elliptic anisotropic problem

— Zi\; Oia;(x,u, Vu) + Zﬁil gi(x,u,Vu) = f in Q, (1)
u =0, on 0f,

where g;(z, s, ) is a Carathéodory function satisfying only the following growth condition
lgi(,5,€)] < v(z) + p(s)[& [P and where the right-hand side f belongs to L!(Q). In the
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particular case, where Zfil gi(z,5,&) = —ColulP~2u, the following degenerated equation
—div(a(z,u, Vu)) — Colu|P~?u = f(x,u, Vu) has been studied by Drabek-Nicolsi in [11]
under more degeneracy and some additional assumptions on f and a(z,u, Vu).

In the isotropic case, more precisely, when pg = p1 = ... = py = p and
Zﬁil gi(x,u,Vu) = g(x,u, Vu), the existence result for the unilateral problem with
g(x,u, Vu) satisfying the following growth condition

N
MWJﬁﬂébWD@@ﬁ+§:wkﬁ) (2)

and the sign condition

g(x,5,€)s >0, 3)

when f belongs to W1 (Q,w*), is studied by Akdim et al. in [7] under the following
integrability condition

o' e LL (Q) with 1<gq< oo, (4)

where o is a weight function which is assumed satisfying the Hardy inequality

S }
/Q|u|qa(x)dx§C(;/Qmiuvwi(m)dx) . (5)

Our aim in this paper is to prove the existence of entropy solution for the following
weighted unilateral elliptic anisotropic problem

u > 1 a.e. in €,

T (u) € W7 (. 0),

N N
6
Z/ a;(z,u, Vu)0; T (u — v) + Z/ gi(z,u, Vu)Ti(u — v) < / fTe(u—wv), ()
i=179 =179 Q
Yo € Ky(Q,d) N L®(Q) and Yk > 0,
without the conditions and .

2 Preliminaries

Let Q be a bounded open subset of RV (N > 2) with the Lipschitz continuous boundary
and let 1 < pg,p1,....,pn < oo be N + 1 real numbers, p* = max{p1,....,pn}, p~ =

0]
min{p1,...,pn} . We denote 9; = e let w; be non negative functions on €2 such
"

that w; > 0 a.e. in Q for all ¢ = 0,1,..,N. We set & = (wo, w1, ...,wy) and
7= (po,p1,.--,pN). We suppose that for i =0,1,..., N and for j =0,1,..., N

1

wi € Lioe(Q) and w, 77" € Li,u(Q). (7)

As the classical weighted Sobolev space in [10], we define the anisotropic weighted Sobolev
space by

WL (Q,3) = {u € LP(Q,wo) : yu € LP(Qwi),i = 1,2, N}
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As in Theorem 1.11 in [13], by @) the space Wl’?(Q,ﬁ) is a Banach space under the
following norm
N
lullws7 9.3y = Il oo @) + D 105t Lo (@00 (8)
i=1
Since w; € L}, .(£2), we have that C5°(£2) is a subset of Wl’ﬁ(ﬂ, W) and we can introduce
the space Wol’?(ﬂ, W) as the closure of C°(2) with respect to norm . We recall
that the dual space of weighted anisotropic Sobolev space WO1 ’?(Q, Z?) is equivalent to
= N )
w-bp (Q,?), where @ = (Wi, wiy), wf = wil Polph = (py,...,ply) and pi = S,
foralli=1,...,N.
Now, we introduce the following assumptions:
Assumptions (Hy):
— The expression

N
lll 2.7 0y = D 1950l 201 (2 (9)

i=1

is a norm defined on VVO1 7 (Q, 3) and it is equivalent to the norm .
— There exist a weight function o on €2 and a parameter ¢, 1 < ¢ < oo, such that the

Hardy inequality
(/ |u|q0d:c>é <C§N:(/ ]a“
Q T T Vaelom

holds for every u € WO1 ’?(Q, E?), where C is a positive constant independent of u.
— The embedding

pi’u%—) 2 (10)

WP (Q,3) < LUQ, 0) (11)
expressed by is compact.

Remark 2.1 Let us take pg = p1 = p2 = ... = py = p, wo(z) = w1(z) = wa(x) =
o = wn(x) = [dist(z,00)]* and o(z) = [dist(z,00Q)]7, A,y € R. In this case, the Hardy
inequality reads

( /Q \u|q[dist(x,8§2)]"’)%dm < Ei:: ( /Q \8iu|p[dist(x7aﬂ)]>‘dx)%.

The imbedding WP (Q, dist(x,Q)) < LI(Q, dist(x,dQ)) is compact (see Example 1.5
in [10]) if and only if either:

Dl<p<g<too, A<p-1,F=F+1>0, 92 A -N+NL—gor

i) l<g<p<+too,A<p-1,y2Al-1+1-¢q

Similarly, in the isotropic case, see [1], we can construct an isometric from
Wol’?(Q,ﬁ) in Hiil LPi(Q,w;) which implies with that the space Wol’?(ﬂ, W)
is a reflexive and separable Banach space. Moreover, we consider 751’?(9,3) =
{u measurable in Q : Ty (u) € W(}’?(Q, W), Vk > 0}
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3 Mains Results

Let Q be a bounded open subset of RY (N > 2) with the Lipschitz continuous boundary
09Q. The functions a: Q@ x RxRY — RY such that a(z, s, &) = (al(m, $,8),...,an(z,s, f))
and g;: QxRxRY — R with a; and g; are Carathéodory functions satisfying the following

assumptions for all s € R, £ € RN,QJ €RY anda.e in Q:
Assumptions Hs:

N N
Zai(x75,€)£i Z OKZWA& ;D7‘,7 (12)
i=1 i=1
lai(, 5,6)] < Bl [ja(x) + o7 |s| 7 + w7, (13)
(ai(x,5,6) — ai(z, 5,6 ))(& — &) >0 for & #¢,, (14)

’
where «a, § are some positive constants, j; is a positive function in LPi ().
Assumptions Hs:

where + is a positive function in L'(2) and p : R — R™ is a continuous positive function

in L'(R).
Moreover, we suppose that

feL Q). (16)

Let us define the convex set Ky (€, &) ={uce W&’?(Q, W), u > ae. in Q}, where ¢
is a measurable function with values in R such that

bt e WET(Q, D) N L(Q). (17)

3.1 Some technical lemmas

The following lemma generalizes to the anisotropic case the analogous Lemma 5 in [9].
We use the method of 7] and [9).

Lemma 3.1 Assume that — hold and let (u,), be a sequence in Wol’?(ﬂ, W)
such that w, — u in VVOL?(Q7 W) and lim / (a(m, Un, Vy) — a(x, Uy, Vu))V(un —u)
n—+oo /o

= 0. Then u,, — u strongly in Wol’?(Q, j) for a subsequence.

Definition 3.1 A function u is an entropy solution for problem if it satisfies @

Theorem 3.1 Assume that (@— hold. Then there exists at least one entropy
solution in the sense of the definition of problem .
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Proof of Theorem [3.1]

The proof of this theorem is done in four steps.
Step 1 : Approximate problems.

We consider the following approximate problems

U, € Ky(9, ).

/a(xvunvvun +Z/91 xunvvun n_v /fn n—’l) (18)
Q

Yo € Ky (Q, W),
where ¢*(z,s,§) = %T%(cﬁ(x)) and f,(z) = % We have

197(2,5, )| < lgi(, 5, )], 97 (2,5,)] <, |g (@, u, V)| < n2o (@), |fa(2)] < |f(@)]
and | f,(2)] < n.

For all u and v in W’ ?( W), we have
|/g?(x,u,Vu)vdx < /|gZ z,u, Vu)|? o da:) (
Q

Q
1
a

<ut( [ oo dr) folluom
Q

< Cn”UHWOL?(Q@?)'

1
|v|qadx> !

Proposition 3.1 Under the conditions (@)-, there exists at least one solution
of the problem (@)

Proof of Proposition
Thanks to the Leray-Lions theorem and Theorem 8.2 from Chapter 2 in [14], there exists
at least one solution to problem .
Step 2 : A priori estimate.

Proposition 3.2 Assume that (@)- hold and if u, is a solution of the approz-
imate problem (@, then there exists a constant C' such that

N
Z/ 10, Ty (un) [Prw; < Ck Yk > 0.
: Q

Proof: Let v = u, — nexp(G(u,))Tk(u — ), where G(s) = [ p((;) dt and n > 0.
Since v € Wol’y(ﬂ, W) and for all  small enough, we have v € Kw(Q7 W). We take v as
a test function in problem (18], thanks to and (15, we obtain

N
Il
S [ et Vi) explGlun) 06T (] = 0%) < (1 s + P2y exp (2 )

< Ck.
By and Young’s inequality, we have
N
3 / Ot Piands < C'k k> 0. (19)
i1/ {lun —wF|<k}

Since {z € Q, |uf| <k} C{zr e, |uf —vT|<k+|9Y" |}, we have

Z/ |0: Ty, (w))|Piw;da = Z/ |0;ut [Piw;dx

|un|<k}
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N
< Z/ |0t |Piw;da.
i=1

{lud =9t | <k+]vt]loc}
This implies, by , that

i/ﬂ |05 Tk (

Similarly, taking v = u, +exp(—G (uy))Tk(u;, ) as a test function in approximate problem

, thanks to and , we obtain

u)Piwsda < C'k, Vk > 0. (20)

N
Z/ a;(x, Up, Vuy) exp(—G(u,)) 0Tk (u,) < Ck.
{u, <0}

By , we deduce that

Z/ 10, T () |Piw; < Ck. (21)
{u,<0}

N
Comblnmg and , we obtain Z/ |0: Ty (un) |Piw; < Ck. Tt yields
i=1 7%

1T () 17 0 3y < k7=, k> 1. (22)

Step 3: Strong convergence of truncations.

Lemma 3.2 There exist a measurable function v and a subsequence of u, such that
Ti(un) = Ti(u) strongly in Wol’?(ﬂ, ).

Proof: By (22), the sequence (Tj(uy)), is bounded in W&’?(Q,W), there exists
a subsequence (T (uy)), such that Tjy(u,) converges to vy a. e. in £, weakly in
W&?(Q,ﬁ) and strongly in LI(Q,0) as n tends to +oo. Since (uy), is a Cauchy
sequence in measure in €, there exists a subsequence denoted by (uy), such that u,
converges to a measurable function v a. e. in 2 and

Ti(up) — Ti(u) weakly in Wol’?(Q, W)and a. e. inQ, Vk>0. (23)

Now, we prove that

lim i/ﬂ (ai(x,Tk(un),VTk(un))—ai(x,Tk(un),VTk(u))> (aiTk(Un)_aiTk<U)) =0.

n—00 4
1=

(24)
Let us take v = u, + exp(—G(un))T1 (un, — Trn(uy))~ in approximate problem (L§), by

and , we have

N
Z/ i (%, Un, Vg ) exp(—G(un))0iun
= - min<un<-m)
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_/anexp(—G(un))Tl(un m(Un)) +Z/ x) exp(—G (un)) T (ty, — Ton(un)) ™.

(25)
By Lebesgue’s theorem, we have the right-hand side in tends to zero as n and m
tend to oo. Then, we get

a;(x, Up, V) 0w, = 0. (26)

Similarly, taking v = u,, — nexp(G(up))T1 (un — T (uy))t as a test function in approxi-
mate problem , we get

N
lim lim supz /{m<u i) a; (2, p, V)i, = 0. (27)

m—r o0 n—oo

We consider the following function of one real variable:

1, if |s| <m,
hm(s)=<¢ 0, if |s|>m+1,
m+1—|s|, if m<|s|<m+1,

where m > k. Let ¢ = u, —nexp(G(up))(Tk(un) — T (w)) T hp(uy,) be a test function in
approximate problem , using and , we get

N

Z/ ai (@, U, V) exp(G(un )0 (Tr (un) — Ti(w) T h ()

/o

' N
+Z/ i (%, U, Vi) exp(G (tn) (Ti (un) — Tho(w)) T Ostunh,, (un)
i=179

<Z/ ) exp(G(un)) (T (un) = Ti(w)) " h (1)

[ exp(Glun)) (Tulun) = Tu(w)) ),
Q
This implies that
N
Z/Qai(x,un,Vun)exp(G(un))ai(Tk(un)—Tk(u))+hm(un)

N
: Z /{m<un<m+1} @i ((E, Un, vun) exp(G(un))(Tk (Un) - Tk (u))+8lun

i= 1

+Z / 2) exp(G(un)) (T (un) = Ti(w)) " h (11

" / o eXD(G 1)) (Tic (1) — T () i (o).
Thanks to Lebesgue’s theorem and , we obtain

lim lim Z/al (2, Uun, V) exp(G(un)0i (T (wn) — T (w)) T hy (un) <0,

mM—r00 N—r00
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which implies that

lim lim Z/ a;(z, upn, V) exp(G(un )0 (Tk (un) = T (w) ) (1)
{Ts (wn Tk (u)>0,|u, | <k

— lim lim Z/ ;i (T, U, Vg ) exp(G (1)) 0; (Ti (w)) T hi (1) <
T (un) =Tk (u) >0 |un|>k}

mM—+00 N—00 4
K2
0,

since A, (up) = 0 if |u,| > m + 1, we have
N

/ a;i (2, Un, Vg ) exp(G (un )0 (T (1)) R (uy)
{Tx (un)—Tr(u)>0,|un| >k}

- Z / 05(a T2 (), VT2 (1)) exD(G (1)) 04 (Te(0)) * o ).
{Tk(un) =Tk (u)>0,|un| >k}

By . ) and (22)), we have a;(x, Trt1(un), Vg1 (un)) = X7, in LPi(Q,w]). It yields
N

mlrlbrgooz / @i (2, Tr1 (Un)y Vi1 (un)) exp(G(un )0 (Th (w)) T hon (un)

YTk ()T ()20, | >}
N

—hm Y /{ sy K epG)IT ) (1) =0

m—o0 4
i=1

Using a;(z, T (un), VI (Un)) hm (un) — ai(x, T (w), VI (1) hy(w) a. e. in §, we see
that the sequence
(ai (z, T (un), VTk(un))hm(un)) is equi-integrable in LP:(Q,w}) and Vitali’s theorem

n

implies that

ai(x, Ti(un), VI (un)) o (un) = ai(z, T (w), VI (w) hi (u) in L (Q,wi).
Since 0; Ty (un) — 0;Tk(u)) weakly in LPi(Q,w;), we get

lim Z/ ai(z, T (un), VT (1)) exp(G(un))0i (Ti(un) — Tk (w))hm (un) =
"I ATk (un )~ T (u) 20}
0, thus we conclude that

lim  lim Z/Tk sy (ai(:c,Tk(un),VTk(un)) — ai(z,Tk(un),VTk(u))) X

m—00 N—r00

(91‘ (Tk (un) — Tk; (u))hm(un) =0. (28)

Similarly, we take ¢ = u, + exp(—G(un))(Tk(un) — Tk (w)) " hm(uy,) as a test function in
approximating problem , we obtain
N

lim lim Z/Tk T <0) (ai($7Tk(Un)7ka(un)) - ai(fE,Tk(Un),ka(u))> X

M—00 N—00 4
i=

0i(Tx (un) — Ti(w)) o () = 0. (29)
Combining and , we deduce that

N
%gnoonh_)n;ozlé (ai(x,Tk(un),VTk(un)) —ai(x,Tk(un),VTk(u)))

O0i(Tk () — Ti(w)) o () = 0. (30)
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Let ¢ = up+exp(—G(up))Tk(un) ™ (1—hp (uy,)) be a test function in approximate problem

and using and (15)), we get
N
3 / 01 (2 s Vi) exp(— G (1)) 05T (1) (1 = B (1)
{u, <0}
N
< - Z/ a; (2, Up, V) exp(—G(un)) Tk (un ) Oiuny,
{=G+D<un<—j}

+Z [ 20 PG Tl (1 )

*Z /Q Fo (1) exD(— G (1)) T (1)~ (1 = P (11)).

In view of and Lebesgue’s theorem, the integrals in the righthand side converge to
zero as n and m tend to infinity. Then

N
lim lim / @i (T, Un,, Vup )0 Tk (un) (1 — by (uy)) = 0. (31)
{u, <0}

m—00 N—00 4
i=

On the other hand, we take ¢ = un — nexp(G(up)) Tk (ut — ) (1 = hyy(uy)) as a test
function in approximate problem ([18]) and using and , we get

Z / 022, 1, V) DG ) OLTi (1 — 7)1 — B ()
N
< / 03 (2, i, V) exp(G 1)) T (1) ™ — 6 )st
{-U+)<Lun <35}

z 1
+Z / ) exp(G ) Te(uf —%+)(1 — by (1)
3 | ) explGlun) Tt = 07)(1 = i)
i=1
By Lebesgue’s theorem and , we deduce that

(7, Un, Vuy) exp(G(un))0iut (1 — hy, (un
Z/un . ) exp(G 1) i (1~ (1)

< Z/ (@, tn, Vit )05 (1 = B (1)) + £1.(n, m). (32)

{lut - w+|<k}

Thanks to and Young’s inequality, we have

(z, Un, V) ex w w1 — " o
Z/u w+|<k} s Vg ) exp(G(un )0t (1 — B () < €2(n, m),

where £1(n, m) and e5(n, m) converge to zero as n and m tend to infinity. Since p € L*(R),
we have exp(G(uy,)) is bounded. It yields

Z/ (2, Up, Vur )0t (1 — by (uy)) < e3(n,m).
{luif — ¢+|<k}
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Since {z € Q, |uf| <k} C{z e Q, |Juf —¥T| <k+ [T ||L=(q)}, hence

Z/ a; (2, un, Vun)0pu (1—hy, (u,)) < e3(n, m), which implies that, for all k > 0,
TI<k}

mM—r00 N—00

lim lim Z/ (@, Tie(un), VIi (un,))0i T (tun) (1 = By (uy,)) = 0. (33)
un>0}
Combining and , we obtain

N
lim lim Z/Qai(m,Tk(un),VTk(un))a,»Tk(un)(l — hu(uy)) = 0. (34)

m—0o0 N—r 00 -

Moreover, we have

N
Z/Q (ai(m,Tk(unLVTk(un)) - ai(x,Tk(un),VTk(u))) (&Tk(un) - &-Tk(u)) -
=1
N
3 /Q (ai(z,Tk(un),VTk(un)) - ai(x,Tk(un),VTk(u))> (&Tk(un) - &-Tk(u))hm(un)
i:lN
30 [ o ). FT )0 (1 = s (1)
i;l
=3 [ oo i), VT ) 0T () (1 = ()

N
_ Z/ 0 (2, T (1), VT (1)) (95 T (1) — DT (w)) (1 = P (1))
=178
By and , the first and the second integrals of the right-hand side converge to
zero as n,m — +oo. Since (ai(m,Tk(un),VTk(un))) is bounded in L?i(Q,w?) and
0;Ti (1) (1 = hyp(uy,)) converges to zero in LP (9, w;), the third integral converges to zero.
So the fourth integral converges to zero while 9;Tj(u,) — 9;Tk(u) weakly in LPi (2, w;)
and a;(z, Tk (un), VT (un))(1 — b (uy)) converges to a;(z, Tr(u), VI (u))(1 — hpy(w))
strongly in LP: (2, w}). We conclude the proof of .
Using , and Lemma we deduce
Tk (uy) — Ti(u) strongly in W&’F(Q, W) and a. e. in Q, Vk > 0. (35)
This implies that
Vu, = Vu a. e. in Q, (36)
which gives
a;(x, upn, Vuy) = a;(z,u, Vu) in LPi (Q,wy). (37)
Step 4: Equi integrability of the non linearity sequence.

We shall prove that g@*(z, u,,, Vu,) — gi(z,u, Vu) in L (Q).
We have g7 (z, un, Vuy) = gi(x,u, Vu) a. e. in Q.
0

Let v = u, + exp(—G(un))/ P(V)X{v<—nydv. Since v € Ky (2, W), we take v as a test

Un



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18(3) (2018) 223

function in approximate problem . Then, by and , we have

N
Z /Q ai(xa Un, Vun) eXp(_G(un))8iunp(un)X{un<—h}
=1

< i [ A@ (-G [

Un

< exp (M) (/_: p(s)ds) (NH’YHLl(Q) + Hf||L1(sz))-

0 0

P() X<y — /Q fo exp(~Gun)) / ()X (<t

n

@
N —h
Using again 1) we obtain Z/ | Oiun [P wi p(Un) X fu, <—ny < c/ p(s)ds.
=179 —oo
Since p € L'(R), we have
N
lim sup / a|Osun [Prw;p(uy,) = 0. 38)

—+oo
Let h be such that h > exp(G(un))/ p(v)dv + || || L () and we take
0

Un

V= Uy — exp(G(un))/ p(V)X{v>h}dv as a test function in approximate problem .
0
Then, similarly as in , we deduce that

N
lim supZ/ a|Ojun|Piwip(u,) = 0. (39)
1 J{un>h}

h—00 neN =

Combining and , we deduce
N

lim sup / alOiuy,
h—o0 nGN; {|un|>h}
Using , , and Vitali’s theorem, we obtain
9 (@, U, V) — gi(z,u, Vu) in LH(Q). (41)

On the other hand, let ¢ € Ky, N L>(Q) and v = u,, — Ti(u,, — ) be a test function in
approximate problem . We get

Piw,p(uy) = 0. (40)

Up € Kw

N N

Z/ ai(m,un, Vun)asz(un - 90) + Z/ g?(x7 Un, vun)Tk(un - 4,0)

i=1 /0 i=178 (42)

< [ $Titun - )
Q
Vo € Ky N L™(Q) and Vk > 0,

Using , and , we can pass to the limit in .

4 Example

Let us consider the following case:
1

plil‘%gn(gz) and gz(wvsvg) = 1 +82

(Li(m,s,f) :wz|§l wl|£2|pL
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