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Abstract: In this paper, we prove the existence of entropy solutions of anisotropic
elliptic equations Au +

∑N
i=1 gi(x, u,∇u) = f, where the operator Au is a Leray-

Lions anisotropic operator from W 1,−→p
0 (Ω,−→ω ) into its dual W−1,

−→
p′ (Ω,

−→
ω∗). The critical

growth condition on gi is with respect to ∇u and there is no the growth condition
with respect to u and no the sign condition. The right-hand side f belongs to L1(Ω).
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1 Introduction

Let Ω be a bounded open subset of RN (N ≥ 2) with Lipschitz continuous bound-

ary and let Au = −
∑N
i=1 ∂iai(x, u,∇u) be a degenerate anisotropic operator of Leray-

Lions type defined in the weighted anisotropic Sobolev space W 1,−→p (Ω,−→ω ), where
−→ω = (ω0, ω1, ..., ωN ) is a vector of weight functions defined on Ω and −→p = (p0, ..., pN ) is
a vector of real number such that pi > 1 for i = 0, ..., N .

We consider the following nonlinear elliptic anisotropic problem{
−
∑N
i=1 ∂iai(x, u,∇u) +

∑N
i=1 gi(x, u,∇u) = f in Ω,

u = 0, on ∂Ω,
(1)

where gi(x, s, ξ) is a Carathéodory function satisfying only the following growth condition
|gi(x, s, ξ)| ≤ γ(x) + ρ(s)|ξi|pi and where the right-hand side f belongs to L1(Ω). In the
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particular case, where
∑N
i=1 gi(x, s, ξ) = −C0|u|p−2u, the following degenerated equation

−div(a(x, u,∇u))− C0|u|p−2u = f(x, u,∇u) has been studied by Drabek-Nicolsi in [11]
under more degeneracy and some additional assumptions on f and a(x, u,∇u).

In the isotropic case, more precisely, when p0 = p1 = ... = pN = p and∑N
i=1 gi(x, u,∇u) ≡ g(x, u,∇u), the existence result for the unilateral problem with

g(x, u,∇u) satisfying the following growth condition

|g(x, s, ξ)| ≤ b(|s|)(C(x) +

N∑
i=1

ωi|ξi|p) (2)

and the sign condition

g(x, s, ξ)s ≥ 0, (3)

when f belongs to W−1,p′(Ω, ω∗), is studied by Akdim et al. in [7] under the following
integrability condition

σ1−q′ ∈ L1
loc(Ω) with 1 < q < +∞, (4)

where σ is a weight function which is assumed satisfying the Hardy inequality∫
Ω

|u|qσ(x)dx ≤ C
( N∑
i=1

∫
Ω

|∂iu|pωi(x)dx
) 1

p

. (5)

Our aim in this paper is to prove the existence of entropy solution for the following
weighted unilateral elliptic anisotropic problem

u ≥ ψ a.e. in Ω,

Tk(u) ∈W 1,−→p
0 (Ω,−→ω ),

N∑
i=1

∫
Ω

ai(x, u,∇u)∂iTk(u− v) +

N∑
i=1

∫
Ω

gi(x, u,∇u)Tk(u− v) ≤
∫

Ω

fTk(u− v),

∀v ∈ Kψ(Ω,−→ω ) ∩ L∞(Ω) and ∀k > 0,

(6)

without the conditions (3) and (4).

2 Preliminaries

Let Ω be a bounded open subset of RN (N ≥ 2) with the Lipschitz continuous boundary
and let 1 < p0, p1, ..., pN < ∞ be N + 1 real numbers, p+ = max{p1, ..., pN}, p− =

min{p1, ..., pN} . We denote ∂i =
∂

∂xi
, let ωi be non negative functions on Ω such

that ωi > 0 a.e. in Ω for all i = 0, 1, ..., N. We set −→ω = (ω0, ω1, ..., ωN ) and
−→p = (p0, p1, ..., pN ). We suppose that for i = 0, 1, ..., N and for j = 0, 1, ..., N

ωi ∈ L1
loc(Ω) and ω

− 1
pj−1

i ∈ L1
loc(Ω). (7)

As the classical weighted Sobolev space in [10], we define the anisotropic weighted Sobolev
space by

W 1,−→p (Ω,−→ω ) =
{
u ∈ Lp0(Ω, ω0) : ∂iu ∈ Lpi(Ω, ωi), i = 1, 2, ..., N

}
.
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As in Theorem 1.11 in [13], by (7) the space W 1,−→p (Ω,−→ω ) is a Banach space under the
following norm

‖u‖W 1,−→p (Ω,−→ω ) = ‖u‖Lp0 (Ω,ω0) +

N∑
i=1

‖∂iu‖Lpi (Ω,ωi). (8)

Since ωi ∈ L1
loc(Ω), we have that C∞0 (Ω) is a subset of W 1,−→p (Ω,−→ω ) and we can introduce

the space W 1,−→p
0 (Ω,−→ω ) as the closure of C∞0 (Ω) with respect to norm (8). We recall

that the dual space of weighted anisotropic Sobolev space W 1,−→p
0 (Ω,−→ω ) is equivalent to

W−1,
−→
p′ (Ω,

−→
ω∗), where

−→
ω∗ = (ω∗1 , ..., ω

∗
N ), ω∗i = ω

1−p′i
i ,

−→
p′ = (p′1, ..., p

′
N ) and p′i = pi

pi−1 ,
for all i = 1, ..., N .

Now, we introduce the following assumptions:
Assumptions (H1):
– The expression

‖u‖
W 1,−→p

0 (Ω,−→ω )
=

N∑
i=1

‖∂iu‖Lpi (Ω,ωi) (9)

is a norm defined on W 1,−→p
0 (Ω,−→ω ) and it is equivalent to the norm (8).

– There exist a weight function σ on Ω and a parameter q, 1 < q <∞, such that the
Hardy inequality (∫

Ω

|u|qσdx
) 1

q ≤ C
N∑
i=1

(∫
Ω

∣∣∣ ∂u
∂xi

∣∣∣piwi) 1
pi

(10)

holds for every u ∈W 1,−→p
0 (Ω,−→ω ), where C is a positive constant independent of u.

– The embedding

W 1,−→p
0 (Ω,−→ω ) ↪→ Lq(Ω, σ) (11)

expressed by (10) is compact.

Remark 2.1 Let us take p0 = p1 = p2 = ... = pN = p, ω0(x) = ω1(x) = ω2(x) =
... = ωN (x) = [dist(x, ∂Ω)]λ and σ(x) = [dist(x, ∂Ω)]γ , λ, γ ∈ R. In this case, the Hardy
inequality reads (∫

Ω

|u|q[dist(x, ∂Ω)]γ
) 1

q

dx ≤
N∑
i=1

(∫
Ω

|∂iu|p[dist(x, ∂Ω)]λdx
) 1

p

.

The imbedding W 1,p
0 (Ω, dist(x, ∂Ω)) ↪→ Lq(Ω, dist(x, ∂Ω)) is compact (see Example 1.5

in [10]) if and only if either:
i) 1 < p ≤ q < +∞, λ < p− 1, N

q −
N
p + 1 ≥ 0 , γ ≥ λ qp −N +N q

p − q or

ii) 1 ≤ q < p < +∞, λ < p− 1, γ ≥ λ qp − 1 + q
p − q.

Similarly, in the isotropic case, see [1], we can construct an isometric from

W 1,−→p
0 (Ω,−→ω ) in

∏N
i=1 L

pi(Ω, ωi) which implies with (7) that the space W 1,−→p
0 (Ω,−→ω )

is a reflexive and separable Banach space. Moreover, we consider T 1,−→p
0 (Ω,−→ω ) =

{u measurable in Ω : Tk(u) ∈W 1,−→p
0 (Ω,−→ω ),∀k > 0}.
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3 Mains Results

Let Ω be a bounded open subset of RN (N ≥ 2) with the Lipschitz continuous boundary

∂Ω. The functions a: Ω×R×RN → RN such that a(x, s, ξ) =
(
a1(x, s, ξ), ..., aN (x, s, ξ)

)
and gi: Ω×R×RN → R with ai and gi are Carathéodory functions satisfying the following
assumptions for all s ∈ R, ξ ∈ RN , ξ′ ∈ RN and a. e. in Ω :

Assumptions H2:

N∑
i=1

ai(x, s, ξ)ξi ≥ α
N∑
i=1

ωi|ξi|pi , (12)

|ai(x, s, ξ)| ≤ βω
1
pi
i [ji(x) + σ

1
p′
i |s|

q

p′
i + ω

1
p′
i |ξi|pi−1], (13)

(ai(x, s, ξ)− ai(x, s, ξ
′
))(ξi − ξ

′

i) > 0 for ξi 6= ξ
′

i , (14)

where α, β are some positive constants, ji is a positive function in Lp
′
i(Ω).

Assumptions H3:

|gi(x, s, ξ)| ≤ γ(x) + ρ(s)ωi|ξi|pi ∀i = 1, ...., N, (15)

where γ is a positive function in L1(Ω) and ρ : R→ R+ is a continuous positive function
in L1(R).

Moreover, we suppose that

f ∈ L1(Ω). (16)

Let us define the convex set Kψ(Ω,−→ω ) = {u ∈ W 1,−→p
0 (Ω,−→ω ), u ≥ ψ a.e. in Ω}, where ψ

is a measurable function with values in R such that

ψ+ ∈W 1,−→p
0 (Ω,−→ω ) ∩ L∞(Ω). (17)

3.1 Some technical lemmas

The following lemma generalizes to the anisotropic case the analogous Lemma 5 in [9].
We use the method of [7] and [9].

Lemma 3.1 Assume that (12)-(14) hold and let (un)n be a sequence in W 1,−→p
0 (Ω,−→ω )

such that un ⇀ u in W 1,−→p
0 (Ω,−→ω ) and lim

n→+∞

∫
Ω

(
a(x, un,∇un)− a(x, un,∇u)

)
∇(un − u)

= 0. Then un → u strongly in W 1,−→p
0 (Ω,−→ω ) for a subsequence.

Definition 3.1 A function u is an entropy solution for problem (1) if it satisfies (6).

Theorem 3.1 Assume that (12)-(17) hold. Then there exists at least one entropy
solution in the sense of the definition (3.1) of problem (1).
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Proof of Theorem 3.1.
The proof of this theorem is done in four steps.
Step 1 : Approximate problems.
We consider the following approximate problems

un ∈ Kψ(Ω,−→ω ).∫
Ω

a(x, un,∇un)∇(un − v) +

N∑
i=1

∫
Ω

gni (x, un,∇un)(un − v) ≤
∫

Ω

fn(un − v),

∀v ∈ Kψ(Ω,−→ω ),

(18)

where gni (x, s, ξ) = gi(x,s,ξ)

1+ 1
n |gi(x,s,ξ)|

T 1
n

(σ
1
q (x)) and fn(x) = f(x)

1+ 1
n |f(x)| . We have

|gni (x, s, ξ)| ≤ |gi(x, s, ξ)|, |gni (x, s, ξ)| ≤ n, |gni (x, u,∇u)| ≤ n2σ
1
q (x), |fn(x)| ≤ |f(x)|

and |fn(x)| ≤ n.

For all u and v in W 1,−→p
0 (Ω,−→ω ), we have

|
∫

Ω

gni (x, u,∇u)vdx| ≤
(∫

Ω

|gni (x, u,∇u)|q
′
σ
−q′
q dx

) 1
q′
(∫

Ω

|v|qσdx
) 1

q

≤ n2
(∫

Ω

σ
q′
q σ

−q′
q dx

) 1
q′ ‖v‖Lq(Ω,σ)

≤ Cn‖v‖W 1,−→p
0 (Ω,−→ω )

.

Proposition 3.1 Under the conditions (12)-(17), there exists at least one solution
of the problem (18).

Proof of Proposition 3.1.
Thanks to the Leray-Lions theorem and Theorem 8.2 from Chapter 2 in [14], there exists
at least one solution to problem (18).
Step 2 : A priori estimate.

Proposition 3.2 Assume that (12)- (17) hold and if un is a solution of the approx-
imate problem (18), then there exists a constant C such that

N∑
i=1

∫
Ω

|∂iTk(un)|piωi ≤ Ck ∀k > 0.

Proof: Let v = un − η exp(G(un))Tk(u+
n − ψ+), where G(s) =

∫ s
0
ρ(t)
α dt and η ≥ 0.

Since v ∈W 1,−→p
0 (Ω,−→ω ) and for all η small enough, we have v ∈ Kψ(Ω,−→ω ). We take v as

a test function in problem (18), thanks to (12) and (15), we obtain
N∑
i=1

∫
Ω

ai(x, un,∇un) exp(G(un))∂iTk(u+
n − ψ+)≤ (‖f‖L1(Ω) + ‖γ‖L1(Ω)) exp(

‖ρ‖L1(R)

α
)k

≤ Ck.
By (12) and Young’s inequality, we have

N∑
i=1

∫
{|u+

n−ψ+|≤k}
|∂iu+

n |piωidx ≤ C ′k ∀k > 0. (19)

Since {x ∈ Ω, |u+
n | ≤ k} ⊂ {x ∈ Ω, |u+

n − ψ+| ≤ k + ‖ψ+‖∞}, we have

N∑
i=1

∫
Ω

|∂iTk(u+
n )|piωidx =

N∑
i=1

∫
{|u+

n |≤k}
|∂iu+

n |piωidx
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≤
N∑
i=1

∫
{|u+

n−ψ+|≤k+‖ψ+‖∞}
|∂iu+

n |piωidx.

This implies, by (19), that

N∑
i=1

∫
Ω

|∂iTk(u+
n )|piωidx ≤ C ′k, ∀k > 0. (20)

Similarly, taking v = un+exp(−G(un))Tk(u−n ) as a test function in approximate problem
(18), thanks to (12) and (15), we obtain

N∑
i=1

∫
{un≤0}

ai(x, un,∇un) exp(−G(un))∂iTk(un) ≤ Ck.

By (12), we deduce that

N∑
i=1

∫
{un≤0}

|∂iTk(un)|piωi ≤ Ck. (21)

Combining (20) and (21), we obtain

N∑
i=1

∫
Ω

|∂iTk(un)|piωi ≤ Ck. It yields

‖Tk(un)‖
W 1,−→p

0 (Ω,−→ω )
≤ Ck

1
p− , ∀k > 1. (22)

Step 3: Strong convergence of truncations.

Lemma 3.2 There exist a measurable function u and a subsequence of un such that

Tk(un)→ Tk(u) strongly in W 1,−→p
0 (Ω,−→ω ).

Proof: By (22), the sequence (Tk(un))n is bounded in W 1,−→p
0 (Ω,−→ω ), there exists

a subsequence (Tk(un))n such that Tk(un) converges to vk a. e. in Ω, weakly in

W 1,−→p
0 (Ω,−→ω ) and strongly in Lq(Ω, σ) as n tends to +∞. Since (un)n is a Cauchy

sequence in measure in Ω, there exists a subsequence denoted by (un)n such that un
converges to a measurable function u a. e. in Ω and

Tk(un) ⇀ Tk(u) weakly in W 1,−→p
0 (Ω,−→ω ) and a. e. in Ω, ∀k > 0. (23)

Now, we prove that

lim
n→∞

N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)(
∂iTk(un)− ∂iTk(u)

)
= 0.

(24)
Let us take v = un + exp(−G(un))T1(un − Tm(un))− in approximate problem (18), by
(12) and (15), we have

N∑
i=1

∫
{−(m+1)≤un≤−m}

ai(x, un,∇un) exp(−G(un))∂iun
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≤ −
∫

Ω

fn exp(−G(un))T1(un−Tm(un))−+

N∑
i=1

∫
Ω

γ(x) exp(−G(un))T1(un−Tm(un))−.

(25)
By Lebesgue’s theorem, we have the right-hand side in (25) tends to zero as n and m
tend to ∞. Then, we get

lim
m→∞

lim sup
n→∞

N∑
i=1

∫
{−(m+1)≤un≤−m}

ai(x, un,∇un)∂iun = 0. (26)

Similarly, taking v = un − η exp(G(un))T1(un − Tm(un))+ as a test function in approxi-
mate problem (18), we get

lim
m→∞

lim sup
n→∞

N∑
i=1

∫
{m≤un≤m+1}

ai(x, un,∇un)∂iun = 0. (27)

We consider the following function of one real variable:

hm(s) =

 1, if |s| ≤ m,
0, if |s| ≥ m+ 1,
m+ 1− |s|, if m ≤ |s| ≤ m+ 1,

where m > k. Let ϕ = un − η exp(G(un))(Tk(un)− Tk(u))+hm(un) be a test function in
approximate problem (18), using (12) and (15), we get

N∑
i=1

∫
Ω

ai(x, un,∇un) exp(G(un))∂i(Tk(un)− Tk(u))+hm(un)

+

N∑
i=1

∫
Ω

ai(x, un,∇un) exp(G(un))(Tk(un)− Tk(u))+∂iunh
′

m(un)

≤
N∑
i=1

∫
Ω

γ(x) exp(G(un))(Tk(un)− Tk(u))+hm(un)

+

∫
Ω

fn exp(G(un))(Tk(un)− Tk(u))+hm(un).

This implies that
N∑
i=1

∫
Ω

ai(x, un,∇un) exp(G(un))∂i(Tk(un)−Tk(u))+hm(un)

≤
N∑
i=1

∫
{m≤un≤m+1}

ai(x, un,∇un) exp(G(un))(Tk(un)− Tk(u))+∂iun

+

N∑
i=1

∫
Ω

γ(x) exp(G(un))(Tk(un)− Tk(u))+hm(un)

+

∫
Ω

fn exp(G(un))(Tk(un)− Tk(u))+hm(un).

Thanks to Lebesgue’s theorem and (27), we obtain

lim
m→∞

lim
n→∞

N∑
i=1

∫
Ω

ai(x, un,∇un) exp(G(un))∂i(Tk(un)− Tk(u))+hm(un) ≤ 0,
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which implies that

lim
m→∞

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|≤k}

ai(x, un,∇un) exp(G(un))∂i(Tk(un)−Tk(u))hm(un)

− lim
m→∞

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|>k}

ai(x, un,∇un) exp(G(un))∂i(Tk(u))+hm(un) ≤

0,
since hm(un) = 0 if |un| > m+ 1, we have
N∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|>k}

ai(x, un,∇un) exp(G(un))∂i(Tk(u))+hm(un)

=

N∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|>k}

ai(x, Tm+1(un),∇Tm+1(un)) exp(G(un))∂i(Tk(u))+hm(un).

By (13) and (22), we have ai(x, Tm+1(un),∇Tm+1(un)) ⇀ Xi
m in Lp

′
i(Ω, ω∗i ). It yields

lim
m,n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|>k}

ai(x, Tm+1(un),∇Tm+1(un)) exp(G(un))∂i(Tk(u))+hm(un)

= lim
m→∞

N∑
i=1

∫
{|u|>k}

Xi
m exp(G(u))∂iTk(u)hm(u) = 0.

Using ai(x, Tk(un),∇Tk(un))hm(un) → ai(x, Tk(u),∇Tk(u))hm(u) a. e. in Ω, we see
that the sequence(
ai(x, Tk(un),∇Tk(un))hm(un)

)
n

is equi-integrable in Lp
′
i(Ω, ω∗i ) and Vitali’s theorem

implies that

ai(x, Tk(un),∇Tk(un))hm(un)→ ai(x, Tk(u),∇Tk(u))hm(u) in Lp
′
i(Ω, ω∗i ).

Since ∂iTk(un) ⇀ ∂iTk(u)) weakly in Lpi(Ω, ωi), we get

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≥0}

ai(x, Tk(un),∇Tk(u)) exp(G(un))∂i(Tk(un)− Tk(u))hm(un) =

0, thus we conclude that

lim
m→∞

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≥0}

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
×

∂i(Tk(un)− Tk(u))hm(un) = 0. (28)

Similarly, we take ϕ = un + exp(−G(un))(Tk(un)− Tk(u))−hm(un) as a test function in
approximating problem (18), we obtain

lim
m→∞

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≤0}

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
×

∂i(Tk(un)− Tk(u))hm(un) = 0. (29)

Combining (28) and (29), we deduce that

lim
m→∞

lim
n→∞

N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
∂i(Tk(un)− Tk(u))hm(un) = 0. (30)
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Let ϕ = un+exp(−G(un))Tk(un)−(1−hm(un)) be a test function in approximate problem
(18) and using (13) and (15), we get
N∑
i=1

∫
{un≤0}

ai(x, un,∇un) exp(−G(un))∂iTk(un)(1− hm(un))

≤ −
N∑
i=1

∫
{−(j+1)≤un≤−j}

ai(x, un,∇un) exp(−G(un))Tk(un)∂iun

+

N∑
i=1

∫
Ω

γ(x) exp(−G(un))Tk(un)−(1− hm(un))

−
N∑
i=1

∫
Ω

fn(x) exp(−G(un))Tk(un)−(1− hm(un)).

In view of (26) and Lebesgue’s theorem, the integrals in the righthand side converge to
zero as n and m tend to infinity. Then

lim
m→∞

lim
n→∞

N∑
i=1

∫
{un≤0}

ai(x, un,∇un)∂iTk(un)(1− hm(un)) = 0. (31)

On the other hand, we take ϕ = un − η exp(G(un))Tk(u+
n − ψ+)(1 − hm(un)) as a test

function in approximate problem (18) and using (13) and (15), we get
N∑
i=1

∫
Ω

ai(x, un,∇un) exp(G(un))∂iTk(u+
n − ψ+)(1− hm(un))

≤
N∑
i=1

∫
{−(j+1)≤un≤−j}

ai(x, un,∇un) exp(G(un))Tk((un)+ − ψ+)∂iun

+

N∑
i=1

∫
Ω

γ(x) exp(G(un))Tk(u+
n − ψ+)(1− hm(un))

+

N∑
i=1

∫
Ω

fn(x) exp(G(un))Tk(u+
n − ψ+)(1− hm(un)).

By Lebesgue’s theorem and (26), we deduce that
N∑
i=1

∫
{|u+

n−ψ+|≤k}
ai(x, un,∇un) exp(G(un))∂iu

+
n (1− hm(un))

≤
N∑
i=1

∫
{|u+

n−ψ+|≤k}
ai(x, un,∇un)∂iψ

+(1− hm(un)) + ε1(n,m). (32)

Thanks to (13) and Young’s inequality, we have

N∑
i=1

∫
{|u+

n−ψ+|≤k}
ai(x, un,∇un) exp(G(un))∂iu

+
n (1− hm(un)) ≤ ε2(n,m),

where ε1(n,m) and ε2(n,m) converge to zero as n andm tend to infinity. Since ρ ∈ L1(R),
we have exp(G(un)) is bounded. It yields

N∑
i=1

∫
{|u+

n−ψ+|≤k}
ai(x, un,∇un)∂iu

+
n (1− hm(un)) ≤ ε3(n,m).
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Since {x ∈ Ω, |u+
n | ≤ k} ⊂ {x ∈ Ω, |u+

n − ψ+| ≤ k + ‖ψ+‖L∞(Ω)}, hence
N∑
i=1

∫
{|u+

n |≤k}
ai(x, un,∇un)∂iu

+
n (1−hm(un)) ≤ ε3(n,m), which implies that, for all k > 0,

lim
m→∞

lim
n→∞

N∑
i=1

∫
{un≥0}

ai(x, Tk(un),∇Tk(un))∂iTk(un)(1− hm(un)) = 0. (33)

Combining (31) and (33), we obtain

lim
m→∞

lim
n→∞

N∑
i=1

∫
Ω

ai(x, Tk(un),∇Tk(un))∂iTk(un)(1− hm(un)) = 0. (34)

Moreover, we have
N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)(
∂iTk(un)− ∂iTk(u)

)
=

N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)(
∂iTk(un)− ∂iTk(u)

)
hm(un)

+

N∑
i=1

∫
Ω

ai(x, Tk(un),∇Tk(un))∂iTk(un)(1− hm(un))

−
N∑
i=1

∫
Ω

ai(x, Tk(un),∇Tk(un))∂iTk(u)(1− hm(un))

−
N∑
i=1

∫
Ω

ai(x, Tk(un),∇Tk(u))(∂iTk(un)− ∂iTk(u))(1− hm(un)).

By (30) and (33), the first and the second integrals of the right-hand side converge to

zero as n,m → +∞. Since
(
ai(x, Tk(un),∇Tk(un))

)
n

is bounded in Lp
′
i(Ω, ω∗i ) and

∂iTk(u)(1−hm(un)) converges to zero in Lpi(Ω, ωi), the third integral converges to zero.
So the fourth integral converges to zero while ∂iTk(un) ⇀ ∂iTk(u) weakly in Lpi(Ω, ωi)
and ai(x, Tk(un),∇Tk(un))(1 − hm(un)) converges to ai(x, Tk(u),∇Tk(u))(1 − hm(u))
strongly in Lp

′
i(Ω, ω∗i ). We conclude the proof of (24).

Using (23), (24) and Lemma 3.1, we deduce

Tk(un)→ Tk(u) strongly in W 1,−→p
0 (Ω,−→ω ) and a. e. in Ω, ∀k > 0. (35)

This implies that

∇un → ∇u a. e. in Ω, (36)

which gives

ai(x, un,∇un) ⇀ ai(x, u,∇u) in Lp
′
i(Ω, ω∗i ). (37)

Step 4: Equi integrability of the non linearity sequence.
We shall prove that gni (x, un,∇un)→ gi(x, u,∇u) in L1(Ω).
We have gni (x, un,∇un)→ gi(x, u,∇u) a. e. in Ω.

Let v = un + exp(−G(un))

∫ 0

un

ρ(ν)χ{ν<−h}dν. Since v ∈ Kψ(Ω,−→ω ), we take v as a test
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function in approximate problem (18). Then, by (12) and (15), we have
N∑
i=1

∫
Ω

ai(x, un,∇un) exp(−G(un))∂iunρ(un)χ{un<−h}

≤
N∑
i=1

∫
Ω

γ(x) exp(−G(un))

∫ 0

un

ρ(ν)χ{ν<−h}dν −
∫

Ω

fn exp(−G(un))

∫ 0

un

ρ(ν)χ{ν<−h}dν

≤ exp
(‖ρ‖L1(R)

α

)(∫ −h
−∞

ρ(s)ds
)(
N‖γ‖L1(Ω) + ‖f‖L1(Ω)

)
.

Using again (12), we obtain

N∑
i=1

∫
Ω

α|∂iun|piωiρ(un)χ{un<−h} ≤ c
∫ −h
−∞

ρ(s)ds.

Since ρ ∈ L1(R), we have

lim
h→∞

sup
n∈N

N∑
i=1

∫
{un<−h}

α|∂iun|piωiρ(un) = 0. (38)

Let h be such that h ≥ exp(G(un))

∫ +∞

0

ρ(ν)dν + ‖ψ+‖L∞(Ω) and we take

v = un − exp(G(un))

∫ un

0

ρ(ν)χ{ν>h}dν as a test function in approximate problem (18).

Then, similarly as in (38), we deduce that

lim
h→∞

sup
n∈N

N∑
i=1

∫
{un>h}

α|∂iun|piωiρ(un) = 0. (39)

Combining (38) and (39), we deduce

lim
h→∞

sup
n∈N

N∑
i=1

∫
{|un|>h}

α|∂iun|piωiρ(un) = 0. (40)

Using (35), (36), (40) and Vitali’s theorem, we obtain

gni (x, un,∇un)→ gi(x, u,∇u) in L1(Ω). (41)

On the other hand, let ϕ ∈ Kψ ∩ L∞(Ω) and v = un − Tk(un − ϕ) be a test function in
approximate problem (18). We get

un ∈ Kψ.
N∑
i=1

∫
Ω

ai(x, un,∇un)∂iTk(un − ϕ) +

N∑
i=1

∫
Ω

gni (x, un,∇un)Tk(un − ϕ)

≤
∫

Ω

fnTk(un − ϕ),

∀ϕ ∈ Kψ ∩ L∞(Ω) and ∀k > 0,

(42)

Using (35), (37) and (41), we can pass to the limit in (42).

4 Example

Let us consider the following case:

ai(x, s, ξ) = ωi|ξi|pi−1sign(ξi) and gi(x, s, ξ) =
1

1 + s2
ωi|ξi|pi .
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