Nonlinear Dynamics and Systems Theory, 18(3) (2018) 213-224

Existence of Solution for Nonlinear Anisotropic Degenerated Elliptic Unilateral Problems

Y. Akdim^{1*}, M. Rhoudaf² and A. Salmani¹

¹ Laboratory LSI, Polydisciplinary Faculty, Taza, Morocco
 ² Laboratory LMA Faculty of Sciences, Meknes, Morocco

Received: May 10, 2017; Revised: June 18, 2018

Abstract: In this paper, we prove the existence of entropy solutions of anisotropic elliptic equations $Au + \sum_{i=1}^{N} g_i(x, u, \nabla u) = f$, where the operator Au is a Leray-Lions anisotropic operator from $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ into its dual $W^{-1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega^*})$. The critical growth condition on g_i is with respect to ∇u and there is no the growth condition with respect to u and no the sign condition. The right-hand side f belongs to $L^1(\Omega)$.

Keywords: nonlinear elliptic equations; quasilinear degenerated unilateral problems; non-variational inequalities.

Mathematics Subject Classification (2010): 35J60, 35J70, 35J87.

1 Introduction

Let Ω be a bounded open subset of \mathbb{R}^N $(N \geq 2)$ with Lipschitz continuous boundary and let $Au = -\sum_{i=1}^N \partial_i a_i(x, u, \nabla u)$ be a degenerate anisotropic operator of Leray-Lions type defined in the weighted anisotropic Sobolev space $W^{1, \overrightarrow{p}}(\Omega, \overrightarrow{\omega})$, where $\overrightarrow{\omega} = (\omega_0, \omega_1, ..., \omega_N)$ is a vector of weight functions defined on Ω and $\overrightarrow{p} = (p_0, ..., p_N)$ is a vector of real number such that $p_i > 1$ for i = 0, ..., N.

We consider the following nonlinear elliptic anisotropic problem

$$\begin{cases} -\sum_{i=1}^{N} \partial_i a_i(x, u, \nabla u) + \sum_{i=1}^{N} g_i(x, u, \nabla u) = f & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$
(1)

where $g_i(x, s, \xi)$ is a Carathéodory function satisfying only the following growth condition $|g_i(x, s, \xi)| \leq \gamma(x) + \rho(s)|\xi_i|^{p_i}$ and where the right-hand side f belongs to $L^1(\Omega)$. In the

^{*} Corresponding author: mailto:akdimyoussef@yahoo.fr

^{© 2018} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua213

particular case, where $\sum_{i=1}^{N} g_i(x, s, \xi) = -C_0 |u|^{p-2} u$, the following degenerated equation $-\operatorname{div}(a(x, u, \nabla u)) - C_0 |u|^{p-2} u = f(x, u, \nabla u)$ has been studied by Drabek-Nicolsi in [11] under more degeneracy and some additional assumptions on f and $a(x, u, \nabla u)$.

In the isotropic case, more precisely, when $p_0 = p_1 = \dots = p_N = p$ and $\sum_{i=1}^{N} g_i(x, u, \nabla u) \equiv g(x, u, \nabla u)$, the existence result for the unilateral problem with $g(x, u, \nabla u)$ satisfying the following growth condition

$$|g(x, s, \xi)| \le b(|s|)(C(x) + \sum_{i=1}^{N} \omega_i |\xi_i|^p)$$
(2)

and the sign condition

$$g(x,s,\xi)s \ge 0,\tag{3}$$

when f belongs to $W^{-1,p'}(\Omega, \omega^*)$, is studied by Akdim et al. in [7] under the following integrability condition

$$\sigma^{1-q'} \in L^1_{loc}(\Omega) \quad \text{with} \quad 1 < q < +\infty, \tag{4}$$

where σ is a weight function which is assumed satisfying the Hardy inequality

$$\int_{\Omega} |u|^q \sigma(x) dx \le C \Big(\sum_{i=1}^N \int_{\Omega} |\partial_i u|^p \omega_i(x) dx \Big)^{\frac{1}{p}}.$$
 (5)

Our aim in this paper is to prove the existence of entropy solution for the following weighted unilateral elliptic anisotropic problem

$$\begin{cases} u \ge \psi \ a.e. \ \text{in } \Omega, \\ T_k(u) \in W_0^{1, \overrightarrow{p}}(\Omega, \overrightarrow{\omega}), \\ \sum_{i=1}^N \int_{\Omega} a_i(x, u, \nabla u) \partial_i T_k(u-v) + \sum_{i=1}^N \int_{\Omega} g_i(x, u, \nabla u) T_k(u-v) \le \int_{\Omega} f T_k(u-v), \\ \forall v \in K_{\psi}(\Omega, \overrightarrow{\omega}) \cap L^{\infty}(\Omega) \ \text{and} \ \forall k > 0, \end{cases}$$
(6)

without the conditions (3) and (4).

2 Preliminaries

Let Ω be a bounded open subset of \mathbb{R}^N $(N \ge 2)$ with the Lipschitz continuous boundary and let $1 < p_0, p_1, ..., p_N < \infty$ be N + 1 real numbers, $p^+ = \max\{p_1, ..., p_N\}$, $p^- = \min\{p_1, ..., p_N\}$. We denote $\partial_i = \frac{\partial}{\partial x_i}$, let ω_i be non negative functions on Ω such that $\omega_i > 0$ a.e. in Ω for all i = 0, 1, ..., N. We set $\overrightarrow{\omega} = (\omega_0, \omega_1, ..., \omega_N)$ and $\overrightarrow{p} = (p_0, p_1, ..., p_N)$. We suppose that for i = 0, 1, ..., N and for j = 0, 1, ..., N

$$\omega_i \in L^1_{loc}(\Omega) \text{ and } \omega_i^{-\frac{1}{p_j-1}} \in L^1_{loc}(\Omega).$$
 (7)

As the classical weighted Sobolev space in [10], we define the anisotropic weighted Sobolev space by

$$W^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega}) = \Big\{ u \in L^{p_0}(\Omega,\omega_0) : \partial_i u \in L^{p_i}(\Omega,\omega_i), i = 1, 2, ..., N \Big\}.$$

As in Theorem 1.11 in [13], by (7) the space $W^{1,\vec{p}}(\Omega,\vec{\omega})$ is a Banach space under the following norm

$$\|u\|_{W^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})} = \|u\|_{L^{p_0}(\Omega,\omega_0)} + \sum_{i=1}^N \|\partial_i u\|_{L^{p_i}(\Omega,\omega_i)}.$$
(8)

Since $\omega_i \in L^1_{loc}(\Omega)$, we have that $C^{\infty}_0(\Omega)$ is a subset of $W^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ and we can introduce the space $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ as the closure of $C_0^{\infty}(\Omega)$ with respect to norm (8). We recall that the dual space of weighted anisotropic Sobolev space $W_0^{1, \overrightarrow{p}}(\Omega, \overrightarrow{\omega})$ is equivalent to $W^{-1,\overrightarrow{p'}}(\Omega,\overrightarrow{\omega^*})$, where $\overrightarrow{\omega^*} = (\omega_1^*,...,\omega_N^*)$, $\omega_i^* = \omega_i^{1-p'_i}$, $\overrightarrow{p'} = (p'_1,...,p'_N)$ and $p'_i = \frac{p_i}{p_i-1}$, for all i = 1, ..., N.

Now, we introduce the following assumptions:

Assumptions (H_1) :

- The expression

$$\|u\|_{W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})} = \sum_{i=1}^N \|\partial_i u\|_{L^{p_i}(\Omega,\omega_i)}$$

$$\tag{9}$$

is a norm defined on $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ and it is equivalent to the norm (8). – There exist a weight function σ on Ω and a parameter $q, 1 < q < \infty$, such that the Hardy inequality

$$\left(\int_{\Omega} |u|^{q} \sigma dx\right)^{\frac{1}{q}} \leq C \sum_{i=1}^{N} \left(\int_{\Omega} \left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}} w_{i}\right)^{\frac{1}{p_{i}}}$$
(10)

holds for every $u \in W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$, where C is a positive constant independent of u.

- The embedding

$$W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega}) \hookrightarrow L^q(\Omega,\sigma)$$
 (11)

expressed by (10) is compact.

Remark 2.1 Let us take $p_0 = p_1 = p_2 = ... = p_N = p$, $\omega_0(x) = \omega_1(x) = \omega_2(x) = \omega_2(x)$ $\ldots = \omega_N(x) = [dist(x,\partial\Omega)]^{\lambda}$ and $\sigma(x) = [dist(x,\partial\Omega)]^{\gamma}, \lambda, \gamma \in \mathbb{R}$. In this case, the Hardy inequality reads

$$\Big(\int_{\Omega} |u|^q [dist(x,\partial\Omega)]^{\gamma}\Big)^{\frac{1}{q}} dx \leq \sum_{i=1}^N \Big(\int_{\Omega} |\partial_i u|^p [dist(x,\partial\Omega)]^{\lambda} dx\Big)^{\frac{1}{p}}.$$

The imbedding $W_0^{1,p}(\Omega, dist(x, \partial \Omega)) \hookrightarrow L^q(\Omega, dist(x, \partial \Omega))$ is compact (see Example 1.5 in [10]) if and only if either:

i) $1 , <math>\gamma \ge \lambda \frac{q}{p} - N + N \frac{q}{p} - q$ or

ii) $1 \le q$

Similarly, in the isotropic case, see [1], we can construct an isometric from $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ in $\prod_{i=1}^N L^{p_i}(\Omega,\omega_i)$ which implies with (7) that the space $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ is a reflexive and separable Banach space. Moreover, we consider $\mathcal{T}_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega}) = 1$ {u measurable in $\Omega: T_k(u) \in W_0^{1, \overrightarrow{p}}(\Omega, \overrightarrow{\omega}), \forall k > 0$ }.

3 Mains Results

Let Ω be a bounded open subset of \mathbb{R}^N $(N \ge 2)$ with the Lipschitz continuous boundary $\partial\Omega$. The functions $a: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ such that $a(x, s, \xi) = (a_1(x, s, \xi), ..., a_N(x, s, \xi))$ and $g_i: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ with a_i and g_i are Carathéodory functions satisfying the following assumptions for all $s \in \mathbb{R}$, $\xi \in \mathbb{R}^N, \xi' \in \mathbb{R}^N$ and a. e. in Ω :

Assumptions H_2 :

$$\sum_{i=1}^{N} a_i(x,s,\xi)\xi_i \ge \alpha \sum_{i=1}^{N} \omega_i |\xi_i|^{p_i},$$
(12)

$$|a_i(x,s,\xi)| \le \beta \omega_i^{\frac{1}{p_i}} [j_i(x) + \sigma^{\frac{1}{p_i'}} |s|^{\frac{q}{p_i'}} + \omega^{\frac{1}{p_i'}} |\xi_i|^{p_i-1}],$$
(13)

$$(a_i(x, s, \xi) - a_i(x, s, \xi'))(\xi_i - \xi_i') > 0 \quad \text{for } \xi_i \neq \xi_i',$$
(14)

where α, β are some positive constants, j_i is a positive function in $L^{p'_i}(\Omega)$.

Assumptions H_3 :

$$|g_i(x,s,\xi)| \le \gamma(x) + \rho(s)\omega_i |\xi_i|^{p_i} \quad \forall i = 1, \dots, N,$$
(15)

where γ is a positive function in $L^1(\Omega)$ and $\rho : \mathbb{R} \to \mathbb{R}^+$ is a continuous positive function in $L^1(\mathbb{R})$.

Moreover, we suppose that

$$f \in L^1(\Omega). \tag{16}$$

Let us define the convex set $K_{\psi}(\Omega, \overrightarrow{\omega}) = \{ u \in W_0^{1, \overrightarrow{p}}(\Omega, \overrightarrow{\omega}), u \ge \psi \text{ a.e. in } \Omega \}$, where ψ is a measurable function with values in \mathbb{R} such that

$$\psi^+ \in W_0^{1,\overline{p}}(\Omega,\overline{\omega}) \cap L^{\infty}(\Omega).$$
(17)

3.1 Some technical lemmas

The following lemma generalizes to the anisotropic case the analogous Lemma 5 in [9]. We use the method of [7] and [9].

Lemma 3.1 Assume that (12)-(14) hold and let $(u_n)_n$ be a sequence in $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ such that $u_n \rightharpoonup u$ in $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ and $\lim_{n \rightarrow +\infty} \int_{\Omega} \left(a(x,u_n,\nabla u_n) - a(x,u_n,\nabla u) \right) \nabla(u_n - u)$ = 0. Then $u_n \rightarrow u$ strongly in $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ for a subsequence.

Definition 3.1 A function u is an entropy solution for problem (1) if it satisfies (6).

Theorem 3.1 Assume that (12)-(17) hold. Then there exists at least one entropy solution in the sense of the definition (3.1) of problem (1).

Proof of Theorem 3.1.

The proof of this theorem is done in four steps.

Step 1 : Approximate problems.

We consider the following approximate problems

$$\begin{cases} u_n \in K_{\psi}(\Omega, \vec{\omega}). \\ \int_{\Omega} a(x, u_n, \nabla u_n) \nabla(u_n - v) + \sum_{i=1}^N \int_{\Omega} g_i^n(x, u_n, \nabla u_n)(u_n - v) \le \int_{\Omega} f_n(u_n - v), \quad (18) \\ \forall v \in K_{\psi}(\Omega, \vec{\omega}), \end{cases}$$

where $g_i^n(x, s, \xi) = \frac{g_i(x, s, \xi)}{1 + \frac{1}{n} |g_i(x, s, \xi)|} T_{\frac{1}{n}}(\sigma^{\frac{1}{q}}(x))$ and $f_n(x) = \frac{f(x)}{1 + \frac{1}{n} |f(x)|}$. We have $|g_i^n(x, s, \xi)| \le |g_i(x, s, \xi)|, |g_i^n(x, s, \xi)| \le n, |g_i^n(x, u, \nabla u)| \le n^2 \sigma^{\frac{1}{q}}(x), |f_n(x)| \le |f(x)|$ and $|f_n(x)| \le n$. For all u and v in $W_0^{1, \overrightarrow{p}}(\Omega, \overrightarrow{\omega})$, we have

For all
$$u$$
 and v in $\mathcal{W}_0^{-}(\Omega, \omega)$, we have

$$\begin{aligned} |\int_{\Omega} g_i^n(x, u, \nabla u) v dx| &\leq \left(\int_{\Omega} |g_i^n(x, u, \nabla u)|^{q'} \sigma^{-q'} dx\right)^{\frac{1}{q'}} \left(\int_{\Omega} |v|^q \sigma dx\right)^{\frac{1}{q}} \\ &\leq n^2 \left(\int_{\Omega} \sigma^{\frac{q'}{q}} \sigma^{-q'} dx\right)^{\frac{1}{q'}} \|v\|_{L^q(\Omega, \sigma)} \\ &\leq C_n \|v\|_{W_0^{1, \overrightarrow{p}}(\Omega, \overrightarrow{\omega})}. \end{aligned}$$

Proposition 3.1 Under the conditions (12)-(17), there exists at least one solution of the problem (18).

Proof of Proposition 3.1.

Thanks to the Leray-Lions theorem and Theorem 8.2 from Chapter 2 in [14], there exists at least one solution to problem (18).

Step 2 : A priori estimate.

Proposition 3.2 Assume that (12)- (17) hold and if u_n is a solution of the approximate problem (18), then there exists a constant C such that

$$\sum_{i=1}^{N} \int_{\Omega} |\partial_i T_k(u_n)|^{p_i} \omega_i \le Ck \quad \forall k > 0.$$

Proof: Let $v = u_n - \eta \exp(G(u_n))T_k(u_n^+ - \psi^+)$, where $G(s) = \int_0^s \frac{\rho(t)}{\alpha} dt$ and $\eta \ge 0$. Since $v \in W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ and for all η small enough, we have $v \in K_{\psi}(\Omega,\overrightarrow{\omega})$. We take v as a test function in problem (18), thanks to (12) and (15), we obtain

$$\sum_{i=1}^{N} \int_{\Omega} a_i(x, u_n, \nabla u_n) \exp(G(u_n)) \partial_i T_k(u_n^+ - \psi^+) \le (\|f\|_{L^1(\Omega)} + \|\gamma\|_{L^1(\Omega)}) \exp(\frac{\|\rho\|_{L^1(\mathbb{R})}}{\alpha}) k \le Ck.$$

By (12) and Young's inequality, we have

$$\sum_{i=1}^{N} \int_{\{|u_{n}^{+} - \psi^{+}| \le k\}} |\partial_{i}u_{n}^{+}|^{p_{i}} \omega_{i} dx \le C'k \quad \forall k > 0.$$
⁽¹⁹⁾

Since $\{x \in \Omega, |u_n^+| \le k\} \subset \{x \in \Omega, |u_n^+ - \psi^+| \le k + \|\psi^+\|_{\infty}\}$, we have

$$\sum_{i=1}^{N} \int_{\Omega} |\partial_i T_k(u_n^+)|^{p_i} \omega_i dx = \sum_{i=1}^{N} \int_{\{|u_n^+| \le k\}} |\partial_i u_n^+|^{p_i} \omega_i dx$$

$$\leq \sum_{i=1}^{N} \int_{\{|u_{n}^{+} - \psi^{+}| \leq k + \|\psi^{+}\|_{\infty}\}} |\partial_{i}u_{n}^{+}|^{p_{i}} \omega_{i} dx.$$

This implies, by (19), that

$$\sum_{i=1}^{N} \int_{\Omega} |\partial_i T_k(u_n^+)|^{p_i} \omega_i dx \le C'k, \ \forall k > 0.$$
⁽²⁰⁾

Similarly, taking $v = u_n + \exp(-G(u_n))T_k(u_n)$ as a test function in approximate problem (18), thanks to (12) and (15), we obtain

$$\sum_{i=1}^{N} \int_{\{u_n \le 0\}} a_i(x, u_n, \nabla u_n) \exp(-G(u_n)) \partial_i T_k(u_n) \le Ck$$

By (12), we deduce that

$$\sum_{i=1}^{N} \int_{\{u_n \le 0\}} |\partial_i T_k(u_n)|^{p_i} \omega_i \le Ck.$$
(21)

Combining (20) and (21), we obtain $\sum_{i=1}^{N} \int_{\Omega} |\partial_i T_k(u_n)|^{p_i} \omega_i \leq Ck$. It yields

$$\|T_k(u_n)\|_{W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})} \le Ck^{\frac{1}{p_-}}, \qquad \forall k > 1.$$

$$(22)$$

Step 3: Strong convergence of truncations.

Lemma 3.2 There exist a measurable function u and a subsequence of u_n such that

 $T_k(u_n) \to T_k(u)$ strongly in $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$.

Proof: By (22), the sequence $(T_k(u_n))_n$ is bounded in $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$, there exists a subsequence $(T_k(u_n))_n$ such that $T_k(u_n)$ converges to v_k a. e. in Ω , weakly in $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ and strongly in $L^q(\Omega,\sigma)$ as *n* tends to $+\infty$. Since $(u_n)_n$ is a Cauchy sequence in measure in Ω , there exists a subsequence denoted by $(u_n)_n$ such that u_n converges to a measurable function u a. e. in Ω and

$$T_k(u_n) \rightharpoonup T_k(u)$$
 weakly in $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ and a. e. in $\Omega, \quad \forall k > 0.$ (23)

Now, we prove that

$$\lim_{n \to \infty} \sum_{i=1}^{N} \int_{\Omega} \left(a_i(x, T_k(u_n), \nabla T_k(u_n)) - a_i(x, T_k(u_n), \nabla T_k(u)) \right) \left(\partial_i T_k(u_n) - \partial_i T_k(u) \right) = 0.$$
(24)

Let us take $v = u_n + \exp(-G(u_n))T_1(u_n - T_m(u_n))^-$ in approximate problem (18), by (12) and (15), we have

$$\sum_{i=1}^{N} \int_{\{-(m+1)\leq u_n\leq -m\}} a_i(x, u_n, \nabla u_n) \exp(-G(u_n)) \partial_i u_n$$

$$\leq -\int_{\Omega} f_n \exp(-G(u_n)) T_1(u_n - T_m(u_n))^- + \sum_{i=1}^N \int_{\Omega} \gamma(x) \exp(-G(u_n)) T_1(u_n - T_m(u_n))^-.$$
(25)

By Lebesgue's theorem, we have the right-hand side in (25) tends to zero as n and m tend to ∞ . Then, we get

$$\lim_{m \to \infty} \limsup_{n \to \infty} \sum_{i=1}^{N} \int_{\{-(m+1) \le u_n \le -m\}} a_i(x, u_n, \nabla u_n) \partial_i u_n = 0.$$
(26)

Similarly, taking $v = u_n - \eta \exp(G(u_n))T_1(u_n - T_m(u_n))^+$ as a test function in approximate problem (18), we get

$$\lim_{m \to \infty} \limsup_{n \to \infty} \sum_{i=1}^{N} \int_{\{m \le u_n \le m+1\}} a_i(x, u_n, \nabla u_n) \partial_i u_n = 0.$$
⁽²⁷⁾

We consider the following function of one real variable:

$$h_m(s) = \begin{cases} 1, & \text{if } |s| \le m, \\ 0, & \text{if } |s| \ge m+1, \\ m+1-|s|, & \text{if } m \le |s| \le m+1, \end{cases}$$

where m > k. Let $\varphi = u_n - \eta \exp(G(u_n))(T_k(u_n) - T_k(u))^+ h_m(u_n)$ be a test function in approximate problem (18), using (12) and (15), we get

$$\begin{split} \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u_{n}, \nabla u_{n}) \exp(G(u_{n})) \partial_{i}(T_{k}(u_{n}) - T_{k}(u))^{+} h_{m}(u_{n}) \\ &+ \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u_{n}, \nabla u_{n}) \exp(G(u_{n}))(T_{k}(u_{n}) - T_{k}(u))^{+} \partial_{i}u_{n}h_{m}^{'}(u_{n}) \\ &\leq \sum_{i=1}^{N} \int_{\Omega} \gamma(x) \exp(G(u_{n}))(T_{k}(u_{n}) - T_{k}(u))^{+} h_{m}(u_{n}) \\ &+ \int_{\Omega} f_{n} \exp(G(u_{n}))(T_{k}(u_{n}) - T_{k}(u))^{+} h_{m}(u_{n}). \end{split}$$

This implies that

$$\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u_{n}, \nabla u_{n}) \exp(G(u_{n})) \partial_{i}(T_{k}(u_{n}) - T_{k}(u))^{+} h_{m}(u_{n})$$

$$\leq \sum_{i=1}^{N} \int_{\{m \leq u_{n} \leq m+1\}} a_{i}(x, u_{n}, \nabla u_{n}) \exp(G(u_{n}))(T_{k}(u_{n}) - T_{k}(u))^{+} \partial_{i}u_{n}$$

$$+ \sum_{i=1}^{N} \int_{\Omega} \gamma(x) \exp(G(u_{n}))(T_{k}(u_{n}) - T_{k}(u))^{+} h_{m}(u_{n})$$

$$+ \int_{\Omega} f_{n} \exp(G(u_{n}))(T_{k}(u_{n}) - T_{k}(u))^{+} h_{m}(u_{n}).$$
Therefore to Lebergraph theorem and (27), we obtain

Thanks to Lebesgue's theorem and (27), we obtain

$$\lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=1}^{N} \int_{\Omega} a_i(x, u_n, \nabla u_n) \exp(G(u_n)) \partial_i (T_k(u_n) - T_k(u))^+ h_m(u_n) \le 0,$$

which implies that

M

$$\begin{split} \lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=1}^{N} \int_{\{T_{k}(u_{n}) - T_{k}(u) \ge 0, |u_{n}| \le k\}} a_{i}(x, u_{n}, \nabla u_{n}) \exp(G(u_{n}))\partial_{i}(T_{k}(u_{n}) - T_{k}(u))h_{m}(u_{n}) \\ - \lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=1}^{N} \int_{\{T_{k}(u_{n}) - T_{k}(u) \ge 0, |u_{n}| > k\}} a_{i}(x, u_{n}, \nabla u_{n}) \exp(G(u_{n}))\partial_{i}(T_{k}(u))^{+}h_{m}(u_{n}) \le 0, \\ 0, \\ \text{since } h_{m}(u_{n}) = 0 \text{ if } |u_{n}| > m + 1, \text{ we have} \\ \sum_{i=1}^{N} \int_{\{T_{k}(u_{n}) - T_{k}(u) \ge 0, |u_{n}| > k\}} a_{i}(x, u_{n}, \nabla u_{n}) \exp(G(u_{n}))\partial_{i}(T_{k}(u))^{+}h_{m}(u_{n}) \\ = \sum_{i=1}^{N} \int_{\{T_{k}(u_{n}) - T_{k}(u) \ge 0, |u_{n}| > k\}} a_{i}(x, T_{m+1}(u_{n}), \nabla T_{m+1}(u_{n})) \exp(G(u_{n}))\partial_{i}(T_{k}(u))^{+}h_{m}(u_{n}). \\ \text{By (13) and (22), we have } a_{i}(x, T_{m+1}(u_{n}), \nabla T_{m+1}(u_{n})) \rightarrow X_{m}^{i} \text{ in } L^{p_{i}'}(\Omega, \omega_{i}^{*}). \text{ It yields} \\ \lim_{m,n \to \infty} \sum_{i=1}^{N} \int_{\{T_{k}(u_{n}) - T_{k}(u) \ge 0, |u_{n}| > k\}} a_{i}(x, T_{m+1}(u_{n}), \nabla T_{m+1}(u_{n})) \exp(G(u_{n}))\partial_{i}(T_{k}(u))^{+}h_{m}(u_{n}) \\ = \lim_{m \to \infty} \sum_{i=1}^{N} \int_{\{|u| > k\}} X_{m}^{i} \exp(G(u))\partial_{i}T_{k}(u)h_{m}(u) = 0. \end{split}$$

Using $a_i(x, T_k(u_n), \nabla T_k(u_n))h_m(u_n) \to a_i(x, T_k(u), \nabla T_k(u))h_m(u)$ a. e. in Ω , we see that the sequence

 $(a_i(x, T_k(u_n), \nabla T_k(u_n))h_m(u_n))_n$ is equi-integrable in $L^{p'_i}(\Omega, \omega_i^*)$ and Vitali's theorem implies that

$$a_i(x, T_k(u_n), \nabla T_k(u_n))h_m(u_n) \to a_i(x, T_k(u), \nabla T_k(u))h_m(u) \text{ in } L^{p'_i}(\Omega, \omega_i^*).$$

Since $\partial_i T_k(u_n) \rightharpoonup \partial_i T_k(u)$ weakly in $L^{p_i}(\Omega, \omega_i)$, we get $\lim_{n \to \infty} \sum_{i=1}^N \int_{\{T_k(u_n) - T_k(u) \ge 0\}} a_i(x, T_k(u_n), \nabla T_k(u)) \exp(G(u_n)) \partial_i(T_k(u_n) - T_k(u)) h_m(u_n) = 0$ (b), thus we conclude that

$$\lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=1}^{N} \int_{\{T_k(u_n) - T_k(u) \ge 0\}} \left(a_i(x, T_k(u_n), \nabla T_k(u_n)) - a_i(x, T_k(u_n), \nabla T_k(u)) \right) \times \partial_i(T_k(u_n) - T_k(u)) h_m(u_n) = 0.$$
(28)

Similarly, we take $\varphi = u_n + \exp(-G(u_n))(T_k(u_n) - T_k(u))^- h_m(u_n)$ as a test function in approximating problem (18), we obtain

$$\lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=1}^{N} \int_{\{T_k(u_n) - T_k(u) \le 0\}} \left(a_i(x, T_k(u_n), \nabla T_k(u_n)) - a_i(x, T_k(u_n), \nabla T_k(u)) \right) \times \partial_i(T_k(u_n) - T_k(u)) h_m(u_n) = 0.$$
(29)

Combining (28) and (29), we deduce that

$$\lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=1}^{N} \int_{\Omega} \left(a_i(x, T_k(u_n), \nabla T_k(u_n)) - a_i(x, T_k(u_n), \nabla T_k(u)) \right)$$
$$\partial_i(T_k(u_n) - T_k(u)) h_m(u_n) = 0. \tag{30}$$

Let $\varphi = u_n + \exp(-G(u_n))T_k(u_n)^{-}(1-h_m(u_n))$ be a test function in approximate problem (18) and using (13) and (15), we get

$$\sum_{i=1}^{N} \int_{\{u_n \le 0\}} a_i(x, u_n, \nabla u_n) \exp(-G(u_n)) \partial_i T_k(u_n) (1 - h_m(u_n))$$

$$\leq -\sum_{i=1}^{N} \int_{\{-(j+1) \le u_n \le -j\}} a_i(x, u_n, \nabla u_n) \exp(-G(u_n)) T_k(u_n) \partial_i u_n$$

$$+ \sum_{i=1}^{N} \int_{\Omega} \gamma(x) \exp(-G(u_n)) T_k(u_n)^- (1 - h_m(u_n))$$

$$- \sum_{i=1}^{N} \int_{\Omega} f_n(x) \exp(-G(u_n)) T_k(u_n)^- (1 - h_m(u_n)).$$

In view of (26) and Lebesgue's theorem, the integrals in the righthand side converge to zero as n and m tend to infinity. Then

$$\lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=1}^{N} \int_{\{u_n \le 0\}} a_i(x, u_n, \nabla u_n) \partial_i T_k(u_n) (1 - h_m(u_n)) = 0.$$
(31)

On the other hand, we take $\varphi = u_n - \eta \exp(G(u_n))T_k(u_n^+ - \psi^+)(1 - h_m(u_n))$ as a test function in approximate problem (18) and using (13) and (15), we get

$$\begin{split} \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u_{n}, \nabla u_{n}) \exp(G(u_{n})) \partial_{i} T_{k}(u_{n}^{+} - \psi^{+})(1 - h_{m}(u_{n})) \\ &\leq \sum_{i=1}^{N} \int_{\{-(j+1) \leq u_{n} \leq -j\}} a_{i}(x, u_{n}, \nabla u_{n}) \exp(G(u_{n})) T_{k}((u_{n})^{+} - \psi^{+}) \partial_{i} u_{n} \\ &+ \sum_{i=1}^{N} \int_{\Omega} \gamma(x) \exp(G(u_{n})) T_{k}(u_{n}^{+} - \psi^{+})(1 - h_{m}(u_{n})) \\ &+ \sum_{i=1}^{N} \int_{\Omega} f_{n}(x) \exp(G(u_{n})) T_{k}(u_{n}^{+} - \psi^{+})(1 - h_{m}(u_{n})). \end{split}$$

By Lebesgue's theorem and (26), we deduce that

By Lebesgue's theorem and (20), we deduce that

$$\sum_{i=1}^{N} \int_{\{|u_{n}^{+}-\psi^{+}| \le k\}} a_{i}(x, u_{n}, \nabla u_{n}) \exp(G(u_{n})) \partial_{i} u_{n}^{+}(1 - h_{m}(u_{n}))$$

$$\leq \sum_{i=1}^{N} \int_{\{|u_{n}^{+}-\psi^{+}| \le k\}} a_{i}(x, u_{n}, \nabla u_{n}) \partial_{i} \psi^{+}(1 - h_{m}(u_{n})) + \varepsilon_{1}(n, m).$$
(32)

Thanks to (13) and Young's inequality, we have

$$\sum_{i=1}^{N} \int_{\{|u_n^+ - \psi^+| \le k\}} a_i(x, u_n, \nabla u_n) \exp(G(u_n)) \partial_i u_n^+ (1 - h_m(u_n)) \le \varepsilon_2(n, m),$$

where $\varepsilon_1(n,m)$ and $\varepsilon_2(n,m)$ converge to zero as n and m tend to infinity. Since $\rho \in L^1(\mathbb{R})$, we have $\exp(G(u_n))$ is bounded. It yields

$$\sum_{i=1}^{N} \int_{\{|u_{n}^{+} - \psi^{+}| \le k\}} a_{i}(x, u_{n}, \nabla u_{n}) \partial_{i} u_{n}^{+} (1 - h_{m}(u_{n})) \le \varepsilon_{3}(n, m).$$

Since
$$\{x \in \Omega, |u_n^+| \le k\} \subset \{x \in \Omega, |u_n^+ - \psi^+| \le k + \|\psi^+\|_{L^{\infty}(\Omega)}\}$$
, hence

$$\sum_{i=1}^N \int_{\{|u_n^+| \le k\}} a_i(x, u_n, \nabla u_n) \partial_i u_n^+ (1 - h_m(u_n)) \le \varepsilon_3(n, m)$$
, which implies that, for all $k > 0$,

$$\lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=1}^{N} \int_{\{u_n \ge 0\}} a_i(x, T_k(u_n), \nabla T_k(u_n)) \partial_i T_k(u_n) (1 - h_m(u_n)) = 0.$$
(33)

Combining (31) and (33), we obtain

$$\lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=1}^{N} \int_{\Omega} a_i(x, T_k(u_n), \nabla T_k(u_n)) \partial_i T_k(u_n) (1 - h_m(u_n)) = 0.$$
(34)

Moreover, we have

$$\begin{split} &\sum_{i=1}^{N} \int_{\Omega} \left(a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) - a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u)) \right) \left(\partial_{i} T_{k}(u_{n}) - \partial_{i} T_{k}(u) \right) \\ &= \sum_{i=1}^{N} \int_{\Omega} \left(a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) - a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u)) \right) \left(\partial_{i} T_{k}(u_{n}) - \partial_{i} T_{k}(u) \right) h_{m}(u_{n}) \\ &+ \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \partial_{i} T_{k}(u_{n}) (1 - h_{m}(u_{n})) \\ &- \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \partial_{i} T_{k}(u) (1 - h_{m}(u_{n})) \\ &- \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u)) (\partial_{i} T_{k}(u_{n}) - \partial_{i} T_{k}(u)) (1 - h_{m}(u_{n})). \end{split}$$

By (30) and (33), the first and the second integrals of the right-hand side converge to zero as $n, m \to +\infty$. Since $\left(a_i(x, T_k(u_n), \nabla T_k(u_n))\right)_n$ is bounded in $L^{p'_i}(\Omega, \omega_i^*)$ and $\partial_i T_k(u)(1-h_m(u_n))$ converges to zero in $L^{p_i}(\Omega, \omega_i)$, the third integral converges to zero. So the fourth integral converges to zero while $\partial_i T_k(u_n) \to \partial_i T_k(u)$ weakly in $L^{p_i}(\Omega, \omega_i)$ and $a_i(x, T_k(u_n), \nabla T_k(u_n))(1-h_m(u_n))$ converges to $a_i(x, T_k(u), \nabla T_k(u))(1-h_m(u))$ strongly in $L^{p'_i}(\Omega, \omega_i^*)$. We conclude the proof of (24). Using (23), (24) and Lemma 3.1, we deduce

$$T_k(u_n) \to T_k(u)$$
 strongly in $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ and a. e. in $\Omega, \quad \forall k > 0.$ (35)

This implies that

$$\nabla u_n \to \nabla u$$
 a. e. in Ω , (36)

which gives

$$a_i(x, u_n, \nabla u_n) \rightharpoonup a_i(x, u, \nabla u) \text{ in } L^{p'_i}(\Omega, \omega_i^*).$$
 (37)

Step 4: Equi integrability of the non linearity sequence. We shall prove that $g_i^n(x, u_n, \nabla u_n) \to g_i(x, u, \nabla u)$ in $L^1(\Omega)$. We have $g_i^n(x, u_n, \nabla u_n) \to g_i(x, u, \nabla u)$ a. e. in Ω . Let $v = u_n + \exp(-G(u_n)) \int_{u_n}^0 \rho(\nu) \chi_{\{\nu < -h\}} d\nu$. Since $v \in K_{\psi}(\Omega, \overrightarrow{\omega})$, we take v as a test

function in approximate problem (18). Then, by (12) and (15), we have
$$\begin{split} &\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u_{n}, \nabla u_{n}) \exp(-G(u_{n})) \partial_{i} u_{n} \rho(u_{n}) \chi_{\{u_{n} < -h\}} \\ &\leq \sum_{i=1}^{N} \int_{\Omega} \gamma(x) \exp(-G(u_{n})) \int_{u_{n}}^{0} \rho(\nu) \chi_{\{\nu < -h\}} d\nu - \int_{\Omega} f_{n} \exp(-G(u_{n})) \int_{u_{n}}^{0} \rho(\nu) \chi_{\{\nu < -h\}} d\nu \\ &\leq \exp\left(\frac{\|\rho\|_{L^{1}(\mathbb{R})}}{\alpha}\right) \left(\int_{-\infty}^{-h} \rho(s) ds\right) \left(N\|\gamma\|_{L^{1}(\Omega)} + \|f\|_{L^{1}(\Omega)}\right). \end{split}$$
Using again (12), we obtain $\sum_{i=1}^{N} \int_{\Omega} \alpha |\partial_{i} u_{n}|^{p_{i}} \omega_{i} \rho(u_{n}) \chi_{\{u_{n} < -h\}} \leq c \int_{-\infty}^{-h} \rho(s) ds. \end{cases}$ Since $\rho \in L^{1}(\mathbb{R})$, we have

$$\lim_{h \to \infty} \sup_{n \in \mathbb{N}} \sum_{i=1}^{N} \int_{\{u_n < -h\}} \alpha |\partial_i u_n|^{p_i} \omega_i \rho(u_n) = 0.$$
(38)

Let *h* be such that $h \ge \exp(G(u_n)) \int_0^{+\infty} \rho(\nu) d\nu + \|\psi^+\|_{L^{\infty}(\Omega)}$ and we take $v = u_n - \exp(G(u_n)) \int_0^{u_n} \rho(\nu) \chi_{\{\nu > h\}} d\nu$ as a test function in approximate problem (18). Then, similarly as in (38), we deduce that

$$\lim_{h \to \infty} \sup_{n \in \mathbb{N}} \sum_{i=1}^{N} \int_{\{u_n > h\}} \alpha |\partial_i u_n|^{p_i} \omega_i \rho(u_n) = 0.$$
(39)

Combining (38) and (39), we deduce

$$\lim_{h \to \infty} \sup_{n \in \mathbb{N}} \sum_{i=1}^{N} \int_{\{|u_n| > h\}} \alpha |\partial_i u_n|^{p_i} \omega_i \rho(u_n) = 0.$$

$$\tag{40}$$

Using (35), (36), (40) and Vitali's theorem, we obtain

$$g_i^n(x, u_n, \nabla u_n) \to g_i(x, u, \nabla u) \text{ in } L^1(\Omega).$$
(41)

On the other hand, let $\varphi \in K_{\psi} \cap L^{\infty}(\Omega)$ and $v = u_n - T_k(u_n - \varphi)$ be a test function in approximate problem (18). We get

$$\begin{cases} u_n \in K_{\psi}. \\ \sum_{i=1}^N \int_{\Omega} a_i(x, u_n, \nabla u_n) \partial_i T_k(u_n - \varphi) + \sum_{i=1}^N \int_{\Omega} g_i^n(x, u_n, \nabla u_n) T_k(u_n - \varphi) \\ \leq \int_{\Omega} f_n T_k(u_n - \varphi), \\ \forall \varphi \in K_{\psi} \cap L^{\infty}(\Omega) \text{ and } \forall k > 0, \end{cases}$$

$$(42)$$

Using (35), (37) and (41), we can pass to the limit in (42).

4 Example

Let us consider the following case:

$$a_i(x,s,\xi) = \omega_i |\xi_i|^{p_i - 1} sign(\xi_i) \text{ and } g_i(x,s,\xi) = \frac{1}{1 + s^2} \omega_i |\xi_i|^{p_i}.$$

References

- [1] Adams, R. Sobolev Spaces. Academic Press, New York, 1975.
- [2] Aharouch, L. and Akdim, Y. Strongly Nonlinear Elliptic Unilateral Problems without sign condition and L¹ Data. Journal of convex Analysis 13 (2006) 135–149.
- [3] Akdim, Y. Azroul, E. and Benkirane, A. Existence Results for Quasilinear Degenerated Equations Via Strong Convergence of Truncations. *Rev. Mat. Comlut.* 17 (2004) 359–379.
- [4] Azroul, E. Benboubker, M.B. and Ouaro, S. The obstacle Problems Associated with Nonlinear Elliptic Equations in Generalized Sobolev spaces. *Nonlinear Dynamics and Systems Theory* 14 (3) (2014) 224–243.
- [5] Antontsev, S. and Chipot, M. Anisotropic equations: uniqueness and existence results. Differential Integral Equations 6 (2008) 401–419.
- [6] Bendahmane, M. and Karlsen, K.H. Anisotropic nonlinear elliptic systems with measure data and anisotropic harmonic maps into spheres. *Electronic J. of Differential Equations* 46 (2006) 1–30.
- [7] Benkirane, A. and Douiri, S.M. Entropy solutions of a Quasilinear Degenerated Elliptic unilateral Problems with L¹-Data and without sign condition. *Nonlinear Dynamics and Systems Theory* 16 (2) (2016) 129–148.
- [8] Boccardo, L. Gallouët, T. and Marcellini, P. Anisotropic equations in L^1 . Differential Integral Equations 1 (1996) 209–212.
- [9] Boccardo,L. Murat, F. Puel, J.P. Existence of bounded solution for non linear elliptic unilateral problems. Ann. Mat. Pura Appl. 152 (1988) 183–196.
- [10] Drabek, P. Kufner, A. and Nicolosi, F. Nonlinear Elliptic Equations, Singular and Degenerate Cases. University of West Bohemia, (1996).
- [11] Drabek, P. and Nicolosi, F. Existence of Bounded Solutions for Some Degenerated Quasilinear Elliptic Equations. Annali di Mathematica pura ed applicata (IV), Vol. CLXV (1993) 217–238.
- [12] Fragala, I. Gazzola, F. and Kawohl, B. Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. H. Poincare Anal. Non Linéaire 5 (2004) 715–734.
- [13] Kufner, A. and Opic, B. How to define reasonably weighted Sobolev spaces. Commentationes mathematicae universitatis carolinae 25 (1984) 537–554.
- [14] Leray, J. Lions, J.L. Quelques Mthodes de Resolution des Problems aux Limites Nonlinaires. Dunod, Paris, 1968.
- [15] Li, F.Q. Anisotropic elliptic equations in L^m . J. Convex Anal. 2 (2001) 417–422.
- [16] Porretta, A. Nonlinear equations with natural growth terms and measure data. *Electronic J. of Differential Equations* 9 (2002) 183–172.
- [17] Troisi, M. Teoremi di inclusione per spazi di Sobolev non isotropi. Ricerche Mat. 18 (1969) 3–24.