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1 Introduction

Chaos, as a very interesting nonlinear phenomenon, has been intensively studied over
the past decades. After the pioneering work of Ott et al [1], and Pecora and Carroll [2],
research efforts have been devoted to the chaos control problems in many physical systems
[3–5]. The control problem attempts to stabilize a chaotic attractor to either a periodic
orbit or an equilibrium point [20, 21]. Many potential applications have come true in
securing communication, laser and biological systems, and other areas [6–9,19]. Different
control strategies for stabilizing chaos have been proposed, such as adaptive control, time
delay control, and fuzzy control. Generally speaking, there are two main approaches for
controlling chaos: feedback control and non-feedback control. The feedback control [10,
17,18] approach offers many advantages such as robustness and computational complexity
over the non-feedback control method. The aim of this paper is to apply the feedback
control to chaotic systems, with new conditions for the stability at fixed points based
on the Jacobian matrix. We present the numerical simulation studies for control of the
Rössler, Liu and modified Genesio systems.
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2 Preliminaries

Suppose that A is an n× n matrix of real constants, its characteristic polynomial is

f(λ) = λn + aλn−1 + bλn−2 + cλn−3 + ......, n = 1, 2, 3, 4.

The Routh-Hurwitz theorem [10–13] is as follows.

Theorem 2.1 All the roots of the caracteristic polynomial have negative real parts
precisely when the given conditions are satisfied:
λ2 + aλ+ b : a > 0, b > 0.
λ3 + aλ2 + bλ+ c : a > 0, c > 0, ab− c > 0.
λ4 + aλ3 + bλ2 + cλ+ d : a > 0, ab− c > 0, (ab− c)c− a2d > 0, d > 0.

3 Main Results

3.1 The case of third dimension

We assume A is the Jacobian matrix of the third dimension:

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , (1)

then the relation between the coefficients of characteristic polynomial and the Jacobian
matrix is  a = −trace(A),

b = A11 +A22 +A33,
c = −det(A),

(2)

where A11 =

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣ , A22 =

∣∣∣∣ a11 a13
a31 a33

∣∣∣∣ and A33 =

∣∣∣∣ a11 a12
a21 a22,

∣∣∣∣ .
Then ab−c = −a11(A22+A33)−a22(A11+A33)−a33(A22+A11)−2a11a22a33+a12a23a31+
a13a21a32.

Remark 3.1 We note that, if aii < 0, Aii > 0, i = 1, 2, 3 and det(A) < 0 so that
t = a12a23a31 + a13a21a32 ≥ 0, then the coefficients of the characteristic polynomial are
positive. On the other hand, we have t = 0 for the Rössler, Liu and other systems. So,
we can ensure the stability of any chaotic systems with the following theorem.

We consider A is the Jacobian matrix at a fixed point, and t = a12a23a31 +a13a21a32.

Theorem 3.1 If t ≥ 0, all the roots of the characteristic polynomial of A have neg-
ative real parts when the given conditions are satisfied:
det(A) < 0, aii < 0 and Aii > 0 for i = 1, 2, 3.

Proof. We have  a = −trace(A) > 0,
b = A11 +A22 +A33 > 0,
ab− c > 0,
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then, by the Routh-Hurwitz theorem all the roots of the characteristic polynomial have
negative real parts.

Remark 3.2 We can use the condition t ≥ 0 as an additional condition with the
condition of Routh-Hurwitz to get quickly the convergence to the fixed point.

4 Application to Chaotic Systems

4.1 The second type Rössler system

The Rössler system [14] is given by the following equations:
·
x = −(y + z),
·
y = x+ αy,
·
z = βx+ xz − γz,

where α = 0.38, β = 0.3, γ = 4.5. The two equilibrium points of system are given by
E1 = (0, 0, 0), E2 = (γ − αβ, β − γ

α ,
γ
α − β).

4.1.1 Control at the equilibrium point E1

If the controlled Rössler system is given by the equations
·
x = −(y + z)− u1,
·
y = x+ 0.38y − u2,
·
z = 0.3x+ (x− 4.5)z − u3,

(3)

where u1 = kx, u2 = ky, u3 = kz, and k is the feedback coefficient; when k > 0.38, the
system (3) will gradually converge to the equilibrium point (0, 0, 0).

Proof. The Jacobian matrix of system (3) with regard to the equilibrium point
(0, 0, 0) is

A =

 −k −1 −1
1 0.38− k 0

0.3 0 −4.5− k

 ,

where a11 = −k, a22 = 0.38− k, a33 = −4.5− k, A11 = k2 + 4. 12k− 1. 71, A22 = k2 + 4.
5k + 0.3, A33 = k2 − 0.38k + 1 and det(A) = −1k3 − 4. 12k2 + 0.41k − 4. 386.We have
t = 0, therefore  a11 < 0,

a22 < 0,
a33 < 0

⇔

 k > 0,
k > 0.38,
k > −4.5

and 
A11 > 0,
A22 > 0,
A33 > 0,

det(A) < 0,

⇔


k ∈ ]−∞,−4. 5[ ∪ ]0.38,∞[ ,
k ∈

]
−6. 768 5× 10−2,∞

[
∪ ]−∞,−4. 432 3[ ,

k ∈ ]−∞,∞[ ,
k ∈ ]−4. 435 4,∞[ .

Obviously, if k > 0.38, then a11 < 0, a22 < 0, a33 < 0,detA < 0 and A11 > 0, A22 >
0, A33 > 0. According to Theorem 3.1, the system (3)will gradually converge to the
unstable equilibrium point (0, 0, 0), thus the proof is completed (see Figure 1).
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Figure 1: Control of the Rössler system at the equilibrium point E1.

Remark 4.1 By using the Routh-Hurwitz theorem, we found k > 0.776 61.

Similarly, the system can also be controlled at E2(4. 386,−11. 542, 11. 542) by the
similar control method. The controlled Rössler system is

·
x = −(y + z)− u1,
·
y = x+ 0.38y − u2,
·
z = 0.3x+ (x− 4.5)z − u3,

(4)

where u1 = k(x− 4. 386), , u2 = k(y + 11. 542), u3 = k(z − 11. 542).
For demonstrating this conclusion, we do the following transformations: x1 = x− β,

y1 = y + α,z1 = z − α. When α = 11. 542 , β = 4. 386, then the system (4) has the
following form: 

·
x1 = −(y1 + z1)− kx1,
·
y1 = x1 + 0.38y1 − ky1,
·
z1 = 11. 842x1 + (x1 − 0.114)z1 − kz1.

(5)

The Jacobian matrix of the system (5) is

A =

 −k −1 −1
1 0.38− k 0

11. 842 0 −0.114− k

 ,

where k is the feedback coefficient; when k > 0.38, we found that the system (5) will
converge to the equilibrium point E

′

2(0, 0, 0), that is system (4) will gradually converge
to the equilibrium point E2(4. 386,−11. 542, 11. 542).

Proof. We have det(A) = −1.0k3 + 0.266 k2 − 12. 799k + 4. 386 0,
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Figure 2: Control of the Rössler system at the equilibrium point E2.

a11 = −k, a22 = 0.38 − k, a33 = −0.114 − k, A11 = k2 − 0.266 k − 0.043 32, A22 =
k2 + 0.114 k + 11. 842, A33 = 11. 842k − 4. 500 0, and t = 0, then a11 < 0,

a22 < 0,
a33 < 0,

⇔

 k > 0,
k > 0.38,
k > −0.114,

and 
A11 > 0,
A22 > 0,
A33 > 0,

det(A) < 0,

⇔


k ∈ ]−∞,−0.114[ ∪ ]0.38,∞[ ,
k ∈ R,
k ∈ ]0.38,∞[ ,
k ∈ ]0.341 99,∞[ .

.
When k > 0.38, we have a11 < 0, a22 < 0, a33 < 0,detA < 0, A11 > 0, A22 > 0,

and A33 > 0. According to Theorem 3.1, the system (5) will gradually converge to the
unstable equilibrium point E2. Hence the proof is completed (see Figure 2).

4.2 Control of the Liu system

The Liu system [15] is given by 
·
x = α(y − x),
·
y = x(λ− γz),
·
z = δx2 − βz,

where α = 10, λ = 40, γ = 1, δ = 4, β = 2.5. The fixed points are E1 : (0, 0, 0),

E2,3 : (±
√

βδ
γλ ,±

√
βδ
γλ ,

β
γ ).
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Figure 3: Control of the Liu system at the equilibrium point E1.

4.2.1 Control at the equilibrium point E1

The controlled Liu system is 
·
x = α(y − x)− u1,
·
y = x(λ− γz)− u2,
·
z = δx2 − βz − u3,

(6)

where u1 = kx, u2 = ky, u3 = kz
and k is the feedback coefficient; when we have k > 15. 616, the system (6) will gradually
converge to the equilibrium point (0, 0, 0).

Proof. The Jacobian matrix of the system (6) with regard to the equilibrium
point (0, 0, 0) is

A =

 −10− k 10 0
40 −k 0
0 0 −2.5− k

 ,

thus det(A) = −1k3 − 12. 5k2 + 375k + 1000 < 0,
a11 = −10− k, a22 = −k, a33 = −2.5− k,
A11 = k2 + 2. 5k,
A22 = k2 + 12. 5k + 25,
A33 = k2 + 10k − 400

with t = 0. So,  a11 < 0,
a22 < 0,
a33 < 0,

⇔

 k > −10,
k > 0,
k > −2.5.

and
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Figure 4: Control of the Liu system at the equilibrium point E2.


A11 > 0,
A22 > 0,
A33 > 0,

det(A) < 0,

⇔


k ∈ ]−∞,−2. 5[ ∪ ]0,∞[ ,
k ∈ ]−∞,−10.0[ ∪ ]−2. 5,∞[ ,
k ∈ ]−∞,−25. 616[ ∪ ], 15. 616,∞[ ,
k ∈ ]−10,−2. 5[ ∪ ]0,∞[ .

It can be easily seen when k > 15. 616, so a11 < 0, a22 < 0, a33 < 0,detA < 0, A11 > 0,
and A22 > 0, A33 > 0. According to Theorem 3.1, the system (6) will gradually converge
to the unstable equilibrium point (0, 0, 0) (see Figure 3).

4.2.2 Control at the equilibrium point E2

We consider the controlled Liu system given by
·
x = α(y − x)− u1,
·
y = x(λ− γz)− u2,
·
z = δx2 − βz − u3,

(7)

where u1 = k(x + 5) + 10(y + 5), u2 = k(y + 5), u3 = k(z − 40). Here k is the feedback
coefficient; when k > 0, it can be demonstrated that system (7) will gradually converge
to the equilibrium point (−5,−5, 40).

Proof. The Jacobian matrix of the system(7) at (−5,−5, 40) is

A =

 −10− k 0 0
0 −k 5
−40 0 −2.5− k

 ,

where det(A) = −1.0k3 − 12. 5k2 − 25k,
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a11 = −10− k, a22 = −k, a33 = −2.5− k,
A11 = k2 + 2. 5k,
A22 = k2 + 12. 5k + 25,
A33 = k2 + 10k

with t = 0, then

 a11 < 0,
a22 < 0,
a33 < 0,

⇔

 k > −10,
k > 0,
k > −2.5,

and
A11 > 0,
A22 > 0,
A33 > 0,

det(A) < 0,

⇔


k ∈ ]−∞,−2. 5[ ∪ ]0,∞[ ,
k ∈ ]−∞,−10.0[ ∪ ]−2. 5,∞[ ,
k ∈ ]−∞,−10[ ∪ ]0,∞[ ,
k ∈ ]−10,−2. 5[ ∪ ]0,∞[ .

When k > 0, we have a11 < 0, a22 < 0, a33 < 0,detA < 0, A11 > 0, and A22 > 0, A33 >
0. According to Theorem 3.1, the system (7) will gradually converge to the unstable
equilibrium point (−5,−5, 40) (see Figure 4).

Remark 4.2 Similarly, the system can also be controlled at E3(5, 5, 40) by the sim-
ilar control method if k > 0.

4.3 The modified Genesio system

We have the modified Genesio system [16,17] as
·
x = y,
·
y = α1y + z,
·
z = α2x

2 + α3x+ α4y + α5z,

where α1 = −0.5, α2 = 3, α3 = −6, α4 = −2.85, α5 = −0.5, and the fixed points are
E1 = (0, 0, 0), E2 = (2, 0, 0).

4.3.1 Control at the equilibrium point E1

The controlled modified Genesio system is given by
·
x = y − u1,
·
y = α1y + z − u2,
·
z = α2x

2 + α3x+ α4y + α5z − u3,
(8)

where u1 = kx, u2 = ky− z, u3 = kz. Here k is the feedback coefficient; when k > 0, we
found that the system (8)will gradually converge to the equilibrium point (0, 0, 0).

Proof. The Jacobian matrix of the system (8) with regard to the equilibrium
point (0.0.0) is

A =

 −k 1 0
0 −0.5− k 0
−6 −2.85 −0.5− k

 ,

where det(A) = −2k3 − 1. 5k2 − 0. 25k,
a11 = −k, a22 = −0.5− k, a33 = −0.5− k,
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Figure 5: Control of the Modified Genesio System to the original equilibrium point.

A11 = 2k2 + 1. 5k + 0. 25,
A22 = k2 + 0.5k,
A33 = k2 + 0.5k and t = 0, then a11 < 0,

a22 < 0,
a33 < 0,

⇔

 k > 0,
k > −0.5,
k > −0.5,

and
A11 > 0,
A22 > 0,
A33 > 0,

det(A) < 0,

⇔


k ∈ ]−∞,−0.5[ ∪ ]−0.25,∞[ ,
k ∈ ]−∞,−0.5[ ∪ ]0,∞[ ,
k ∈ ]−∞,−0.5[ ∪ ]0,∞[ ,
k ∈ ]−0.5,−0.25[ ∪ ]0,∞[ .

Obviously, when k > 0,then aii < 0, Aii > 0 , i = 1, 2, 3 and det(A) < 0. According to
Theorem 3.1, the system (8) will gradually converge to the unstable equilibrium point
(0, 0, 0). Hence the proof is completed (see Figure 5).

4.3.2 Control at the equilibrium point E2 : (2, 0, 0)

The controlled modified Genesio system is given by
·
x = y − u1,
·
y = α1y + z − u2,
·
z = α2x

2 + α3x+ α4y + α5z − u3,
(9)

where u1 = k(x − 2), u2 = ky − z, u3 = kz, and k is the feedback coefficient, if k > 0,
the system (9) will gradually converge to the equilibrium point (2, 0, 0).
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Figure 6: Control of the modified Genesio system at the equilibrium point E2.

Proof. The Jacobian matrix of the system (9) at (2.0.0) is

A =

 −k 1 0
0 −0.5− k 0
6 −2.85 −0.5− k

 ,

where det(A) = −1k3 − 1k2 − 0. 25k,
a11 = −k, a22 = −0.5− k, a33 = −0.5− k,
A11 = k2 + k + 0. 25,
A22 = k2 + 0.5k,
A33 = k2 + 0.5k with t = 0. So a11 < 0,

a22 < 0,
a33 < 0,

⇔

 k > 0,
k > −0.5,
k > −0.5,

and
A11 > 0,
A22 > 0,
A33 > 0,

det(A) < 0,

⇔


k ∈ ]−∞,−0.5[ ∪ ]−0.5,∞[ ,
k ∈ ]−∞,−0.5[ ∪ ]0,∞[ ,
k ∈ ]−∞,−0.5[ ∪ ]0,∞[ ,
k ∈ ]0,∞[ .

Obviously, when k > 0, we have, aii < 0, Aii > 0 , i = 1, 2, 3 and det(A) < 0. According
to Theorem 3.1, the system (9) will gradually converge to the unstable equilibrium point
(2, 0, 0), thus the proof is completed (see Figure 6).

5 Conclusion

This work presents the feedback control at fixed points of the second type Rössler, Liu
and modified Genesio chaotic systems. By using new conditions for the stability based on
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the Jacobian matrix, we simplified and modified the calculations for the Routh-Hurwitz
coefficient.
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