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Abstract: In this paper, we prove the existence of entropy solutions of anisotropic
elliptic equations Au +

P N
i =1 gi (x; u; r u) = f; where the operator Au is a Leray-

Lions anisotropic operator from W 1; �! p
0 (
 ; �! ! ) into its dual W � 1;

�!
p0

(
 ;
�!
! � ). The critical

growth condition on gi is with respect to r u and there is no the growth condition
with respect to u and no the sign condition. The right-hand side f belongs to L 1(
).

Keywords: nonlinear elliptic equations; quasilinear degenerated unilateral problems;
non-variational inequalities.

Mathematics Subject Classi�cation (2010): 35J60, 35J70, 35J87.

1 Introduction

Let 
 be a bounded open subset of RN (N � 2) with Lipschitz continuous bound-
ary and let Au = �

P N
i =1 @i ai (x; u; r u) be a degenerate anisotropic operator of Leray-

Lions type de�ned in the weighted anisotropic Sobolev spaceW 1;�! p (
 ; �! ! ), where
�! ! = ( ! 0; ! 1; :::; ! N ) is a vector of weight functions de�ned on 
 and �! p = ( p0; :::; pN ) is
a vector of real number such thatpi > 1 for i = 0 ; :::; N .

We consider the following nonlinear elliptic anisotropic problem
�

�
P N

i =1 @i ai (x; u; r u) +
P N

i =1 gi (x; u; r u) = f in 
 ;
u = 0 ; on @
 ;

(1)

wheregi (x; s; � ) is a Carath�eodory function satisfying only the following growth condition
jgi (x; s; � )j �  (x) + � (s)j� i jpi and where the right-hand sidef belongs toL 1(
). In the
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particular case, where
P N

i =1 gi (x; s; � ) = � C0jujp� 2u, the following degenerated equation
� div(a(x; u; r u)) � C0jujp� 2u = f (x; u; r u) has been studied by Drabek-Nicolsi in [11]
under more degeneracy and some additional assumptions onf and a(x; u; r u).

In the isotropic case, more precisely, whenp0 = p1 = ::: = pN = p andP N
i =1 gi (x; u; r u) � g(x; u; r u), the existence result for the unilateral problem with

g(x; u; r u) satisfying the following growth condition

jg(x; s; � )j � b(jsj)(C(x) +
NX

i =1

! i j� i jp) (2)

and the sign condition

g(x; s; � )s � 0; (3)

when f belongs to W � 1;p0
(
 ; ! � ), is studied by Akdim et al. in [7] under the following

integrability condition

� 1� q0
2 L 1

loc (
) with 1 < q < + 1 ; (4)

where � is a weight function which is assumed satisfying the Hardy inequality

Z



jujq� (x)dx � C

� NX

i =1

Z



j@i ujp! i (x)dx

� 1
p
: (5)

Our aim in this paper is to prove the existence of entropy solution for the following
weighted unilateral elliptic anisotropic problem
8
>>>>><

>>>>>:

u �  a:e: in 
 ;
Tk (u) 2 W 1;�! p

0 (
 ; �! ! );
NX

i =1

Z



ai (x; u; r u)@i Tk (u � v) +

NX

i =1

Z



gi (x; u; r u)Tk (u � v) �

Z



fT k (u � v);

8v 2 K  (
 ; �! ! ) \ L 1 (
) and 8k > 0;

(6)

without the conditions (3) and (4).

2 Preliminaries

Let 
 be a bounded open subset ofRN (N � 2) with the Lipschitz continuous boundary
and let 1 < p 0; p1; :::; pN < 1 be N + 1 real numbers, p+ = max f p1; :::; pN g; p� =

minf p1; :::; pN g . We denote @i =
@

@xi
; let ! i be non negative functions on 
 such

that ! i > 0 a.e. in 
 for all i = 0 ; 1; :::; N: We set �! ! = ( ! 0; ! 1; :::; ! N ) and
�! p = ( p0; p1; :::; pN ). We suppose that for i = 0 ; 1; :::; N and for j = 0 ; 1; :::; N

! i 2 L 1
loc (
) and !

� 1
p j � 1

i 2 L 1
loc (
) : (7)

As the classical weighted Sobolev space in [10], we de�ne the anisotropic weighted Sobolev
space by

W 1;�! p (
 ; �! ! ) =
n

u 2 L p0 (
 ; ! 0) : @i u 2 L pi (
 ; ! i ); i = 1 ; 2; :::; N
o

:
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As in Theorem 1.11 in [13], by (7) the spaceW 1;�! p (
 ; �! ! ) is a Banach space under the
following norm

kukW 1 ; �! p (
 ;�! ! ) = kukL p 0 (
 ;! 0 ) +
NX

i =1

k@i ukL p i (
 ;! i ) : (8)

Since! i 2 L 1
loc (
), we have that C1

0 (
) is a subset of W 1;�! p (
 ; �! ! ) and we can introduce
the spaceW 1;�! p

0 (
 ; �! ! ) as the closure ofC1
0 (
) with respect to norm (8). We recall

that the dual space of weighted anisotropic Sobolev spaceW 1;�! p
0 (
 ; �! ! ) is equivalent to

W � 1;
�!
p0

(
 ;
�!
! � ), where

�!
! � = ( ! �

1 ; :::; ! �
N ), ! �

i = ! 1� p0
i

i ,
�!
p0 = ( p0

1; :::; p0
N ) and p0

i = pi
pi � 1 ,

for all i = 1 ; :::; N .
Now, we introduce the following assumptions:
Assumptions ( H1) :
{ The expression

kukW 1 ; �! p
0 (
 ;�! ! ) =

NX

i =1

k@i ukL p i (
 ;! i ) (9)

is a norm de�ned on W 1;�! p
0 (
 ; �! ! ) and it is equivalent to the norm (8).

{ There exist a weight function � on 
 and a parameter q, 1 < q < 1 , such that the
Hardy inequality

� Z



jujq�dx

� 1
q

� C
NX

i =1

� Z




���
@u
@xi

���
pi

wi

� 1
p i (10)

holds for every u 2 W 1;�! p
0 (
 ; �! ! ), where C is a positive constant independent ofu.

{ The embedding

W 1;�! p
0 (
 ; �! ! ) ,! L q(
 ; � ) (11)

expressed by (10) is compact.

Remark 2.1 Let us take p0 = p1 = p2 = ::: = pN = p, ! 0(x) = ! 1(x) = ! 2(x) =
::: = ! N (x) = [ dist (x; @
)] � and � (x) = [ dist (x; @
)]  , �;  2 R. In this case, the Hardy
inequality reads

� Z



jujq[dist (x; @
)] 

� 1
q
dx �

NX

i =1

� Z



j@i ujp[dist (x; @
)] � dx

� 1
p
:

The imbedding W 1;p
0 (
 ; dist (x; @
)) ,! L q(
 ; dist (x; @
)) is compact (see Example 1.5

in [10]) if and only if either:
i) 1 < p � q < + 1 , � < p � 1, N

q � N
p + 1 � 0 ,  � � q

p � N + N q
p � q or

ii) 1 � q < p < + 1 , � < p � 1,  � � q
p � 1 + q

p � q.

Similarly, in the isotropic case, see [1], we can construct an isometric from
W 1;�! p

0 (
 ; �! ! ) in
Q N

i =1 L pi (
 ; ! i ) which implies with (7) that the space W 1;�! p
0 (
 ; �! ! )

is a reexive and separable Banach space. Moreover, we considerT 1;�! p
0 (
 ; �! ! ) =

f u measurable in 
 : Tk (u) 2 W 1;�! p
0 (
 ; �! ! ); 8k > 0g:
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3 Mains Results

Let 
 be a bounded open subset ofRN (N � 2) with the Lipschitz continuous boundary
@
. The functions a: 
 � R � RN ! RN such that a(x; s; � ) =

�
a1(x; s; � ); :::; aN (x; s; � )

�

and gi : 
 � R� RN ! R with ai and gi are Carath�eodory functions satisfying the following
assumptions for all s 2 R; � 2 RN ; �

0
2 RN and a. e. in 
 :

Assumptions H2:

NX

i =1

ai (x; s; � )� i � �
NX

i =1

! i j� i jpi ; (12)

jai (x; s; � )j � �!
1

p i
i [j i (x) + �

1
p 0

i jsj
q

p 0
i + !

1
p 0

i j� i jpi � 1]; (13)

(ai (x; s; � ) � ai (x; s; �
0
))( � i � �

0

i ) > 0 for � i 6= �
0

i ; (14)

where �; � are some positive constants,j i is a positive function in L p
0
i (
).

Assumptions H3:

jgi (x; s; � )j �  (x) + � (s)! i j� i jpi 8i = 1 ; ::::; N; (15)

where  is a positive function in L 1(
) and � : R ! R+ is a continuous positive function
in L 1(R).

Moreover, we suppose that

f 2 L 1(
) : (16)

Let us de�ne the convex setK  (
 ; �! ! ) = f u 2 W 1;�! p
0 (
 ; �! ! ); u �  a:e: in 
 g, where  

is a measurable function with values inR such that

 + 2 W 1;�! p
0 (
 ; �! ! ) \ L 1 (
) : (17)

3.1 Some technical lemmas

The following lemma generalizes to the anisotropic case the analogous Lemma 5 in [9].
We use the method of [7] and [9].

Lemma 3.1 Assume that (12)-(14) hold and let(un )n be a sequence inW 1;�! p
0 (
 ; �! ! )

such thatun * u in W 1;�! p
0 (
 ; �! ! ) and lim

n ! + 1

Z




�
a(x; un ; r un ) � a(x; un ; r u)

�
r (un � u)

= 0 : Then un ! u strongly in W 1;�! p
0 (
 ; �! ! ) for a subsequence.

De�nition 3.1 A function u is an entropy solution for problem (1) if it satis�es (6).

Theorem 3.1 Assume that (12)-(17) hold. Then there exists at least one entropy
solution in the sense of the de�nition (3.1) of problem (1).
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Proof of Theorem 3.1 .
The proof of this theorem is done in four steps.
Step 1 : Approximate problems.
We consider the following approximate problems
8
>>><

>>>:

un 2 K  (
 ; �! ! ):
Z



a(x; un ; r un )r (un � v) +

NX

i =1

Z



gn

i (x; un ; r un )(un � v) �
Z



f n (un � v);

8v 2 K  (
 ; �! ! );

(18)

where gn
i (x; s; � ) = gi (x;s;� )

1+ 1
n jgi (x;s;� ) j T 1

n
(�

1
q (x)) and f n (x) = f (x )

1+ 1
n j f (x ) j : We have

jgn
i (x; s; � )j � j gi (x; s; � )j, jgn

i (x; s; � )j � n, jgn
i (x; u; r u)j � n2�

1
q (x), jf n (x)j � j f (x)j

and jf n (x)j � n.
For all u and v in W 1;�! p

0 (
 ; �! ! ), we have

j
Z



gn

i (x; u; r u)vdxj �
� Z



jgn

i (x; u; r u)jq
0
�

� q0
q dx

� 1
q0

� Z



jvjq�dx

� 1
q

� n2
� Z



�

q0
q �

� q0
q dx

� 1
q0

kvkL q (
 ;� )

� Cn kvkW 1 ; �! p
0 (
 ;�! ! ) .

Proposition 3.1 Under the conditions (12)-(17), there exists at least one solution
of the problem (18).

Proof of Proposition 3.1 .
Thanks to the Leray-Lions theorem and Theorem 8.2 from Chapter 2 in [14], there exists
at least one solution to problem (18).
Step 2 : A priori estimate.

Proposition 3.2 Assume that (12)- (17) hold and if un is a solution of the approx-
imate problem (18), then there exists a constantC such that

NX

i =1

Z



j@i Tk (un )jpi ! i � Ck 8k > 0:

Proof: Let v = un � � exp(G(un ))Tk (u+
n �  + ), where G(s) =

Rs
0

� ( t )
� dt and � � 0.

Sincev 2 W 1;�! p
0 (
 ; �! ! ) and for all � small enough, we havev 2 K  (
 ; �! ! ). We take v as

a test function in problem (18), thanks to (12) and (15), we obtain
NX

i =1

Z



ai (x; un ; r un ) exp(G(un ))@i Tk (u+

n �  + ) � (kf kL 1 (
) + k kL 1 (
) ) exp(
k� kL 1 (R)

�
)k

� Ck:
By (12) and Young’s inequality, we have

NX

i =1

Z

fj u +
n �  + j� kg

j@i u+
n jpi ! i dx � C0k 8k > 0: (19)

Since f x 2 
 ; ju+
n j � kg � f x 2 
 ; ju+

n �  + j � k + k + k1 g, we have

NX

i =1

Z



j@i Tk (u+

n )jpi ! i dx =
NX

i =1

Z

fj u +
n j� kg

j@i u+
n jpi ! i dx



218 Y. AKDIM, M. RHOUDAF AND A. SALMANI

�
NX

i =1

Z

fj u +
n �  + j� k+ k  + k1 g

j@i u+
n jpi ! i dx:

This implies, by (19), that

NX

i =1

Z



j@i Tk (u+

n )jpi ! i dx � C0k; 8k > 0: (20)

Similarly, taking v = un +exp( � G(un ))Tk (u�
n ) as a test function in approximate problem

(18), thanks to (12) and (15), we obtain

NX

i =1

Z

f u n � 0g
ai (x; un ; r un ) exp(� G(un ))@i Tk (un ) � Ck:

By (12), we deduce that

NX

i =1

Z

f u n � 0g
j@i Tk (un )jpi ! i � Ck: (21)

Combining (20) and (21), we obtain
NX

i =1

Z



j@i Tk (un )jpi ! i � Ck: It yields

kTk (un )kW 1 ; �! p
0 (
 ;�! ! ) � Ck

1
p � ; 8k > 1: (22)

Step 3: Strong convergence of truncations.

Lemma 3.2 There exist a measurable functionu and a subsequence ofun such that

Tk (un ) ! Tk (u) strongly in W 1;�! p
0 (
 ; �! ! ):

Proof: By (22), the sequence (Tk (un ))n is bounded in W 1;�! p
0 (
 ; �! ! ), there exists

a subsequence (Tk (un ))n such that Tk (un ) converges to vk a. e. in 
, weakly in
W 1;�! p

0 (
 ; �! ! ) and strongly in L q(
 ; � ) as n tends to + 1 . Since (un )n is a Cauchy
sequence in measure in 
, there exists a subsequence denoted by (un )n such that un
converges to a measurable functionu a. e. in 
 and

Tk (un ) * T k (u) weakly in W 1;�! p
0 (
 ; �! ! ) and a. e. in 
 ; 8k > 0: (23)

Now, we prove that

lim
n !1

NX

i =1

Z




�
ai (x; Tk (un ); r Tk (un )) � ai (x; Tk (un ); r Tk (u))

��
@i Tk (un ) � @i Tk (u)

�
= 0 :

(24)
Let us take v = un + exp( � G(un ))T1(un � Tm (un )) � in approximate problem (18), by
(12) and (15), we have

NX

i =1

Z

f� (m +1) � u n �� m g
ai (x; un ; r un ) exp(� G(un ))@i un
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� �
Z



f n exp(� G(un ))T1(un � Tm (un )) � +

NX

i =1

Z



 (x) exp(� G(un ))T1(un � Tm (un )) � :

(25)
By Lebesgue’s theorem, we have the right-hand side in (25) tends to zero asn and m
tend to 1 : Then, we get

lim
m !1

lim sup
n !1

NX

i =1

Z

f� (m +1) � u n �� m g
ai (x; un ; r un )@i un = 0 : (26)

Similarly, taking v = un � � exp(G(un ))T1(un � Tm (un ))+ as a test function in approxi-
mate problem (18), we get

lim
m !1

lim sup
n !1

NX

i =1

Z

f m � u n � m +1 g
ai (x; un ; r un )@i un = 0 : (27)

We consider the following function of one real variable:

hm (s) =

8
<

:

1; if jsj � m;
0; if jsj � m + 1 ;
m + 1 � j sj; if m � j sj � m + 1 ;

where m > k . Let ’ = un � � exp(G(un ))( Tk (un ) � Tk (u))+ hm (un ) be a test function in
approximate problem (18), using (12) and (15), we get

NX

i =1

Z



ai (x; un ; r un ) exp(G(un ))@i (Tk (un ) � Tk (u))+ hm (un )

+
NX

i =1

Z



ai (x; un ; r un ) exp(G(un ))( Tk (un ) � Tk (u))+ @i un h

0

m (un )

�
NX

i =1

Z



 (x) exp(G(un ))( Tk (un ) � Tk (u))+ hm (un )

+
Z



f n exp(G(un ))( Tk (un ) � Tk (u))+ hm (un ):

This implies that
NX

i =1

Z



ai (x; un ; r un ) exp(G(un ))@i (Tk (un ) � Tk (u))+ hm (un )

�
NX

i =1

Z

f m � u n � m +1 g
ai (x; un ; r un ) exp(G(un ))( Tk (un ) � Tk (u))+ @i un

+
NX

i =1

Z



 (x) exp(G(un ))( Tk (un ) � Tk (u))+ hm (un )

+
Z



f n exp(G(un ))( Tk (un ) � Tk (u))+ hm (un ):

Thanks to Lebesgue’s theorem and (27), we obtain

lim
m !1

lim
n !1

NX

i =1

Z



ai (x; un ; r un ) exp(G(un ))@i (Tk (un ) � Tk (u))+ hm (un ) � 0;
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which implies that

lim
m !1

lim
n !1

NX

i =1

Z

f Tk (u n )� Tk (u ) � 0;ju n j� kg
ai (x; un ; r un ) exp(G(un ))@i (Tk (un ) � Tk (u))hm (un )

� lim
m !1

lim
n !1

NX

i =1

Z

f Tk (u n ) � Tk (u ) � 0;ju n j>k g
ai (x; un ; r un ) exp(G(un ))@i (Tk (u))+ hm (un ) �

0;
sincehm (un ) = 0 if jun j > m + 1, we have
NX

i =1

Z

f Tk (u n ) � Tk (u ) � 0;ju n j>k g
ai (x; un ; r un ) exp(G(un ))@i (Tk (u))+ hm (un )

=
NX

i =1

Z

f Tk (u n ) � Tk (u ) � 0;ju n j>k g
ai (x; Tm +1 (un ); r Tm +1 (un )) exp(G(un ))@i (Tk (u))+ hm (un ):

By (13) and (22), we haveai (x; Tm +1 (un ); r Tm +1 (un )) * X i
m in L p

0
i (
 ; ! �

i ): It yields

lim
m;n !1

NX

i =1

Z

f Tk (u n )� Tk (u ) � 0;ju n j>k g

ai (x; Tm +1 (un ); r Tm +1 (un )) exp(G(un ))@i (Tk (u))+ hm (un )

= lim
m !1

NX

i =1

Z

fj u j>k g
X i

m exp(G(u))@i Tk (u)hm (u) = 0 :

Using ai (x; Tk (un ); r Tk (un ))hm (un ) ! ai (x; Tk (u); r Tk (u))hm (u) a. e. in 
, we see
that the sequence�

ai (x; Tk (un ); r Tk (un ))hm (un )
�

n
is equi-integrable in L p

0
i (
 ; ! �

i ) and Vitali’s theorem
implies that

ai (x; Tk (un ); r Tk (un ))hm (un ) ! ai (x; Tk (u); r Tk (u))hm (u) in L p
0
i (
 ; ! �

i ):

Since@i Tk (un ) * @ i Tk (u)) weakly in L pi (
 ; ! i ), we get

lim
n !1

NX

i =1

Z

f Tk (u n ) � Tk (u ) � 0g
ai (x; Tk (un ); r Tk (u)) exp(G(un ))@i (Tk (un ) � Tk (u))hm (un ) =

0; thus we conclude that

lim
m !1

lim
n !1

NX

i =1

Z

f Tk (u n ) � Tk (u ) � 0g

�
ai (x; Tk (un ); r Tk (un )) � ai (x; Tk (un ); r Tk (u))

�
�

@i (Tk (un ) � Tk (u))hm (un ) = 0 : (28)

Similarly, we take ’ = un + exp( � G(un ))( Tk (un ) � Tk (u)) � hm (un ) as a test function in
approximating problem (18), we obtain

lim
m !1

lim
n !1

NX

i =1

Z

f Tk (u n ) � Tk (u ) � 0g

�
ai (x; Tk (un ); r Tk (un )) � ai (x; Tk (un ); r Tk (u))

�
�

@i (Tk (un ) � Tk (u))hm (un ) = 0 : (29)

Combining (28) and (29), we deduce that

lim
m !1

lim
n !1

NX

i =1

Z




�
ai (x; Tk (un ); r Tk (un )) � ai (x; Tk (un ); r Tk (u))

�

@i (Tk (un ) � Tk (u))hm (un ) = 0 : (30)
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Let ’ = un +exp( � G(un ))Tk (un ) � (1� hm (un )) be a test function in approximate problem
(18) and using (13) and (15), we get
NX

i =1

Z

f u n � 0g
ai (x; un ; r un ) exp(� G(un ))@i Tk (un )(1 � hm (un ))

� �
NX

i =1

Z

f� ( j +1) � u n �� j g
ai (x; un ; r un ) exp(� G(un ))Tk (un )@i un

+
NX

i =1

Z



 (x) exp(� G(un ))Tk (un ) � (1 � hm (un ))

�
NX

i =1

Z



f n (x) exp(� G(un ))Tk (un ) � (1 � hm (un )) :

In view of (26) and Lebesgue’s theorem, the integrals in the righthand side converge to
zero asn and m tend to in�nity. Then

lim
m !1

lim
n !1

NX

i =1

Z

f u n � 0g
ai (x; un ; r un )@i Tk (un )(1 � hm (un )) = 0 : (31)

On the other hand, we take ’ = un � � exp(G(un ))Tk (u+
n �  + )(1 � hm (un )) as a test

function in approximate problem (18) and using (13) and (15), we get
NX

i =1

Z



ai (x; un ; r un ) exp(G(un ))@i Tk (u+

n �  + )(1 � hm (un ))

�
NX

i =1

Z

f� ( j +1) � u n �� j g
ai (x; un ; r un ) exp(G(un ))Tk ((un )+ �  + )@i un

+
NX

i =1

Z



 (x) exp(G(un ))Tk (u+

n �  + )(1 � hm (un ))

+
NX

i =1

Z



f n (x) exp(G(un ))Tk (u+

n �  + )(1 � hm (un )).

By Lebesgue’s theorem and (26), we deduce that
NX

i =1

Z

fj u +
n �  + j� kg

ai (x; un ; r un ) exp(G(un ))@i u+
n (1 � hm (un ))

�
NX

i =1

Z

fj u +
n �  + j� kg

ai (x; un ; r un )@i  + (1 � hm (un )) + "1(n; m): (32)

Thanks to (13) and Young’s inequality, we have

NX

i =1

Z

fj u +
n �  + j� kg

ai (x; un ; r un ) exp(G(un ))@i u+
n (1 � hm (un )) � "2(n; m);

where"1(n; m) and "2(n; m) converge to zero asn and m tend to in�nity. Since � 2 L 1(R),
we have exp(G(un )) is bounded. It yields

NX

i =1

Z

fj u +
n �  + j� kg

ai (x; un ; r un )@i u+
n (1 � hm (un )) � "3(n; m):
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Since f x 2 
 ; ju+
n j � kg � f x 2 
 ; ju+

n �  + j � k + k + kL 1 (
) g, hence
NX

i =1

Z

fj u +
n j� kg

ai (x; un ; r un )@i u+
n (1� hm (un )) � "3(n; m); which implies that, for all k > 0,

lim
m !1

lim
n !1

NX

i =1

Z

f u n � 0g
ai (x; Tk (un ); r Tk (un ))@i Tk (un )(1 � hm (un )) = 0 : (33)

Combining (31) and (33), we obtain

lim
m !1

lim
n !1

NX

i =1

Z



ai (x; Tk (un ); r Tk (un ))@i Tk (un )(1 � hm (un )) = 0 : (34)

Moreover, we have
NX

i =1

Z




�
ai (x; Tk (un ); r Tk (un )) � ai (x; Tk (un ); r Tk (u))

��
@i Tk (un ) � @i Tk (u)

�
=

NX

i =1

Z




�
ai (x; Tk (un ); r Tk (un )) � ai (x; Tk (un ); r Tk (u))

��
@i Tk (un ) � @i Tk (u)

�
hm (un )

+
NX

i =1

Z



ai (x; Tk (un ); r Tk (un ))@i Tk (un )(1 � hm (un ))

�
NX

i =1

Z



ai (x; Tk (un ); r Tk (un ))@i Tk (u)(1 � hm (un ))

�
NX

i =1

Z



ai (x; Tk (un ); r Tk (u))( @i Tk (un ) � @i Tk (u))(1 � hm (un )) :

By (30) and (33), the �rst and the second integrals of the right-hand side converge to
zero asn; m ! + 1 . Since

�
ai (x; Tk (un ); r Tk (un ))

�

n
is bounded in L p0

i (
 ; ! �
i ) and

@i Tk (u)(1 � hm (un )) converges to zero inL pi (
 ; ! i ), the third integral converges to zero.
So the fourth integral converges to zero while@i Tk (un ) * @ i Tk (u) weakly in L pi (
 ; ! i )
and ai (x; Tk (un ); r Tk (un ))(1 � hm (un )) converges to ai (x; Tk (u); r Tk (u))(1 � hm (u))
strongly in L p0

i (
 ; ! �
i ). We conclude the proof of (24).

Using (23), (24) and Lemma 3.1, we deduce

Tk (un ) ! Tk (u) strongly in W 1;�! p
0 (
 ; �! ! ) and a. e. in 
 ; 8k > 0: (35)

This implies that

r un ! r u a. e. in 
 ; (36)

which gives

ai (x; un ; r un ) * a i (x; u; r u) in L p0
i (
 ; ! �

i ): (37)

Step 4: Equi integrability of the non linearity sequence.
We shall prove that gn

i (x; un ; r un ) ! gi (x; u; r u) in L 1(
) :
We have gn

i (x; un ; r un ) ! gi (x; u; r u) a. e. in 
.

Let v = un + exp( � G(un ))
Z 0

u n

� (� )� f �< � hgd� . Sincev 2 K  (
 ; �! ! ), we take v as a test
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function in approximate problem (18). Then, by (12) and (15), we have
NX

i =1

Z



ai (x; un ; r un ) exp(� G(un ))@i un � (un )� f u n < � hg

�
NX

i =1

Z



 (x) exp(� G(un ))

Z 0

u n

� (� )� f �< � hgd� �
Z



f n exp(� G(un ))

Z 0

u n

� (� )� f �< � hgd�

� exp
� k� kL 1 (R)

�

�� Z � h

�1
� (s)ds

��
N k kL 1 (
) + kf kL 1 (
)

�
:

Using again (12), we obtain
NX

i =1

Z



� j@i un jpi ! i � (un )� f u n < � hg � c

Z � h

�1
� (s)ds.

Since � 2 L 1(R), we have

lim
h !1

sup
n 2 N

NX

i =1

Z

f u n < � hg
� j@i un jpi ! i � (un ) = 0 : (38)

Let h be such that h � exp(G(un ))
Z + 1

0
� (� )d� + k + kL 1 (
) and we take

v = un � exp(G(un ))
Z u n

0
� (� )� f �>h gd� as a test function in approximate problem (18).

Then, similarly as in (38), we deduce that

lim
h !1

sup
n 2 N

NX

i =1

Z

f u n >h g
� j@i un jpi ! i � (un ) = 0 : (39)

Combining (38) and (39), we deduce

lim
h !1

sup
n 2 N

NX

i =1

Z

fj u n j>h g
� j@i un jpi ! i � (un ) = 0 : (40)

Using (35), (36), (40) and Vitali’s theorem, we obtain

gn
i (x; un ; r un ) ! gi (x; u; r u) in L 1(
) : (41)

On the other hand, let ’ 2 K  \ L 1 (
) and v = un � Tk (un � ’ ) be a test function in
approximate problem (18). We get

8
>>>>>>><

>>>>>>>:

un 2 K  :
NX

i =1

Z



ai (x; un ; r un )@i Tk (un � ’ ) +

NX

i =1

Z



gn

i (x; un ; r un )Tk (un � ’ )

�
Z



f n Tk (un � ’ );

8’ 2 K  \ L 1 (
) and 8k > 0;

(42)

Using (35), (37) and (41), we can pass to the limit in (42).

4 Example

Let us consider the following case:

ai (x; s; � ) = ! i j� i jpi � 1sign(� i ) and gi (x; s; � ) =
1

1 + s2 ! i j� i jpi :
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Abstract: The paper is devoted to the problem of delay-independent stability for
a class of nonlinear mechanical systems. Mechanical systems with linear velocity
forces and essentially nonlinear positional ones are studied. It is assumed that there
is a delay in the positional forces. With the aid of the decomposition method and
original constructions of Lyapunov{Krasovskii functionals, conditions are found under
which the trivial equilibrium positions of the considered systems are asymptotically
stable for any constant nonnegative delay. An example is given to demonstrate the
e�ectiveness of the obtained results.

Keywords: mechanical system; delay; asymptotic stability, Lyapunov{Krasovskii
functional, decomposition.
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1 Introduction

An e�cient approach to investigation of dynamical properties of complex systems is the
decomposition method [15,21]. The approach is successfully applied in various forms to
the stability analysis of mechanical systems, see, for example, [15, 17, 20, 22, 24] and the
bibliography therein.

An interesting and practically important result on the decomposition of mechanical
system was obtained by V.I. Zubov [24]. He studied the stability of gyroscopic systems
described by linear time-invariant second order systems and found conditions under which
the stability problem for an original system can be reduced to that for two auxiliary
independent �rst order subsystems. However, it should be noted that the Zubov approach
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is based on the Lyapunov �rst method, and it is inapplicable to nonstationary and
nonlinear systems.

Another approach to derive the Zubov result has been proposed by A.A. Kosov [14].
He suggested to use a special transformation of variables and the Lyapunov direct
method. This approach was further developed in [1, 4, 5], where it has been applied
not only to linear time-invariant systems but also to switched systems and systems with
nonlinear force �elds. Furthermore, in [3, 7], with the aid of the Kosov approach and
a special technique of using the Razumikhin theorem, new delay-independent stability
conditions for some classes of mechanical systems were obtained.

In the present contribution, we consider mechanical systems with linear velocity forces
and essentially nonlinear positional ones. It is assumed that there is a delay in the
positional forces. We will look for conditions guaranteeing that the trivial equilibrium
positions of the systems under consideration are asymptotically stable for any constant
nonnegative delay.

Let us note that such conditions were derived in [7] with the aid of the decomposi-
tion method and Lyapunov{Razumikhin functions. In this paper, instead of Lyapunov{
Razumikhin functions, we will use special constructions of Lyapunov{Krasovskii func-
tionals. It will be shown that such an approach permits us to obtain less conservative
delay-independent stability conditions than those in [7].

2 Notation

Throughout the paper the following notation is used:
� R is the �eld of real numbers and Rn denotes then-dimensional Euclidean space.
� k � k is the Euclidean norm of a vector.
� P > 0 (P < 0) means that the matrix P is symmetric and positive (negative)

de�nite.
� AT is the transpose of a matrixA.
� A matrix C is called Metzler [13] if all its o�-diagonal entries are nonnegative.
� diagf � 1; : : : ; � n g is the diagonal matrix with the elements � 1; : : : ; � n .
� A matrix C is called diagonally stable if there exists a diagonal matrix � =

diagf � 1; : : : ; � n g > 0 such that � C + CT � < 0.
� For a given positive number � , let C1([� �; 0]; Rn ) be the space of continuously

di�erentiable functions ’ (� ) : [� �; 0] ! Rn with the uniform norm

k’ k� = max
� 2 [� �; 0]

(k’ (� )k + k _’ (� )k) :

� 
 � is the set of functions ’ (� ) 2 C1([� �; 0]; Rn ) satisfying the condition k’ k� < �,
0 < � � + 1 .

3 Problem Formulation

Consider the system

A �q(t) + B _q(t) + Cf (q(t)) + Df (q(t � � )) = 0 (1)

describing motions of a nonlinear mechanical system. Hereq(t); _q(t) 2 Rn ; A; B; C; D
are constant matrices; vector function f (q) is continuous for kqk < �, 0 < � � + 1 ; �
is a constant nonnegative delay.
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Assume that f (q) is a separable nonlinearity, i.e., f (q) = ( f 1(q1); : : : ; f n (qn ))T , and
each scalar function f i (qi ) satis�es the sector-like condition qi f i (qi ) > 0 for qi 6= 0,
i = 1 ; : : : ; n. It is worth noting that such functions are widely used in models of automatic
control systems and neural networks [2,13,16].

Hence, we consider a mechanical system with linear velocity forces and nonlinear
positional ones. The term � Df (q(t � � )) can be treated as a control vector, and the
presence of delay� might be caused by a time lag between the moments of measuring of
the state and the application of the corresponding control force, see [12,19].

Let q(t; t 0; ’; _’ ) stand for a solution of the system (1) with the initial conditions
t0 � 0, ’ (� ) 2 
 � , and qt (t0; ’; _’ ) denote the restriction of the solution to the segment
[t � �; t ], i.e., qt (t0; ’; _’ ) : � ! q(t + �; t 0; ’; _’ ), � 2 [� �; 0].

In what follows, we will impose additional restrictions on the system (1).

Assumption 3.1 Let the matrices A and B be nonsingular.

Assumption 3.2 Let f i (qi ) = � i q� i
i , where � i are positive coe�cients and � i > 1

are rationals with odd numerators and denominators,i = 1 ; : : : ; n.

Remark 3.1 Without loss of generality, we will consider the case where� i = 1,
i = 1 ; : : : ; n, and � 1 � : : : � � n .

Thus, the positional forces in (1) are essentially nonlinear ones. It should be noted
that models with essentially nonlinear forces are widely used in contemporary mechanical
and civil engineering, see, for instance, [8{10,18].

The system (1) has the trivial equilibrium position

q = _q = 0 : (2)

We will look for conditions providing the asymptotic stability of the equilibrium position
for an arbitrary constant nonnegative delay.

4 Main Results

According to the Zubov approach, consider two auxiliary isolated delay-free subsystems

_y(t) = P f (y(t)) ; (3)

_z(t) = � A � 1Bz (t): (4)

Here P = f pij gn
i;j =1 = � B � 1(C + D ). It is worth mentioning that the subsystem (4)

is linear, whereas the subsystem (3) belongs to the well-known class of Persidskii type
systems [13].

Assumption 4.1 Let the subsystem (4) be asymptotically stable.

De�ne entries of the matrix �P = f �pij gn
i;j =1 by the formulae �pii = pii , and �pij = jpij j

for i 6= j ; i; j = 1 ; : : : ; n. The matrix �P is Metzler, see [13].
In [7], with the aid of the decomposition method and Lyapunov{Razumikhin func-

tions, it was proved that if Assumptions 3.1, 3.2, 4.1 are ful�lled, and the matrix �P is
Hurwitz, then the equilibrium position (2) of the system (1) is asymptotically stable for
any � � 0.

To obtain less conservative stability conditions, we will use the original construction
of Lyapunov{Krasovskii functionals for systems of the form (3) proposed in [6].
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Theorem 4.1 Let Assumptions 3.1, 3.2, 4.1 be ful�lled, and the matrix P be diago-
nally stable. Then the equilibrium position(2) of the system(1) is asymptotically stable
for an arbitrary nonnegative delay.

Proof. Introduce new variables by the formulae

z(t) = _q(t); y(t) = B � 1A _q(t) + q(t): (5)

Then

B _y(t) = � (C + D )f (y(t)) + C
�
f (y(t)) � f

�
y(t) � B � 1Az(t)

��

+ D
�
f (y(t)) � f

�
y(t � � ) � B � 1Az(t � � )

��
;

A _z(t) = � Bz (t) � Cf
�
y(t) � B � 1Az(t)

�
� Df

�
y(t � � ) � B � 1Az(t � � )

�
:

(6)

Taking into account properties of the transformation (5), we obtain that the equilibrium
position (2) of the system (1) is asymptotically stable if and only if the zero solution of
(6) is asymptotically stable.

It is known, see [23], that under Assumption 4.1, for any number > 1, there exists
a continuously di�erentiable for z 2 Rn positive homogeneous of the order Lyapunov
function eV (z) such that the estimates

a1kzk � eV (z) � a2kzk ;


@eV (z)

@z


� a3kzk � 1;

 
@eV (z)

@z

! T

A � 1Bz � a4kzk

hold for z 2 Rn . Here ai > 0, i = 1 ; 2; 3; 4.
The matrix P is diagonally stable. Therefore, one can choose a matrix � =

diagf � 1; : : : ; � n g > 0 such that � P + PT � < 0.
Using the approach proposed in [6], construct a Lyapunov{Krasovskii functional for

the system (6) in the form

V (yt ; zt ) = eV (z) + � 1

Z t

t � �
kz(s)k ds +

nX

i =1

� i
y� i +1

i (t)
� i + 1

+ � 2

Z t

t � �
kf (y(s))k2ds

+ � 3

Z t

t � �
(� + s � t)kf (y(s))k2ds � f T (y(t))� B � 1D

Z t

t � �
f (y(s))ds;

where � 1; � 2; � 3 are positive coe�cients.
Di�erentiating functional V (yt ; zt ) along the solutions of the system (6), we obtain

_V = �

 
@eV (z(t))

@z

! T

A � 1Bz (t) + � 1kz(t)k � � 1kz(t � � )k

�

 
@eV (z(t))

@z

! T

A � 1 �
Cf

�
y(t) � B � 1Az(t)

�
+ Df

�
y(t � � ) � B � 1Az(t � � )

��

+ f T (y(t))� P f (y(t)) + ( � 2 + � � 3)kf (y(t))k2 � � 2kf (y(t � � ))k2 � � 3

Z t

t � �
kf (y(s))k2ds

+ f T (y(t))� B � 1
�

C
�
f (y(t)) � f

�
y(t) � B � 1Az(t)

��
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+ D
�
f (y(t � � )) � f

�
y(t � � ) � B � 1Az(t � � )

�� �

+
Z t

t � �
f T (y(s))dsDT �

B � 1� T �
@f(y(t))

@y
B � 1

�
Cf

�
y(t) � B � 1Az(t)

�

+ Df
�
y(t � � ) � B � 1Az(t � � )

� �
:

If kz(� )k < 1 for � 2 [t � �; t ], then

_V � (� a4 + � 1)kz(t)k � � 1kz(t � � )k + ( � 2 + � � 3 � c1)kf (y(t))k2 � � 2kf (y(t � � ))k2

+ c2


@f(y(t))

@y



Z t

t � �
kf (y(s))kds(kf (y(t))k + kz(t)k� 1 + kf (y(t � � ))k + kz(t � � )k� 1 )

+ c3kz(t)k � 1 (kf (y(t))k + kz(t)k� 1 + kf (y(t � � ))k + kz(t � � )k� 1 )

� � 3

Z t

t � �
kf (y(s))k2ds + c4kf (y(t))k

 f (y(t)) � f
�
y(t) � B � 1Az(t)

� 

+ c5kf (y(t))k
 f (y(t � � )) � f

�
y(t � � ) � B � 1Az(t � � )

�  ;

where c1; c2; c3; c4; c5 are positive constants.
Let 2 <  < 2� 1. Using homogeneous functions properties, see [23], it is easy to show

that, for su�ciently small values of parameters � 1; � 2; � 3, there exist positive numbers
~c1; ~c2; ~c3; � such that if ky(� )k + kz(� )k < � for � 2 [t � �; t ], then

~c1

 

kz(t)k +
nX

i =1

y� i +1
i (t)

!

� V (yt ; zt )

� ~c2

 

kz(t)k +
Z t

t � �
kz(s)k ds +

nX

i =1

y� i +1
i (t) +

Z t

t � �
kf (y(s))k2ds

!

;

_V � � ~c3

�
kz(t)k + kz(t � � )k + kf (y(t))k2 + kf (y(t � � ))k2 +

Z t

t � �
kf (y(s))k2ds

�
:

From the obtained estimates it follows [11] that the zero solution of the system (6)
is asymptotically stable. This implies that the equilibrium position (2) of the original
system (1) is asymptotically stable as well. 2

Remark 4.1 On the one hand, it is well known, see [13], that if the matrix �P is
Hurwitz, then the matrix P is diagonally stable. On the other hand, the matrix

P =
�

� 1 10
� 10 � 1

�

is diagonally stable, but the corresponding matrix

�P =
�

� 1 10
10 � 1

�

is not Hurwitz. Hence, conditions of Theorem 4.1 are less conservative than those ob-
tained in [7].
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Next, together with (1), consider the perturbed system

A �q(t) + B _q(t) + Cf (q(t)) + Df (q(t � � )) = G(t; q(t); q(t � � )) : (7)

Here vector function G(t; q; u) is continuous for t � 0, kqk < �, kuk < �.

Assumption 4.2 The estimate kG(t; q; u)k � ~a (kf (q)k + kf (u)k) � is valid for t � 0,
kqk < �, kuk < �, where ~a and � are positive constants.

If Assumption 4.2 is ful�lled, then the system (7) admits the equilibrium position (2).
We will look for conditions under which perturbations do not disturb the asymptotic
stability of the equilibrium position.

Theorem 4.2 Let Assumptions 3.1, 3.2, 4.1, 4.2 be ful�lled, and the matrix P be
diagonally stable. If � > 1, then the equilibrium position (2) of the system(7) is asymp-
totically stable for an arbitrary nonnegative delay.

The proof of the theorem is similar to that of Theorem 4.1.

5 Example

Let system (1) be of the form

�q1(t) + b_q1(t) + g _q2(t) � cq3
1(t) = u1;

�q2(t) + b_q2(t) � g _q1(t) � cq5
2(t) = u2:

(8)

Here q1(t); q2(t) 2 R, b; g; care positive constants,u1; u2 are control variables.
If u1 = u2 = 0, then the equilibrium position

q1 = q2 = _q1 = _q2 = 0 (9)

of the system (8) is unstable, see [17]. We are going to design a feedback control providing
the asymptotic stability of the equilibrium position.

Assume that the control law depends onq1 and q2, and is independent of _q1 and _q2.
Moreover, we consider the case where there exists a delay� in the control scheme.

It should be noted that for the linear control law

u1 = a11q1(t � � ) + a12q2(t � � ); u2 = a21q1(t � � ) + a22q2(t � � );

where a11; a12; a21; a22 are constants, the presence of delay might result in instability of
the equilibrium position. Therefore, we choose a nonlinear control in the form

u1 = � dq5
2(t � � ); u2 = dq3

1(t � � ); d = const > 0:

Verifying the conditions of Theorem 4.1, it is easy to show that if d > bc=g, then the
equilibrium position (9) of the corresponding closed-loop system is asymptotically stable
for an arbitrary constant nonnegative delay.
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6 Conclusion

In this paper, new delay-independent conditions of the asymptotic stability are found for a
class of nonlinear mechanical systems. Compared with the results of [7], these conditions
are less conservative. However, it is worth mentioning that in [7] it was assumed that
the delay may be a continuous nonnegative and bounded function of time, whereas the
results of the present paper are valid only for systems with constant delays.

It should be noted that the approach to construction of Lyapunov{Krasovskii func-
tionals proposed in the paper not only permits us to prove the asymptotic stability but
also can be used to derive estimates of the convergence rate of solutions to the equilibrium
position.
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Abstract: The goal of this study is twofold. The Jacobi elliptic expansion method
is used to extract new solutions for the phi-four equation and the breaking soliton
system. Special values of the Jacobi elliptic module and other involved parameters
are chosen to produce solutions of soliton type and singular periodic solutions. The
obtained solutions are veri�ed and presented graphically.

Keywords: Jacobi elliptic sine-cosine expansion method; phi-four equation; breaking
soliton system.
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1 Introduction

Solitary waves occur due to nonlinear phenomena appearing in di�erent �elds of science
and engineering. These nonlinear phenomena are interpreted as (n + 1)-dimensional
nonlinear partial di�erential equations. Seeking the exact solutions to these equations
provides essential information about the physical structure of such phenomena. Since
there is no speci�c method that produces such solutions, researchers made all the e�orts
to construct and modify methods to retrieve di�erent kind of solutions for the same
nonlinear model. We may mention some of these well-known techniques such as: the
simpli�ed bilinear method [11, 18, 31], sine-cosine method [4, 5], rational trigonometric
function method [6], tanh method [7], extended tanh method [12,27], Yan transformation
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method [33{35], sech-tanh method [8{10,32], exponential-function method [25], the �rst
integral method [2,29], the (G0=G)-expansion method [3,23,24], etc.

In this work, we use the Jacobi elliptic expansion method to explore further new
solutions for two physical models: the phi-four equation that reads [17]

utt � �u xx � �u + �u 2 = 0 ; (1)

and the breaking soliton system

ut = � �u xxy � 4� (uv)x ;
uy = vx : (2)

The phi-four equation is a mathematical model that is used in nuclear and particle
physics. Many methods have been used to study the solutions of this model. In [13],
the modi�ed simple equation method is used and tanh-coth solutions are derived. The
modi�ed ( G0=G)-expansion method is adopted in [26] and produced the same solutions as
in [13]. In [28], tan2 and cot2 solutions are obtained by using the extended direct algebraic
method. Finally, the exponential-function method is used and rational trigonometric
solutions of the phi-four equation are obtained in [14].

Di�erent versions of the breaking soliton model are also studied by many researchers.
In [30], the mapping method is used to obtain propagating solutions. The tanh-coth
method is implemented [15] to construct solitary and soliton solutions of the breaking
soliton equations. Finally, the exponential-function method is used [16] to obtain multiple
soliton solutions of (2 + 1) and (3 + 1)-dimensional breaking soliton equations.

2 Jacobi Elliptic Sine-Cosine Expansion Method

Partial di�erential equations can be written as a polynomial of the unknown function
and its partial derivatives, i.e.

f (u; ut ; ux ; uxt ; uxx :::) = 0 ; u = u(x; t ): (3)

By using the variable of the form � = � (x � ct) and the chain rule, equation (3) is
transformed into

g(u; � c�u 0; �u 0; � c� 2u00; � 2u00; :::) = 0 ; u = u(� ): (4)

For the Jacobi elliptic sine-cosine technique [1, 19{22], we write the solution as a power
series of ordern in terms of either the Jacobi elliptic sine sn(�; m ) or cosine cn(�; m ).
The index m is regarded as the Jacobi module and 0� m � 1, i.e.

u(� ) =
nX

i =0

ai Y i ; (5)

where
Y = sn(�; m ); (6)

or
Y = cn(�; m ): (7)

Then, we determine the value ofn by matching the order of Y in the highest derivative
term with its order in the other nonlinear terms of the equation. Once n is obtained, we
substitute (5) in (4) and collect the coe�cients of Y i : i = 0 ; 1; 2; :::; n; :::. Setting these
coe�cients to zero and solving the resulting non algebraic system lead to identifying the
required a0; a1; :::; an ; � and c.
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3 The Phi-Four Equation

Consider the phi-four equation that reads

utt � �u xx � �u + �u 2 = 0 : (8)

By the wave variable � = k(x � ct), equation (8) is turned into the di�erential equation:

k2(c2 � � )u00� �u + �u 2 = 0 : (9)

Balancing u00with u2 produces the algebraic equationn+2 = 2 n whose solution isn = 2.
Thus, the solution of (8) in terms of the elliptic sine function will have the form

u(� ) = a0 + a1 sn(�; m ) + a2 sn2(�; m ): (10)

Substituting (10) into (9) and collecting the coe�cients of the same power of sn lead
to the nonlinear algebraic system

0 = 2a2k2(c2 � � ) + a0(a0� � � );
0 = � a1(c2k2(1 + m2) � k2(1 + m2)� � 2a0� + � );
0 = a2

1� � a2(4c2k2(1 + m2) � 4k2(1 + m2)� � 2a0� + � );
0 = 2a1(c2k2m2 � k2m2� + a2� );
0 = a2(6c2k2m2 � 6k2m2� + a2� ): (11)

By solving the above system for the parametersa0, a1, a2, c and k, we get

a0 =
�
2�

�
1 �

1 + m2
p

1 � m2 + m4

�
;

a1 = 0 ;

a2 =
3m2�

2�
p

1 � m2 + m4
;

c =
1
2

s

4� �
�

k2
p

1 � m2 + m4
; (12)

where k is a free parameter. Thus, our �rst solution to the phi-four model is

u(x; t ) =
3m2�

2�
p

1 � m2 + m4
sn2(k(x �

1
2

s

4� �
�

k2
p

1 � m2 + m4
t); m)

+
�
2�

�
1 �

1 + m2
p

1 � m2 + m4

�
: (13)

Substituting m = 1 in (13) produces the soliton solution

u(x; t ) = �
�
2�

+
3�
2�

tanh2(k(x �
1
2

t
r

4� �
�
k2 )) : (14)

Now, replacing sn in (10) by cn will lead to a second solution, which is

u(x; t ) =
� 3m2�

2�
p

1 � m2 + m4
cn2(k(x �

1
2

s

4� �
�

k2
p

1 � m2 + m4
t); m)

+
�
2�

�
1 +

2m2 � 1
p

1 � m2 + m4

�
: (15)
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Let m = 1 in (15), this produces the soliton solution

u(x; t ) =
�
�

�
3�
2�

sech2(k(x �
1
2

t
r

4� �
�
k2 )) : (16)

Remark 1 The obtained solution given in (16) can be obtained directly from (14) by
using the identity sech2(x) = 1 � tanh2(x).

Remark 2 If we replace the free parameterk in (14) by i with i =
p

� 1, we obtain
the singular periodic solution

u(x; t ) = �
�
2�

�
3�
2�

tan2( (x �
1
2

t

s

4� +
�
 2 )) : (17)

Also, in (16), we obtain the singular periodic solution

u(x; t ) =
�
�

�
3�
2�

sec2( (x �
1
2

t

s

4� +
�
 2 )) ; (18)

where the singularities occur on the line characteristics (x � 1
2 t

q
4� + �

 2 ) = �
2 + n� .

Proof: Use the fact that tanh( ix ) = i tan(x) and sech (ix ) = sec(x).

0

5

x

0

2

4
t

- 0.5

0.0

0.5

1.0

Figure 1 : The obtained solutions given in (14) and (18) respectively, when � = � = � = k = 1.

4 (2 + 1) -Dimensional Breaking Soliton Equations

We recall the following (2+1)-dimensional breaking soliton equations

ut = � �u xxy � 4� (uv)x ;
uy = vx : (19)

Substituting � = �x + �y � ct into (19) yields

� cu + �� 2�u 00+ 4 �� (uv) = 0 (20)
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