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Existence of Solution for Nonlinear Anisotropic

Degenerated Elliptic Unilateral Problems

Y. Akdim 1∗, M. Rhoudaf 2 and A. Salmani 1

1 Laboratory LSI, Polydisciplinary Faculty, Taza, Morocco
2 Laboratory LMA Faculty of Sciences, Meknes, Morocco
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Abstract: In this paper, we prove the existence of entropy solutions of anisotropic
elliptic equations Au +

∑N
i=1 gi(x, u,∇u) = f, where the operator Au is a Leray-

Lions anisotropic operator from W 1,−→p
0 (Ω,−→ω ) into its dual W−1,

−→
p′ (Ω,

−→
ω∗). The critical

growth condition on gi is with respect to ∇u and there is no the growth condition
with respect to u and no the sign condition. The right-hand side f belongs to L1(Ω).

Keywords: nonlinear elliptic equations; quasilinear degenerated unilateral problems;
non-variational inequalities.

Mathematics Subject Classification (2010): 35J60, 35J70, 35J87.

1 Introduction

Let Ω be a bounded open subset of RN (N ≥ 2) with Lipschitz continuous bound-

ary and let Au = −
∑N
i=1 ∂iai(x, u,∇u) be a degenerate anisotropic operator of Leray-

Lions type defined in the weighted anisotropic Sobolev space W 1,−→p (Ω,−→ω ), where
−→ω = (ω0, ω1, ..., ωN ) is a vector of weight functions defined on Ω and −→p = (p0, ..., pN ) is
a vector of real number such that pi > 1 for i = 0, ..., N .

We consider the following nonlinear elliptic anisotropic problem{
−
∑N
i=1 ∂iai(x, u,∇u) +

∑N
i=1 gi(x, u,∇u) = f in Ω,

u = 0, on ∂Ω,
(1)

where gi(x, s, ξ) is a Carathéodory function satisfying only the following growth condition
|gi(x, s, ξ)| ≤ γ(x) + ρ(s)|ξi|pi and where the right-hand side f belongs to L1(Ω). In the

∗ Corresponding author: mailto:akdimyoussef@yahoo.fr

c© 2018 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua213

mailto: akdimyoussef@yahoo.fr
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particular case, where
∑N
i=1 gi(x, s, ξ) = −C0|u|p−2u, the following degenerated equation

−div(a(x, u,∇u))− C0|u|p−2u = f(x, u,∇u) has been studied by Drabek-Nicolsi in [11]
under more degeneracy and some additional assumptions on f and a(x, u,∇u).

In the isotropic case, more precisely, when p0 = p1 = ... = pN = p and∑N
i=1 gi(x, u,∇u) ≡ g(x, u,∇u), the existence result for the unilateral problem with

g(x, u,∇u) satisfying the following growth condition

|g(x, s, ξ)| ≤ b(|s|)(C(x) +

N∑
i=1

ωi|ξi|p) (2)

and the sign condition

g(x, s, ξ)s ≥ 0, (3)

when f belongs to W−1,p′(Ω, ω∗), is studied by Akdim et al. in [7] under the following
integrability condition

σ1−q′ ∈ L1
loc(Ω) with 1 < q < +∞, (4)

where σ is a weight function which is assumed satisfying the Hardy inequality∫
Ω

|u|qσ(x)dx ≤ C
( N∑
i=1

∫
Ω

|∂iu|pωi(x)dx
) 1

p

. (5)

Our aim in this paper is to prove the existence of entropy solution for the following
weighted unilateral elliptic anisotropic problem

u ≥ ψ a.e. in Ω,

Tk(u) ∈W 1,−→p
0 (Ω,−→ω ),

N∑
i=1

∫
Ω

ai(x, u,∇u)∂iTk(u− v) +

N∑
i=1

∫
Ω

gi(x, u,∇u)Tk(u− v) ≤
∫

Ω

fTk(u− v),

∀v ∈ Kψ(Ω,−→ω ) ∩ L∞(Ω) and ∀k > 0,

(6)

without the conditions (3) and (4).

2 Preliminaries

Let Ω be a bounded open subset of RN (N ≥ 2) with the Lipschitz continuous boundary
and let 1 < p0, p1, ..., pN < ∞ be N + 1 real numbers, p+ = max{p1, ..., pN}, p− =

min{p1, ..., pN} . We denote ∂i =
∂

∂xi
, let ωi be non negative functions on Ω such

that ωi > 0 a.e. in Ω for all i = 0, 1, ..., N. We set −→ω = (ω0, ω1, ..., ωN ) and
−→p = (p0, p1, ..., pN ). We suppose that for i = 0, 1, ..., N and for j = 0, 1, ..., N

ωi ∈ L1
loc(Ω) and ω

− 1
pj−1

i ∈ L1
loc(Ω). (7)

As the classical weighted Sobolev space in [10], we define the anisotropic weighted Sobolev
space by

W 1,−→p (Ω,−→ω ) =
{
u ∈ Lp0(Ω, ω0) : ∂iu ∈ Lpi(Ω, ωi), i = 1, 2, ..., N

}
.
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As in Theorem 1.11 in [13], by (7) the space W 1,−→p (Ω,−→ω ) is a Banach space under the
following norm

‖u‖W 1,−→p (Ω,−→ω ) = ‖u‖Lp0 (Ω,ω0) +

N∑
i=1

‖∂iu‖Lpi (Ω,ωi). (8)

Since ωi ∈ L1
loc(Ω), we have that C∞0 (Ω) is a subset of W 1,−→p (Ω,−→ω ) and we can introduce

the space W 1,−→p
0 (Ω,−→ω ) as the closure of C∞0 (Ω) with respect to norm (8). We recall

that the dual space of weighted anisotropic Sobolev space W 1,−→p
0 (Ω,−→ω ) is equivalent to

W−1,
−→
p′ (Ω,

−→
ω∗), where

−→
ω∗ = (ω∗1 , ..., ω

∗
N ), ω∗i = ω

1−p′i
i ,

−→
p′ = (p′1, ..., p

′
N ) and p′i = pi

pi−1 ,
for all i = 1, ..., N .

Now, we introduce the following assumptions:
Assumptions (H1):
– The expression

‖u‖
W 1,−→p

0 (Ω,−→ω )
=

N∑
i=1

‖∂iu‖Lpi (Ω,ωi) (9)

is a norm defined on W 1,−→p
0 (Ω,−→ω ) and it is equivalent to the norm (8).

– There exist a weight function σ on Ω and a parameter q, 1 < q <∞, such that the
Hardy inequality (∫

Ω

|u|qσdx
) 1

q ≤ C
N∑
i=1

(∫
Ω

∣∣∣ ∂u
∂xi

∣∣∣piwi) 1
pi

(10)

holds for every u ∈W 1,−→p
0 (Ω,−→ω ), where C is a positive constant independent of u.

– The embedding

W 1,−→p
0 (Ω,−→ω ) ↪→ Lq(Ω, σ) (11)

expressed by (10) is compact.

Remark 2.1 Let us take p0 = p1 = p2 = ... = pN = p, ω0(x) = ω1(x) = ω2(x) =
... = ωN (x) = [dist(x, ∂Ω)]λ and σ(x) = [dist(x, ∂Ω)]γ , λ, γ ∈ R. In this case, the Hardy
inequality reads (∫

Ω

|u|q[dist(x, ∂Ω)]γ
) 1

q

dx ≤
N∑
i=1

(∫
Ω

|∂iu|p[dist(x, ∂Ω)]λdx
) 1

p

.

The imbedding W 1,p
0 (Ω, dist(x, ∂Ω)) ↪→ Lq(Ω, dist(x, ∂Ω)) is compact (see Example 1.5

in [10]) if and only if either:
i) 1 < p ≤ q < +∞, λ < p− 1, N

q −
N
p + 1 ≥ 0 , γ ≥ λ qp −N +N q

p − q or

ii) 1 ≤ q < p < +∞, λ < p− 1, γ ≥ λ qp − 1 + q
p − q.

Similarly, in the isotropic case, see [1], we can construct an isometric from

W 1,−→p
0 (Ω,−→ω ) in

∏N
i=1 L

pi(Ω, ωi) which implies with (7) that the space W 1,−→p
0 (Ω,−→ω )

is a reflexive and separable Banach space. Moreover, we consider T 1,−→p
0 (Ω,−→ω ) =

{u measurable in Ω : Tk(u) ∈W 1,−→p
0 (Ω,−→ω ),∀k > 0}.
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3 Mains Results

Let Ω be a bounded open subset of RN (N ≥ 2) with the Lipschitz continuous boundary

∂Ω. The functions a: Ω×R×RN → RN such that a(x, s, ξ) =
(
a1(x, s, ξ), ..., aN (x, s, ξ)

)
and gi: Ω×R×RN → R with ai and gi are Carathéodory functions satisfying the following
assumptions for all s ∈ R, ξ ∈ RN , ξ′ ∈ RN and a. e. in Ω :

Assumptions H2:

N∑
i=1

ai(x, s, ξ)ξi ≥ α
N∑
i=1

ωi|ξi|pi , (12)

|ai(x, s, ξ)| ≤ βω
1
pi
i [ji(x) + σ

1
p′
i |s|

q

p′
i + ω

1
p′
i |ξi|pi−1], (13)

(ai(x, s, ξ)− ai(x, s, ξ
′
))(ξi − ξ

′

i) > 0 for ξi 6= ξ
′

i , (14)

where α, β are some positive constants, ji is a positive function in Lp
′
i(Ω).

Assumptions H3:

|gi(x, s, ξ)| ≤ γ(x) + ρ(s)ωi|ξi|pi ∀i = 1, ...., N, (15)

where γ is a positive function in L1(Ω) and ρ : R→ R+ is a continuous positive function
in L1(R).

Moreover, we suppose that

f ∈ L1(Ω). (16)

Let us define the convex set Kψ(Ω,−→ω ) = {u ∈ W 1,−→p
0 (Ω,−→ω ), u ≥ ψ a.e. in Ω}, where ψ

is a measurable function with values in R such that

ψ+ ∈W 1,−→p
0 (Ω,−→ω ) ∩ L∞(Ω). (17)

3.1 Some technical lemmas

The following lemma generalizes to the anisotropic case the analogous Lemma 5 in [9].
We use the method of [7] and [9].

Lemma 3.1 Assume that (12)-(14) hold and let (un)n be a sequence in W 1,−→p
0 (Ω,−→ω )

such that un ⇀ u in W 1,−→p
0 (Ω,−→ω ) and lim

n→+∞

∫
Ω

(
a(x, un,∇un)− a(x, un,∇u)

)
∇(un − u)

= 0. Then un → u strongly in W 1,−→p
0 (Ω,−→ω ) for a subsequence.

Definition 3.1 A function u is an entropy solution for problem (1) if it satisfies (6).

Theorem 3.1 Assume that (12)-(17) hold. Then there exists at least one entropy
solution in the sense of the definition (3.1) of problem (1).
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Proof of Theorem 3.1.
The proof of this theorem is done in four steps.
Step 1 : Approximate problems.
We consider the following approximate problems

un ∈ Kψ(Ω,−→ω ).∫
Ω

a(x, un,∇un)∇(un − v) +

N∑
i=1

∫
Ω

gni (x, un,∇un)(un − v) ≤
∫

Ω

fn(un − v),

∀v ∈ Kψ(Ω,−→ω ),

(18)

where gni (x, s, ξ) = gi(x,s,ξ)

1+ 1
n |gi(x,s,ξ)|

T 1
n

(σ
1
q (x)) and fn(x) = f(x)

1+ 1
n |f(x)| . We have

|gni (x, s, ξ)| ≤ |gi(x, s, ξ)|, |gni (x, s, ξ)| ≤ n, |gni (x, u,∇u)| ≤ n2σ
1
q (x), |fn(x)| ≤ |f(x)|

and |fn(x)| ≤ n.

For all u and v in W 1,−→p
0 (Ω,−→ω ), we have

|
∫

Ω

gni (x, u,∇u)vdx| ≤
(∫

Ω

|gni (x, u,∇u)|q
′
σ
−q′
q dx

) 1
q′
(∫

Ω

|v|qσdx
) 1

q

≤ n2
(∫

Ω

σ
q′
q σ

−q′
q dx

) 1
q′ ‖v‖Lq(Ω,σ)

≤ Cn‖v‖W 1,−→p
0 (Ω,−→ω )

.

Proposition 3.1 Under the conditions (12)-(17), there exists at least one solution
of the problem (18).

Proof of Proposition 3.1.
Thanks to the Leray-Lions theorem and Theorem 8.2 from Chapter 2 in [14], there exists
at least one solution to problem (18).
Step 2 : A priori estimate.

Proposition 3.2 Assume that (12)- (17) hold and if un is a solution of the approx-
imate problem (18), then there exists a constant C such that

N∑
i=1

∫
Ω

|∂iTk(un)|piωi ≤ Ck ∀k > 0.

Proof: Let v = un − η exp(G(un))Tk(u+
n − ψ+), where G(s) =

∫ s
0
ρ(t)
α dt and η ≥ 0.

Since v ∈W 1,−→p
0 (Ω,−→ω ) and for all η small enough, we have v ∈ Kψ(Ω,−→ω ). We take v as

a test function in problem (18), thanks to (12) and (15), we obtain
N∑
i=1

∫
Ω

ai(x, un,∇un) exp(G(un))∂iTk(u+
n − ψ+)≤ (‖f‖L1(Ω) + ‖γ‖L1(Ω)) exp(

‖ρ‖L1(R)

α
)k

≤ Ck.
By (12) and Young’s inequality, we have

N∑
i=1

∫
{|u+

n−ψ+|≤k}
|∂iu+

n |piωidx ≤ C ′k ∀k > 0. (19)

Since {x ∈ Ω, |u+
n | ≤ k} ⊂ {x ∈ Ω, |u+

n − ψ+| ≤ k + ‖ψ+‖∞}, we have

N∑
i=1

∫
Ω

|∂iTk(u+
n )|piωidx =

N∑
i=1

∫
{|u+

n |≤k}
|∂iu+

n |piωidx
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≤
N∑
i=1

∫
{|u+

n−ψ+|≤k+‖ψ+‖∞}
|∂iu+

n |piωidx.

This implies, by (19), that

N∑
i=1

∫
Ω

|∂iTk(u+
n )|piωidx ≤ C ′k, ∀k > 0. (20)

Similarly, taking v = un+exp(−G(un))Tk(u−n ) as a test function in approximate problem
(18), thanks to (12) and (15), we obtain

N∑
i=1

∫
{un≤0}

ai(x, un,∇un) exp(−G(un))∂iTk(un) ≤ Ck.

By (12), we deduce that

N∑
i=1

∫
{un≤0}

|∂iTk(un)|piωi ≤ Ck. (21)

Combining (20) and (21), we obtain

N∑
i=1

∫
Ω

|∂iTk(un)|piωi ≤ Ck. It yields

‖Tk(un)‖
W 1,−→p

0 (Ω,−→ω )
≤ Ck

1
p− , ∀k > 1. (22)

Step 3: Strong convergence of truncations.

Lemma 3.2 There exist a measurable function u and a subsequence of un such that

Tk(un)→ Tk(u) strongly in W 1,−→p
0 (Ω,−→ω ).

Proof: By (22), the sequence (Tk(un))n is bounded in W 1,−→p
0 (Ω,−→ω ), there exists

a subsequence (Tk(un))n such that Tk(un) converges to vk a. e. in Ω, weakly in

W 1,−→p
0 (Ω,−→ω ) and strongly in Lq(Ω, σ) as n tends to +∞. Since (un)n is a Cauchy

sequence in measure in Ω, there exists a subsequence denoted by (un)n such that un
converges to a measurable function u a. e. in Ω and

Tk(un) ⇀ Tk(u) weakly in W 1,−→p
0 (Ω,−→ω ) and a. e. in Ω, ∀k > 0. (23)

Now, we prove that

lim
n→∞

N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)(
∂iTk(un)− ∂iTk(u)

)
= 0.

(24)
Let us take v = un + exp(−G(un))T1(un − Tm(un))− in approximate problem (18), by
(12) and (15), we have

N∑
i=1

∫
{−(m+1)≤un≤−m}

ai(x, un,∇un) exp(−G(un))∂iun
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≤ −
∫

Ω

fn exp(−G(un))T1(un−Tm(un))−+

N∑
i=1

∫
Ω

γ(x) exp(−G(un))T1(un−Tm(un))−.

(25)
By Lebesgue’s theorem, we have the right-hand side in (25) tends to zero as n and m
tend to ∞. Then, we get

lim
m→∞

lim sup
n→∞

N∑
i=1

∫
{−(m+1)≤un≤−m}

ai(x, un,∇un)∂iun = 0. (26)

Similarly, taking v = un − η exp(G(un))T1(un − Tm(un))+ as a test function in approxi-
mate problem (18), we get

lim
m→∞

lim sup
n→∞

N∑
i=1

∫
{m≤un≤m+1}

ai(x, un,∇un)∂iun = 0. (27)

We consider the following function of one real variable:

hm(s) =

 1, if |s| ≤ m,
0, if |s| ≥ m+ 1,
m+ 1− |s|, if m ≤ |s| ≤ m+ 1,

where m > k. Let ϕ = un − η exp(G(un))(Tk(un)− Tk(u))+hm(un) be a test function in
approximate problem (18), using (12) and (15), we get

N∑
i=1

∫
Ω

ai(x, un,∇un) exp(G(un))∂i(Tk(un)− Tk(u))+hm(un)

+

N∑
i=1

∫
Ω

ai(x, un,∇un) exp(G(un))(Tk(un)− Tk(u))+∂iunh
′

m(un)

≤
N∑
i=1

∫
Ω

γ(x) exp(G(un))(Tk(un)− Tk(u))+hm(un)

+

∫
Ω

fn exp(G(un))(Tk(un)− Tk(u))+hm(un).

This implies that
N∑
i=1

∫
Ω

ai(x, un,∇un) exp(G(un))∂i(Tk(un)−Tk(u))+hm(un)

≤
N∑
i=1

∫
{m≤un≤m+1}

ai(x, un,∇un) exp(G(un))(Tk(un)− Tk(u))+∂iun

+

N∑
i=1

∫
Ω

γ(x) exp(G(un))(Tk(un)− Tk(u))+hm(un)

+

∫
Ω

fn exp(G(un))(Tk(un)− Tk(u))+hm(un).

Thanks to Lebesgue’s theorem and (27), we obtain

lim
m→∞

lim
n→∞

N∑
i=1

∫
Ω

ai(x, un,∇un) exp(G(un))∂i(Tk(un)− Tk(u))+hm(un) ≤ 0,
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which implies that

lim
m→∞

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|≤k}

ai(x, un,∇un) exp(G(un))∂i(Tk(un)−Tk(u))hm(un)

− lim
m→∞

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|>k}

ai(x, un,∇un) exp(G(un))∂i(Tk(u))+hm(un) ≤

0,
since hm(un) = 0 if |un| > m+ 1, we have
N∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|>k}

ai(x, un,∇un) exp(G(un))∂i(Tk(u))+hm(un)

=

N∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|>k}

ai(x, Tm+1(un),∇Tm+1(un)) exp(G(un))∂i(Tk(u))+hm(un).

By (13) and (22), we have ai(x, Tm+1(un),∇Tm+1(un)) ⇀ Xi
m in Lp

′
i(Ω, ω∗i ). It yields

lim
m,n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|>k}

ai(x, Tm+1(un),∇Tm+1(un)) exp(G(un))∂i(Tk(u))+hm(un)

= lim
m→∞

N∑
i=1

∫
{|u|>k}

Xi
m exp(G(u))∂iTk(u)hm(u) = 0.

Using ai(x, Tk(un),∇Tk(un))hm(un) → ai(x, Tk(u),∇Tk(u))hm(u) a. e. in Ω, we see
that the sequence(
ai(x, Tk(un),∇Tk(un))hm(un)

)
n

is equi-integrable in Lp
′
i(Ω, ω∗i ) and Vitali’s theorem

implies that

ai(x, Tk(un),∇Tk(un))hm(un)→ ai(x, Tk(u),∇Tk(u))hm(u) in Lp
′
i(Ω, ω∗i ).

Since ∂iTk(un) ⇀ ∂iTk(u)) weakly in Lpi(Ω, ωi), we get

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≥0}

ai(x, Tk(un),∇Tk(u)) exp(G(un))∂i(Tk(un)− Tk(u))hm(un) =

0, thus we conclude that

lim
m→∞

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≥0}

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
×

∂i(Tk(un)− Tk(u))hm(un) = 0. (28)

Similarly, we take ϕ = un + exp(−G(un))(Tk(un)− Tk(u))−hm(un) as a test function in
approximating problem (18), we obtain

lim
m→∞

lim
n→∞

N∑
i=1

∫
{Tk(un)−Tk(u)≤0}

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
×

∂i(Tk(un)− Tk(u))hm(un) = 0. (29)

Combining (28) and (29), we deduce that

lim
m→∞

lim
n→∞

N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
∂i(Tk(un)− Tk(u))hm(un) = 0. (30)
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Let ϕ = un+exp(−G(un))Tk(un)−(1−hm(un)) be a test function in approximate problem
(18) and using (13) and (15), we get
N∑
i=1

∫
{un≤0}

ai(x, un,∇un) exp(−G(un))∂iTk(un)(1− hm(un))

≤ −
N∑
i=1

∫
{−(j+1)≤un≤−j}

ai(x, un,∇un) exp(−G(un))Tk(un)∂iun

+

N∑
i=1

∫
Ω

γ(x) exp(−G(un))Tk(un)−(1− hm(un))

−
N∑
i=1

∫
Ω

fn(x) exp(−G(un))Tk(un)−(1− hm(un)).

In view of (26) and Lebesgue’s theorem, the integrals in the righthand side converge to
zero as n and m tend to infinity. Then

lim
m→∞

lim
n→∞

N∑
i=1

∫
{un≤0}

ai(x, un,∇un)∂iTk(un)(1− hm(un)) = 0. (31)

On the other hand, we take ϕ = un − η exp(G(un))Tk(u+
n − ψ+)(1 − hm(un)) as a test

function in approximate problem (18) and using (13) and (15), we get
N∑
i=1

∫
Ω

ai(x, un,∇un) exp(G(un))∂iTk(u+
n − ψ+)(1− hm(un))

≤
N∑
i=1

∫
{−(j+1)≤un≤−j}

ai(x, un,∇un) exp(G(un))Tk((un)+ − ψ+)∂iun

+

N∑
i=1

∫
Ω

γ(x) exp(G(un))Tk(u+
n − ψ+)(1− hm(un))

+

N∑
i=1

∫
Ω

fn(x) exp(G(un))Tk(u+
n − ψ+)(1− hm(un)).

By Lebesgue’s theorem and (26), we deduce that
N∑
i=1

∫
{|u+

n−ψ+|≤k}
ai(x, un,∇un) exp(G(un))∂iu

+
n (1− hm(un))

≤
N∑
i=1

∫
{|u+

n−ψ+|≤k}
ai(x, un,∇un)∂iψ

+(1− hm(un)) + ε1(n,m). (32)

Thanks to (13) and Young’s inequality, we have

N∑
i=1

∫
{|u+

n−ψ+|≤k}
ai(x, un,∇un) exp(G(un))∂iu

+
n (1− hm(un)) ≤ ε2(n,m),

where ε1(n,m) and ε2(n,m) converge to zero as n andm tend to infinity. Since ρ ∈ L1(R),
we have exp(G(un)) is bounded. It yields

N∑
i=1

∫
{|u+

n−ψ+|≤k}
ai(x, un,∇un)∂iu

+
n (1− hm(un)) ≤ ε3(n,m).
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Since {x ∈ Ω, |u+
n | ≤ k} ⊂ {x ∈ Ω, |u+

n − ψ+| ≤ k + ‖ψ+‖L∞(Ω)}, hence
N∑
i=1

∫
{|u+

n |≤k}
ai(x, un,∇un)∂iu

+
n (1−hm(un)) ≤ ε3(n,m), which implies that, for all k > 0,

lim
m→∞

lim
n→∞

N∑
i=1

∫
{un≥0}

ai(x, Tk(un),∇Tk(un))∂iTk(un)(1− hm(un)) = 0. (33)

Combining (31) and (33), we obtain

lim
m→∞

lim
n→∞

N∑
i=1

∫
Ω

ai(x, Tk(un),∇Tk(un))∂iTk(un)(1− hm(un)) = 0. (34)

Moreover, we have
N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)(
∂iTk(un)− ∂iTk(u)

)
=

N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)(
∂iTk(un)− ∂iTk(u)

)
hm(un)

+

N∑
i=1

∫
Ω

ai(x, Tk(un),∇Tk(un))∂iTk(un)(1− hm(un))

−
N∑
i=1

∫
Ω

ai(x, Tk(un),∇Tk(un))∂iTk(u)(1− hm(un))

−
N∑
i=1

∫
Ω

ai(x, Tk(un),∇Tk(u))(∂iTk(un)− ∂iTk(u))(1− hm(un)).

By (30) and (33), the first and the second integrals of the right-hand side converge to

zero as n,m → +∞. Since
(
ai(x, Tk(un),∇Tk(un))

)
n

is bounded in Lp
′
i(Ω, ω∗i ) and

∂iTk(u)(1−hm(un)) converges to zero in Lpi(Ω, ωi), the third integral converges to zero.
So the fourth integral converges to zero while ∂iTk(un) ⇀ ∂iTk(u) weakly in Lpi(Ω, ωi)
and ai(x, Tk(un),∇Tk(un))(1 − hm(un)) converges to ai(x, Tk(u),∇Tk(u))(1 − hm(u))
strongly in Lp

′
i(Ω, ω∗i ). We conclude the proof of (24).

Using (23), (24) and Lemma 3.1, we deduce

Tk(un)→ Tk(u) strongly in W 1,−→p
0 (Ω,−→ω ) and a. e. in Ω, ∀k > 0. (35)

This implies that

∇un → ∇u a. e. in Ω, (36)

which gives

ai(x, un,∇un) ⇀ ai(x, u,∇u) in Lp
′
i(Ω, ω∗i ). (37)

Step 4: Equi integrability of the non linearity sequence.
We shall prove that gni (x, un,∇un)→ gi(x, u,∇u) in L1(Ω).
We have gni (x, un,∇un)→ gi(x, u,∇u) a. e. in Ω.

Let v = un + exp(−G(un))

∫ 0

un

ρ(ν)χ{ν<−h}dν. Since v ∈ Kψ(Ω,−→ω ), we take v as a test



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (3) (2018) 213–224 223

function in approximate problem (18). Then, by (12) and (15), we have
N∑
i=1

∫
Ω

ai(x, un,∇un) exp(−G(un))∂iunρ(un)χ{un<−h}

≤
N∑
i=1

∫
Ω

γ(x) exp(−G(un))

∫ 0

un

ρ(ν)χ{ν<−h}dν −
∫

Ω

fn exp(−G(un))

∫ 0

un

ρ(ν)χ{ν<−h}dν

≤ exp
(‖ρ‖L1(R)

α

)(∫ −h
−∞

ρ(s)ds
)(
N‖γ‖L1(Ω) + ‖f‖L1(Ω)

)
.

Using again (12), we obtain

N∑
i=1

∫
Ω

α|∂iun|piωiρ(un)χ{un<−h} ≤ c
∫ −h
−∞

ρ(s)ds.

Since ρ ∈ L1(R), we have

lim
h→∞

sup
n∈N

N∑
i=1

∫
{un<−h}

α|∂iun|piωiρ(un) = 0. (38)

Let h be such that h ≥ exp(G(un))

∫ +∞

0

ρ(ν)dν + ‖ψ+‖L∞(Ω) and we take

v = un − exp(G(un))

∫ un

0

ρ(ν)χ{ν>h}dν as a test function in approximate problem (18).

Then, similarly as in (38), we deduce that

lim
h→∞

sup
n∈N

N∑
i=1

∫
{un>h}

α|∂iun|piωiρ(un) = 0. (39)

Combining (38) and (39), we deduce

lim
h→∞

sup
n∈N

N∑
i=1

∫
{|un|>h}

α|∂iun|piωiρ(un) = 0. (40)

Using (35), (36), (40) and Vitali’s theorem, we obtain

gni (x, un,∇un)→ gi(x, u,∇u) in L1(Ω). (41)

On the other hand, let ϕ ∈ Kψ ∩ L∞(Ω) and v = un − Tk(un − ϕ) be a test function in
approximate problem (18). We get

un ∈ Kψ.
N∑
i=1

∫
Ω

ai(x, un,∇un)∂iTk(un − ϕ) +

N∑
i=1

∫
Ω

gni (x, un,∇un)Tk(un − ϕ)

≤
∫

Ω

fnTk(un − ϕ),

∀ϕ ∈ Kψ ∩ L∞(Ω) and ∀k > 0,

(42)

Using (35), (37) and (41), we can pass to the limit in (42).

4 Example

Let us consider the following case:

ai(x, s, ξ) = ωi|ξi|pi−1sign(ξi) and gi(x, s, ξ) =
1

1 + s2
ωi|ξi|pi .
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1 Introduction

An efficient approach to investigation of dynamical properties of complex systems is the
decomposition method [15, 21]. The approach is successfully applied in various forms to
the stability analysis of mechanical systems, see, for example, [15, 17, 20, 22, 24] and the
bibliography therein.

An interesting and practically important result on the decomposition of mechanical
system was obtained by V.I. Zubov [24]. He studied the stability of gyroscopic systems
described by linear time-invariant second order systems and found conditions under which
the stability problem for an original system can be reduced to that for two auxiliary
independent first order subsystems. However, it should be noted that the Zubov approach
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is based on the Lyapunov first method, and it is inapplicable to nonstationary and
nonlinear systems.

Another approach to derive the Zubov result has been proposed by A.A. Kosov [14].
He suggested to use a special transformation of variables and the Lyapunov direct
method. This approach was further developed in [1, 4, 5], where it has been applied
not only to linear time-invariant systems but also to switched systems and systems with
nonlinear force fields. Furthermore, in [3, 7], with the aid of the Kosov approach and
a special technique of using the Razumikhin theorem, new delay-independent stability
conditions for some classes of mechanical systems were obtained.

In the present contribution, we consider mechanical systems with linear velocity forces
and essentially nonlinear positional ones. It is assumed that there is a delay in the
positional forces. We will look for conditions guaranteeing that the trivial equilibrium
positions of the systems under consideration are asymptotically stable for any constant
nonnegative delay.

Let us note that such conditions were derived in [7] with the aid of the decomposi-
tion method and Lyapunov–Razumikhin functions. In this paper, instead of Lyapunov–
Razumikhin functions, we will use special constructions of Lyapunov–Krasovskii func-
tionals. It will be shown that such an approach permits us to obtain less conservative
delay-independent stability conditions than those in [7].

2 Notation

Throughout the paper the following notation is used:
• R is the field of real numbers and Rn denotes the n-dimensional Euclidean space.
• ‖ · ‖ is the Euclidean norm of a vector.
• P > 0 (P < 0) means that the matrix P is symmetric and positive (negative)

definite.
• AT is the transpose of a matrix A.
• A matrix C is called Metzler [13] if all its off-diagonal entries are nonnegative.
• diag{λ1, . . . , λn} is the diagonal matrix with the elements λ1, . . . , λn.
• A matrix C is called diagonally stable if there exists a diagonal matrix Λ =

diag{λ1, . . . , λn} > 0 such that ΛC + CTΛ < 0.
• For a given positive number τ , let C1([−τ, 0],Rn) be the space of continuously

differentiable functions ϕ(θ) : [−τ, 0]→ Rn with the uniform norm

‖ϕ‖τ = max
θ∈[−τ,0]

(‖ϕ(θ)‖+ ‖ϕ̇(θ)‖) .

• Ω∆ is the set of functions ϕ(θ) ∈ C1([−τ, 0],Rn) satisfying the condition ‖ϕ‖τ < ∆,
0 < ∆ ≤ +∞.

3 Problem Formulation

Consider the system

Aq̈(t) +Bq̇(t) + Cf(q(t)) +Df(q(t− τ)) = 0 (1)

describing motions of a nonlinear mechanical system. Here q(t), q̇(t) ∈ Rn; A,B,C,D
are constant matrices; vector function f(q) is continuous for ‖q‖ < ∆, 0 < ∆ ≤ +∞; τ
is a constant nonnegative delay.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (3) (2018) 225–232 227

Assume that f(q) is a separable nonlinearity, i.e., f(q) = (f1(q1), . . . , fn(qn))T , and
each scalar function fi(qi) satisfies the sector-like condition qifi(qi) > 0 for qi 6= 0,
i = 1, . . . , n. It is worth noting that such functions are widely used in models of automatic
control systems and neural networks [2, 13,16].

Hence, we consider a mechanical system with linear velocity forces and nonlinear
positional ones. The term −Df(q(t − τ)) can be treated as a control vector, and the
presence of delay τ might be caused by a time lag between the moments of measuring of
the state and the application of the corresponding control force, see [12,19].

Let q(t, t0, ϕ, ϕ̇) stand for a solution of the system (1) with the initial conditions
t0 ≥ 0, ϕ(θ) ∈ Ω∆, and qt(t0, ϕ, ϕ̇) denote the restriction of the solution to the segment
[t− τ, t], i.e., qt(t0, ϕ, ϕ̇) : θ → q(t+ θ, t0, ϕ, ϕ̇), θ ∈ [−τ, 0].

In what follows, we will impose additional restrictions on the system (1).

Assumption 3.1 Let the matrices A and B be nonsingular.

Assumption 3.2 Let fi(qi) = αiq
µi

i , where αi are positive coefficients and µi > 1
are rationals with odd numerators and denominators, i = 1, . . . , n.

Remark 3.1 Without loss of generality, we will consider the case where αi = 1,
i = 1, . . . , n, and µ1 ≤ . . . ≤ µn.

Thus, the positional forces in (1) are essentially nonlinear ones. It should be noted
that models with essentially nonlinear forces are widely used in contemporary mechanical
and civil engineering, see, for instance, [8–10,18].

The system (1) has the trivial equilibrium position

q = q̇ = 0. (2)

We will look for conditions providing the asymptotic stability of the equilibrium position
for an arbitrary constant nonnegative delay.

4 Main Results

According to the Zubov approach, consider two auxiliary isolated delay-free subsystems

ẏ(t) = Pf(y(t)), (3)

ż(t) = −A−1Bz(t). (4)

Here P = {pij}ni,j=1 = −B−1(C + D). It is worth mentioning that the subsystem (4)

is linear, whereas the subsystem (3) belongs to the well-known class of Persidskii type
systems [13].

Assumption 4.1 Let the subsystem (4) be asymptotically stable.

Define entries of the matrix P̄ = {p̄ij}ni,j=1 by the formulae p̄ii = pii, and p̄ij = |pij |
for i 6= j; i, j = 1, . . . , n. The matrix P̄ is Metzler, see [13].

In [7], with the aid of the decomposition method and Lyapunov–Razumikhin func-
tions, it was proved that if Assumptions 3.1, 3.2, 4.1 are fulfilled, and the matrix P̄ is
Hurwitz, then the equilibrium position (2) of the system (1) is asymptotically stable for
any τ ≥ 0.

To obtain less conservative stability conditions, we will use the original construction
of Lyapunov–Krasovskii functionals for systems of the form (3) proposed in [6].
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Theorem 4.1 Let Assumptions 3.1, 3.2, 4.1 be fulfilled, and the matrix P be diago-
nally stable. Then the equilibrium position (2) of the system (1) is asymptotically stable
for an arbitrary nonnegative delay.

Proof. Introduce new variables by the formulae

z(t) = q̇(t), y(t) = B−1Aq̇(t) + q(t). (5)

Then

Bẏ(t) = −(C +D)f(y(t)) + C
(
f(y(t))− f

(
y(t)−B−1Az(t)

))
+ D

(
f(y(t))− f

(
y(t− τ)−B−1Az(t− τ)

))
,

Aż(t) = −Bz(t)− Cf
(
y(t)−B−1Az(t)

)
−Df

(
y(t− τ)−B−1Az(t− τ)

)
.

(6)

Taking into account properties of the transformation (5), we obtain that the equilibrium
position (2) of the system (1) is asymptotically stable if and only if the zero solution of
(6) is asymptotically stable.

It is known, see [23], that under Assumption 4.1, for any number γ > 1, there exists
a continuously differentiable for z ∈ Rn positive homogeneous of the order γ Lyapunov
function Ṽ (z) such that the estimates

a1‖z‖γ ≤ Ṽ (z) ≤ a2‖z‖γ ,

∥∥∥∥∥∂Ṽ (z)

∂z

∥∥∥∥∥ ≤ a3‖z‖γ−1,

(
∂Ṽ (z)

∂z

)T
A−1Bz ≥ a4‖z‖γ

hold for z ∈ Rn. Here ai > 0, i = 1, 2, 3, 4.
The matrix P is diagonally stable. Therefore, one can choose a matrix Λ =

diag{λ1, . . . , λn} > 0 such that ΛP + PTΛ < 0.
Using the approach proposed in [6], construct a Lyapunov–Krasovskii functional for

the system (6) in the form

V (yt, zt) = Ṽ (z) + β1

∫ t

t−τ
‖z(s)‖γds+

n∑
i=1

λi
yµi+1
i (t)

µi + 1
+ β2

∫ t

t−τ
‖f(y(s))‖2ds

+β3

∫ t

t−τ
(τ + s− t)‖f(y(s))‖2ds− fT (y(t))ΛB−1D

∫ t

t−τ
f(y(s))ds,

where β1, β2, β3 are positive coefficients.
Differentiating functional V (yt, zt) along the solutions of the system (6), we obtain

V̇ = −

(
∂Ṽ (z(t))

∂z

)T
A−1Bz(t) + β1‖z(t)‖γ − β1‖z(t− τ)‖γ

−

(
∂Ṽ (z(t))

∂z

)T
A−1

(
Cf
(
y(t)−B−1Az(t)

)
+Df

(
y(t− τ)−B−1Az(t− τ)

))
+fT (y(t))ΛPf(y(t)) + (β2 + τβ3)‖f(y(t))‖2 − β2‖f(y(t− τ))‖2 − β3

∫ t

t−τ
‖f(y(s))‖2ds

+fT (y(t))ΛB−1
(
C
(
f(y(t))− f

(
y(t)−B−1Az(t)

))
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+D
(
f(y(t− τ))− f

(
y(t− τ)−B−1Az(t− τ)

)))
+

∫ t

t−τ
fT (y(s))dsDT

(
B−1

)T
Λ
∂f(y(t))

∂y
B−1

(
Cf
(
y(t)−B−1Az(t)

)
+Df

(
y(t− τ)−B−1Az(t− τ)

))
.

If ‖z(ξ)‖ < 1 for ξ ∈ [t− τ, t], then

V̇ ≤ (−a4 + β1)‖z(t)‖γ − β1‖z(t− τ)‖γ + (β2 + τβ3 − c1)‖f(y(t))‖2 − β2‖f(y(t− τ))‖2

+c2

∥∥∥∥∂f(y(t))

∂y

∥∥∥∥ ∫ t

t−τ
‖f(y(s))‖ds (‖f(y(t))‖+ ‖z(t)‖µ1 + ‖f(y(t− τ))‖+ ‖z(t− τ)‖µ1)

+c3‖z(t)‖γ−1 (‖f(y(t))‖+ ‖z(t)‖µ1 + ‖f(y(t− τ))‖+ ‖z(t− τ)‖µ1)

−β3

∫ t

t−τ
‖f(y(s))‖2ds+ c4‖f(y(t))‖

∥∥f(y(t))− f
(
y(t)−B−1Az(t)

)∥∥
+c5‖f(y(t))‖

∥∥f(y(t− τ))− f
(
y(t− τ)−B−1Az(t− τ)

)∥∥ ,
where c1, c2, c3, c4, c5 are positive constants.

Let 2 < γ < 2µ1. Using homogeneous functions properties, see [23], it is easy to show
that, for sufficiently small values of parameters β1, β2, β3, there exist positive numbers
c̃1, c̃2, c̃3, δ such that if ‖y(ξ)‖+ ‖z(ξ)‖ < δ for ξ ∈ [t− τ, t], then

c̃1

(
‖z(t)‖γ +

n∑
i=1

yµi+1
i (t)

)
≤ V (yt, zt)

≤ c̃2

(
‖z(t)‖γ +

∫ t

t−τ
‖z(s)‖γds+

n∑
i=1

yµi+1
i (t) +

∫ t

t−τ
‖f(y(s))‖2ds

)
,

V̇ ≤ −c̃3
(
‖z(t)‖γ + ‖z(t− τ)‖γ + ‖f(y(t))‖2 + ‖f(y(t− τ))‖2 +

∫ t

t−τ
‖f(y(s))‖2ds

)
.

From the obtained estimates it follows [11] that the zero solution of the system (6)
is asymptotically stable. This implies that the equilibrium position (2) of the original
system (1) is asymptotically stable as well. 2

Remark 4.1 On the one hand, it is well known, see [13], that if the matrix P̄ is
Hurwitz, then the matrix P is diagonally stable. On the other hand, the matrix

P =

(
−1 10
−10 −1

)
is diagonally stable, but the corresponding matrix

P̄ =

(
−1 10
10 −1

)
is not Hurwitz. Hence, conditions of Theorem 4.1 are less conservative than those ob-
tained in [7].
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Next, together with (1), consider the perturbed system

Aq̈(t) +Bq̇(t) + Cf(q(t)) +Df(q(t− τ)) = G(t, q(t), q(t− τ)). (7)

Here vector function G(t, q, u) is continuous for t ≥ 0, ‖q‖ < ∆, ‖u‖ < ∆.

Assumption 4.2 The estimate ‖G(t, q, u)‖ ≤ ã (‖f(q)‖+ ‖f(u)‖)σ is valid for t ≥ 0,
‖q‖ < ∆, ‖u‖ < ∆, where ã and σ are positive constants.

If Assumption 4.2 is fulfilled, then the system (7) admits the equilibrium position (2).
We will look for conditions under which perturbations do not disturb the asymptotic
stability of the equilibrium position.

Theorem 4.2 Let Assumptions 3.1, 3.2, 4.1, 4.2 be fulfilled, and the matrix P be
diagonally stable. If σ > 1, then the equilibrium position (2) of the system (7) is asymp-
totically stable for an arbitrary nonnegative delay.

The proof of the theorem is similar to that of Theorem 4.1.

5 Example

Let system (1) be of the form

q̈1(t) + bq̇1(t) + gq̇2(t)− cq3
1(t) = u1,

q̈2(t) + bq̇2(t)− gq̇1(t)− cq5
2(t) = u2.

(8)

Here q1(t), q2(t) ∈ R, b, g, c are positive constants, u1, u2 are control variables.

If u1 = u2 = 0, then the equilibrium position

q1 = q2 = q̇1 = q̇2 = 0 (9)

of the system (8) is unstable, see [17]. We are going to design a feedback control providing
the asymptotic stability of the equilibrium position.

Assume that the control law depends on q1 and q2, and is independent of q̇1 and q̇2.
Moreover, we consider the case where there exists a delay τ in the control scheme.

It should be noted that for the linear control law

u1 = a11q1(t− τ) + a12q2(t− τ), u2 = a21q1(t− τ) + a22q2(t− τ),

where a11, a12, a21, a22 are constants, the presence of delay might result in instability of
the equilibrium position. Therefore, we choose a nonlinear control in the form

u1 = −dq5
2(t− τ), u2 = dq3

1(t− τ), d = const > 0.

Verifying the conditions of Theorem 4.1, it is easy to show that if d > bc/g, then the
equilibrium position (9) of the corresponding closed-loop system is asymptotically stable
for an arbitrary constant nonnegative delay.
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6 Conclusion

In this paper, new delay-independent conditions of the asymptotic stability are found for a
class of nonlinear mechanical systems. Compared with the results of [7], these conditions
are less conservative. However, it is worth mentioning that in [7] it was assumed that
the delay may be a continuous nonnegative and bounded function of time, whereas the
results of the present paper are valid only for systems with constant delays.

It should be noted that the approach to construction of Lyapunov–Krasovskii func-
tionals proposed in the paper not only permits us to prove the asymptotic stability but
also can be used to derive estimates of the convergence rate of solutions to the equilibrium
position.

Acknowledgment

This work was partially supported by the Russian Foundation for Basic Research, grant
nos. 16-01-00587-a and 17-01-00672-a.

References

[1] Aleksandrov, A.Y. and Aleksandrova, E.B. Asymptotic stability conditions for a class of
hybrid mechanical systems with switched nonlinear positional forces. Nonlinear Dynamics
83 (4) (2016) 2427–2434.

[2] Aleksandrov, A.Yu., Aleksandrova, E.B. and Zhabko, A.P. Stability analysis for a class of
nonlinear nonstationary systems via averaging. Nonlinear Dynamics and Systems Theory
13 (4) (2013) 332–343.

[3] Aleksandrov, A.Yu., Aleksandrova, E.B. and Zhabko, A.P. Asymptotic stability conditions
for certain classes of mechanical systems with time delay. WSEAS Transactions on Systems
and Control 9 (2014) 388–397.

[4] Aleksandrov, A.Yu., Chen, Y., Kosov, A.A. and Zhang, L. Stability of hybrid mechanical
systems with switching linear force fields. Nonlinear Dynamics and Systems Theory 11 (1)
(2011) 53–64.

[5] Aleksandrov, A.Yu., Kosov, A.A. and Chen, Y. Stability and stabilization of mechanical
systems with switching. Automation and Remote Control 72 (6) (2011) 1143–1154.

[6] Aleksandrov, A.Yu. and Zhabko, A.P. Estimates of solutions of nonlinear systems with
delay on the basis of the Lyapunov direct method. In: Proc. of the Intern. Conf. “Con-
terporary Methods of Applied Mathematics, Control Theory and Computer Science” (AM-
CTCS’2014), Voronezh, Russia (2014) 3–5. [Russian]

[7] Aleksandrov, A.Yu. and Zhabko, A.P. Stability analysis of equilibrium positions of me-
chanical systems with delay via decomposition. In: Proc. of the IEEE Intern. Conf. on
Mechanics “Seventh Polyakhov’s Reading”, St. Petersburg, Russia (2015) 7106712.

[8] Beards, C.F. Engineering Vibration Analysis with Application to Control Systems. Edward
Arnold, London, 1995.

[9] Gourdon, E., Lamarque, C.H., Pernot, S. Contribution to efficiency of irreversible passive
energy pumping with a strong nonlinear attachment. Nonlinear Dynamics 50 (4) (2007)
793–808.

[10] Hagedorn, P. On the destabilizing effect of non-linear damping in non-conservative systems
with follower forces. Int. J. Non-Linear Mechanics 5 (1970) 341–358.

[11] Hale, J.K. and Verduyn Lunel, S.M. Introduction to Functional Differential Equations.
Springer, New York, 1993.



232 A.Yu. ALEKSANDROV AND E.B. ALEKSANDROVA

[12] Hu, H.Y. and Wang, Z.H. Dynamics of Controlled Mechanical Systems with Delayed Feed-
back. Springer, Berlin, 2002.

[13] Kazkurewicz, E. and Bhaya, A. Matrix Diagonal Stability in Systems and Computation.
Birkhauser, Boston, 1999.

[14] Kosov, A.A. Stability investigation of singular systems by means of the Lyapunov vector
functions method. Vestnik St. Petersburg University, Ser. 10 (4) (2005) 123–129. [Russian]

[15] Lakshmikantham, V., Leela, S. and Martynyuk, A.A. Stability Analysis of Nonlinear Sys-
tems. Marcel Dekker, New York, 1989.

[16] Lukyanova, T.A. and Martynyuk, A.A. Stability analysis of impulsive Hopfield-type neuron
system on time scale. Nonlinear Dynamics and Systems Theory 17 (3) (2017) 315–326.

[17] Matrosov, V.M. The Method of Vector Lyapunov Functions: Analysis of Dynamical Prop-
erties of Nonlinear Systems. Fizmatlit, Moscow, 2001. [Russian]

[18] Melnikov, G.I., Dudarenko, N.A., Malykh, K.S., Ivanova, L.N. and Melnikov, V.G. Math-
ematical models of nonlinear oscillations of mechanical systems with several degrees of
freedom. Nonlinear Dynamics and Systems Theory 17 (4) (2017) 369–375.

[19] Ramachandran, P. and Ram, Y.M. Stability boundaries of mechanical controlled system
with time delay. Mechanical Systems and Signal Processing 27 (2012) 523–533.

[20] Reshmin, S.A. and Chernous’ko, F.L. Synthesis of a control in a non-linear dynamical
system based on decomposition. J. of Applied Mathematics and Mechanics 62 (1) (1998)
115–122.

[21] Siljak, D.D. Decentralized Control of Complex Systems. Academic Press, Boston, 1991.

[22] Tkhai, V.N. and Barabanov, I.N. Extending the property of a system to admit a family
of oscillations to coupled systems Nonlinear Dynamics and Systems Theory 17 (1) (2017)
95–106.

[23] Zubov, V.I. Methods of A.M. Lyapunov and Their Applications. P. Noordhoff Ltd, Gronin-
gen, 1964.

[24] Zubov, V.I. Analytical Dynamics of Gyroscopic Systems. Sudostroenie, Leningrad, 1970.
[Russian]



Nonlinear Dynamics and Systems Theory, 18 (3) (2018) 233–240

Solitary Wave Solutions of the Phi-Four Equation and

the Breaking Soliton System by Means of Jacobi

Elliptic Sine-Cosine Expansion Method

M. Alquran 1∗, A. Jarrah 1, E.V. Krishnan 2

1 Department of Mathematics and Statistics, Jordan University of Science and Technology,
P.O. Box (3030), Irbid (22110), Jordan

2 Department of Mathematics and Statistics, Sultan Qaboos University, P.O. Box (36),
Al-Khod (123), Muscat, Sultanate of Oman

Received: February 12, 2018; Revised: June 25, 2018

Abstract: The goal of this study is twofold. The Jacobi elliptic expansion method
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1 Introduction

Solitary waves occur due to nonlinear phenomena appearing in different fields of science
and engineering. These nonlinear phenomena are interpreted as (n + 1)-dimensional
nonlinear partial differential equations. Seeking the exact solutions to these equations
provides essential information about the physical structure of such phenomena. Since
there is no specific method that produces such solutions, researchers made all the efforts
to construct and modify methods to retrieve different kind of solutions for the same
nonlinear model. We may mention some of these well-known techniques such as: the
simplified bilinear method [11, 18, 31], sine-cosine method [4, 5], rational trigonometric
function method [6], tanh method [7], extended tanh method [12,27], Yan transformation
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method [33–35], sech-tanh method [8–10,32], exponential-function method [25], the first
integral method [2, 29], the (G′/G)-expansion method [3, 23,24], etc.

In this work, we use the Jacobi elliptic expansion method to explore further new
solutions for two physical models: the phi-four equation that reads [17]

utt − αuxx − λu+ βu2 = 0, (1)

and the breaking soliton system

ut = −αuxxy − 4α(uv)x,

uy = vx. (2)

The phi-four equation is a mathematical model that is used in nuclear and particle
physics. Many methods have been used to study the solutions of this model. In [13],
the modified simple equation method is used and tanh-coth solutions are derived. The
modified (G′/G)-expansion method is adopted in [26] and produced the same solutions as
in [13]. In [28], tan2 and cot2 solutions are obtained by using the extended direct algebraic
method. Finally, the exponential-function method is used and rational trigonometric
solutions of the phi-four equation are obtained in [14].

Different versions of the breaking soliton model are also studied by many researchers.
In [30], the mapping method is used to obtain propagating solutions. The tanh-coth
method is implemented [15] to construct solitary and soliton solutions of the breaking
soliton equations. Finally, the exponential-function method is used [16] to obtain multiple
soliton solutions of (2 + 1) and (3 + 1)-dimensional breaking soliton equations.

2 Jacobi Elliptic Sine-Cosine Expansion Method

Partial differential equations can be written as a polynomial of the unknown function
and its partial derivatives, i.e.

f(u, ut, ux, uxt, uxx...) = 0, u = u(x, t). (3)

By using the variable of the form ξ = µ(x − ct) and the chain rule, equation (3) is
transformed into

g(u,−cµu′, µu′,−cµ2u′′, µ2u′′, ...) = 0, u = u(ξ). (4)

For the Jacobi elliptic sine-cosine technique [1, 19–22], we write the solution as a power
series of order n in terms of either the Jacobi elliptic sine sn(ξ,m) or cosine cn(ξ,m).
The index m is regarded as the Jacobi module and 0 ≤ m ≤ 1, i.e.

u(ξ) =

n∑
i=0

aiY
i, (5)

where
Y = sn(ξ,m), (6)

or
Y = cn(ξ,m). (7)

Then, we determine the value of n by matching the order of Y in the highest derivative
term with its order in the other nonlinear terms of the equation. Once n is obtained, we
substitute (5) in (4) and collect the coefficients of Y i : i = 0, 1, 2, ..., n, .... Setting these
coefficients to zero and solving the resulting non algebraic system lead to identifying the
required a0, a1, ..., an, µ and c.
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3 The Phi-Four Equation

Consider the phi-four equation that reads

utt − αuxx − λu+ βu2 = 0. (8)

By the wave variable ξ = k(x− ct), equation (8) is turned into the differential equation:

k2(c2 − α)u′′ − λu+ βu2 = 0. (9)

Balancing u′′ with u2 produces the algebraic equation n+2 = 2n whose solution is n = 2.
Thus, the solution of (8) in terms of the elliptic sine function will have the form

u(ξ) = a0 + a1 sn(ξ,m) + a2 sn
2(ξ,m). (10)

Substituting (10) into (9) and collecting the coefficients of the same power of sn lead
to the nonlinear algebraic system

0 = 2a2k
2(c2 − α) + a0(a0β − λ),

0 = −a1(c2k2(1 +m2)− k2(1 +m2)α− 2a0β + λ),

0 = a21β − a2(4c2k2(1 +m2)− 4k2(1 +m2)α− 2a0β + λ),

0 = 2a1(c2k2m2 − k2m2α+ a2β),

0 = a2(6c2k2m2 − 6k2m2α+ a2β). (11)

By solving the above system for the parameters a0, a1, a2, c and k, we get

a0 =
λ

2β

(
1− 1 +m2

√
1−m2 +m4

)
,

a1 = 0,

a2 =
3m2λ

2β
√

1−m2 +m4
,

c =
1

2

√
4α− λ

k2
√

1−m2 +m4
, (12)

where k is a free parameter. Thus, our first solution to the phi-four model is

u(x, t) =
3m2λ

2β
√

1−m2 +m4
sn2(k(x− 1

2

√
4α− λ

k2
√

1−m2 +m4
t),m)

+
λ

2β

(
1− 1 +m2

√
1−m2 +m4

)
. (13)

Substituting m = 1 in (13) produces the soliton solution

u(x, t) = − λ

2β
+

3λ

2β
tanh2(k(x− 1

2
t

√
4α− λ

k2
)). (14)

Now, replacing sn in (10) by cn will lead to a second solution, which is

u(x, t) =
−3m2λ

2β
√

1−m2 +m4
cn2(k(x− 1

2

√
4α− λ

k2
√

1−m2 +m4
t),m)

+
λ

2β

(
1 +

2m2 − 1√
1−m2 +m4

)
. (15)
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Let m = 1 in (15), this produces the soliton solution

u(x, t) =
λ

β
− 3λ

2β
sech 2(k(x− 1

2
t

√
4α− λ

k2
)). (16)

Remark 1 The obtained solution given in (16) can be obtained directly from (14) by
using the identity sech 2(x) = 1− tanh2(x).

Remark 2 If we replace the free parameter k in (14) by iγ with i =
√
−1, we obtain

the singular periodic solution

u(x, t) = − λ

2β
− 3λ

2β
tan2(γ(x− 1

2
t

√
4α+

λ

γ2
)). (17)

Also, in (16), we obtain the singular periodic solution

u(x, t) =
λ

β
− 3λ

2β
sec2(γ(x− 1

2
t

√
4α+

λ

γ2
)), (18)

where the singularities occur on the line characteristics γ(x− 1
2 t
√

4α+ λ
γ2 ) = π

2 + nπ.

Proof: Use the fact that tanh(ix) = i tan(x) and sech (ix) = sec(x).
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Figure 1: The obtained solutions given in (14) and (18) respectively, when λ = α = β = k = 1.

4 (2 + 1)-Dimensional Breaking Soliton Equations

We recall the following (2+1)-dimensional breaking soliton equations

ut = −αuxxy − 4α(uv)x,

uy = vx. (19)

Substituting ξ = µx+ λy − ct into (19) yields

− cu+ αµ2λu′′ + 4αµ(uv) = 0 (20)
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and
λu′ = µv′. (21)

From (21) we get

v =
λ

µ
u. (22)

Substituting (22) in (20) yields

− cu+ 4αλu2 + αλµ2u′′ = 0. (23)

Balancing u′′ with u2 in (23) produces the algebraic equation n+ 2 = 2n whose solution
is n = 2. Thus, by the Jacobi elliptic sine expansion, the solution has the form

u(ξ) = a0 + a1 sn(ξ,m) + a2 sn
2(ξ,m). (24)

Substitute (24) into (23) to get the following algebraic system

0 = −a0c+ 4a20αλ+ 2a2αλµ
2,

0 = −a1(c+ αλ(−8a0 + (1 +m2)µ2)),

0 = 4a21αλ− a2(c+ 4αλ(−2a0 + (1 +m2)µ2)),

0 = 2a1αλ(4a2 +m2µ2),

0 = 2a2αλ(2a2 + 3m2µ2). (25)

Solving the above system with respect to a0, a1, a2, µ, λ and c, we get

a0 =
1

2

(
1 +m2 ±

√
1−m2 +m4

)
µ2,

a1 = 0,

a2 =
−3

2
m2µ2,

c = ±4αλµ2
√

1−m2 +m4. (26)

Thus, the solution is

u(x, y, t) =
1

2
µ2{1 +m2 +A− 3m2sn2(µx+ λy − 4Aαλµ2t,m)},

v(x, y, t) =
1

2
λµ{1 +m2 +A− 3m2sn2(µx+ λy − 4Aαλµ2t,m)}, (27)

where A =
√

1−m2 +m4. When m = 1 in (27), we obtain

u(x, y, t) =
3

2
µ2
(
1− tanh2(µx+ λy − 4αλµ2t)

)
,

v(x, y, t) =
3

2
λµ
(
1− tanh2(µx+ λy − 4αλµ2t)

)
. (28)

Now, by the Jacobi elliptic cosine expansion, the solution has the form

u(ξ) = a0 + a1 cn(ξ,m) + a2 cn
2(ξ,m) (29)
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Substituting (29) into (23) and solving the resulting algebraic system, we arrive at

u(x, y, t) =
1

4
µ2{1− 2m2 −m4 +B + 2(m2 + 2m4) cn2(µx+ λy − 2Bαλµ2t,m)},

v(x, y, t) =
1

4
λµ{1− 2m2 −m4 +B + 2(m2 + 2m4) cn2(µx+ λy − 2Bαλµ2t,m)},

(30)

where B =
√

1 + 6m4 − 4m6 +m8 and λ, µ are free variables. When m = 1, the solution
is

u(x, y, t) =
3

2
µ2 sech 2(µx+ λy − 4αλµ2t),

v(x, y, t) =
3

2
λµ sech 2(µx+ λy − 4αλµ2t). (31)

Remark 3 If we replace λ by θλ1 and µ by θµ1 and θ by iθ1 in both (28) and (31),
where i =

√
−1, two singular periodic solutions are obtained

u(x, y, t) = −3

2
θ21µ

2
1

(
1 + tan2(θ1(µ1x+ λ1y + θ214αλ1µ

2
1t))

)
,

v(x, y, t) = −3

2
θ21λ1µ1

(
1 + tan2(θ1(µ1x+ λ1y + θ214αλ1µ

2
1t))

)
(32)

and

u(x, y, t) = −3

2
θ21µ

2
1 sec2(θ1(µ1x+ λ1y + θ214αλ1µ

2
1t)),

v(x, y, t) = −3

2
θ21λ1µ1 sec2(θ1(µ1x+ λ1y + θ214αλ1µ

2
1t)). (33)

The singularities of the last two solutions occur on the plane characteristics θ1(µ1x +
λ1y + θ214αλ1µ

2
1t) = π

2 + nπ.

5 Conclusion

In this paper, we used the Jacobi elliptic sine-cosine expansion method to study the solu-
tions of two physical models, the phi-four equation and the (2 + 1)-dimensional breaking
soliton system. Special values of the Jacobi elliptic module and the free parameters lead
us to different types of solutions to these models such as soliton, singular-soliton and
periodic solution. This work reveals that the proposed method is a reliable technique
that provides different types of solutions and is relatively easy when applied to nonlinear
equations.
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Abstract: Vulnerability is an important concept in network analysis. When a failure
occurs in some of the components of the network, vulnerability measures the ability
of the network to disruption in order to avoid the external or internal effects. Graph
theory is an important concept in network vulnerability analysis. If a network is
modeled as an undirected and unweighted graph composed of processing vertices
and communication links, there have been several proposals for measuring graph
vulnerability under link or vertex failures. In this paper, we consider the concept
of average edge betweenness of a graph in order to measure the network stability.
The average edge betweenness is related to the edge betweenness of an edge. The
edge betweenness of a given edge is the fraction of shortest paths, counted over all
pairs of vertices that pass through that edge. The average edge betweenness considers
both the local and the global structure of the graph. In this paper, we obtain exact
values for average edge betweenness and normalized average edge betweenness for
some special graphs and Et

p graph.

Keywords: network vulnerability; network design and communication; stability; av-
erage edge betweenness.
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1 Introduction

Many complex systems in the real world can be conceptually described as networks, where
vertices represent the system constituents and edges depict the interaction between them,
such as social networks (collaboration network), technological networks (communication
networks, the Internet), information networks (the World Wide Web), biological networks
(protein-protein interaction networks, neural networks) and etc. [10,11] . A central issue
in the analysis of complex networks is the assessment of their stability and vulnerability.
Vulnerability is an important concept in network analysis related with the ability of
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the network to avoid intentional attacks or disruption when a failure is produced in
some of its components. Often enough, the network is modeled as an undirected and
unweighted graph. Different measures for graph vulnerability have been introduced so far
to study different aspects of the graph behavior after removal of vertices or links such as
connectivity, toughness, scattering number, integrity, residual closeness and exponential
domination number [1, 4, 9, 12–15].

As an important parameter in the study of networks associated with complex systems
in both modeling and measuring the reliability, the graph-theoretical concept of vertex
betweenness was first proposed by Freeman [7] in 1977. Then, Girvan and Newman
in [8] generalize this definition to edges and introduce the edge betweenness of an edge
as the fraction of shortest paths between pairs of vertices that run along it. The edge
betweenness of a given edge is the fraction of shortest paths, counted over all pairs of
vertices that pass through that edge. This measure considers both the local and the global
structure of the graph. Since average edge betweenness gives information on which edge
carries the most of the network vulnerability, it is important to determine the average
edge betweenness of several graph classes.

In this paper, we consider simple finite undirected graphs without loops and multiple
edges. Let G = (V,E) be a graph with a vertex set V = V (G) and an edge set E = E (G).
The complement G of a graph G is the graph with a vertex set V (G) such that two vertices
are adjacent in G if and only if these vertices are not adjacent in G. A vertex dominating
set for a graph G is a set S of vertices such that every vertex G belongs to S or is adjacent
to a vertex of S. The minimum cardinality of a vertex dominating set in a graph G is
called the vertex dominating number of G and is denoted by γ(G). The distance d (u, v)
between two vertices u and v in G is the length of the shortest path between them. If u
and v are not connected, then d (u, v) =∞, and for u = v, d (u, v) = 0. In addition, the
distance between the vertices u and v in G can be denoted by d (u, v |G ). The diameter
of G, denoted by diam (G), is the largest distance between two vertices in V (G) [2].

The paper proceeds as follows. In Section 2, definitions and known results for average
edge betweenness and normalized average edge betweenness are given. In Sections 3 and
4, average edge betweenness and normalized average edge betweenness of some special
graphs are respectively determined and exact values are given. Conclusions are addressed
in Section 5.

2 Average Edge Betweenness and Normalized Average Edge Betweenness

In this paper, we consider a simple finite undirected graph that has no self-loops and
possesses no more than one edge between any two different vertices. Let G = (V,E) be
a graph with a vertex set V = V (G) and an edge set E = E (G).

Average edge betweenness of the graph G is defined as b(G) = 1
|E|

∑
e∈E

be, where |E|

is the number of the edges, and be is the edge betweenness of the edge e, defined as
be =

∑
i 6=j

be(i, j), where be(i, j) = nij(e)/nij , nij(e) is the number of geodesics (shortest

paths) from vertex i to vertex j that contain the edge e, and nij is the total number of
shortest paths [3, 5].

Let us compare two graphs G1 and G2. If b (G1) < b (G2), then G1is more stable than
G2. Since for a graph with a fixed number of vertices b(G) decreases as the number of
edges in the graph increases, it can be said that they represent how “well connected”the
graph is. The higher the values of b(G), the more vulnerable G is to the loss of edges. We
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consider the concept of average edge betweenness of a graph because when computing
b(G), we can gather information on which edge carries the most of the graph vulnerability.

A complete graph is a simple graph in which every pair of distinct vertices is connected
by an edge. The complete graph with n vertices has n(n − 1)/2 edges. For a complete
graph, we have b (Gcomplete) = 1. A path graph is a particularly simple example of a
tree, which is not branched at all, that is, it contains only vertices of degree two and one.
In particular, two of its vertices have degree 1 and all others (if any) have degree 2. For
a path graph with n vertices, |E| = n− 1, and therefore: b (Gpath) = n (n+ 1) /6.
It is easy to see that b (Gcomplete) ≤ b (G) ≤ b (Gpath). As a consequence, we can define
the normalized average edge betweenness of a graph G

bnor(G) =
b(G) − b(Gcomplete)

b(Gpath) − b(Gcomplete)
= (b(G) − 1)/(n(n+ 1)/6− 1 ).

Clearly 0 ≤ bnor (G) ≤ 1; if the normalized average edge betweenness is close to 0, it
means that the network is more robust, when it is close to 1, then the graph is more
vulnerable.

The following lemma provides some basic properties for the betweenness related pa-
rameters. Let us recall that for a graph G, be is the betweenness of edge e, b(G) is the
average edge betweenness of G.

Example 2.1 Let us find the edge betweenness value of each edge of the graph G
with sixvertices and sevenedges given in Fig. 1. Let us find the average edge betweenness
value of the graph G.

Figure 1: The graph G with sixvertices and sevenedges.

In Table 1, the shortest paths between all pairs of vertices of the graph G are found.
According to these shortest paths, the edge betweenness values of each edge are calcu-
lated. Next, the normalization process is performed by finding the average edge between-
ness value of the graph G.

As can be seen in line SUM of Table 1, the edge betweenness values of the edges
e1, e2, e3, e4, e5, e6 and e7 are found to be 5, 5, 5, 3, 2, 3 and 2, respectively. Here, the
highest edge betweenness value is 5. This shows that the edges e1, e2 and e3 are the most
important positions in the graph. According to Table 1, the lowest value is 2. The edges
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pairs of vertices the shortest paths e1 e2 e3 e4 e5 e6 e7
a,b e3 0 0 1 0 0 0 0
a,c e6 0 0 0 0 0 1 0
a,d e7 0 0 0 0 0 0 1
a,e e3e2 0 1 1 0 0 0 0
a,f e1 1 0 0 0 0 0 0
b,c e3e6, e4e5 0 0 1/2 1/2 1/2 1/2 0
b,d e4 0 0 0 1 0 0 0
b,e e2 0 1 0 0 0 0 0
b,f e3e1 1 0 1 0 0 0 0
c,d e5 0 0 0 0 1 0 0
c,e e6e3e2, e5e4e2 0 2/2 1/2 1/2 1/2 1/2 0
c,f e6e1 1 0 0 0 0 1 0
d,e e4e2 0 1 0 1 0 0 0
d,f e7e1 1 0 0 0 0 0 1
e,f e2e3e1 1 1 1 0 0 0 0

SUM 5 5 5 3 2 3 2

Table 1: The edge betweenness values of the edges and the average edge betweenness value of
the graph G.

e5 and e7 have this value. This fact shows that these edges play a more passive role than
other edges of the graph. By using these values, the average edge betweenness value of
G is obtained as

b(G) =
1

7

7∑
i=1

bei =
25

7
= 3, 57.

For n = 6, the normalized average edge betweenness value of the G graph is as follows:

bnor(G) =
b(G)− 1
n(n+1)

6 − 1
=

25
7 − 1
42
6 − 1

=
18

42
= 0, 4.

Lemma 2.1 [5] Let G be a connected graph and let e ∈ E be an edge with end
vertices i, j ∈ V , then

1. be(i, j) = 1 = be(j, i).

2. 2 ≤ be ≤ n2/2 if n is even and 2 ≤ be ≤ (n− 1)
2
/2 if n is odd.

3. be = 2(n− 1) if one of the end vertices of e has degree 1.

Lemma 2.2 [5] Let G be a graph of order n, then

1. If e is an edge-bridge of the graph G connecting G1 with G\G1, where |V (G1)| = n1,
then be = 2n1(n− n1).

2. If C is a cut-set of edges of the graph G connecting two sets of vertices X and
V (G) \X and

|X| = nx , then
∑

e∈C
be = 2nx(n− nx) .
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Theorem 2.1 Let G be the complement graph of G. Then, if G has n vertices and
m edges with domination number γ (G) > 2, then the average edge betweenness of G is

b(G) = (n(n− 1) + 2m)/(n(n− 1)− 2m).

Proof. Let i and j be the vertices of G and e be any edge of G. We have two cases
according to d (i, j):

Case 1. If d (i, j) > 1 is in G graph, then d (i, j) =1 is in G. Therefore, there are
(n(n− 1)/2 −m) paths with length 1 in G. Thus, for all vertex pairs i and j, the
summation of the values of edge betweenness of e is∑

i 6=j

be(i, j) = (n(n− 1)/2 −m) .

Case 2. If d (i, j) = 1 is in G graph, then d (i, j) > 1 is in G. Let t be the number of
vertices which are not adjacent to vertices i and j. Since γ (G) > 2, it is clear that
t ≥ 1. Thus, there are t paths with length 2 in G. Hence, for all vertex pairs i and
j , the summation of the values of edge betweenness of e is∑

i 6=j

be(i, j) = t (1/t ) 2m = 2m.

By summing up Cases 1 and 2, we obtain∑
e∈E

be = (n(n− 1)/2 −m) + 2m = n(n− 1)/2 +m.

As a consequence, the average edge betweenness of G is

b(G) = 1/(n(n− 1)/2 −m) (n(n− 1)/2 +m) = (n(n− 1) + 2m)/(n(n− 1)− 2m).

The proof is completed. 2

3 The Average Edge Betweenness of Some Special Graphs

In this section, we give some results on average edge betweennesses of some special graphs.
These graphs are: Cn is a cycle graph, S1,n is a star graph, W1,n is a wheel graph, and
Km,n is a complete bipartite graph. Finally we give average edge betweenness of Et

p

graph.

Lemma 3.1 Label the vertices of Cn as 1, 2, 3, . . . , n and the edges of Cn as
e1, e2, e3, . . . , en, respectively. Let dij(ek) be the distance between i and j including
the edge ek. nij(ek) is the number of paths which include the edge ek with length
dij(ek) (1 ≤ i, j, k ≤ n and i 6= j). The relation between dij(ek) and nij(ek)in graph
Cn is the following

If dij(ek) = 1, then nij(ek) = 1 (1)

If dij(ek) = 2, then nij(ek) = 2 (2)

If dij(ek) = 3, then nij(ek) = 3 (3)

... (4)

If dij(ek) = (n− 1)/2, then nij(ek) = (n− 1)/2 . (5)

(6)
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Theorem 3.1 If Cn is a cycle graph, then the average edge betweenness for the cycle
graph Cn with n vertices is

b(Cn) =

{
(n2 − 1)/8 , n is odd
n2/8 , n is even.

Proof. There exist two cases according to n:

Case 1. If n is odd, then nij = 1 for ∀i, j (1 ≤ i, j, k ≤ n and i 6= j), we get bek =∑
i 6=j

nij(ek)
nij

=
∑
i6=j

nij(ek) . From Lemma 3.1 and dij(ek) ≤ diam(Cn) = (n− 1)/2 ,

we obtain bek =
∑
i 6= j

nij (ek) = 1 + 2 + 3 + . . .+ ((n− 1)/2 ) = (n2 − 1)/8. By the

definition of the average edge betweenness of a graph,

b(Cn) =
1

|E|

(
n∑

i=1

bei

)
= (n2 − 1)/8.

Case 2. If n is even, then we have two subcases for dij(ek).

Subcase 1. If dij(ek) < diam(Cn) = n/2, then nij = 1 for
∀i, j (1 ≤ i, j, k ≤ n and i 6= j). In this case we proceed in a similar way
as in Case 1 and

bek(i, j) = 1 + 2 + 3 + . . .+ [(n/2)− 1] =
(
n2 − 2n

)
/8

is obtained.

Subcase 2. If dij(ek) = diam(Cn) = n/2, then nij(ek) = n/2 and nij = 2 for
∀i, j (1 ≤ i, j, k ≤ n and i 6= j), we get

bek (i, j) =
∑
i 6= j

nij(e)/nij = (n/2) (1/2) = n/4.

By Subcase 1 and Subcase 2, it is clear that

bek = (n2 − 2n)/8 + n/4 = n2/8 (∀k = 1, n).

Consequently, we obtain the average edge betweenness of Cn

b(Cn) =
1

|E|

n∑
i=1

bei = n2/8.

Thus, the proof is completed. 2

Theorem 3.2 If S1,n is a star graph, then the average edge betweenness for the star
graph S1,n with n+ 1 vertices is b(S1,n) = n.

Proof. The vertices of S1,n are of two kinds: one vertex of degree n and n vertices
of degree one. The vertices of degree one will be referred to as the minor vertices and
the vertex of degree n as the center vertex. Label the minor vertices as 1, 2, 3, . . . , n, the
center vertex as c, and the edges of S1,n as ei (i = 1, n). We have two cases in order to
find the shortest paths.
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Case 1. The shortest path between central vertex c and any minor vertex i:
There is only one path ei in this case. By the definition of the edge betweenness,
we obtain the value of the edge ei (i = 1, n )

bei (c, i) = 1.

Case 2. The shortest path between any two different minor vertices:
There is only one path eiej between the minor vertices i and j (1 ≤ i, j ≤ n). By
using Lemma 2.1, for ∀i, j , we get nij = nji = 1 and nij(ek) = 1 (k = i ∨ j). Thus,
we have bek (i, j) = 1/1 = 1. There are n− 1 different pairs of vertices that include
ek. Hence, the value of the edge betweenness of ek

bek (i, j) = (n− 1) 1 = n− 1.

By summing up Cases 1 and 2, we clearly see that

bei = 1 + n− 1 = n.

Consequently, the average edge betweenness of S1,n is

b(S1,n) =
1

|E|

(
n∑

i=1

bei

)
= n.

Thus, the proof is completed. 2

Theorem 3.3 If W1,n is a wheel graph, then the average edge betweenness for the
wheel graph W1,n (n ≥ 5) with n+ 1 vertices is b(W1,n) = (n− 1)/2.

Proof. The vertices of W1,n are of two kinds: n vertices which are of degree 3 will
be referred to as the minor vertices and the vertex of degree n will be referred to as the
central vertex. Label the minor vertices as 1, 2, 3, . . . , n , the central vertex as c, the
edges between the central vertex and the minor vertices as ec i (i = 1, n) and the other
remaining edges as ei (i = 1, n). There exist two cases for the shortest paths between
the pairs of vertices.

Case 1. If the pair of vertices includes the central vertex and the minor vertices:
There exists only one path eci between those vertices that has the length d(c, i)=1.
It is clear that for the path eci, we have nci = 1 and nci(eci) = 1. Hence, the value
of the edge betweenness of eci

beci (c, i) = 1.

Case 2. If the pair of vertices includes any two different minor vertices i and j:
We have three subcases for these minor vertices according to the length of the
shortest path between the vertices:

Subcase 1. If d(i, j) = 1, then there is only one path ek (k = i ∨ j) between i and
j. It is clear that for this path ek, we have nij = 1 and nij(ek) = 1. Hence,
the value of the edge betweenness of ek

bek (i, j) = 1.
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Subcase 2. If d(i, j) = 2, then there are two paths: the paths eiej and ec iec j
between the vertices i and j. The lengths of the paths between the vertices i
and j including the edges ek and eck (k = i ∨ j) are dij(ek) = 2 and dij(eck) =
2 , respectively. By Lemma 3.1, nij(ek) = 2, nij(eck) = 2 and nij = 2. Thus
we have

bek (i, j) = 2/2 = 1, beck (i, j) = 2/2 = 1.

Subcase 3. If d(i, j) > 2, then there is only one path between the vertices i and
j with length 2, that is ec iec j . It is clear that for this path ec iec j , we have
nij = 1 and nij(eck) = 1 (k = i ∨ j). Hence,

beck (i, j) = 1.

In this way, since there are n− 5 different pairs of vertices that include the edge eck,
the value of the edge betweenness of eck is

beck (i, j) = 1(n− 5) = n− 5.

By summing up Subcases 1 and 2, we get the value of the edge betweenness of ek as

bek = 1 + 1 = 2.

By summing up Case 1 and Subcases 2 and 3, we get the value of the edge betweenness
of eck as

beck = 1 + 1 + n− 5 = n− 3.

Consequently, the average edge betweenness of W1,n is

b(W1,n) =
1

|E|

(
n∑

i=1

bei +

n∑
i=1

beci

)
= (n− 1)/2.

Thus, the proof is completed. 2

Theorem 3.4 If Km,n is a complete bipartite graph, then the average edge be-
tweenness for the complete bipartite graph Km,n with m + n vertices is b (Km,n) =
(m2 + n2 − (m+ n))/mn+ 1.

Proof. Let G = Km,n, where S1 and S2 are the partite sets of G with cardinality
m and n respectively. The set of edges of Km,n is E = {epk | p ∈ S1 and k ∈ S2 } and
|E| = mn. We have 3 cases in order to find the shortest paths according to the vertices
being either in S1 or in S2 . Let i and j be the vertices of Km,n.

Case 1. If i ∈ S1 and j ∈ S2, then there is only one path eij between the vertices i and
j. Therefore, it is straightforward that nij = 1 and nij(eij) = 1. Thus

beij (i, j) = 1.

Case 2. If i, j ∈ S1, then there are n paths eikejk with length 2 between the vertices i
and j (k ∈ S2). Clearly, nij = n, nij(epk) = 1 (p = i ∨ j). Hence,

bepk (i, j) = 1/n.

There are m − 1 different pairs of vertices that include epk, the value of the edge
betweenness of epk is

bepk (i, j) = (m− 1)/n.
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Case 3. If i, j ∈ S2, then there are m paths eikejk with length 2 between the vertices
i and j (k ∈ S1). This case is similar to Case 2, and for n − 1 different pairs of
vertices that include epk, the value of the edge betweenness of epk is

bepk (i, j) = (n− 1)/m.

By summing up Cases 1, 2 and 3, we get the value of the edge betweenness of epk as

bepk = (m2 + n2 − (m+ n))/mn+ 1.

Consequently, the average edge betweenness of Km,n is

b(Km,n) =
1

|E|

m∑
p=1

n∑
k=1

bepk = (m2 + n2 − (m+ n))/mn+ 1.

Hence the desired result holds. 2

Definition 3.1 [6] The graph Et
p has t legs and each leg has p vertices (Figure 2).

Thus Et
p has pt+ 2 vertices and pt+ 1 edges.

Figure 2: Et
p graph with pt + 2 vertices.

Theorem 3.5 Let t and p be integers (t ≥ 2, p ≥ 2). The average edge betweenness
of graph Et

p is

b(Et
p) = [(pt (p+ 1)) /6 (pt+ 1)] [3pt− 2p+ 5] + 1.

Proof. Label the vertex with degree t+ 1 as v, the neighbor of v with degree 1 as u,
the vertices of jth leg as (i, j) ( i = 1, p and j = 1, t ), the edge between the vertices u
and v as e, the edge between the vertices v and (i, j) as bridge eij , where i = 1, and the
edges of jth leg as eij respectively (i = 2, p and j = 1, t).

This labeling is shown in Figure 3. Since Et
p is a tree, there is only one path between

any pairs of vertices. Clearly, nij = 1 and be =
∑
i 6=j

(nij(e)/nij) =
∑
i 6=j

nij(e) (i = 1, p, j =

1, t). We have four cases for the vertex pairs of Et
p.

Case 1. Consider the shortest paths between the vertex u and the other vertices. There
exist (pt+ 1) paths. Each of these paths includes the edge e. The value of the edge
betweenness of this edge e is

be = be(u, (i, j)) + be(u, v) = pt+ 1.
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Figure 3: The labeling of vertices and edges of Et
p graph.

Each of these paths also includes the edge eij . The edge eij , that is at distance i
to the vertex v, is on p+ 1− i different paths. The value of the edge betweenness
of this edge eij that is between the vertices u and (k,m) (k = 1, p and m = 1, t) is

beij (u, (k,m)) = p+ 1− i.

Case 2. Consider the shortest paths between the vertex v and the other vertices on
the legs. Each of these paths includes only the edge eij . The value of the edge
betweenness of this edge eij that is between the vertices v and (k,m) (k = 1, p and
m = 1, t) is

beij (v, (k,m)) = p+ 1− i.

Case 3. Consider the shortest paths between the vertices of any leg. The initial vertex
is (1, j) and the last vertex is (p, j) (j = 1, t) on a leg. Thus we have t paths with
p vertices, that is Pp. Those paths include the edge eij . The value of the edge
betweenness of this edge eij equals the number of the left-hand side vertices of eij
multiplied by the number of the right-hand side vertices of eij . If the edge eij is
between the vertices (k,m) and (k′,m) (k, k′ = 1, p and m = 1, t), then we have

beij ((k,m) , (k′,m)) = (i− 1) (p+ 1− i) .

Case 4. Consider the shortest paths between the vertices of any leg and the vertices of
the other legs. This case is similar to Case 3. If the edge eij is between the vertices
(k,m) and (i, j) (k = 1, p and m = 1, t), then we get

beij ((k,m) , (i, j)) = [p (t− 1)] (p+ 1− i) .

By summing up Cases 1, 2, 3, and 4, we obtain

beij = (p+ 1) (p (t− 1) + 1) + i (p (2− t))− i2.

The summation for all the edges eij of the graph is

p∑
i=1

t∑
j=1

beij = (pt/6)
[
3p2t+ 3pt+ 3p− 2p2 + 5

]
.
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Consequently, the average edge betweenness of Et
p graph is

b(Et
p) = [ 1/ (1 + pt) ]

[
(pt+ 1) + (pt/6)

(
3p2t+ 3pt+ 3p− 2p2 + 5

) ]
b(Et

p) = [(pt (p+ 1)) /6 (pt+ 1)] [3pt− 2p+ 5] + 1.

Thus the proof is completed. 2

4 The Normalized Average Edge Betweenness of Some Special Graphs

In this section, we give the normalized average edge betweennesses of some special graphs
whose average edge betweennesses values are calculated in Section 3.

1. bnor(Cn) =

{
[3(n− 3)]/[4(n− 2)], n is odd[
3(n2 − 8)

]
/
[
4(n2 + n− 6)

]
, n is even.

2. bnor(W1,n) = (3n− 9)/(n2 + 3n− 4).

3. bnor(S1,n) = 6/(n+ 4).

4. Km,n and p = m+ n, bnor(Km,n) =
[
6(m2 + n2 − p)

]
/
[
mn(p2 + p− 6)

]
.

5. bnor(Et
p) =

[
3p2t− 2p2 + p+ 6pt+ 13

]
/ [pt+ 5]− [2p− 5] / [pt(pt+ 5)].

6. G is a complement graph of G with γ (G) > 2,

bnor(G) = 24m/
[
(n2 − n− 2m)(n2 + n− 6)

]
.

5 Conclusion

In this paper, we evaluate the average edge betweenness and the normalized average edge
betweenness of some special graphs and Et

p graph. The average edge betweenness is a
new characteristic for graph vulnerability introduced in [8]. Calculation of average edge
betweenness for simple graph types is important because we can gather information on
which edge is the most vulnerable. The average edge betweenness of a given edge is the
fraction of shortest paths, counted over all pairs of vertices that pass through that edge.
This measure considers both the local and the global structure of the graph.
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1 Introduction

Over the last few decades, a great deal of attention has been paid to the subject of
chaotic dynamical systems and their synchronization control. Synchronization is an
adaptive process that works to force the variables of a chaotic slave system to follow
those of a corresponding master system [1]. This considerable interest has resulted in
many synchronization types and schemes, see [2–5]. Among the most effective types
of synchronization for chaotic and hyperchaotic systems are the full state hybrid projec-
tive synchronization (FSHPS) [6], Φ-Θ synchronization [7,8], generalized synchronization
(GS) [9] and Q-S synchronization [10]. As a natural consequence of defining a variety
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of synchronization types, it became apparent that multiple types could coexist simulta-
neously, e.g. [11–13], a property that is of particular importance in the fields of secure
communications and chaotic encryption schemes.

In this paper, we are concerned with the coexistence of the four types of synchro-
nization mentioned above, i.e. FSHPS, Φ–Θ, GS and Q-S, in four dimensions between
a three–dimensional chaotic master system and a four–dimensional hyperchaotic slave
system. For this, we employ nonlinear control methods and make use of the well known
direct Lyapunov method for establishing the global asymptotic convergence of synchro-
nization errors towards zero. The resulting conditions are simple and their verification
is trivial. Also, in order to put the reader’s mind at ease and confirm the results of our
study, we consider a numerical example, whereby the coexistence of FSHPS, Φ–Θ, GS
and Q-S is illustrated for some typical chaotic and hyperchaotic systems. In Section 2
of this paper, the problem formulation and main result are given. Section 3 presents
the numerical application of the proposed coexistence result with the aim of demonstrat-
ing the effectiveness of the approach developed herein. Section 4 summarizes the work
reported in this paper.

2 Problem Formulation and Main Result

We consider the following master and slave systems

ẋi(t) = fi(X(t)), i = 1, 2, 3, (1)

ẏi(t) =
∑4
j=1 bijyj(t) + gi(Y (t)) + ui, i = 1, 2, 3, 4, (2)

where X(t) = (xi)1≤i≤3 and Y (t) = (yi)1≤i≤4 are the states of the master and the slave

systems, respectively, fi : R3 → R, i = 1, 2, 3, (bij)4×4 ∈ R4×4, gi : R4 → R, i = 1, 2, 3, 4,

are nonlinear functions, and U = (u1, u2, u3, u4)
T

is a vector–valued controller. The
problem of coexistence of FSHPS, Θ − Φ synchronization, GS and Q-S synchronization
between master system (1) and slave system (2) is to find controllers ui, i = 1, 2, 3, 4,
such that the errors

e1(t) = y1(t)− Λ×X(t), (3)

e2(t) = Θ× Y (t)− Φ×X(t),

e3(t) = y3(t)− φ (X(t)) ,

e4(t) = Q (Y (t))− S (X(t))

satisfy
lim
t→∞

ei(t) = 0, i = 1, 2, 3, 4,

where Λ = (Λi)1≤i≤3, Θ = (Θi)1≤i≤4, Φ = (Φi)1≤i≤4 are constant matrices and φ : R3 →
R, Q : R4 → R, S : R3 → R are differentiable functions. Here e1 stands for the FSHPS
error, e2 stands for the Θ− Φ synchronization error, e3 denotes the GS error, and e4 is
the Q-S synchronization error.

Theorem 2.1 FSHPS, Φ−Θ synchronization, GS and Q-S synchronization coexist
between master system (1) and slave system (2) under the following conditions:

(i) M =


1 0 0 0

Θ1 Θ2 Θ3 Θ4

0 0 1 0
∂Q
∂y1

∂Q
∂y2

∂Q
∂y3

∂Q
∂y4

 is an invertible matrix and M−1 is its inverse.
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(ii) U = M−1 ((B − C) e (t)−R) , where C ∈ R4×4 is a control matrix and

R =


∑4
j=1 b1jyj + g1 −

∑3
j=1 Λjfj∑4

i=1 Θi

(∑4
j=1 bijyj + gi

)
−
∑3
j=1 Φjfj∑4

j=1 b3jyj + g3 −
∑3
j=1

∂φ
∂xj

fj∑4
i=1

∂Q
∂yi

(∑4
j=1 bijyj + gi

)
−
∑3
j=1

∂S
∂xj

fj

 .

(iii) (B − C) + (B − C)
T

is a negative definite matrix, where B = (bij)4×4 .

Proof. The error system (3) can be differentiated as follows:

ė1(t) =

4∑
j=1

b1jyj + g1 + u1 −
3∑
j=1

Λjfj , (4)

ė2(t) =

4∑
i=1

Θi

 4∑
j=1

bijyj + gi

+

4∑
j=1

Θjuj −
3∑
j=1

Φjfj ,

ė3(t) =

4∑
j=1

b3jyj + g3 + u3 −
3∑
j=1

∂φ

∂xj
fj ,

ė4(t) =

4∑
i=1

∂Q

∂yi

 4∑
j=1

bijyj + gi

+

4∑
j=1

∂Q

∂yj
uj −

3∑
j=1

∂S

∂xj
fj .

The error system (4) can be written in the following compact form

ė (t) = M × U +R. (5)

By substituting the control law (ii) into equation (5), the error system can be written as

ė(t) = (B − C) e(t). (6)

Construct the candidate Lyapunov function in the form: V (e(t)) = eT (t)e(t), we
obtain

V̇ (e(t)) = ėT (t)e(t) + eT (t)ė(t)
= eT (t)(B − C)T e(t) + eT (t) (B − C) e (t)
= eT (t)

[
(B − C)T + (B − C)

]
e(t).

From (iii), we get V̇ (e(t)) < 0. Thus, from the Lyapunov stability theory, the zero
solution of the error system (6) is globally asymptotically stable and, therefore, systems
(1) and (2) are globally synchronized.

3 Numerical Application

In this example, the master system is chosen as the following 3D system

ẋ1 = a1 (x2 − x1) , (7)

ẋ2 = x1x3,

ẋ3 = 50− a2x21 − a3x3.
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When a1 = 2.9, a2 = 0.7 and a3 = 0.6, system (7) exhibits chaotic attractors [14]. The
salve system is described by

ẏ1 = α (y2 − y1) + γy4 + u1, (8)

ẏ2 = −y1y3 − y2 + γy4 + u2,

ẏ3 = y1y2 − y3 − β + u3,

ẏ4 = −δ (y1 + y2) + u4.

The uncontrolled system (8) (i.e. with u1 = u2 = u3 = u4 = 0) exhibits strange
hyperchaotic attractors for the parameter values α = 4, β = 20, γ = 0.2 and δ = 0.5 [15].
The linear part B and nonlinear part g of the slave system (8) can be formulated as

B =


−4 4 0 0.2
0 −1 0 0.2
0 0 −1 0
−0.5 −0.5 0 0

 and g =


0

−y1y3
y1y2 − β

0

 .

According to our approach, the error system between systems (7) and (8) is described
by

e1 = y1 − Λ× (x1, x2, x3)
T
, (9)

e2 = Θ× (y1, y2, y3, y4)
T − Φ× (x1, x2, x3)

T
,

e3 = y4 − φ (x1, x2, x3) ,

e4 = Q (y1, y2, y3, y4)− S (x1, x2, x3) ,

where Λ = (−1, 0, 2) , Θ = (0, 2, 0, 0) , Φ = (1, 2, 3) , φ (x1, x2, x3) = x1x2 +
x3, Q (y1, y2, y3, y4) = 1 + 3y4 and S (x1, x2, x3) = x1x2x3. Based on the notations
used in Section 2, the matrix M is given by

M =


1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 3

 , (10)

and thus

M−1 =


1 0 0 0
0 1

2 0 0
0 0 1 0
0 0 0 1

3

 . (11)

Then, the control matrix C can be selected as

C =


0 4 0 0.2
0 2 0 0.2
0 0 1 0
−0.5 −0.5 0 1

 . (12)

Using matrices (10), (11) and (12) we can easily construct the control law (ii) de-

scribed in Theorem 1. We can see that (B − C)+(B − C)
T

is a negative–definite matrix
and all conditions of Theorem 1 are satisfied. Therefore, systems (7) and (8) are globally
synchronized in 4-D. The time evolution of errors between systems (7) and (8) is shown
in Figure 1.
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Figure 1: Time evolution of the synchronization errors e1,e2, e3 and e4 between the master
system (7) and the slave system (8).

4 Conclusion

A new synchronization scheme has been used to achieve coexistence of several types of
synchronization between an arbitrary 3-dimensional master and a 4-dimensional slave
system. By using Lyapunov stability theory, the paper analysed the coexistence of full
state hybrid projective synchronization (FSHPS), Φ − Θ synchronization, generalized
synchronization (GS) and Q-S synchronization based on the control of the linear part of
the master system. The numerical example detailed in the previous section confirms the
effectiveness of the theoretical analysis.
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Abstract: Initially, we have obtained the integral representation for the solution of
the linear Riemann-Liouville fractional reaction diffusion equation of order q, where
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1 Introduction

Computation of explicit solutions of non-linear dynamic equation is rarely possible.
It is more so with non-linear fractional dynamic equations with initial and boundary
conditions. In general, the existence and uniqueness of solution of the fractional dy-
namic equation has been established mostly, using some kind of fixed point approach.
See [1,3,7–9,15–17,28,29,31,32] and the references therein for the existence, uniqueness
and applications of fractional dynamic equations. The drawback of fixed point theorem
results for the initial and/or boundary value problem is that they do not guarantee the
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interval of existence. The method of upper and lower solutions combined with the mono-
tone iterative technique not only guarantees the interval of existence but also the method
is both theoretical and computational. See [4,5,12–14,24–27] for monotone methods and
generalized monotone methods for nonlinear dynamic equations. The monotone method
is feasible only when the non-linear function is increasing or could be made increasing.
In this case, we obtain a sequences of approximate solutions which are either monoton-
ically increasing or monotonically decreasing if the approximation is the lower solution
or the upper solution respectively. If the non-linear function is decreasing, the monotone
method will yield alternating sequences. However, from practical application problems,
the non-linear forcing term will be a sum of increasing and decreasing functions as in the
population models and chemical combustion models, see [19]. In order to handle such
problems, a generalized monotone method has been developed in [20,22,23,30].

In this work, we consider the non-linear Riemann Liouville fractional reaction diffu-
sion equation where the forcing function is the sum of increasing and decreasing functions.
We develop a generalized monotone method for the non-linear Riemann-Liouville frac-
tional reaction diffusion equation using coupled lower and upper solutions. Initially, we
have obtained a representation form for the solution of the linear Riemann-Liouville frac-
tional reaction diffusion equation using the eigen function expansion method and Green’s
identity. We have also developed the maximum principle and comparision results rela-
tive to one dimentional time fractional parabolic equations. These results are useful in
proving that the sequences developed in the generalized monotone method converge to
the coupled minimal and maximal solutions of the non-linear fractional reaction diffusion
equation. The convergence of the sequences is monotonic and uniform in the weighted
norm. Finally, under the uniqueness assumption, we can prove that there exists a unique
solution to the non-linear Riemann-Liouville fractional reaction diffusion equation.

2 Preliminary Results

In this section, we recall some known definitions and known results which are useful to
develop our main results. Here and throughout, the notation Γ(q) denotes the gamma
function of order q.

Definition 2.1 The Riemann-Liouville fractional integral of u(t) of order q is defined
by

D−qt u =
1

Γ(q)

∫ t

0

(t− s)q−1u(s)ds, (1)

where 0 < q ≤ 1.

Definition 2.2 The Riemann-Liouville (left-sided) fractional derivative of u(t) of
order q, when 0 < q < 1, is defined as:

Dqu(t) =
1

Γ(1− q)
d

dt

∫ t

0

(t− s)q−1u(s)ds, t > 0. (2)

Next we define the Mittag-Leffler function which is useful in computing the solution of
linear fractional differential equation explicitly.

Definition 2.3 The two parameter Mittag-Leffler function is defined as

Eq,r(λt
q) =

∞∑
k=0

(λtq)k

Γ(qk + r)
. (3)
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If r = q, (3) reduces to

Eq,q(λt
q) =

∞∑
k=0

(λtq)k

Γq(k + 1)
. (4)

If r = 1, the Mittag-leffler function is defined as

Eq,1(λtq) =

∞∑
k=0

(λtq)k

Γq(k + 1)
. (5)

Further, if q = r = 1, E1,1 = eλt is the exponential function.

For more details, see [6, 11, 18, 19, 21]. In our next definition we assume p = 1 − q,
when 0 < q < 1, J = (0, T ] and J0 = [0, T ].

Definition 2.4 A function φ(t) ∈ C(J,R) is a Cp continuous function, if t1−qφ(t) ∈
C(J0, R). The set of Cp continuous functions is denoted by Cp(J,R). Further, given a
function φ(t) ∈ Cp(J,R), we call the function t1−qφ(t) the continuous extension of φ(t).

Note that any continuous function in J0 is also a Cp continuous function.
Consider the initial value problem for the linear Riemann-Liouville fractional reaction

differential equation of order q as

Dqu = λu+ f(t), Γ(q)u(t) t1−q|t=0 = u0, (6)

where λ is a real number and f ∈ C[[0, T ],R]. The integral representation of the solution
of equation(6) is:

u(t) = u0tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q[λ(t− s)q]f(s)ds. (7)

For details, see [10,11,21]. The next result is a basic comparison result involving the qth

order fractional Riemann-Liouville derivative with respect to time.

Lemma 2.1 Let m(t) ∈ Cp[[0, T ], R] be such that for some t1 ∈ (0, T ], m(t1) = 0,
and t1−qm(t) ≤ 0 on [0, t1], then Dqm(t1) ≥ 0. See more in [4, 5].

Remark: In the above theorem, if m is a function of (x, t), then the conclusion is
true with the partial fractional derivative of m with respect to t of order q. This is what
we need in our work.

3 Auxiliary Results

In this section, we obtain a representation form for the solution of the linear Riemann-
Liouville fractional reaction diffusion equation with the fractional time derivative. We
achieve this by using the eigen function expansion method. Then we will develop com-
parison results for the non-linear Riemann-Liouville fractional reaction diffusion equation
with initial and boundary conditions. The first comparison theorem is with respect to
the natural lower and upper solutions when the non-linear term is of the form F (x, t, u),
where F (x, t, u) satisfies the one sided Lipschitz condition. The second comparison the-
orem is relative to coupled lower and upper solutions. In this case, we assume the
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non-linear term as the sum of two functions f(x, t, u) and g(x, t, u), where f(x, t, u) is
a non-decreasing function in u and g(x, t, u) is a non-increasing function in u for (x, t)
in [0, L] × [0, T ]. In order to present our result, consider the linear Riemann-Liouville
fractional reaction diffusion equation with initial and boundary conditions of the form

∂qt u− kuxx = Q(x, t) on QT ,

u(0, t) = A(t), u(L, t) = B(t) in ΓT ,

Γ(q)t1−qu(x, t)|t=0 = f0(x), x ∈ Ω,

(8)

where Ω = [0, L], J = (0, T ], QT = J × Ω, k > 0 and ΓT = (0, T ) × ∂Ω. Here, ∂qt is
the partial Riemann-Liuoville fractional derivative with respect to time ’t’ of order q,
0 < q < 1.

In order for the initial boundary value problem to be compatible, we assume that
f0(0) = A(0) = f0(L) = B(0) = 0, Γ(q) t1−qu(x, t)|t=0 = f0(x). Here and throughout
this work, we assume the initial and boundary conditions satisfy the compatibility
conditions. Using the method of eigenfunction expansion on equation (8), we have the
solution of the form:

u(x, t) =

∞∑
n=1

bn(t)φn(x), (9)

where the eigenfunctions of the related homogeneous problem are known to be φn(x) =
sinnπxL and its corresponding eigenvalues are λn = (nπL )2. Using the same approach as
in [22], we can compute bn(t), where bn(t) will be the solution of the ordinary linear
Riemann-Liuoville differential equation.

Here, our aim is to find bn(t). Using the standard arguments, one can compute bn(t).
The explicit form of bn(t) is

bn(t) = b0nt
q−1Eq,q(−kλntq) (10)

+

∫ t

0

(t− s)q−1Eq,q(−kλntq)qn(s) + k
2nπ

L2
(A(s)− (−1)nB(s)ds,

where

b0n =
2

L

∫ L

0

f0(y)φn(y)dy and (11)

qn(t) =
2

L

∫ L

0

Q(y, t)φn(y)dy. (12)

Therefore,

bn(t) =
2

L

∫ L

0

f0(y)φn(y)dytq−1Eq,q(−kλntq) (13)

+

∫ t

0

(t− s)q−1Eq,q(−kλntq)
2

L

∫ L

0

Q(y, s)φn(y)dyds

+k
2nπ

L2

∫ t

0

(t− s)q−1Eq,q(−kλntq)(A(s)− (−1)nB(s))ds.
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So, using bn(t) in (9), we can get the solution u(x, t) of the form

u(x, t) =

∫ L

0

tq−1
[ ∞∑
n=1

2

L
Eq,q(−kλn(tq))φn(x)φn(y)]f0(y)dy (14)

+

∫ t

0

∫ L

0

[ ∞∑
n=1

2

L
(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)φn(y)]Q(y, s)dyds

+k

∫ t

0

[2nπ
L2

(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)]A(s)ds

−k
∫ t

0

[2nπ
L2

(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)]B(s)ds.

Finally, we can write

u(x, t) =

∫ L

0

tq−1G(x, y, t)f0(y)dy +

∫ t

0

∫ L

0

G(x, y, t− s)Q(y, s)dyds (15)

+k

∫ t

0

Gy(x, 0, t− s)A(s)ds− k
∫ t

0

Gy(x, L, t− s)B(s)ds,

where

G(x, y, t) =

∞∑
n=1

2

L
Eq,q(−kλntq)φn(x)φn(y).

This result will be useful in our main result when we are computing the linear ap-
proximations of the generalized monotone iterates.

Here, we can find the steady state condition with homogeneous boundary conditions
in which the source term Q(x, t) = Q(x) is independent of time:

kuxx +Q(x) = 0.

Now the form uxx = g(x), in which g(x) = −Q(x)
k .

Therefore,

u(x, t) =

∫ L

0

f0(y)tq−1G(x, t; y, 0)dy +

∫ L

0

−kg(y)
[ ∫ t

0

G(x, t; y, s)ds
]
dy, (16)

where
tq−1G(x, t; y, s) = tq−1

∑∞
n=1

2
LEq,q(−kλn(t− s)q)φn(x)φn(y).

As t → ∞, G(x, t; y, 0) → 0 such that the effect of the initial condition
t1−qu(x, t)|t=0 = f0(x) vanishes as t → ∞. But, as tq−1G(x, t; y, s) → 0 as t → ∞, the

steady source is still important as t→∞ since
∫ t
0
Eq,q(−kλn(t−s)q)ds =

1−Eq,q(−kλntq)
k(nπL )2 .

Thus, as t→∞,

u(x, t)→ u(x) =

∫ L

0

g(y)G(x, y)dy,

where

G(x, y) = −
∞∑
n=1

2

L
φn(x)φn(y).
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Hence, we obtained the steady-state temperature distribution u(x) by taking the limit
as t→∞ of the time-dependent problem with a steady source Q(x) = −kg(x).
We recall two known lemmas regarding the Mittag-Leffler functions series from [2].

Lemma 3.1 Let Eq,1(−λtq) be the Mittag-Leffler function of order q, where 0 < q ≤
1. Then,

Eq,1(−λ1t
q)

Eq,1(−λ2tq)
< 1, where λ1, λ2 > 0 such that λ1 = λ2 + k for k > 0.

Lemma 3.2 Let Eq,q(−λtq) be the Mittag-Leffler function of order q, where 0 < q ≤
1. Then

Eq,q(−λ1t
q)

Eq,q(−λ2tq)
< 1, where λ1, λ2 > 0 such that λ1 = λ2 + k for k > 0.

Now, we can show the convergence of the above solution using the two lemmas above,
i.e Lemma 3.1 and Lemma 3.2. We can split the solution of (8) as u1(x, t), u2(x, t) and
u3(x, t) respectively as follows:
(a) u1(x, t) is the solution of (8), when Q(x, t) = 0, A(t) = 0 = B(t),
(b) u2(x, t) is the solution of (8), when A(t) = 0 = B(t), f0(x) = 0,
(c) u3(x, t) is the solution of (8), when Q(x, t) = 0, f0(x) = 0.

Theorem 3.1 u1(x, t), u2(x, t) and u3(x, t) converge when |f0(x)| < N1, N1 > 0,
|Q(x, t)| < N2, N2 > 0, |A(t)| < M1 and |B(t)| < M2, M1,M2 > 0 respectively.

Proof of the above theorem follows as an application of Lemma 3.1 and Lemma
3.2. The details of the proof can be found in [2]. Next we will consider the non-linear
Riemann-Louiville fractional reaction diffusion equation of the type:

∂qt u− k
∂2u

∂x2
= f(x, t, u) + g(x, t, u), (x, t) ∈ QT ,

Γ(q)(t)1−qu(x, t)|t=0 = f0(x), x ∈ Ω, (17)

u(0, t) = A(t), u(L, t) = B(t) on ΓT ,

J = (0, T ], QT = J × Ω, k > 0 and ΓT = (0× T )× ∂Ω,

f, g ∈ C2,q[[0, L]× J × R,R].

In this work, we seek the classical solution such that u(x, t) ∈ C2,q
p on QT , and u(x, t) ∈

Cp on QT . In order to develop the generalized monotone method for (17), we need the
following definitions.

Definition 3.1 v(x, t), w(x, t) ∈ C2,q[QT ,R]. Then
(a) v(x, t) and w(x, t) are called the natural lower and upper solutions of (17) if the
following inequalities are satisfied:

∂qt v(x, t)− k∂
2v(x, t)

∂x2
≤ f(x, t, v(x, t)) + g(x, t, v(x, t)) on QT ,

Γ(q)(t− t0)1−qv(x, t)|t=0 ≤ f0(x), x ∈ Ω,

v(x, 0) ≤ A(t), v(L, t) ≤ B(t) in ΓT ,

(18)

∂qtw(x, t)− k∂
2w(x, t)

∂x2
≥ f(x, t, w(x, t)) + g(x, t, w(x, t)) on QT ,

Γ(q)(t− t0)1−qw(x, t)|t=0 ≥ f0(x), x ∈ Ω,

w(x, 0) ≥ A(t), w(L, t) ≥ B(t) in ΓT .

(19)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (3) (2018) 259–272 265

(b) v(x, t) and w(x, t) are called coupled lower and upper solutions of type I if the
following inequalities are satisfied:

∂qt v(x, t)− k∂
2v(x, t)

∂x2
≤ f(x, t, v(x, t)) + g(x, t, w(x, t)) on QT ,

Γ(q)(t− t0)1−qv(x, t)|t=0 ≤ f0(x), x ∈ Ω,

v(x, 0) ≤ A(t), v(L, t) ≤ B(t) in ΓT ,

(20)

∂qtw(x, t)− k∂
2w(x, t)

∂x2
≥ f(x, t, w(x, t)) + g(x, t, v(x, t)) on QT ,

Γ(q)(t− t0)1−qw(x, t)|t=0 ≥ f0(x), x ∈ Ω,

w(x, 0) ≥ A(t), w(L, t) ≥ B(t) in ΓT .

(21)

The next result is a comparison result relative to lower and upper solutions of (17) of
natural type. For that purpose, we write F (x, t, u) = f(x, t, u) + g(x, t, u).

Theorem 3.2 Assume that
(i) v(x, t), w(x, t) ∈ C2,q[QT ,R] are natural lower and upper solutions of (17), respec-
tively. Furthermore, Γ(q)t1−qv(x, t)|t=0 ≤ Γ(q)t1−qw(x, t)|t=0, v(0, t) ≤ w(0, t) and
v(L, t) ≤ w(L, t);
(ii) F (x, t, u) satisfies the one sided Lipschitz condition of the form

F (x, t, u1)− F (x, t, u2) ≤ L(u1 − u2),

whenever u1 ≥ u2 and L > 0. Then v(x, t) ≤ w(x, t) on J × Ω.

Proof. Initially, we will prove the theorem when one of the inequalities in (i) is
strict. For that purpose, let m(x, t) = v(x, t) − w(x, t). We claim that m(x, t) < 0,
(x, t) ∈ [0, L]× (0, T ]. Suppose that the conclusion is not true, then there exists a t1 ∈ J
and x1 ∈ Ω such that t1−qm(x1, t) < 0 on [0, t1), m(x1, t1) = 0. It is easy to check
mx(x1, t1) = 0 and mxx(x1, t1) ≤ 0.
Then, using Lemma 3.2, we get ∂qtm(x1, t1) ≥ 0.
From the hypothesis, we also have

∂qtm(x1, t1)

= ∂qt v(x1, t1)− ∂qtw(x1, t1)

< k
∂2v(x1, t1)

∂x2
+ F (x1, t1, v(x1, t1))− k∂

2w(x1, t1)

∂x2
− F (x1, t1, w(x1, t1))

< F (x1, t1, v(x1, t1))− F (x1, t1, w(x1, t1)) = 0,

(22)

which is a contradiction. Therefore, v(x, t) < w(x, t) on QT .
In order to prove the theorem for the non strict inequalities, let

w(x, t) = w(x, t) + εtq−1Eq,q[2Lt
q],

v(x, t) = v(x, t)− εtq−1Eq,q[2Ltq].

From this it follows
w(0, t) > v(0, t),
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w(L, t) > v(L, t),

Γ(q)t1−qw(x, t)|t=0 > Γ(q)t1−qw(x, t)|t=0 > Γ(q)t1−qv(x, t)|t=0 > Γ(q)t1−qv(x, t)|t=0.

Then,

∂qtw(x, t)− k∂
2w(x, t)

∂x2

= ∂qtw(x, t)− k∂
2w(x, t)

∂x2
+ ∂qt εt

q−1Eq,q[2Lt
q]

≥ F (x, t, w(x, t)) + εtq−1Eq,q2LEq, q[2Lt
q]

= F (x, t, w(x, t)) + 2εLtq−1Eq,q[2Lt
q]− F (x, t, w(x, t)) + F (x, t, w(x, t))

≥ −L(w − w) + F (x, t, w(x, t)) + ε2LEq,q(2Lt
q)

= −Lεtq−1Eq,q[2Ltq] + F (x, t, w(x, t)) + 2LεEq,q(2Lt
q)

= F (x, t, w(x, t)) + εLtq−1Eq,q[2Lt
q]

> F (x, t, w(x, t)) on QT .

(23)

Similarly,

∂qt v(x, t)− k∂
2v(x, t)

∂x2
> F (x, t, v(x, t)) on QT . (24)

By the strict inequality result, v < w on QT . Letting ε→ 0, we have v ≤ w on QT .

The next result is related to coupled lower and upper solutions of type I related to
(17).

Theorem 3.3 Assume that
(i) v(x, t), w(x, t) ∈ C2,q[QT ,R] are coupled lower and upper solutions of type I of (17),
respectively.
(ii) Assume F (x, t, u) = f(x, t, u) + g(x, t, u), where f is a nondecreasing function and g
is a nonincreasing function respectively for (x, t) ∈ QT in u.
(iii) Let f(x, t, u) and g(x, t, u) satisfy the one sided Lipschitz condition of the form

f(x, t, u1)− f(x, t, u2) ≤ L(u1 − u2),

g(x, t, u1)− g(x, t, u2) ≥ −M(u1 − u2),

whenever u1 ≥ u2 and L,M > 0. Then v(x, t) ≤ w(x, t) on J × Ω.

Proof. Initially, we will prove the theorem when one of the inequalities in (i) is strict.
For that purpose, let m(x, t) = v(x, t) − w(x, t). It is easy to see that m(x, 0) < 0 on
[0, L]. Also, m(0, t) < 0 and m(L, t) < 0, t ∈ (0, T ]. Suppose the conclusion is not true,
then there exists a t1 ∈ J and x1 ∈ Ω such that t1−qm(x, t) < 0 on (0, t1], m(x1, t1) = 0.

This implies v(x1, t1) = w(x1, t1) and ∂2m(x1,t1)
∂x2 ≤ 0, where t1 > 0 and x1 ∈ (0, L). Using

Lemma 3.2, ∂qtm(x1, t1) ≥ 0.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (3) (2018) 259–272 267

From the hypothesis, we also have

∂qtm(x1, t1)

= ∂qt v(x1, t1)− ∂qtw(x1, t1)

< k
∂2v(x1, t1)

∂x2
+ f(x1, t1, v(x1, t1)) + g(x1, t1, w(x1, t1))

− k∂
2w(x1, t1)

∂x2
− f(x1, t1, w(x1, t1))− g(x1, t1, v(x1, t1))

≤ 0,

(25)

which leads to a contradiction. Therefore, v(x, t) < w(x, t) on QT .
In order to prove the theorem for the non strict inequalities, let

w(x, t) = w(x, t) + ε(t− t0)q−1Eq,q[2(L+M)(t− t0)q],

v(x, t) = v(x, t)− ε(t− t0)q−1Eq,q[2(L+M)(t− t0)q].

One can show v(x, t) and w(x, t) satisfy the hypothesis with strict inequalities. Using
the strict inequality result, v < w on QT . Letting ε→ 0, we have v ≤ w on QT .
The next result is the maximum principle for the Riemann-Liouville parabolic equation
in one dimensional space which will be useful in proving the uniqueness of the solution.

Corollary 3.1 Let

∂qtm(x, t)− k∂
2m(x, t)

∂x2
≤ 0 on QT ,

m(0, t) ≤ 0,m(L, t) ≤ 0 on ΓT ,

Γ(q)t1−qm(x, t)|t=0 ≤ 0 on Ω.

Then m(x, t) ≤ 0 on QT .

Proof. Suppose m(x, t) has a positive maximum at (x1, t1). Let m(x1, t1) = K.
Let m(x, t) = m(x, t) − K. Then, t1−qm(x, t) ≤ 0 on (0, t1] and m(x1, t1) = 0. Using
Lemma 2.1, we get ∂qtm(x1, t1) ≥ 0. Also, mxx(x1, t1) ≤ 0. Combining these two, we get
∂qtm(x1, t1)−Kmxx(x1, t1) ≥ 0.
We can also observe

∂qtm(x, t)−Kmxx = ∂qtm−Kmxx −K
tq−1

Γq
< ∂qtm−Kmxx < 0, (26)

which gives a contradiction. Hence, m(x, t) ≤ 0.
We can also prove this corolary by other method. We can show it is true first for

the strict inequality and then for the instrict inequality by using the strict inequality.
The solution of the linear problem is unique which follows from this maximum principle.
This maximum principle is used to show the uniqueness of iterates and the monotonicity
of the iterates. In next section, we will develop a generalized monotone method for
the nonlinear Riemann-Liuoville fractional reaction diffusion equation (17) using coupled
lower and upper solutions of type I. The generalized monotone method yields monotone
sequences which converge uniformly and monotonically to coupled minimal and maximal
solutions of (17). Further using the uniqueness condition, we prove the uniqueness of the
solution of (17). The next result is a generalized monotone method for (17).
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4 Main Results

Theorem 4.1 (i) Let (v0, w0) be the coupled lower and upper solutions of (17) such
that t1−qv0 ≤ t1−qw0 on QT .
(ii) Suppose f(x, t, u) is nondecreasing and g(x, t, u) is nonincreasing in u on QT , re-
spectively. Then there exist monotone sequences {t1−qvn(x, t)} and {t1−qwn(x, t)} such
that t1−qvn(x, t) → t1−qρ(x, t) and t1−qwn(x, t) → t1−qr(x, t) uniformly and monotoni-
cally on QT , where ρ(x, t) and r(x, t) are coupled minimal and maximal solutions of (17)
respectively. That is, ρ(x, t) and r(x, t) satisfy

∂qt ρ(x, t)− k∂
2ρ(x, t)

∂x2
= f(x, t, ρ) + g(x, t, r) on QT ,

ρ(0, t) = A(t), ρ(L, t) = B(t) on ΓT ,

Γ(q)t1−qρ(x, t)|t=0 = f0(x) on Ω

and

∂qt r(x, t)− k
∂2r(x, t)

∂x2
= f(x, t, r) + g(x, t, ρ) on QT ,

r(0, t) = A(t), r(L, t) = B(t) on ΓT ,

Γ(q)t1−qr(x, t)|t=0 = f0(x) on Ω

such that t1−qv0(x, t) < t1−qρ(x, t) < t1−qu(x, t) < t1−qr(x, t) < t1−qw0(x, t).

Proof. We construct the sequences {vn(x, t)} and {wn(x, t)} as follows:

∂qt vn(x, t)− k∂
2vn(x, t)

∂x2
= f(x, t, vn−1) + g(x, t, wn−1) on QT ,

vn(0, t) = A(t), vn(L, t) = B(t),

Γ(q)t1−qvn(x, t)|t=0 = f0(x)

(27)

and

∂qtwn(x, t)− k∂
2wn(x, t)

∂x2
= f(x, t, wn−1) + g(x, t, vn−1) on QT ,

wn(0, t) = A(t), wn(L, t) = B(t),

Γ(q)t1−qwn(x, t)|t=0 = f0(x).

(28)

It is easy to observe that v1(x, t) and w1(x, t) exist and are unique by the representation
form of linear equation and Corollary 3.1. By induction and the assumptions on f and g,
we can prove that the solutions vn(x, t) and wn(x, t) exist and are unique by Corollary
3.1, for any n.

Let us prove first that v0(x, t) ≤ v1(x, t) and that w1(x, t) ≤ w0(x, t) on QT . Let
p(x, t) = v0(x, t)− v1(x, t). Then

∂qt p(x, t)− k
∂2p(x, t)

∂x2

= ∂qt v0(x, t)− k∂
2v0(x, t)

∂x2
−
(
∂qt v1(x, t)− k∂

2v1(x, t)

∂x2
)
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≤ f(x, t, v0(x, t)) + g(x, t, w0(x, t))− (f(x, t, v0(x, t)) + g(x, t, w0(x, t))) = 0,

p(0, t) = 0, p(L, t) = 0 on Ω and Γ(q)t1−qp(x, t)|t=0 = 0 on ΓT . Therefore, by Corollary
3.1, it follows that p(x, t) ≤ 0 on QT and t1−qv0(x, t) ≤ t1−qv1(x, t) on QT .
Similarly, we can show that w1(x, t) ≤ w0(x, t) on QT .
Then, we prove that v1(x, t) ≤ w1(x, t). Let p(x, t) = v1(x, t)− w1(x, t). Then from our
hypothesis, we get

∂qt p(x, t)− k
∂2p(x, t)

∂x2

= ∂qt v1(x, t)− k∂
2v1(x, t)

∂x2
− (∂qtw1(x, t)− k∂

2w1(x, t)

∂x2
)

≤ f(x, t, v0(x, t)) + g(x, t, w0(x, t))− (f(x, t, v0(x, t)) + g(x, t, w0(x, t))) = 0,

p(0, t) = 0, p(L, t) = 0 on Ω and Γ(q)t1−qp(x, t)|t=0 = 0 on ΓT . Therefore, by Corollary
3.1, it follows that p(x, t) ≤ 0 on QT and t1−qv1(x, t) ≤ t1−qw1(x, t) on QT . Hence,

t1−qv0(x, t) ≤ t1−qv1(x, t) ≤ t1−qw1(x, t) ≤ t1−qw0(x, t) on QT .

By mathematical induction, we have

t1−qv0(x, t) ≤ ... ≤ t1−qvn(x, t) ≤ t1−qwn(x, t) ≤ ... ≤ t1−qw0(x, t) on QT for all n.

Furthermore, if t1−qv0(x, t) ≤ t1−qu(x, t) ≤ t1−qw0(x, t) on QT , then for any u(x, t) of
(17), we establish the following inequality by the method of induction.

t1−qv0(x, t) ≤ ... ≤ t1−qvn(x, t) ≤ t1−qu(x, t) ≤ t1−qwn(x, t) ≤ ... ≤ t1−qw0(x, t) (29)

on QT for all n.

It is certainly true for n = 0, by hypothesis. Assume the inequality (29) to be true
for n = k, that is

t1−qv0(x, t) ≤ ... ≤ t1−qvk(x, t) ≤ t1−qu(x, t) ≤ t1−qw− k(x, t) ≤ ... ≤ t1−qw0(x, t) (30)

on QT for all n.

Let p(x, t) = vk+1(x, t)− u(x, t). Then from our hypothesis, we get

∂qt p(x, t)− k
∂2p(x, t)

∂x2

= ∂qt vk+1(x, t)− k∂
2vk+1(x, t)

∂x2
− (∂qt u(x, t)− k∂

2u(x, t)

∂x2
)

≤ f(x, t, vk) + g(x, t, wk)− (f(x, t, u) + g(x, t, u)) ≤ 0,

p(0, t) = 0, p(L, t) = 0 on Ω and Γ(q)t1−qp(x, 0)|t=0 = 0 on ΓT . Therefore, by Corollary
3.1, it follows that p(x, t) ≤ 0 on QT . Therefore, t1−qvk+1(x, t) ≤ t1−qu(x, t) on QT . In
a similar way, we can show that t1−qu(x, t) ≤ t1−qwk+1(x, t) on QT .

Hence we constructed the monotonic sequences. Using the integral representation
of the linear problem and an appropriate computation process, we can show that the
sequences {t1−qvn(x, t)} and {t1−qwn(x, t)} are uniformly bounded and equicontinu-
ous. Using the Ascoli-Arzela theorem, we obtain subsequences of {t1−qvn(x, t)} and
{t1−qwn(x, t)} which converge uniformly and monotonically on QT . Since the sequences
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{t1−qvn(x, t)} and {t1−qwn(x, t)} are monotone, the entire sequences {t1−qvn(x, t)} and
{t1−qwn(x, t)} converge to t1−qρ(x, t) and t1−qr(x, t), respectively. From this it follows
that

t1−qv0(x, t) ≤ t1−qv1(x, t) ≤ ... ≤ t1−qvn(x, t) ≤ ... ≤ t1−qρ(x, t) ≤ t1−qu(x, t) (31)

≤ t1−qr(x, t) ≤ ...t1−qwn(x, t) ≤ ... ≤ t1−qw0(x, t) on QT .

Consequently, ρ(x, t) and r(x, t) are coupled minimal and maximal solutions of (17) since

t1−qv0(x, t) ≤ t1−qρ(x, t) ≤ t1−qu(x, t) ≤ t1−qr(x, t) ≤ t1−qw0(x, t) on QT . (32)

Since f(x, t, u) and g(x, t, u) satisfy the one sided Lipschitz condition, we prove the
uniqueness of the solution of (17). The next result is precisely this.

Theorem 4.2 Let all the assumptions of Theorem 4.1 hold. Further, let f(x, t, u)
and g(x, t, u) satisfy the one sided Lipschitz condition of the form

f(x, t, u1)− f(x, t, u2) ≤ L1(u1 − u2),

g(x, t, u1)− g(x, t, u2) ≥ −L2(u1 − u2),

whenever u1 ≥ u2 and L1, L2 > 0. Then the solution u(x, t) of (17) exists and is unique.

Proof. We have already proved (ρ, r) are coupled minimal and maximal solutions of
(17) on QT . Hence it is enough to show that r(x, t) ≤ ρ(x, t) on QT .
It is known from Theorem 4.1 that ρ(x, t) ≤ r(x, t) on QT .
Let p(x, t) = r(x, t)− ρ(x, t). By the hypothesis, we get

∂qt p(x, t)− k
∂2p(x, t)

∂x2

= ∂qt r(x, t)− k
∂2r(x, t)

∂x2
−
(
∂qt ρ(x, t)− k∂

2ρ(x, t)

∂x2
)

≤ f(x, t, r) + p(x, t, ρ)− (f(x, t, ρ) + g(x, t, r))

≤ t1−qL1|r − ρ|+ t1−qL2|r − ρ|

≤ (L1 + L2)|p|,

p(0, t) = 0, p(L, t) = 0 on Ω and Γ(q)t1−qp(x, t)|t=0 = 0 on ΓT . It follows from Corollary
3.1 that p(x, t) ≤ 0. This proves that r(x, t) = ρ(x, t) = u(x, t) on QT and the proof is
complete.

5 Conclusion

In this work, initially we have obtained an integral representation for the solution of
the Riemann-Liouville reaction diffusion equation with Q(x, t), f0(x), A(t), B(t) being
the non-homogeneous term, the initial function and the boundary functions respectively.
In addition, we assume that the boundary conditions and the initial function satisfy
the compatibility condition. We also establish, when Q(x, t), f0(x), A(t) and B(t) are
bounded, the solution u(x, t) converges, by using the convergence of the series involving
the Mittag-Leffler function. In addition, when Q(x, t) = Q(x) is independent of t and
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A(t) = B(t) = 0, we have proved that the solution of the Riemann-Liouville fractional
reaction diffusion equation converges to the steady state solution. We have proved the
maximum principle and comparison theorem relative to the non-linear Riemann-Liouville
fractional reaction diffusion equation of (17) onQT . Using the comparison result as a tool,
we have developed a generalized monotone method for the Riemann-Liouville fractional
reaction diffusion equation of (17). The generalized monotone method yields monotone
sequences which converge uniformly and monotonically to coupled minimal and maximal
solutions of (17). Under the uniqueness assumption, we have proved that the unique
solution of u(x, t) of (17) exists and is unique. In our future work, we plan to use our
method relative to the physical application problem.
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Abstract: This paper deals with the problem of generalized synchronization between
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1 Introduction

Chaos synchronization phenomena have received increasing attention in the study of dy-
namical systems, because they can be applied in vast areas of engineering and information
science, in particular, in secure communication, control processing and cryptology [1–4].
Various methods in chaos synchronization have been proposed [5–7]. Most of the synchro-
nization methods focus on integer order chaotic systems in both continuous and discrete
time.

Recently, fractional calculus has attracted a lot of attention and has become an ex-
cellent instrument to describe the dynamics of complex systems. Based on the stability
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criterion of linear fractional systems, many fractional-order chaotic systems can be syn-
chronized [8–13].

An interesting aspect is the generalized type of synchronization called Q − S syn-
chronization. It has been investigated for integer order chaotic dynamical systems as
well [14–18]. However, to the best of our knowledge, there are few treatments in the
literature of the general scheme for generalized Q− S synchronization of fractional non
commensurate order systems with different dimensions.

In view of this consideration, this paper investigates an active control technique [15]
for generalized synchronization between two different dimensional chaotic fractional non-
commensurate order systems, using two suitable real matrices. Based on the Laplace
transform technique and final value theorem, the designed control makes the fractional
non-commensurate-order chaotic system states asymptotically synchronized. Numerical
examples are given to verify the capability of the method.

The rest of the paper is organized as follows. In the following section, we present
some basic concepts of fractional calculus fundamentals. In Section 3, we motivate the
problem and give the main results. In Section 4, two examples are used to verify the
effectiveness of the proposed method. Finally, some concluding remarks are given in
Section 5.

2 Fractional Calculus Fundamentals

The three definitions used for the general fractional derivative are the Grunwald–Letnikov
(GL) definition, the Riemann– Liouville (RL) and the Caputo definition [19]. The
Riemann–Liouville fractional integral of order α > 0 is given by

Jαa f(t) =
1

Γ(α)

t∫
a

(t− s)α−1f(s)ds, t > a, (1)

where Γ is the gamma function. The Riemann–Liouville fractional-order derivative
RL
ad

α
t f is defined by

RL
ad

α
t f(t) = dmJm−αa f(t), (2)

where m = dαe is the first integer greater then α.

The Caputo fractional-order derivative ad
α
t f is defined by

ad
α
t f(t) = Jm−αa dmf(t), m = dαe. (3)

The Grűnwald–Letnikov fractional-order derivative GL
ad

α
t f is given by

GL
ad

α
t f(t) = lim

h→0
h−α

t−a
h∑
k=0

(−1)k
(

Γ(α+ 1)

k!Γ(α− k + 1))

)
f(t− kh). (4)

Recall that the Laplace transform of a function f(t) is the function F (s) defined as follows

F (s) = L {f(t), s} =

+∞∫
0

exp(−st)f(t)dt, (5)
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f(t) is called original which can be reconstituted from the inverse Laplace transform

f(t) = L−1 {F (s), t} =

c+i∞∫
c−i∞

exp(st)F (s)ds, c = <(s) > 0. (6)

Taking into account that the Laplace transform of the convolution is

L {f(t) ∗ g(t), s} = F (s).G(s), (7)

where f(t) and g(t) are two causal functions for t < 0, we see that F (s) and G(s) are
their Laplace transforms.

Using the following property of the Laplace transform of conventional derivative

L {fm(t), s} = smF (s)−
m−1∑
k=0

skf (m−k−1)(0), (8)

we obtain the Laplace transform of the Riemann-Liouville derivative

L
{
RL
0d

α
t f(t), s

}
= sαF (s)−

m−1∑
k=0

sk
[
RL
0d

α−k−1f(t)
]
t=0

(9)

with m− 1 ≤ α < m. This transform is well known. However its practical application is
limited by the absence of the physical interpretation of the function at t = 0.

In view of the Laplace transform formula of the Riemann-Liouville integral, the
Laplace transform of the Caputo fractional derivative is

L {c0dαf(t), s} = sαF (s)−
m−1∑
k=0

sα−k−1f (k)(0) (10)

with m− 1 ≤ α < m. Since the initial conditions for the fractional differential equations
with the Caputo derivative are of the same form as for the integer-order derivatives,
which have clear physical meaning, the Caputo derivative is used in this paper.

Theorem 2.1 (Final value theorem) Let F (s) be the Laplace transform of function
f(t). If the indicated limits exist, then

lim
t→+∞

f(t) = lim
s→0

sF (s). (11)

Proof. See [20].

3 Problem of Synchronization and Analytical Results

Generally, we consider the following non-commensurate fractional order nonlinear system
in the form

dαt X = f(X). (12)

We take (12) as the drive system. The controlled response system is given by

dαt Y = g(Y ) + U, (13)
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where α = (α1, α2, ..., αm) is the vector of rational number between 0 and 1, dαt is
the Caputo fractional derivative of order α, for i = 1, 2, ...,m, X(t) ∈ Rn , Y (t) ∈
Rm, (m > n) are the state vectors of the drive system (12) and the response system (13),
respectively, f : Rn → Rn, g : Rm → Rm are the non linear vector functions and U ∈ Rm
is the control input vector.

Our goal is to design an appropriate active control U [15] such that the synchro-
nization between the drive system (12) and the response system (13) is achieved for a
given two suitable real matrices Q = (qij), i = 1, 2, ..., d, j = 1, 2, ...,m and S = (skh),
k = 1, 2, ..., d, h = 1, 2, ..., n. Particularly, Q and S are chosen such that qij = skh = 0,
for all i 6= j and k 6= h.

Hence, the error system is defined as

e(t) = QY (t)− SX(t), (14)

which means that systems (12) and (13) are globally asymptotically synchronized, i.e.

lim
t→+∞

‖e(t)‖ = lim
t→+∞

‖QY (t)− SX(t)‖ = 0.

Most existing methods for synchronizing chaos with different dimensions are used
only for reduced order or increased order. Motivated by the above idea, in this work, we
discuss the two cases: d = m and d = n.

3.1 Increased order

In this case assume that d = m. By submitting systems (12) and (13) into (14), the error
system (14) can be expressed as

dαt e(t) = Qdαt Y (t)− Sdαt X(t), (15)

where α = (α1, α2, ..., αm). Hence

dαt e(t) = Q [g(Y (t)) + U ]− Sf(X(t))

= A1e(t) +K (Y (t), X(t)) +QU, (16)

where

K (Y (t), X(t)) = −A1e(t) +Qg(Y (t))− Sf(X(t)), (17)

and A1 ∈ Rm×m is the linear part of system (13).
We redefine the control function U = (u1, u2, ...um)T to eliminate all terms which

cannot be shown in the form e such that

QU = −K (y(t), x(t)) +Be(t), (18)

and B ∈ Rm×m is a feedback gain matrix to be determined. We find the error system as

dαt e(t) = (A1 +B)e(t). (19)

Applying the Laplace transform for the previous system, letting

Fi(s) = L(ei(t)), i = 1, 2, ...,m, (20)
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and using the formula

L {dαi
t ei(t)} = sαiFi(s)− sαi−1ei(0), i = 1, 2, ...,m, (21)

we find a new system

sαF (s) = sα−1e(0) + (A1 +B)F (s), (22)

where
F = (F1, F2, ..., Fm)T , sα = (sα1 , sα2 , ..., sαm).

Hence, we have the following result.

Theorem 3.1 If the matrix B is chosen such that all poles of sFi(s) lie in the open
left half plane, then the drive system (12) and response system (13) are globally generally
synchronized.

Proof. Suppose that the matrix B is chosen such that all poles of sFi(s) lie in the
open left half plane. Using Theorem 2.1, we have

lim
t→+∞

ei(t) = lim
s→0+

sFi(s) = 0, for all i = 1, 2, ...,m.

This means that the drive system (12)and the response system (13) achieve the synchro-
nization. 2

3.2 Reduced order

In this case assume that d = n. Using the notation (14), the error system can be derived
as

dαt e(t) = A2e(t) +H (Y (t), X(t)) +QU, (23)

where
H (Y (t), X(t)) = −A2e(t) +Qg(Y (t))− Sf(X(t)), (24)

and A2 ∈ Rn×n is the linear part of system (12).
We redefine the control function U = (u1, u2, ...un, 0, 0..., 0)T to eliminate all terms

which cannot be shown in the form e = (e1, e2, ...en)T such that

Q0U0 = −H (Y (t), X(t)) + Ce(t), (25)

where U0 = (u1, u2, ...un)T , C ∈ Rn×n is a feedback gain matrix to be determined and
Q0 = diag(Q11, Q22, ..., Qnn). Then the error system is changed to

dαt e(t) = (A2 + C)e(t). (26)

Applying the Laplace transform for the previous system, letting

Fi(s) = L(ei(t)), i = 1, 2, ..., n, (27)

and using the formula

L {dαi
t ei(t)} = sαiFi(s)− sαi−1ei(0), i = 1, 2, ..., n, (28)

we find a new system
sαF (s) = sα−1e(0) + (A1 + C)F (s), (29)

where
F = (F1, F2, ..., Fn)T , sα = (sα1 , sα2 , ..., sαn).

Hence, we have the following result.
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Theorem 3.2 If the matrix C is chosen such that all poles of sFi(s) lie in the open
left half plane, then the drive system (12) and response system (13) are globally generally
synchronized.

Proof. The proof is similar to that of Theorem 3.1.

4 Numerical Examples

In this section, we present some simulation examples to illustrate our proposed general
method.

4.1 Simulation results (Increased order)

In this case , we assume that the new memristor-based simplest chaotic circuit system
of non-commensurate fractional order (MBSCCS) [21] is the drive system. The dynamic
of the circuit is described by the mathematical model dα1

t x1(t) = a1x2,
dα2
t x2(t) = −b1(x1 +M(x3)x2),
dα3
t x3(t) = −x2 − c1x3 + x22x3.

(30)

In (30), x1, x2, x3 are the states, a1, b1, c1, β, γ are the positive parameters, M is the
memristor function defined by

M(x3(t)) = γx23(t)− β, (31)

and αi, i = 1, 2, 3 are rational numbers between 0 and 1.
For all numerical simulation, we take the initial states of system (30) as

x1(0) = 0.1, x2(0) = −0.5, x3(0) = 1. (32)

The parameters values are taken as

(a1, b1, c1, β, γ) = (1,
1

3
, 0.9, 3, 0.4). (33)

The proposed fractional orders are taken as

(α1, α2, α3) = (0.97, 0.98, 0.99). (34)

The system (30) exhibits chaotic behaviour as shown in Figure 1.
The linear part A2 of system (30) is given by

A2 =

 0 a1 0
−b1 b1β 0

0 −1 −c1

 .

Assume that the fractional-order hyperchaotic Lorenz system [22] is the response system.
The controlled hyperchaotic Lorenz system is expressed by the mathematical model

dα1
t y1(t) = a2(y2 − y1) + y4 + u1,
dα2
t y2(t) = c2y1 − y2 − y1y3 + u2,
dα3
t y3(t) = y1y2 − b2y3 + u3,
dα4
t y4(t) = −y2y3 + ry4 + u4.

(35)
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Figure 1: Chaotic Attractor of the Fractional Order MBSCCS System with (α1, α2, α3) =
(0.97, 098, 0.99).

In (35), y1, y2, y3,y3 are the states, a2, c2, b2, r are the positive parameters and αi, i =
1, 2, 3, 4 are rational numbers between 0 and 1.

For all numerical simulation, we take the initial states of system (35) as

y1(0) = 1, y2(0) = 1, y3(0) = 0, y4(0) = −1. (36)

The parameters values are taken as

(a2, c2, b2, r ) = (10, 28,
8

3
, 1.3). (37)

The proposed fractional orders are taken as

(α1, α2, α3, α4) = (0.97, 0.98, 0.99, 0.999). (38)

The system (35) (with u1 = u2 = u3 = u4 = 0) exhibits chaotic behaviour as shown in
Figure 2.

The linear part A1 of system (35) is given by

A1 =


−a2 a2 0 1
c2 −1 0 0
0 0 −b2 0
0 0 0 r

 .

Here, we choose

Q =


1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

 and S =


2 0 0
0 2 1
0 0 3
0 0 0.

 .

Let us define the error variables between the slave system (35) to be controlled and the
master system (30) as

e(t) = QY (t)− SX(t),
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Figure 2: Chaotic Attractor of the Fractional Order Lorenz System with (α1, α2, α3, α4) =
(0.97, 0.98, 0.99, 0.999).

i.e. 
e1 = −2x1 + y1,
e2 = −2 (x2 − y2)− x3,
e3 = −3x3 + y3,
e4 = 2y4.

(39)

For simplicity, choose the suitable feedback gain matrix B such that

A1 +B =


−a2 0 0 0

0 −b2 0 0
0 0 −c2 0
0 0 0 −r

 . (40)

Hence
u1 = −e1a2 + 2a1x2 − y4 + a2y1 − a2y2,
u2 = − 1

2b2e1 −Mb1x2x3 + 1
2x

2
2x3 − 1

2x2 −
1
2c1x3 − b1x1 + y2 − c2y1 + y1y3,

u3 = −c2e1 + 3x22x3 − 3x2 − 3c1x3 + b2y3 − y1y2,
u4 = − 1

2re1 − ry4 + y2y3.

(41)

The error system can be rewritten as

dαi
t ei(t) = (A1 +B)ei, for all i = 1, 2, 3, 4. (42)

To prove that the error system converges to 0, we apply the formulas (20) and (21), we
obtain 

sα1F1(s) = sα1−1e1(0)− a2F1(s),
sα2F2(s) = sα2−1e2(0)− b2F2(s),
sα3F3(s) = sα3−1e3(0)− c2F3(s),
sα4F4(s) = sα4−1e4(0)− rF4(s).

(43)
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It follows from the equations of the system(43) that

F1(s) =
sα1−1e1(0)

sα1 + a2
,

F2(s) =
sα2−1e2(0)

sα2 + b2
,

F3(s) =
sα3−1e3(0)

sα3 + c2
,

F4(s) =
sα3−1e4(0)

sα4 + r
.

(44)

Since a2, b2, c2, r are positive parameters, we can conclude that all poles of sFi(s), i =
1, 2, 3, 4 lie in the open left half plane. Thus, by using Theorem 3.1, we get

lim
t→+∞

ei(t) = lim
s→0+

sFi(s) = 0, for all i = 1, 2, 3, 4. (45)

This means that the drive system (30) and the response system (35) achieve the syn-
chronization. The error functions evolution, in this case, is shown in Figure 3.
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Figure 3: Error Functions Evolution of System (42).

4.2 Simulation results (Reduced order)

Let us take the same previous systems. Here, we choose

Q =

 1 0 0 0
0 2 0 0
0 0 0.5 0

 ,
(
Q0
)−1

=

 1 0 0
0 0.5 0
0 0 2

 and S =

 2 0 0
0 3 0
0 0 1.

 .

To investigate the generalized synchronization of the systems (30) and (35), we define
the error states as

e(t) = QY (t)− SX(t), (46)
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i.e.  e1 = −2x1 + y1,
e2 = −3x2 + 2y2,
e3 = −x3 + 1

2y3.
(47)

For simplicity, choose the suitable feedback gain matrix C such that

(A2 + C) =

 −a1 0 0
0 −b1β 0
0 0 −c1.

 . (48)

Hence 
u1 = −a1e1 + 2a1x2 − y4 + a2y1 − a2y2,
u2 = − 1

2b1βe1 −
3
2Mb1x2x3 − 3

2b1x1 + y2 − c2y1 + y1y3,
u3 = −2e1 − 2x2 − 2c1x3 + 2x22x3 + b2y3 − y1y2 − 2c1,
u4 = 0.

(49)

The error system can be rewritten as

dαi
t ei(t) = (A2 + C)ei, for all i = 1, 2, 3. (50)

To prove that the error system converges to 0, we apply the formulas (20) and (21), we
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Figure 4: Error Functions Evolution of System (50).

obtain  sα1F1(s) = sα1−1e1(0)− a1F1(s),
sα2F2(s) = sα2−1e2(0)− b1βF2(s),
sα3F3(s) = sα3−1e3(0)− c1F3(s)).

(51)

It follows from the equations of the system (51) that
F1(s) =

sα1−1e1(0)

sα1 + a1
,

F2(s) =
sα2−1e2(0)

sα2 + b1β
,

F3(s) =
sα3−1e3(0)

sα3 + c1
.

(52)
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Since a1, b1, c1 are positive parameters, we can conclude that all poles of sFi(s), i = 1, 2, 3
lie in the open left half plane. Thus, by using Theorem 3.2, we get

lim
t→+∞

ei(t) = lim
s→0+

sFi(s) = 0, for all i = 1, 2, 3, (53)

which clearly demonstrates that the drive system (30) and the response system (35)
achieve the generalized synchronization. The error functions evolution, in this case, is
shown in Figure 4.

5 Conclusion

In this paper, we have investigated the generalized synchronization between two different
dimensional chaotic fractional non-commensurate order systems. The analytical condi-
tions for the synchronization between these chaotic systems are derived by using the
Laplace transform technique and final value theorem. Numerical simulations of chaotic
and hyperchaotic systems have been given to illustrate and validate the effectiveness of
the proposed generalized synchronization.

Our future work is to develop some type of synchronization and we suggest some
potential applications in secure communication.
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Abstract: In this work, we propose, for stabilizing chaotic systems at fixed points,
new conditions based on the Jacobian matrix and its relation with the conditions of
Routh-Hurwitz. We apply the results of feedback control method to the second type
Rössler system, Liu system and Genesio system.
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1 Introduction

Chaos, as a very interesting nonlinear phenomenon, has been intensively studied over
the past decades. After the pioneering work of Ott et al [1], and Pecora and Carroll [2],
research efforts have been devoted to the chaos control problems in many physical systems
[3–5]. The control problem attempts to stabilize a chaotic attractor to either a periodic
orbit or an equilibrium point [20, 21]. Many potential applications have come true in
securing communication, laser and biological systems, and other areas [6–9,19]. Different
control strategies for stabilizing chaos have been proposed, such as adaptive control, time
delay control, and fuzzy control. Generally speaking, there are two main approaches for
controlling chaos: feedback control and non-feedback control. The feedback control [10,
17,18] approach offers many advantages such as robustness and computational complexity
over the non-feedback control method. The aim of this paper is to apply the feedback
control to chaotic systems, with new conditions for the stability at fixed points based
on the Jacobian matrix. We present the numerical simulation studies for control of the
Rössler, Liu and modified Genesio systems.
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2 Preliminaries

Suppose that A is an n× n matrix of real constants, its characteristic polynomial is

f(λ) = λn + aλn−1 + bλn−2 + cλn−3 + ......, n = 1, 2, 3, 4.

The Routh-Hurwitz theorem [10–13] is as follows.

Theorem 2.1 All the roots of the caracteristic polynomial have negative real parts
precisely when the given conditions are satisfied:
λ2 + aλ+ b : a > 0, b > 0.
λ3 + aλ2 + bλ+ c : a > 0, c > 0, ab− c > 0.
λ4 + aλ3 + bλ2 + cλ+ d : a > 0, ab− c > 0, (ab− c)c− a2d > 0, d > 0.

3 Main Results

3.1 The case of third dimension

We assume A is the Jacobian matrix of the third dimension:

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , (1)

then the relation between the coefficients of characteristic polynomial and the Jacobian
matrix is  a = −trace(A),

b = A11 +A22 +A33,
c = −det(A),

(2)

where A11 =

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣ , A22 =

∣∣∣∣ a11 a13
a31 a33

∣∣∣∣ and A33 =

∣∣∣∣ a11 a12
a21 a22,

∣∣∣∣ .
Then ab−c = −a11(A22+A33)−a22(A11+A33)−a33(A22+A11)−2a11a22a33+a12a23a31+
a13a21a32.

Remark 3.1 We note that, if aii < 0, Aii > 0, i = 1, 2, 3 and det(A) < 0 so that
t = a12a23a31 + a13a21a32 ≥ 0, then the coefficients of the characteristic polynomial are
positive. On the other hand, we have t = 0 for the Rössler, Liu and other systems. So,
we can ensure the stability of any chaotic systems with the following theorem.

We consider A is the Jacobian matrix at a fixed point, and t = a12a23a31 +a13a21a32.

Theorem 3.1 If t ≥ 0, all the roots of the characteristic polynomial of A have neg-
ative real parts when the given conditions are satisfied:
det(A) < 0, aii < 0 and Aii > 0 for i = 1, 2, 3.

Proof. We have  a = −trace(A) > 0,
b = A11 +A22 +A33 > 0,
ab− c > 0,
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then, by the Routh-Hurwitz theorem all the roots of the characteristic polynomial have
negative real parts.

Remark 3.2 We can use the condition t ≥ 0 as an additional condition with the
condition of Routh-Hurwitz to get quickly the convergence to the fixed point.

4 Application to Chaotic Systems

4.1 The second type Rössler system

The Rössler system [14] is given by the following equations:
·
x = −(y + z),
·
y = x+ αy,
·
z = βx+ xz − γz,

where α = 0.38, β = 0.3, γ = 4.5. The two equilibrium points of system are given by
E1 = (0, 0, 0), E2 = (γ − αβ, β − γ

α ,
γ
α − β).

4.1.1 Control at the equilibrium point E1

If the controlled Rössler system is given by the equations
·
x = −(y + z)− u1,
·
y = x+ 0.38y − u2,
·
z = 0.3x+ (x− 4.5)z − u3,

(3)

where u1 = kx, u2 = ky, u3 = kz, and k is the feedback coefficient; when k > 0.38, the
system (3) will gradually converge to the equilibrium point (0, 0, 0).

Proof. The Jacobian matrix of system (3) with regard to the equilibrium point
(0, 0, 0) is

A =

 −k −1 −1
1 0.38− k 0

0.3 0 −4.5− k

 ,

where a11 = −k, a22 = 0.38− k, a33 = −4.5− k, A11 = k2 + 4. 12k− 1. 71, A22 = k2 + 4.
5k + 0.3, A33 = k2 − 0.38k + 1 and det(A) = −1k3 − 4. 12k2 + 0.41k − 4. 386.We have
t = 0, therefore  a11 < 0,

a22 < 0,
a33 < 0

⇔

 k > 0,
k > 0.38,
k > −4.5

and 
A11 > 0,
A22 > 0,
A33 > 0,

det(A) < 0,

⇔


k ∈ ]−∞,−4. 5[ ∪ ]0.38,∞[ ,
k ∈

]
−6. 768 5× 10−2,∞

[
∪ ]−∞,−4. 432 3[ ,

k ∈ ]−∞,∞[ ,
k ∈ ]−4. 435 4,∞[ .

Obviously, if k > 0.38, then a11 < 0, a22 < 0, a33 < 0,detA < 0 and A11 > 0, A22 >
0, A33 > 0. According to Theorem 3.1, the system (3)will gradually converge to the
unstable equilibrium point (0, 0, 0), thus the proof is completed (see Figure 1).
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Figure 1: Control of the Rössler system at the equilibrium point E1.

Remark 4.1 By using the Routh-Hurwitz theorem, we found k > 0.776 61.

Similarly, the system can also be controlled at E2(4. 386,−11. 542, 11. 542) by the
similar control method. The controlled Rössler system is

·
x = −(y + z)− u1,
·
y = x+ 0.38y − u2,
·
z = 0.3x+ (x− 4.5)z − u3,

(4)

where u1 = k(x− 4. 386), , u2 = k(y + 11. 542), u3 = k(z − 11. 542).
For demonstrating this conclusion, we do the following transformations: x1 = x− β,

y1 = y + α,z1 = z − α. When α = 11. 542 , β = 4. 386, then the system (4) has the
following form: 

·
x1 = −(y1 + z1)− kx1,
·
y1 = x1 + 0.38y1 − ky1,
·
z1 = 11. 842x1 + (x1 − 0.114)z1 − kz1.

(5)

The Jacobian matrix of the system (5) is

A =

 −k −1 −1
1 0.38− k 0

11. 842 0 −0.114− k

 ,

where k is the feedback coefficient; when k > 0.38, we found that the system (5) will
converge to the equilibrium point E

′

2(0, 0, 0), that is system (4) will gradually converge
to the equilibrium point E2(4. 386,−11. 542, 11. 542).

Proof. We have det(A) = −1.0k3 + 0.266 k2 − 12. 799k + 4. 386 0,
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Figure 2: Control of the Rössler system at the equilibrium point E2.

a11 = −k, a22 = 0.38 − k, a33 = −0.114 − k, A11 = k2 − 0.266 k − 0.043 32, A22 =
k2 + 0.114 k + 11. 842, A33 = 11. 842k − 4. 500 0, and t = 0, then a11 < 0,

a22 < 0,
a33 < 0,

⇔

 k > 0,
k > 0.38,
k > −0.114,

and 
A11 > 0,
A22 > 0,
A33 > 0,

det(A) < 0,

⇔


k ∈ ]−∞,−0.114[ ∪ ]0.38,∞[ ,
k ∈ R,
k ∈ ]0.38,∞[ ,
k ∈ ]0.341 99,∞[ .

.
When k > 0.38, we have a11 < 0, a22 < 0, a33 < 0,detA < 0, A11 > 0, A22 > 0,

and A33 > 0. According to Theorem 3.1, the system (5) will gradually converge to the
unstable equilibrium point E2. Hence the proof is completed (see Figure 2).

4.2 Control of the Liu system

The Liu system [15] is given by 
·
x = α(y − x),
·
y = x(λ− γz),
·
z = δx2 − βz,

where α = 10, λ = 40, γ = 1, δ = 4, β = 2.5. The fixed points are E1 : (0, 0, 0),

E2,3 : (±
√

βδ
γλ ,±

√
βδ
γλ ,

β
γ ).
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Figure 3: Control of the Liu system at the equilibrium point E1.

4.2.1 Control at the equilibrium point E1

The controlled Liu system is 
·
x = α(y − x)− u1,
·
y = x(λ− γz)− u2,
·
z = δx2 − βz − u3,

(6)

where u1 = kx, u2 = ky, u3 = kz
and k is the feedback coefficient; when we have k > 15. 616, the system (6) will gradually
converge to the equilibrium point (0, 0, 0).

Proof. The Jacobian matrix of the system (6) with regard to the equilibrium
point (0, 0, 0) is

A =

 −10− k 10 0
40 −k 0
0 0 −2.5− k

 ,

thus det(A) = −1k3 − 12. 5k2 + 375k + 1000 < 0,
a11 = −10− k, a22 = −k, a33 = −2.5− k,
A11 = k2 + 2. 5k,
A22 = k2 + 12. 5k + 25,
A33 = k2 + 10k − 400

with t = 0. So,  a11 < 0,
a22 < 0,
a33 < 0,

⇔

 k > −10,
k > 0,
k > −2.5.

and
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Figure 4: Control of the Liu system at the equilibrium point E2.


A11 > 0,
A22 > 0,
A33 > 0,

det(A) < 0,

⇔


k ∈ ]−∞,−2. 5[ ∪ ]0,∞[ ,
k ∈ ]−∞,−10.0[ ∪ ]−2. 5,∞[ ,
k ∈ ]−∞,−25. 616[ ∪ ], 15. 616,∞[ ,
k ∈ ]−10,−2. 5[ ∪ ]0,∞[ .

It can be easily seen when k > 15. 616, so a11 < 0, a22 < 0, a33 < 0,detA < 0, A11 > 0,
and A22 > 0, A33 > 0. According to Theorem 3.1, the system (6) will gradually converge
to the unstable equilibrium point (0, 0, 0) (see Figure 3).

4.2.2 Control at the equilibrium point E2

We consider the controlled Liu system given by
·
x = α(y − x)− u1,
·
y = x(λ− γz)− u2,
·
z = δx2 − βz − u3,

(7)

where u1 = k(x + 5) + 10(y + 5), u2 = k(y + 5), u3 = k(z − 40). Here k is the feedback
coefficient; when k > 0, it can be demonstrated that system (7) will gradually converge
to the equilibrium point (−5,−5, 40).

Proof. The Jacobian matrix of the system(7) at (−5,−5, 40) is

A =

 −10− k 0 0
0 −k 5
−40 0 −2.5− k

 ,

where det(A) = −1.0k3 − 12. 5k2 − 25k,
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a11 = −10− k, a22 = −k, a33 = −2.5− k,
A11 = k2 + 2. 5k,
A22 = k2 + 12. 5k + 25,
A33 = k2 + 10k

with t = 0, then

 a11 < 0,
a22 < 0,
a33 < 0,

⇔

 k > −10,
k > 0,
k > −2.5,

and
A11 > 0,
A22 > 0,
A33 > 0,

det(A) < 0,

⇔


k ∈ ]−∞,−2. 5[ ∪ ]0,∞[ ,
k ∈ ]−∞,−10.0[ ∪ ]−2. 5,∞[ ,
k ∈ ]−∞,−10[ ∪ ]0,∞[ ,
k ∈ ]−10,−2. 5[ ∪ ]0,∞[ .

When k > 0, we have a11 < 0, a22 < 0, a33 < 0,detA < 0, A11 > 0, and A22 > 0, A33 >
0. According to Theorem 3.1, the system (7) will gradually converge to the unstable
equilibrium point (−5,−5, 40) (see Figure 4).

Remark 4.2 Similarly, the system can also be controlled at E3(5, 5, 40) by the sim-
ilar control method if k > 0.

4.3 The modified Genesio system

We have the modified Genesio system [16,17] as
·
x = y,
·
y = α1y + z,
·
z = α2x

2 + α3x+ α4y + α5z,

where α1 = −0.5, α2 = 3, α3 = −6, α4 = −2.85, α5 = −0.5, and the fixed points are
E1 = (0, 0, 0), E2 = (2, 0, 0).

4.3.1 Control at the equilibrium point E1

The controlled modified Genesio system is given by
·
x = y − u1,
·
y = α1y + z − u2,
·
z = α2x

2 + α3x+ α4y + α5z − u3,
(8)

where u1 = kx, u2 = ky− z, u3 = kz. Here k is the feedback coefficient; when k > 0, we
found that the system (8)will gradually converge to the equilibrium point (0, 0, 0).

Proof. The Jacobian matrix of the system (8) with regard to the equilibrium
point (0.0.0) is

A =

 −k 1 0
0 −0.5− k 0
−6 −2.85 −0.5− k

 ,

where det(A) = −2k3 − 1. 5k2 − 0. 25k,
a11 = −k, a22 = −0.5− k, a33 = −0.5− k,
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Figure 5: Control of the Modified Genesio System to the original equilibrium point.

A11 = 2k2 + 1. 5k + 0. 25,
A22 = k2 + 0.5k,
A33 = k2 + 0.5k and t = 0, then a11 < 0,

a22 < 0,
a33 < 0,

⇔

 k > 0,
k > −0.5,
k > −0.5,

and
A11 > 0,
A22 > 0,
A33 > 0,

det(A) < 0,

⇔


k ∈ ]−∞,−0.5[ ∪ ]−0.25,∞[ ,
k ∈ ]−∞,−0.5[ ∪ ]0,∞[ ,
k ∈ ]−∞,−0.5[ ∪ ]0,∞[ ,
k ∈ ]−0.5,−0.25[ ∪ ]0,∞[ .

Obviously, when k > 0,then aii < 0, Aii > 0 , i = 1, 2, 3 and det(A) < 0. According to
Theorem 3.1, the system (8) will gradually converge to the unstable equilibrium point
(0, 0, 0). Hence the proof is completed (see Figure 5).

4.3.2 Control at the equilibrium point E2 : (2, 0, 0)

The controlled modified Genesio system is given by
·
x = y − u1,
·
y = α1y + z − u2,
·
z = α2x

2 + α3x+ α4y + α5z − u3,
(9)

where u1 = k(x − 2), u2 = ky − z, u3 = kz, and k is the feedback coefficient, if k > 0,
the system (9) will gradually converge to the equilibrium point (2, 0, 0).
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Figure 6: Control of the modified Genesio system at the equilibrium point E2.

Proof. The Jacobian matrix of the system (9) at (2.0.0) is

A =

 −k 1 0
0 −0.5− k 0
6 −2.85 −0.5− k

 ,

where det(A) = −1k3 − 1k2 − 0. 25k,
a11 = −k, a22 = −0.5− k, a33 = −0.5− k,
A11 = k2 + k + 0. 25,
A22 = k2 + 0.5k,
A33 = k2 + 0.5k with t = 0. So a11 < 0,

a22 < 0,
a33 < 0,

⇔

 k > 0,
k > −0.5,
k > −0.5,

and
A11 > 0,
A22 > 0,
A33 > 0,

det(A) < 0,

⇔


k ∈ ]−∞,−0.5[ ∪ ]−0.5,∞[ ,
k ∈ ]−∞,−0.5[ ∪ ]0,∞[ ,
k ∈ ]−∞,−0.5[ ∪ ]0,∞[ ,
k ∈ ]0,∞[ .

Obviously, when k > 0, we have, aii < 0, Aii > 0 , i = 1, 2, 3 and det(A) < 0. According
to Theorem 3.1, the system (9) will gradually converge to the unstable equilibrium point
(2, 0, 0), thus the proof is completed (see Figure 6).

5 Conclusion

This work presents the feedback control at fixed points of the second type Rössler, Liu
and modified Genesio chaotic systems. By using new conditions for the stability based on
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the Jacobian matrix, we simplified and modified the calculations for the Routh-Hurwitz
coefficient.
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Abstract: In this paper, we first present a new numerical method for solving two-
dimensional integral equations of fractional order. The method is based upon two-
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1 Introduction

In this paper, we present a numerical method for the solution of two-dimensional Volterra
integral equations of fractional order in the form

f(x, y)− 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1k(x, y, s, t)f(s, t) dtds = g(x, y),

(r1, r2) ∈ (0,∞)× (0,∞), f ∈ L1(Ω),Ω := [0, l1]× [0, l2]. (1)

In [1–3] the authors mentioned that equation (1) is a solution for a class of impul-
sive partial hyperbolic differential equations involving the Caputo fractional derivative.
Therefore, researchers are interested in solving this kind of equations. In recent years,
several numerical methods for solving two-dimensional integral equations of fractional
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order have been presented in the literature. Najafalizadeh and Ezzati in [4] used a two-
dimensional block pulse operational matrix to solve two-dimensional nonlinear integral
equations of fractional order. In [5], two-dimensional orthogonal triangular functions
were used for solving two-dimensional integral nonlinear equations of fractional order.
In [6], we see that the operational matrix of two-dimensional Bernstein polynomials is
used for two-dimensional integral equations of fractional order. Here, we would like to
use two-dimensional shifted Legendre polynomials for solving two-dimensional integral
equations of fractional order. Firstly, we present some preliminaries in fractional cal-
culus. In Section 3, we review some general concepts concerning one-dimensional and
two-dimensional shifted Legendre polynomials, and derive an operational matrix of two-
dimensional shifted Legendre polynomials for two-dimensional integration of fractional
order. Section 4 is devoted to solving two-dimensional nonlinear fractional integral equa-
tions by applying the operational matrix of integration of fractional order. Section 5
represents an error estimation for the presented method. In Section 6, we show accuracy
and efficiency of this method through several examples. Finally, a conclusion is given in
Section 7.

2 Brief Review of Fractional Calculus

In this section, we present a short introduction of the fractional calculus which will be
used in this paper.

Definition 2.1 [7]. The Riemann-Liouville fractional integral operator Iα of order α ≥ 0
is defined as

Iαf(x) =
1

Γ(α)

∫ x

0

(x− t)(α−1)f(t) dt , α > 0, (2)

where x > 0 and Γ(.) is the Euler gamma function.

The Riemann-Liouville integral satisfies the following properties:

• IαIβf(x) = Iα+βf(x),

• Iαxβ = Γ(β+1)
Γ(α+1+β)x

α+β .

Definition 2.2 [8]. The left-sided mixed Riemann-Liouville integral of order r of f is
defined as

Irθf(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t) dtds, (3)

where r = (r1, r2) ∈ (0,∞)× (0,∞) and θ = (0, 0).

Some properties of the left-sided mixed Riemann-Liouville integral are the following:

• Iθθ f(x, y) = f(x, y),

• if p, g ∈ (−1,∞) then, Irθx
pyq = Γ(p+1)Γ(q+1)

Γ(p+1+r1)Γ(q+1+r2)x
p+r1yq+r2 .
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3 Shifted Legendre Polynomials

3.1 One-dimensional shifted Legendre polynomials

Let Li(x), x ∈ [0.l], be the shifted Legendre polynomials. Then Li(x) can be obtained
with the aid of the following recurrence formula [9]:

Li+1(x) =
2i+ 1

i+ 1
(
2x

l
− 1)Li(x)− i

i+ 1
Li−1(x), i = 1, 2, 3, ...,

where L0(x) = 1, L1(x) = 2x
l − 1.

The shifted Legendre polynomials on [0, l] have the following properties:

• Li(x) =
∑i
k=0

(−1)(i+k)(i+k)!
(i−k)!lk(k!)2

xk,

•
∫ l

0
Li(x)Lj(x) dt =


l

2i+1 , for i = j,

0, for i 6= j,

• A function f(x) ∈ C[0, l] can be expanded by shifted Legendre polynomials in the
following form:

f(x) w
m∑
i=0

ciLi(x) = CTΦ(x),

where the coefficients ci are given by

ci =
(2i+ 1)

l

∫ l

0

Li(x)y(x) dt,

and the vectors C, Φ(x) are given by

CT = [c0, c1, ..., cm], (4)

Φ(x) = [L0(x), L1(x), ..., Lm(x)]T . (5)

Previously, in [10] the operational matrix of shifted Legendre polynomials for fractional
integration in the interval [0, 1] has been presented. Now we present the operational
matrix of shifted Legendre polynomials for fractional integration in the interval [0, l] as
follows:

1

Γ(α)

∫ x

0

(x− t)(α−1)Φ(x) dt = PαΦ(x) (6)

and

Pα =



∑0
k=0 θ0,0,k

∑0
k=0 θ0,1,k . . .

∑0
k=0 θ0,m,k∑1

k=0 θ1,0,k

∑1
k=0 θ1,1,k . . .

∑1
k=0 θ1,m,k

...
... . . .

...∑i
k=0 θi,0,k

∑i
k=0 θi,1,k . . .

∑i
k=0 θi,m,k

...
... . . .

...∑m
k=0 θm,0,k

∑m
k=0 θm,1,k . . .

∑m
k=0 θm,m,k


,
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where θi,j,k is given by

θi,j,k = (2j + 1)

j∑
s=0

(−1)(s+j+s+k)(i+ k)!(j + s)!lα+s−k

(i− k)!k!Γ(k + α+ 1)(j − s)!(s!)2(k + s+ α+ 1)
,

and Pα is called the shifted Legendre polynomials operational matrix for fractional in-
tegration.

The proof is similar to the proof of Theorem 3 in [10].

3.2 Two-dimensional shifted Legendre polynomials

The two-dimensional shifted Legendre polynomials are defined on Ω = [0, l1] × [0, l2] as
follows [11]:

ψm,n(x, y) = Lm(x)Ln(y), m, n = 0, 1, 2, · · · ,
where Lm(x) and Ln(y) are shifted Legendre polynomials which are defined in the same
way as on the intervals [0, l1] and [0, l2], respectively. In the following, we study the
important properties of the two-dimensional shifted Legendre polynomials.

The two-dimensional shifted Legendre polynomials are orthogonal with each other∫ l1

0

∫ l2

0

ψm,n(x, y)ψi,j(x, y) dydx =

{
( l1l2

(2m+1)(2n+1) ), i = m, j = n,

0, otherwise.

Suppose that Θ = L2(Ω), the inner product in this space is defined by

〈(f(x, y), g(x, y)〉 =
∫ l1

0

∫ l2
0
f(x, y)g(x, y) dydx,

and the norm is as follows:

‖f(x, y)‖2 = 〈f(x, y), f(x, y)〉 12 = (
∫ l1

0

∫ l2
0
|f(x, y)|2 dydx)

1
2 .

For every f(x, y) ∈ Θ, we have

f(x, y) =

∞∑
i=0

∞∑
j=0

fijφij(x, y). (7)

If the infinite series in (7) is truncated, then we will have

f(x, y) '
M∑
i=0

N∑
j=0

fijφij(x, y) = FTφ(x, y) = φT (x, y)F, (8)

where φ(x, y) and F are (M + 1)(N + 1)× 1 vectors of the following form

F = [f00, ..., f0N , ..., fM0, ..., fMN ]T , (9)

φ(x, y) = [φ00(x, y), ..., φ0N (x, y), ..., φM0(x, y), ..., φMN (x, y)]T (10)

and φi,j(x, y) = φi(x).φj(y).
The two-dimensional shifted Legendre polynomials coefficients fi,j are obtained by

fi,j =
〈f(x, y), φi,j(x, y)〉
‖φi,j(x, y)‖22

.
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By using the Kronecker product of φ(x) and φ(y) we can show φ(x, y) as

φ(x, y) = φ(x)⊗ φ(y), (11)

where ⊗ denotes the Kronecker product defined for two arbitrary matrices A and B as

A⊗B = (ai,jB),

also it has the following two basic properties [12]:

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (A+B)⊗ C = A⊗ C +B ⊗ C. (12)

Similarly, the function k(x, y, s, t) in L2(Ω×Ω) can be expanded in terms of two shifted
Legendre polynomials as

k(x, y, s, t) ' φT (x, y)Kφ(s, t), (13)

where K is a block matrix of the form

K = [K(i,m)]Mi,m=0

in which
K(i,m) = [kijmn]Nj,n=0, i,m = 0, 1, ...,M

and the two-shifted Legendre polynomials coefficient kijmn is given by

kijmn =
〈〈k(x, y, s, t)φm,n(s, t)〉, φi,j(x, y)〉
‖φi,j(x, y)‖22‖φm,n(s, t)‖22

, i,m = 0, 1, ...,M. j, n = 0, 1, ..., N.

The product of two vectors φ(x, y) and φT (x, y) with the vector F is given by

φ(x, y)φT (x, y)F ' F̃ φ(x, y), (14)

where F is defined by (9) and F̃ is an (M + 1)(N + 1)× (M + 1)(N + 1) matrix

F̃ = [F (i,j)]i,j=0,1,...M , (15)

where F (i,j), i, j = 0, 1, ...,M , are given by

F (i,j) =
2j + 1

l2
=

M∑
m=0

Wi,j,mΛm,

in which Wi,j,m is defined as

Wi,j,m =

∫ l1

0

Li(
2

l1
x− 1)Lj(

2

l1
x− 1)Lm(

2

l1
x− 1) dx.

and Λm, m = 0, 1, ...,M , are (N + 1)× (N + 1) matrices

[Λm]kh =
2h+ 1

l1
=

N∑
n=0

Ẃk,h,nfmn, k, h = 0., 1, ..., N,

where

Ẃk,h,n =

∫ l2

0

Lk(
2

l2
y − 1)Lh(

2

l2
y − 1)Ln(

2

l2
y − 1) dy.
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3.3 Operational matrix of fractional order

Now, we construct an operational matrix of two-dimensional shifted Legendre polynomi-
als for the fractional integration.

By using equations (10), (11) we have

1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1φ(s, t) dtds =

1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1φ(s)⊗ φ(t) dtds =

1

Γ(r1)

∫ x

0

(x− s)r1−1φ(s) ds⊗ 1

Γ(r2)

∫ y

0

(y − t)r2−1φ(t) dt = ∗.

From equation (6) we get

∗ =pr1φ(x)⊗ pr2φ(y)

=(pr1 ⊗ pr2)(φ(x)⊗ φ(y))

=(pr1 ⊗ pr2)φ(x, y).

Hence,

1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1φ(s, t) dtds = pr1,r2φ(x, y), (16)

where
pr1,r2 = (pr1 ⊗ pr2).

4 Numerical Solution of Two-Dimensional Volterra Integral Equations of
Fractional Order

In this section, we present an effective method to solve equation (1). For this purpose, by
using the method mentioned in Section 3, the functions f(x, y), g(x, y) and k(x, y, s, t)
can be approximated by

f(x, y) = φ(x, y)TF,
g(x, y) = φ(x, y)TG,
k(x, y, s, t) = φ(x, y)TKφ(s, t), (17)

where φ(x, y) is defined in equation (10) and the vectors F ,G and matrix K are two-
dimensional shifted Legendre polynomials coefficients of f(x, y), g(x, y) and k(x, y, s, t),
respectively. Now, substituting equation (17) in equation (1), we have

φT (x, y)F − 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1φT (x, y)Kφ(s, t)φT (s, t)F dtds

' φT (x, y)G. (18)

By using equations (14) and (16) we conclude that

φT (x, y)F − φT (x, y)KF̃

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1φ(s, t) dtds ' φT (x, y)G, (19)
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φT (x, y)F − φT (x, y)KF̃P r1,r2φ(x, y) ' φT (x, y)G. (20)

If in the above equation we substitute ' with =, we get the following equation

F −KF̃P r1,r2φ(x, y) = G. (21)

Now we collocate equation (21) in (M + 1)(N + 1) Newton-Cotes nodes as

xm =
2m+ 1

2(M + 1)
, yn =

2n+ 1

2(N + 1)
,m = 0, 1, ...,M, n = 0, 1, ..., N.

We will have a linear system of algebraic equations

F −KF̃P r1,r2φ(xm, yn) = G,m = 0, 1, ...,M, n = 0, 1, ..., N. (22)

It is clear that, by solving this system, we can obtain the approximate solution of equation
(1) according to equation (8).

5 Error Analysis

Theorem 5.1 . [11] Let f̃(x, y) =
∑M
i=0

∑N
j=0 fijφij(x, y) be the two-dimensional

shifted Legendre polynomials expansion of the real sufficiently smooth function f(x, t) in
Ω, then there exist real numbers C1 , C2 and C3 such that

‖f(x, y)− f̃(x, y)‖2 ≤ C1

( l12 )M+1

(M + 1)!2M
+ C2

( l22 )N+1

(N + 1)!2N
+ C3

( l12 )M+1( l22 )N+1

(M + 1)!(N + 1)!2M+N
.

In the special case when M = N and l1 = l2 = 1 we get

‖f(x, y)− f̃(x, y)‖2 ≤ (C1 + C2 + C3
1

(M + 1)!22M+1
)

1

(M + 1)!22M+1
,

hence

‖f(x, y)− f̃(x, y)‖2 = O(
1

(M + 1)!22M+1
).

Theorem 5.2 Suppose M = N , l1 = l2 = 1 and f(x, y) is an exact solution of
the fractional integral equation (1) and f̃(x, y) shows the approximate solution by the
two-dimensional shifted Legendre polynomials. If |(x− s)r1−1(y− t)r2−1k(x, y, s, t)| < C,
f(x, y) and k(x, y, s, t) are sufficiently smooth functions, then

‖f(x, y)− f̃(x, y)‖22 ≤
C2

(Γ(r1)Γ(r2)(M + 1)!22M+1)2
(C1 + C2 + C3

1

(M + 1)!22M+1
)2 .
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Proof.

‖f(x, y)− f̃(x, y)‖22 =

1

(Γ(r1)Γ(r2))2
‖
∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1k(x, y, s, t)(f(s, t)− f̃(s, t)) dtds‖22

≤ 1

(Γ(r1)Γ(r2))2

∫ x

0

∫ y

0

‖(x− s)r1−1(y − t)r2−1k(x, y, s, t)(f(s, t)− f̃(s, t))‖22 dtds

≤ C2

(Γ(r1)Γ(r2))2

∫ x

0

∫ y

0

‖(f(s, t)− f̃(s, t))‖22 dtds

≤ C2xy

(Γ(r1)Γ(r2)(M + 1)!22M+1)2
(C1 + C2 + C3

1

(M + 1)!22M+1
)2

≤ C2

(Γ(r1)Γ(r2)(M + 1)!22M+1)2
(C1 + C2 + C3

1

(M + 1)!22M+1
)2.2

6 Illustrative Examples

In this section we will implement our method by three examples. For justifying our
method, we compare our computed results and those by other authors. Outcomes show
the accuracy and the validity of the presented method. In these examples we let l1 =
l2 = 1, M = N and denote the following error function

e(x, y) = |f(x, y)− f̃M,N (x, y)|,

where f(x, y) and f̃M,N (x, y) are the exact and approximate solutions of the two-
dimensional fractional integral equation, respectively.

Example 6.1 Consider the two-dimensional fractional integral equation given in [5]

f(x, y)− 1

Γ(3.5)Γ(3.5)

∫ x

0

∫ y

0

(x− s)2.5(y − t)2.5xyt
1
2 f(s, t) dtds =

1

2
xy − x5.5y6

9450
.

The exact solution of this equation is f(x, y) = 1
2xy. Table 1 shows the absolute error

obtained by using the present method and by using the 2D-Tf method [5].

Example 6.2 Consider the two-dimensional fractional integral equation given in [6]

f(x, y)− 1

Γ(3.5)Γ(2.5)

∫ x

0

∫ y

0

(x− s)2.5(y − t)1.5e−t(y2 + s)f(s, t) dtds =

x2ey − 1024x5.5y2.5(6x+ 13y2)

2027025π

and the exact solution of the above equation is f(x, y) = eyx2. Table 2 shows the
absolute error obtained by using the present method and by using the two-dimensional
Bernstein polynomials method [6].

Example 6.3 As the last example, we have the two-dimensional fractional integral
equation

f(x, y)− 1

Γ(3.5)Γ(3.5)

∫ x

0

∫ y

0

(x− s)3.5(y − t)3.552
√
txf(s, t) dtds = xy2 − x5y5

5670
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Present method Present method Method [5]

x=y m = 1 m = 2 m=8

0.1 2.2349×10−6 7.84825 ×10−8 1.126×10−4

0.2 2.13487 ×10−6 3.48089 ×10−8 1.363 ×10−4

0.3 2.03717×10−6 1.47598×10−7 6.22×10−5

0.4 1.94179×10−6 2.60141×10−7 1.27×10−5

0.5 1.84874×10−6 3.7269×10−7 1.983×10−4

0.6 1.758×10−6 4.8549×10−7 4.6×10−5

0.7 1.66959×10−6 5.9879×10−7 5.2×10−5

0.8 1.58351×10−6 7.1281×10−7 6.8×10−4

0.9 1.49975×10−6 8.2781×10−7 6.8×10−4

Table 1: Absolute error for Example 1.

Present method Present method Method [6]

x=y m = 1 m = 2 m=4

0.0 1.1458×10−2 2.4215×10−5 4.086×10−4

0.1 1.1130×10−2 2.1511 ×10−5 4.181×10−4

0.2 1.0799 ×10−2 1.9207 ×10−5 4.471 ×10−4

0.3 1.0466×10−2 1.7355×10−5 4.970×10−4

0.4 1.0131×10−2 1.6000×10−5 5.656×10−4

0.5 9.7937×10−3 1.5188×10−5 6.474×10−4

0.6 9.4538×10−3 1.4957×10−5 7.316×10−4

0.7 9.1117×10−3 1.5342×10−5 7.817×10−4

0.8 8.7676×10−3 1.6374×10−5 6.788×10−4

0.9 8.4215×10−3 1.8082×10−5 1.004×10−4

Table 2: Absolute error for Example 2.

and the exact solution of the above equation is f(x, y) = xy2. Table 3 illustrates the
numerical results for this example.

7 Conclusion

In this paper a general formulation for the two-dimensional shifted Legendre polynomi-
als operational matrix of two-dimensional fractional integral equations has been derived.
This matrix is used to approximate numerical solution of the two-dimensional nonlinear
fractional integral equations. The properties of two-dimensional shifted Legendre poly-
nomials and the operational matrices are used to reduce the two-dimensional fractional
integral equations to a system of algebraic equations that can be solved easily. Finally,
illustrative examples are presented to show the validity and the accuracy of the proposed
method.
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x=y m = 1 m = 2 m=3

0.0 5.9600×10−3 1.3080×10−6 2.7534×10−7

0.1 6.3096×10−3 1.4595 ×10−6 2.8692×10−7

0.2 6.6175 ×10−3 1.6017 ×10−6 2.9819×10−7

0.3 6.8844×10−3 1.7349×10−6 3.0917×10−7

0.4 7.1110×10−3 1.8596×10−6 3.1989×10−7

0.5 7.2982×10−3 1.9763×10−6 3.3038×10−7

0.6 7.4466×10−3 2.0852×10−6 3.4065×10−7

0.7 7.5570×10−3 2.1868×10−6 3.5073×10−7

0.8 7.6301×10−3 2.2815×10−6 3.6063×10−7

0.9 7.6668×10−3 2.3696×10−6 3.7036×10−7

Table 3: Absolute error for Example 3.
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Abstract: In this paper, we study the existence and uniqueness of mild solutions for
multi-term time-fractional differential systems with non-instantaneous impulses and
finite delay. We use the tools of the Banach fixed point theorem and condensing map
along with generalization of the semigroup theory for linear operators and fractional
calculus to come up with a new set of sufficient conditions for the existence and
uniqueness of the mild solutions. An illustration is provided to demonstrate the
established results.
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1 Introduction

During the last few decades, the fractional differential equations (FDEs) including
Riemann-Liouville and Caputo derivatives have attracted the interest of many re-
searchers, motivated by demonstrated applications in widespread areas of science and
engineering such as models of medicine (modeling of human tissue under mechanical
loads), electrical engineering(transmission of ultrasound waves), biochemistry (modeling
of proteins and polymers) etc. In addition, due to the memory and hereditary proper-
ties of the materials and processes, in some areas of science such as identification sys-
tems, signal processing, robotics or control theory, the fractional differential operators
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seem more appropriate in modeling than the classical integer operators. For funda-
mental certainties regarding to fractional systems, one can make reference to the pa-
pers [6,9,14,19–21,25,26], the monographs [10,16,24] and references therein. Moreover,
fractional differential systems with delay are used frequently in many fields such as 3-D
printing and oil drilling, modeling of equations, panorama of natural phenomena and
porous media. For more details, see the cited papers [1, 3].

On the other hand, the theory of fractional impulsive differential equations (in short,
FIDEs) also has generated a great interest among the researchers, because many real
world processes and phenomena which are effected by abrupt changes in the state at
certain moments are naturally described by FIDEs. These changes occur due to dis-
turbances, changing operational conditions and component failures of the state. For
example, mechanical and biological models subject to shocks. Generally, the abrupt
changes in the state for instant period in evolution process are formulated by impulsive
differential equations. However, it is not necessary that the dynamical systems with
evolutionary processes always be characterized by instantaneous impulses. For exam-
ple, pharmacotherapy [23], in which the hemodynamic equilibrium of a person is con-
sidered. The initiation of the drugs in the bloodstream and the resultant absorption
for the body are gradual and continuous processes. Therefore, instantaneous impulses
failed to describe such processes. To characterize these type of situations Hernández and
O′Regan [8] introduce a new case of impulsive actions, which are triggered abruptly at
an arbitrary instant and their action remains for a finite time interval. Meanwhile, Pierri
et al. [22] extended the results of [8] with an α-normed Banach space. For the general
theory of impulsive differential equations, we refer to the monographs [4, 12], research
papers [5, 11,13,15,17,18,28] and references therein.

Indeed, in [9, 14, 19, 27], the authors have obtained the existence and uniqueness
results without impulsive conditions, and in [20], Pardo studied weighted pseudo almost
automorphic mild solutions for two-term time-fractional order differential equations. In
[21], Pardo and Lizama studied a nonlinear multi-term time-differential system of the
form

cDγ
t y(t) +

d∑
j=1

µj
cD

βj

t y(t) = Ay(t) + f(t, y(t)), βj > 0, t ∈ [0, 1], 0 < γ ≤ 2, (1)

y(0) = 0, y′(0) = g(y), (2)

where A : D(A) ⊂ X→ X is a closed linear operator and f and g are suitable functions. In
the foregoing cases, the initial value problems were considered, but the study of existence
of mild solutions for the system modeled as (1)−(2) involving non-instantaneous impulses
and delay was left open. Anticipating a wide interest in the problems modeled as the
system (3)− (5), this paper contributes to fill this important gap.

This paper is organized as follows. Section 2 is devoted to recall basics of fractional
calculus and mild solution which will be employed to attain our mains outcomes. In
Section 3, the existence and uniqueness results for the system (3) − (5) are analyzed
under the Banach and condensing map fixed point theorems. In Section 4, as a final
point, an example is provided to show the feasibility of the theory discussed in this
paper.
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2 Problem Formulation

Let X be a Banach space. Let L(X) be the space of all bounded and linear operators
on X equipped with the norm ‖ · ‖L. Let R and N stand for real numbers and natural
numbers, respectively. For a linear operator A on X, R(A),D(A) and %(A) represent
the range, domain and resolvent of A respectively. To facilitate the discussion due to
delay, we use the space PC0 := C([−τ, 0],X) formed by the continuous functions from
[−τ, 0] to X equipped with the norm ‖y‖PC0 = supt∈[−τ,0]{‖y(t)‖X : y ∈ PC0}. To
study the impulsive forces, we define a space PCT := PC([−τ, T ],X), 0 ≤ t ≤ T of all
functions y : [−τ, T ] → X, which are continuous everywhere except the points tk ∈
(0, T ), k = 1, 2, ...,m, at which y(t+k ) and y(t−k ) exist and y(t−k ) = y(tk). Obviously, PCT
is a Banach space equipped with the norm ‖y‖PCT = supt∈[−τ,T ]{‖y(t)‖X : y ∈ PCT }.

In this paper, we study the existence and uniqueness of mild solutions for the following
class of multi-term time-fractional differential equations with non-instantaneous impulses

cD1+β
sk

y(t) +

n∑
j=1

αj
cDγj

sk
y(t)

= Ay(t) + F

(
t, yt,

∫ t

0

K(t, s)(ys)ds

)
, t ∈ ∪mk=0(sk, tk+1], (3)

y(t) = Gk(t,yt), y′(t) = Hk(t, yt), t ∈ ∪mk=1(tk, sk], (4)

y(t) + g1(y) = φ(t), y′(t) + g2(y) = ϕ(t), t ∈ [−τ, 0], (5)

where A : D(A) ⊂ X → X is a closed linear operator. cDη
sk

stands for the Caputo
derivative of order η > 0 and I = [0, T ] = {0} ∪mk=0 (sk, tk+1] ∪mk=1 (tk, sk], T < ∞ such
that 0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tm ≤ sm ≤ tm+1 = T are prefix numbers. All
γj , j = 1, 2, 3...n, are positive real numbers such that 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1. Gk
and Hk are continuous functions from ∪mk=1(tk, sk] × PC0 into X for all k = 1, 2, ...,m.
F : I × PC0 × PC0 → X is a suitable function. The history function yt : [−τ, 0] → X is
the element of PC0 characterized by yt(θ) = y(t + θ), θ ∈ [−τ, 0] and also φ, ϕ ∈ PC0.
y′ denotes the usual derivative of y with respect to t. K is a positive and continuous
operator on Ω := {(t, s) ∈ R2 : 0 ≤ s ≤ t < T} and k0 = sup

∫ t
0
K(t, s)ds < ∞. Here by

non-instantaneous, we mean that the impulses start abruptly at tk and their effect will
continue on the interval [tk, sk] for k = 1, 2, 3, ...,m.

Now, we recall some definitions and basic results on fractional calculus (for more
details, see [24]). Define gη(t) for η > 0 by

gη(t) =

{ 1
Γ(η) t

η−1, t > 0;

0, t ≤ 0,

where Γ denotes the gamma function. Let (X ∗ Y )(t) be the convolution of X and Y

given by (X ∗ Y )(t) :=
∫ t

0
X(t− s)Y (s)ds.

Definition 2.1 The Riemann-Liouville fractional integral of a function f ∈
L1
loc(R+,X) of order η > 0 with the lower limit a ≥ 0 is defined as follows

Iηaf(t) =

∫ t

a

gη(t− s)f(s)ds, t > 0,

and I0
af(t) = f(t). This fractional integral satisfies the properties Iη0 ◦ Ib0 = Iη+b

0 for
b > 0 and Iη0 f(t) = (gη ∗ f)(t).
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Definition 2.2 [21] Let η > 0 be given and denote m = dηe. The Caputo fractional
derivative of order η > 0 of a function f ∈ Cm([0,∞),R) with the lower limit a ≥ 0 is
given by

cDη
af(t) = Im−ηa Dm

a f(t) =

∫ t

a

gm−η(t− s) d
m

dtm
f(s)ds,

and cD0
af(t) = f(t). In addition, we have cDη

0f(t) = (gm−η ∗Dmf)(t).

To give an appropriate representation of mild solution in terms of certain family of
bounded and linear operators, we define the following family of operators.

Definition 2.3 [21] Let A be a closed linear operator on a Banach space X with
the domain D(A) and β > 0, γj , αj be the real positive numbers. Then A is called the
generator of a (β, γj)− resolvent family if there exists ω > 0 and a strongly continuous
function Sβ,γj : R+ → L(X) such that {λβ+1 +

∑n
j=1 αjλ

γj : Reλ > ω} ⊂ %(A) and

λβ
(
λβ+1 +

n∑
j=1

αjλ
γj −A

)−1

y =

∫ ∞
0

e−λtSβ,γj (t)ydt, Reλ > ω, y ∈ X. (6)

The following result provides the existence of (β, γj)− resolvent family under some suit-
able conditions.

Theorem 2.1 [21] Let 0 < β ≤ γi ≤, · · · ,≤ γ1 ≤ 1 and αj ≥ 0 be given and let
A be a generator of a bounded and strongly continuous cosine family {C(t)}t∈R. Then A
generates a bounded (β, γj)− resolvent family {Sβ,γj (t)}t≥0.

Motivated by [21], we define a mild solution for the system (3)− (5) as follows.

Definition 2.4 A function y ∈ PCT is called a mild solution of the system (3)− (5),
if y(t) = φ(t)−g1(y), y′(t) = ϕ(t)−g2(y) for [−τ, 0] and y(t) = Gk(t, yt), y

′(t) = Hk(t, yt)
for t ∈ ∪mk=1(tk, sk] and satisfy the following integral equations

y(t) =



Sβ,γj (t)[φ(0)− g1(y)] +
∫ t

0
Sβ,γj (s)[ϕ(0)− g2(y)]ds

+

n∑
j=1

αj

∫ t

0

(t− s)β−γj
Γ(1 + β − γj)

Sβ,γj (s)[φ(0)− g1(y)]ds

+
∫ t

0
(gβ ∗ Sβ,γj )(t− s)F (s, ys,K(ys))ds, t ∈ [0, t1];

Sβ,γj (t− sk)Gk(sk, ysk) +
∫ t
sk
Sβ,γj (s− sk)Hk(sk, ysk)ds

+

n∑
j=1

αj

∫ t

sk

(t− s)β−γj
Γ(1 + β − γj)

Sβ,γj (s− sk)Gk(sk, ysk)ds

+
∫ t
sk

(gβ ∗ Sβ,γj )(t− s)F (s, ys,K(ys))ds, t ∈ ∪mk=1(sk, tk+1],

(7)

where K(ys) =
∫ s

0
K(s, ξ)(yξ)dξ.

Theorem 2.2 [7, Condensing theorem] Let M be a closed, bounded and convex
subset of a Banach space X and assume that Q : M →M is a condensing map. Then
Q admits a fixed point in M.
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3 Main Results

In this section, we establish the existence and uniqueness of mild solution for the system
(3) − (5). We denote S0 = supt∈[0,T ] ‖Sβ,γj (t)‖L. In order to establish the existence
and uniqueness result by the Banach fixed point theorem, we consider the following
assumptions:

(A1) There exist positive constants µF and µ0
F such that

‖F (t, ψ1, χ1)− F (t, ψ2, χ2)‖X ≤ µF ‖ψ1 − ψ2‖PC0 + µ0
F ‖χ1 − χ2‖PC0 ,

where ψi, χi ∈ PC0, i = 1, 2.

(A2) There exist positive constants µG, µgi and µH such that

‖Gk(t, ψ)−Gk(t, χ)‖X ≤ µG‖ψ − χ‖PC0 , ‖Hk(t, ψ)−Hk(t, χ)‖X ≤ µH‖ψ − χ‖PC0 ,
‖gi(x)− gi(y)‖X ≤ µgi‖x− y‖X,

for all ψ, χ ∈ PC0, x, y ∈ X, i = 1, 2 and k = 1, 2, 3, . . . ,m.

Theorem 3.1 Assume that the assumptions (A1)−(A2) are fulfilled, then the system
(3)− (5) has a unique mild solution in I if Θ < 1, where

Θ = max

[
S0d+ T0S0e+

n∑
j=1

αjS0dT
1+β−γj
0

Γ(2 + β − γj)
+

S0T
1+β
0

Γ(2 + β)
[µF + µ0

F k
0], µG

]
,

where d = max{µg1 , µG}, e = max{µg2 , µH} and T0 = max
0≤k≤m

|tk+1 − sk|.

Proof. To transform the problem into a fixed point problem, we define an operator
Q : PCT → PCT by Qy(t) = φ(t) for t ∈ [−τ, 0] and Qy(t) = Gk(t, yt) for all t ∈
∪mk=1(tk, sk], and

Qy(t) =



Sβ,γj (t)[φ(0)− g1(y)] +
∫ t

0
Sβ,γj (s)[ϕ(0)− g2(y)]ds

+

n∑
j=1

αj

∫ t

0

(t− s)β−γj
Γ(1 + β − γj)

Sβ,γj (s)[φ(0)− g1(y)]ds

+
∫ t

0
(gβ ∗ Sβ,γj )(t− s)F (s, ys,K(ys))ds, t ∈ [0, t1];

Sβ,γj (t− sk)Gk(sk, ysk)

+
∫ t
sk
Sβ,γj (s− sk)Hk(sk, ysk)ds

+

n∑
j=1

αj

∫ t

sk

(t− s)β−γj
Γ(1 + β − γj)

Sβ,γj (s− sk)Gk(sk, ysk)ds

+
∫ t
sk

(gβ ∗ Sβ,γj )(t− s)F (s, ys,K(ys))ds, t ∈ ∪mk=1(sk, tk+1].

(8)
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Let x, y ∈ PCT . For t ∈ [0, t1], we have

‖Qx(t)−Qy(t)‖X

≤‖Sβ,γj (t)‖L‖g1(x)− g1(y)‖X +

∫ t

0

‖Sβ,γj (s)‖L‖g2(x)− g2(y)‖Xds

+

n∑
j=1

αj

∫ t

0

(t− s)β−γj
Γ(1 + β − γj)

‖Sβ,γj (s)‖L‖g1(x)− g1(y)‖Xds

+

∫ t

0

‖(gβ ∗ Sβ,γj )(t− s)‖L‖F (s, xs,K(xs)(s))− F (s, ys,K(ys))‖Xds

≤
[
S0µg1 + T0S0µg2 +

n∑
j=1

αjS0µg1T
1+β−γj
0

Γ(2 + β − γj)
+

S0T
1+β
0

Γ(2 + β)
[µF + µ0

F k
0]

]
‖x− y‖PCT .

For t ∈ ∪mk=1(tk, sk], we get

‖Qx(t)−Qy(t)‖X ≤ ‖Gk(sk, xsk)−Gk(sk, ysk)‖X ≤ µG‖x− y‖PCT , k = 1, 2, 3, . . . ,m.

Similarly, for t ∈ ∪mk=1(sk, tk+1] we get

‖Qx(t)−Qy(t)‖X
≤‖Sβ,γj (t− sk)‖L‖Gk(sk, xsk)−Gk(sk, ysk)‖X

+

∫ t

sk

‖Sβ,γj (s− sk)‖L‖Hk(sk, xsk)−Hk(sk, ysk)‖Xds

+

n∑
j=1

αj

∫ t

sk

(t− s)β−γj
Γ(1 + β − γj)

‖Sβ,γj (s− sk)‖L‖Gk(sk, xsk)−Gk(sk, ysk)‖Xds

+

∫ t

sk

‖(gβ ∗ Sβ,γj )(t− s)‖L‖F (s, xs,K(xs)(s))− F (s, ys,K(ys))‖Xds

≤
[
S0µG + T0S0µH +

n∑
j=1

αjS0µGT
1+β−γj
0

Γ(2 + β − γj)
+

S0T
1+β
0

Γ(2 + β)
[µF + µ0

F k
0]

]
‖x− y‖PCT .

Gathering the above results, we have ‖Qx−Qy‖PCT ≤ Θ‖x−y‖PCT . Now, by the Banach
contraction theorem the system (3)− (5) has a unique mild solution.
In order to establish the existence results by virtue of the condensing map, we consider
the following assumptions:

(A3) The functions Gk, Hk, g1 and g2 are continuous functions and F is compact and
continuous, and there exist positive constants νF , ν0

F , νG, νH , νg1 , νg2 such that

‖F (t, ψ, χ)‖X ≤ νF ‖ψ‖PC0 + ν0
F ‖χ‖PC0 , ‖gi(x)‖X ≤ νgi‖x‖X,

‖Gk(t, ψ)‖X ≤ νG‖ψ‖PC0 , ‖Hk(t, ψ)‖X ≤ νH‖ψ‖PC0
for all x ∈ X, ψ, χ ∈ PC0.

Theorem 3.2 Assume that the assumptions (A2)−(A3) are fulfilled, then the system
(3)− (5) has a mild solution in I if ∆ < 1, where

∆ = max

[
S0d+ T0S0e+

n∑
j=1

αjS0dT
1+β−γj
0

Γ(2 + β − γj)
, µG

]
,

where d = max{µg1 , µG}, e = max{µg2 , µH}.
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Proof. Consider the operator Q : PCT → PCT defined in Theorem 3.1. We show
that Q has a fixed point. It is easy to see that Qy(t) ∈ PCT . Let Br0 := {y ∈ PCT :
‖y‖PCT ≤ r0}, where

r0 ≥ max

[
S0Y1 + T0S0Z1 +

n∑
j=1

αjS0Y1T
1+β−γj
0

Γ(2 + β − γj)
, νGr0, S0νGr0 + T0S0νHr0

+

n∑
j=1

αjS0νGr0T
1+β−γj
0

Γ(2 + β − γj)

]
+

S0T
1+β
0

Γ(2 + β)
[νF + ν0

F k
0]r0, (9)

where Y1 = ‖φ(0)‖+ νg1r0, Z1 = ‖ϕ(0)‖+ νg2r0. It is clear that Br0 is a closed, bounded
and convex subset of PCT . Let y ∈ Br0 , then for t ∈ [0, t1], we have

‖Qy(t)‖X ≤‖Sβ,γj (t)‖L(‖φ(0)‖+ ‖g1(y)‖X) +

∫ t

0

‖Sβ,γj (s)‖L(‖ϕ(0)‖+ ‖g2(y)‖X)ds

+

n∑
j=1

αj

∫ t

0

(t− s)β−γj
Γ(1 + β − γj)

‖Sβ,γj (s)‖L(‖φ(0)‖+ ‖g(y)‖X)ds

+

∫ t

0

‖(gβ ∗ Sβ,γj )(t− s)‖L‖F (s, ys,K(ys))‖Xds

≤S0Y1 + T0S0Z1 +

n∑
j=1

αjS0Y1T
1+β−γj
0

Γ(2 + β − γj)
+

S0T
1+β
0

Γ(2 + β)
[νF + ν0

F k
0]r0.

For t ∈ ∪mk=1(tk, sk], we get

‖Qy(t)‖X ≤ ‖Gk(t, yt)‖X ≤ νGr0, k = 1, 2, 3, . . . ,m.

Similarly, for t ∈ ∪mk=1(sk, tk+1], we get

‖Qy(t)‖X ≤‖Sβ,γj (t− sk)‖L‖Gk(sk, ysk)‖X +

∫ t

sk

‖Sβ,γj (s− sk)‖L‖Hk(sk, ysk)‖Xds

+

n∑
j=1

αj

∫ t

sk

(t− s)β−γj
Γ(1 + β − γj)

‖Sβ,γj (s− sk)‖L‖Gk(sk, ysk)‖Xds

+

∫ t

sk

‖(gβ ∗ Sβ,γj )(t− s)‖L‖F (s, ys,K(ys))‖Xds

≤S0νGr0 + T0S0νHr0 +

n∑
j=1

αjS0νGr0T
1+β−γj
0

Γ(2 + β − γj)
+

S0T
1+β
0

Γ(2 + β)
[νF + ν0

F k
0]r0.

We conclude by (9) that ‖Qy‖PCT ≤ r0. Thus we conclude that Q(Br0) ⊆ Br0 . Next,
we show that Q is a condensing operator. Let us decompose Q by Q = Q1 +Q2, where
Q1y(t) = Gk(t, yt) for all t ∈ ∪mk=1(tk, sk] and

Q1y(t) =



Sβ,γj (t)[φ(0)− g1(y)] +
∫ t

0
Sβ,γj (s)[ϕ(0)− g2(y)]ds

+

n∑
j=1

αj

∫ t

0

(t− s)β−γj
Γ(1 + β − γj)

Sβ,γj (s)[φ(0)− g1(y)]ds, t ∈ [0, t1];

Sβ,γj (t− sk)Gk(sk, ysk) +
∫ t
sk
Sβ,γj (s− sk)Hk(sk, ysk)ds

+
n∑
j=1

αj

∫ t

sk

(t− s)β−γj
Γ(1 + β − γj)

Sβ,γj (s−sk)Gk(sk, ysk)ds, t ∈ ∪mk=1(sk, tk+1],

(10)
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and

Q2y(t) =

{ ∫ t
0
(gβ ∗ Sβ,γj )(t− s)F (s, ys,K(ys))ds, t ∈ [0, t1];∫ t

sk
(gβ ∗ Sβ,γj )(t− s)F (s, ys,K(ys))ds, t ∈ ∪mk=1(sk, tk+1].

(11)

First, we show that Q1 is continuous, so consider a sequence in Br0 such that yn → y ∈
Br0 , then for t ∈ [0, t1], we get

‖Q1y
n(t)−Q1y(t)‖X ≤S0‖g1(yn)− g1(y)‖X + S0T0‖g2(yn)− g2(y)‖X

+

n∑
j=1

αjS0T
1+β−γj
0

Γ(2 + β − γj)
‖g1(yn)− g1(y)‖X.

For t ∈ ∪mk=1(sk, tk+1], we obtain

‖Q1y
n(t)−Q1y(t)‖X ≤S0‖Gk(sk, y

n
sk

)−Gk(sk, ysk)‖X
+ S0T0‖Hk(sk, y

n
sk

)−Hk(sk, ysk)‖X

+

n∑
j=1

αjS0T
1+β−γj
0

Γ(2 + β − γj)
‖Gk(sk, y

n
sk

)−Gk(sk, ysk)‖X.

By continuity of Gk, Hk, g1 and g2, we have ‖Q1y
n−Q1y‖PCT → 0 as n→∞. Hence Q1

is continuous. Let x, y ∈ PCT . As we have done in Theorem 3.1 for t ∈ [0, t1], we have

‖Q1x(t)−Q1y(t)‖X ≤
[
S0µg1 + T0S0µg2 +

n∑
j=1

αjS0µg1T
1+β−γj
0

Γ(2 + β − γj)

]
‖x− y‖PCT .

For t ∈ ∪mk=1(tk, sk], we get

‖Q1x(t)−Q1y(t)‖X ≤ ‖Gk(sk, xsk)−Gk(sk, ysk)‖X ≤ µG‖x− y‖PCT , k = 1, 2, . . . ,m,

and for t ∈ ∪mk=1(sk, tk+1], we obtain

‖Q1x(t)−Q1y(t)‖X ≤
[
S0µG + T0S0µH +

n∑
j=1

αjS0µGT
1+β−γj
0

Γ(2 + β − γj)

]
‖x− y‖PCT .

Gathering the above results, we have ‖Q1x−Q1y‖PCT ≤ ∆‖x− y‖PCT . Hence, Q1 is a
contraction mapping.

Next, we show that Q2 is completely continuous. First, we verify that Q2 is contin-
uous, so we consider a sequence in Br0 such that yn → y ∈ Br0 as n → ∞, then for
t ∈ [0, t1], we get

‖Q2y
n(t)−Q2y(t)‖X

≤
∫ t

0

‖(gβ ∗ Sβ,γj )(t− s)‖L‖F (s, yns ,K(yns ))− F (s, ys,K(ys))‖Xds,

for t ∈ ∪mk=1(sk, tk+1], we obtain

‖Q2y
n(t)−Q2y(t)‖X

≤
∫ t

sk

‖(gβ ∗ Sβ,γj )(t− s)‖L‖F (s, yns ,K(yns ))− F (s, ys,K(ys))‖Xds.
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By continuity of F , we get ‖Q2y
n −Q2y‖PCT → 0 as n→∞. Hence Q2 is continuous.

Further, we show that Q2 is a family of equi-continuous functions. Let l2, l1 ∈ [0, t1] such
that 0 ≤ l1 < l2 ≤ t1, we have

‖Q2y(l2)−Q2y(l1)‖X

≤
∫ l1

0

‖(gβ ∗ Sβ,γj )(l2 − s)− (gβ ∗ Sβ,γj )(l1 − s)‖L‖F (s, ys,K(ys))‖Xds

+

∫ l2

l1

‖(gβ ∗ Sβ,γj )(l2 − s)‖L‖F (s, ys,K(ys))‖Xds

≤S0

[ ∫ l1

0

(
(l2 − s)β

Γ(1 + β)
− (l1 − s)β

Γ(1 + β)

)
ds+

(l2 − l1)1+β

Γ(2 + β)

]
[νF + ν0

F k
0]r0

≤ S0

Γ(2 + β)

[∣∣∣∣(l1+β
2 − l1+β

1 )− (l2 − l1)1+β

∣∣∣∣+
(l2 − l1)1+β

Γ(2 + β)

]
[νF + ν0

F k
0]r0.

For l2, l1 ∈ ∪mk=1(sk, tk+1] such that sk ≤ l1 < l2 ≤ tk+1, we have

‖Q2y(l2)−Q2y(l1)‖X

≤
∫ l1

sk

‖(gβ ∗ Sβ,γj )(l2 − s)− (gβ ∗ Sβ,γj )(l1 − s)‖L‖F (s, ys,K(ys))‖Xds

+

∫ l2

l1

‖(gβ ∗ Sβ,γj )(l2 − s)‖L‖F (s, ys,K(ys))‖Xds

≤S0

[ ∫ l1

sk

(
(l2 − s)β

Γ(1 + β)
− (l1 − s)β

Γ(1 + β)

)
ds+

(l2 − l1)1+β

Γ(2 + β)

]
[νF + ν0

F k
0]r0

≤ S0

Γ(2 + β)

[∣∣∣∣((l2 − sk)1+β − (l1 − sk)1+β)− (l2 − l1)1+β

∣∣∣∣+
(l2 − l1)1+β

Γ(2 + β)

]
[νF + ν0

F k
0]r0,

from aforemention inequalities we conclude that ‖Q2y(l2)−Q2y(l1)‖PCT → 0 as l2 → l1
for t ∈ [0, T ]. This shows that Q2 is a family of equi-continuous functions.

Finally, we will show that Y = {Q2y(t) : y ∈ Br0} is precompact in X. Let t > 0 be
fixed and let yn ∈ Br0 , {yn} be a bounded sequence in PCT . Let Y = {Q2y

n(t) : yn ∈
Br0} be a bounded sequence in Br0 . Hence, for any t∗ ∈ ∪mk=0(sk, tk+1], the sequence
{yn(t∗)} is bounded in Br0 . Since F is compact, it has a convergent subsequence such
that

F (t∗, ynt∗ ,K(ynt∗))→ F (t∗, yt∗ ,K(yt∗)),

or

‖F (t∗, ynt∗ ,K(ynt∗))− F (t∗, yt∗ ,K(yt∗))‖X → 0 as n→∞.

Using the bounded convergence theorem, we can conclude that

(Q2y
n)(t)→ (Q2y)(t), in Br0 .

This proves that Q2 is a compact operator. Therefore Q1 is a continuous and contraction
operator and Q2 is a completely continuous operator, hence Q = Q1 +Q2 is a condensing
map on Br0 . Finally, by Theorem 2.2, we infer that there exists a mild solution of the
system (3)− (5) in Br0 .
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4 Example

In this section, we provide an example to illustrate the feasibility of the established
results. Set X = L2(Rn), then PC0 := C([−τ, 0], L2(Rn)). Let β, γJ > 0 for j =
1, 2, 3, . . . , n be given, satisfying 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1 and τ ∈ R such that τ > 0 .
We consider the following system

∂1+β
t u(t, x) +

n∑
j=1

αj∂
γj
t u(t, x) =∆u(t, x) +

ut(θ, x)

50

+

∫ t

−τ
cos(t− ξ)ut(θ, x)

25
dξ, (12)

for all (t, x) ∈ ∪mk=0(sk, tk+1]× [0, 1],

Gk(t, ut(θ, x)) =

∫ t

−τ

sin(t− ξ)
(k + 1)

ut(θ, x)

25
dξ,

Hk(t, ut(θ, x)) =

∫ t

−τ

cos(t− ξ)
(k + 1)

ut(θ, x)

25
dξ, t ∈ ∪mk=1(tk, sk], (13)

u(θ, x) +

q∑
r=1

ary(tr) = φ(θ, x), u′(θ, x)+

q∑
r=1

bry(tr) = ϕ(θ, x), (14)

where ar, br ∈ R, θ ∈ [−τ, 0]. The points 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < · · · <
tm ≤ sm ≤ tm+1 = 1 are prefix numbers, ∂1+β

t denotes the Caputo derivative of order
(1 + β) and ∆ is the Laplacian with a maximal domain {v ∈ X : v ∈ H2(Rn)}. The
history function ut(θ, x) : [−τ, 0]→ X is the element of PC0 characterized by ut(θ, x) =

u(t+ θ, x), θ ∈ [−τ, 0]. Set y(t)(x) = u(t, x), g1(x) =

p∑
r=1

arx(tr), g2(x) =

p∑
r=1

brx(tr) and

φ(θ)(x) = φ(θ, x), (θ, x) ∈ [−τ, 0]× [0, 1]. Now, we have F (t, ψ,K(ψ)) = ψ
50 +

∫ t
−τ cos(t−

ξ) ψ52 dξ, Gk(t, ψ) =
∫ t
−τ

sin(t−ξ)
(k+1)

ψ
25dξ, Hk(t, ψ) =

∫ t
−τ

cos(t−ξ)
(k+1)

ψ
25dξ. Now, we observe that

the system (12) − (14) has the abstract form of the system (3) − (5). Moreover, for
t ∈ [0, 1], ψi, χi ∈ PC0, i = 1, 2 and x, y ∈ X, we have

‖F (t, ψ1,K(χ1))− F (t, ψ2,K(χ2))‖ ≤ 1

50
‖ψ1 − ψ2‖+

1

25
‖χ1 − χ2‖,

‖Gk(t, χ1)−Gk(t, χ2)‖ ≤ 2

25
‖χ1 − χ2‖; ‖Hk(t, χ1)−Hk(t, χ2)‖ ≤ 1

25
‖χ1 − χ2‖,

‖g1(x)− g1(y)‖X ≤ qa‖x− y‖X; ‖g2(x)− g2(y)‖X ≤ qb‖x− y‖X,

where a = max
1≤r≤q

|ar| and b = max
1≤r≤q

|br|. Thus the assumptions (A1) and (A2) are

satisfied. On the other hand, it follows from the theory of cosine families that ∆ gen-
erates a bounded cosine function {C(t)}t≥0 on L2(Rn). Moreover, by Theorem 2.1 the
operator ∆ in equation (12) generates a bounded {Sβ,γj (t)}t≥0-resolvent family. Let
S0 = supt∈[0,1] ‖Sβ,γj (t)‖L. Now, by Theorem 3.1 if

max

[
S0d+ S0e+

n∑
j=1

αjS0d

Γ(2 + β − γj)
+

3S0

50Γ(2 + β)
,

1

25

]
< 1,

where d = max{qa, 2
25}, e = max{qb, 2

25}, then the system (12) − (14) admits a unique
mild solution.
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5 Conclusion

In this paper, an approach has been developed concerning the existence and uniqueness
of mild solutions for the system (3) − (5) using the Banach fixed point theorem and
condensing map theorem. The system (3)− (5) involves abrupt forces(impulsive effects),
hence our results generalize the results of Pardo and Lizama studied in [21]. Thus, our
results are more general and interesting.

Acknowledgment

The work of the first author is supported by the “Ministry of Human Resource and
Development, India under grant number: MHR-02-23-200-44”.

References

[1] Agarwal, R.P. and De Andrade, B. On fractional integro-differential equations with state-
dependent delay. Comput. Math. Appl. 62 (2011) 1143–1149.

[2] Arjunan, M.M. and Kavitha, V. Existence results for impulsive neutral functional differen-
tial equations with state-dependent delay. Electron. J. Qual. Theory Diff. Equ. 26 (2009)
1–13.

[3] Benchohra, M., Litimein, S. and N’Guerekata, G. On fractional integro-differential inclu-
sions with state-dependent delay in Banach spaces. Appl. Anal. (2011) 1–16.

[4] Benchohra, M., Henderson, J. and Ntouyas, S.K. Impulsive Differential Equations and
Inclusions. In: Contemporary Mathematics and Its Applications. Hindawi Publishing Cor-
poration, New York, 2006.

[5] Chadha, A. Mild solution for impulsive neutral integro-differential equation of Sobolev type
with infinite delay. Nonlinear Dyn. Syst. Theory 15 (2015) 272–289.

[6] Chaudhary, R. and Pandey, D.N. Existence results for Sobolev type fractional differential
equation with nonlocal integral boundary conditions. Nonlinear Dyn. Syst. Theory 16 (3)
(2016) 235–245.

[7] Dhage, B.C. Condensing mappings and applications to existence theorems for common
solution of differential equations. Bull. Korean Math. Soc. 36 (1999) 565–578.

[8] Hernandez, E. and O’Regan, D. On a new class of abstract impulsive differential equations.
Proc. Amer. Math. Soc. 141 (5) (2013) 1641–1649.

[9] Keyantuo, V., Lizama, C. and Warma, M. Asymptotic behavior of fractional order semi-
linear evolution equations. Diff. Integral Eqn. 26(7/8)(2013) 757–780.

[10] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. Theory and Applications of Fractional Dif-
ferential Equations. North-Holland Mathematics Studies 204, Elsevier Science B.V., Ams-
terdam, 2006.

[11] Kumar, P., Pandey, D.N. and Bahuguna, D. On a new class of abstract impulsive functional
differential equations of fractional order. J. Nonlinear Sci. Appl. 7 (2014) 102–114.
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