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1 Introduction

The investigation of the solvability of integro-differential equations is a problem the
specific nature of which lies in the fact that the integro-differential operator has no
inverse. Such equations in Euclidean spaces were considered in [1–4] and others.

Sufficient conditions for the existence and uniqueness of piecewise-continuous mild
solutions of fractional integro-differential equations in a Banach space with non instanta-
neous impulses were obtained in [5]. In paper [6] V. Gupta and J. Dabas established the
existence and uniqueness of solution for a class of impulsive fractional integro-differential
equations with nonlocal boundary conditions.

In this paper, we propose a somewhat different approach to the study of integro-
differential equations in Banach spaces. In its realization, the theory of generalized
inversion of operators in Banach spaces is effectively used [7, 8].

The proposed approach can be used in the study of the phenomena of energy transfer
and diffusion of neutrons, viscoelastic oscillations various systems and structures, in
nuclear physics and the mathematical theory of biological populations (see [9–11]).
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2 Formulation of the Problem

Consider the integro-differential equation

z(t)−M(t)

b∫
a

[
W (s)z(s) + V (s)ż(s)

]
ds = f(t), (1)

where the operator-valued function M(t) acts from the Banach space B2 into the Banach
space B1 and is strongly continuous with the norm |||M ||| = sup

t∈I
‖M(t)‖B2

= M0 < ∞,

and the operator-valued functions W (t) and V (t) act from the Banach space B1 into the
Banach space B2 and are strongly continuous with the norms |||W ||| = sup

t∈I
‖W (t)‖B1

=

W0 < ∞ and |||V ||| = sup
t∈I
‖V (t)‖B1 = V0 < ∞, the vector- function f(t) acts from the

interval I into the Banach space B1 : f(t) ∈ C(I,B1) :=
{
f(·) : I → B1, |||f ||| =

supt∈I ‖f(t)‖
}

, C(I,B1) is the Banach space of vector-functions continuous on I with
values in B1.

By the solution z(t) of the operator equation (1) we mean vector-functions such
that z(t) ∈ C(I,B1), ż(t) ∈ C1(I,B1), where C1(I,B1) is the Banach space of con-

tinuously differentiable vector-functions with the norm |||z||| =
∑1
k=0 supt∈I ‖z(k)(t)‖

}
,

where z(k)(t) is the k-th derivative z(t). The derivative ż(t) is understood in the sense
of [12, p. 140].

The problem is to obtain a solvability criterion and to find the structure of solutions
for the integro-differential equation (1).

3 Preliminary Information

Consider the linear integral Fredholm equation with a degenerate kernel

z(t)−M(t)

b∫
a

N(s)z(s)ds = f(t), (2)

where the operator-valued function N(t) acts from the Banach space B1 into the Banach
space B2 and is strongly continuous with the norm |||N ||| = sup

t∈I
‖N(t)‖B1

= N0 <∞.

Denote: D = IB2 − A, A =
b∫
a

N(s)M(s) ds, D : B2 → B2. In [8] it is shown

that if D is a bounded generalized invertible operator, then the integral operator L is
generalized invertible.

In this case, there exist bounded projections PN(D), PYD
onto the null space N(D)

and the subspace YD = IB2
	R(D) of the operator D, respectively [13] and the bounded

generalized inverse operator D− to the operator D [7].
The following theorem holds for the integral equation (2).

Theorem 3.1 [14] Let D : B2 → B2. Then the homogeneous (f(t)=0) integral
equation (2) has a family of solutions

z(t) = M(t)PN(D)c,
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where c is an arbitrary element of the Banach space B2.
Under and only under the condition

PYD

b∫
a

N(s)f(s)ds = 0

the nonhomogeneous integral equation (2) has a family of solutions

z(t) = M(t)PN(D)c+ f(t) +M(t)D−
b∫
a

N(s)f(s)ds.

4 The Main Result

1. We obtain the solvability conditions for the general form of solutions of the equation
(1).

We make the substitution ż(t) = y(t) in (1), then

z(t) =

t∫
a

y(s)ds+ c0, c0 ∈ B1. (3)

Putting (3) in (1), we obtain the integral equation

y(t)−M(t)

b∫
a

[
W (s)

s∫
a

y(τ)dτ + V (s)y(s)
]
ds = f(t) +M(t)W0c0, (4)

where W0 =
b∫
a

W (s)ds, W0 : B1 → B2.

Changing the order of integration in the integral
b∫
a

W (s)
s∫
a

y(τ)dτds, we obtain from

(4)

y(t)−M(t)

b∫
a

N(s)y(s)ds = g(t), (5)

where

N(s) =

b∫
s

W (τ)dτ + V (s),

g(t) = f(t) +M(t)W0c0. (6)

By Theorem 3.1, under and only under the condition

PYD

b∫
a

N(s)g(s)ds = 0 (7)
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the integral equation (5) has a family of solutions

y(t) = M(t)PN(D)c+ g(t) +M(t)D−
b∫
a

N(s)g(s)ds, (8)

where c is an arbitrary element of the Banach space B2.
From the solvability condition (7) we find the value of c0 ∈ B1, for which the integral

equation (5) has a solution. We put (6) in (7)

PYD

b∫
a

N(s)
[
f(s) +M(s)W0c0

]
ds = 0.

After the transformations, we obtain the operator equation

Sc0 = b0, (9)

where

b0 = −PYD

b∫
a

N(s)f(s)ds.

S = PYD

b∫
a

N(s)M(s)W0ds = PYD
AW0 = PYD

[
I −D

]
W0 = PYD

W0,

because PYD
D = 0.

Let the operator S : B1 → B2 be generalized invertible. Then there exist bounded
projectors PN(S) : B1 → B1 and PYS

: B2 → B2 and a bounded generalized inverse
operator S− : B2 → B1 to the operator S. The operator equation (9) is solvable under
and only under the condition [7]

PYS
b0 = PYS

PYD

b∫
a

N(s)f(s)ds = 0, (10)

and, under this condition, the equation (9) has a family of solutions

c0 = PN(S)c̃+ S−b0,

where c̃ is an arbitrary element of the Banach space B1.
Then g(t) takes the form

g(t) = f(t) +M(t)W0

[
PN(S)c̃+ S−b0

]
.

We put g(s) in the solution (8) of the integral equation (5)

y(t) = M(t)PN(D)c+ f(t) +M(t)W0

[
PN(S)c̃+ S−b0

]
+

+M(t)D−
b∫
a

N(s)
{
f(s) +M(s)W0

[
PN(S)c̃+ S−b0

]}
ds.

(11)
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Denoting D̃ = (IB1
+ D−A)W0, after the transformations we obtain the general

solution of the equation (5)

y(t) = M(t)
[
PN(D), D̃PN(S)

] [ c
c̃

]
+ f(t)+

+M(t)D−
b∫
a

N(s)f(s)ds−M(t)D̃S−PYD

b∫
a

N(s)f(s)ds =

= M(t)
[
PN(D), D̃PN(S)

] [ c
c̃

]
+ f(t)+

+M(t)
[
D− − D̃S−PYD

] b∫
a

N(s)f(s)ds,

where c ∈ B2, c̃ ∈ B1 are arbitrary constants.
Putting the obtained y(t) in (2), we obtain the general solution of the integro-

differential equation (1)

z(t) =
[
M̃(t)PN(D), M̃(t)

(
D̃PN(S) + PN(S)

)] [ c
c̃

]
+ f̃(t) + F (t),

where

M̃(t) =
t∫
a

M(s)ds, f̃(t) =
t∫
a

f(s)ds,

F (t) =
{
M̃(t)

[
D− − D̃S−PYD

]
− S−PYD

} b∫
a

N(s)f(s)ds.

(12)

Thus, the following theorem holds for the integro-differential equation (1).

Theorem 4.1 Let the operators D : B2 → B2 and S : B1 → B2 be generalized
invertible. Then the integro-differential equation (1) is solvable for those and only those
f(t) ∈ C([a, b],B1), that satisfy the condition

PYS
PYD

b∫
a

N(s)f(s)ds = 0

and has a family of solutions

z(t) =
[
M̃(t)PN(D),

(
M̃(t)D̃PN(S) + PN(S)

)] [ c
c̃

]
+ f̃(t) + F (t).

Remark 4.1 As shown in [3] the integro-differential equation

(Lz)(t) := ż(t) +H(t)z(t)−M(t)

b∫
a

[
W (s)z(s) + V (s)ż(s)

]
ds = f(t),

where the operator-valued function H(t) acts from the Banach space B1 to the Banach
space B1 and is strongly continuous with the norm |||H||| = sup

t∈I
‖H(t)‖B1

= H0 < ∞,

with the help of substitution z(t) = X(t)y(t), where X(t) is the fundamental operator [12,
p. 148] ż(t) = −H(t)z(t), is reduced to an equation of the form (1).
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Remark 4.2 The integro-differential equation

(Lz)(t) := ż(t)−
q∑
i=1

Mi(t)

b∫
a

[
Wi(s)z(s) + Vi(s)ż(s)

]
ds = f(t)

is reduced to an equation of the form (1), if we denote the operator matrices
M(t) =

[
M1(t),M2(t), . . . ,Mq(t)

]
, W (t) = col

[
W1(t),W2(t), . . . ,Wq(t)

]
, V (t) =

col
[
V1(t), V2(t), . . . , Vq(t)

]
.

2. In the case when the integro-differential equation is considered in Euclidean spaces,
the proposed method of investigation can be refined and concretized.

Consider the equation (1) under the assumption that M(t) is an (n×m)-dimensional
matrix, W (t) and V (t) are (m× n)-dimensional matrices, f(t) is an (n× 1)-dimensional
matrix whose elements belong to the space L2[a, b]. The solution will be sought in the
class of functions z(t) ∈ Dn

2 [a, b], ż(t) ∈ Ln2 [a, b].

In this case, the operator D = Im − A, A =
b∫
a

N(s)M(s) ds and orthoprojectors

PN(D), PN(D∗) [15, 16] are (m×m)-dimensional matrices.
Let rankD = n1. Denote an (m×r)-dimensional matrix by PNr(D), which is composed

of r = m − n1 linearly independent columns of the orthoprojector matrix PN(D), and
an (r×m)-dimensional matrix by PNr(D∗), which is composed of r linearly independent
rows of the orthoprojector matrix PN(D∗).

Then by Theorem 3.1, under and only under r linearly independent conditions

PNr(D∗)

b∫
a

N(s)g(s)ds = 0 (13)

the integral equation (5) has r linearly independent solutions

y(t) = M(t)PNr(D)cr + g(t) +M(t)D+

b∫
a

N(s)g(s)ds, (14)

where cr is an arbitrary element of the Euclidean space Rr, D+ is the Moor-Penrose
pseudoinverse matrix to the matrix D [15, 16].

From the condition (13) we obtain an algebraic system with respect to the vector
c0 ∈ Rn

Sc0 = b0, (15)

where S = PNr(D∗)W0 is an (r × n)-dimensional matrix, b0 = −PNr(D∗)

b∫
a

N(s)f(s)ds.

Let rankS = n2. Denote an (n×k)-dimensional matrix by PNk(S), which is composed
of k = n − n2 linearly independent columns of the orthoprojector matrix PN(S), and
an (d × r)-dimensional matrix by PNd(S∗), which is composed of d = r − n2 linearly
independent rows of the orthoprojector matrix PN(S∗).

The system (15) is solvable if and only if the vector b0 satisfies the condition

PNd(S∗)b0 = PNd(S∗)PNr(D∗)

b∫
a

N(s)f(s)ds = 0, (16)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (4) (2018) 331–341 337

under which the equation (15) has a family of solutions

c0 = PNk(S)c̃k + S+b0,

where c̃k is an arbitrary element of the Euclidean space Rk, S+ is the Moor-Penrose
pseudoinverse matrix to the matrix S [15, 16].

The condition (16) consists of d linearly independent conditions. Indeed, since the
matrices PNd(S∗), PNr(D∗) are of the full rank: rankPNd(S∗) = d, rankPNr(D∗) = r and
d ≤ r, we have from the Sylvester inequality [17, p. 31] that

rankPNd(S∗) + rankPNr(D∗) − r ≤ rank
(
PNd(S∗)PNr(D∗)

)
≤

≤ min
(
rankPNd(S∗), rankPNr(D∗)

)
or

d+ r − r ≤ rank
(
PNd(S∗)PNr(D∗)

)
≤ d.

It follows that rank
(
PNd(S∗)PNr(D∗)

)
= d.

Then the following theorem holds for the integro-differential equation (1).

Theorem 4.2 Let rankD = n1, and rankS = n2.
Then the integro-differential equation (1) is solvable for those and only those f(t) ∈

Rn, that satisfy d = r − n2 linearly independent conditions

PNd(S∗)PNr(D∗)

b∫
a

N(s)f(s)ds = 0,

and at the same time it has an (r+k)-parametric family of linearly independent solutions

z(t) =
[
M̃(t)PNr(D),

(
M̃(t)D̃PNk(S) + PNk(S)

)] [ cr
c̃k

]
+ f̃(t) + F (t),

where cr ∈ Rr, c̃k ∈ Rk are arbitrary constants; D̃ = (Im + D+A)W0; M̃(t), f̃(t) have
the form (12);

F (t) =
{
M̃(t)

[
D+ − D̃S+PNr(D∗)

]
− S+PNr(D∗)

} b∫
a

N(s)f(s)ds.

Example 4.1 Consider the integro-differential equation

(Lz)(t) := ż(t)−M(t)

2∫
0

[W (s)z(s) + V (s)ż(s)] ds = f(t), (17)

where

M(t) = diag

{[
0 t− 1 0
1 0 3t

]
,

[
0 t− 1 0
1 0 3t

]
, . . .

}
,

W (s) = diag


 0 s− 3

2
− 3

2 0
1 0

 ,
 0 s− 3

2
− 3

2 0
1 0

 , . . .
 ,
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V (s) = diag


 1 0
−1 0
s− 1 s−1

2

 ,
 1 0
−1 0
s− 1 s−1

2

 , . . .
 .

Let the vector-function f(t) act from the interval [0, 2] into the Banach space c of all
convergent numerical sequences: f(t) ∈ C([0, 2], c) := {f(·) : [0, 2] → c}, the operator-
valued functions M(t), W (t) and V (t) act from the Banach space C([0, 2], c) to itself
with the norms |||M |||C([0,2],c) = supt∈[0,2]‖M(t)‖c, |||W |||C([0,2],c) = supt∈[0,2]‖W (t)‖c,
|||V |||C([0,2],c) = supt∈[0,2]‖V (t)‖c.

It is obvious that the operator L is a linear bounded operator acting from the Banach
space of continuously differentiable functions C1([0, 2], c) on the interval [0, 2] into the
Banach space of continuous functions C([0, 2], c).

For this equation we have:

N(s) =

2∫
s

W (s)ds+ V (s) =

= diag


 1 −1− s2

2 + 3s
2

−4 + 3s
2 0

1 s−1
2

 ,
 1 −1− s2

2 + 3s
2

−4 + 3s
2 0

1 s−1
2

 , . . .
 ,

W0 =

2∫
0

W (s)ds = diag


 0 −1
−3 0

2 0

 ,
 0 −1
−3 0

2 0

 , . . .
 .

Then

D = I −A = I −
2∫

0

N(s)M(s)ds = diag


 4

3 0 0
0 0 0
0 0 0

 ,
 4

3 0 0
0 0 0
0 0 0

 , . . .
 ,

PN(D) = PYD
= diag


 0 0 0

0 1 0
0 0 1

 ,
 0 0 0

0 1 0
0 0 1

 , . . .
 ,

D− = diag


 3

4 0 0
0 0 0
0 0 0

 ,
 3

4 0 0
0 0 0
0 0 0

 , . . .
 .

To find the solvability condition, we compute the operator

S = PYD
W0 = diag


 0 0
−3 0

2 0

 ,
 0 0
−3 0

2 0

 , . . .
 ,

PN(S) = diag

{[
0 0
0 1

]
,

[
0 0
0 1

]
, . . .

}
,PYS

= diag


 1 0 0

0 1 3
2

0 0 0

 ,
 1 0 0

0 1 3
2

0 0 0

 , . . .
 .

Then the solvability condition for the equation (17) takes the form

PYS
PYD

2∫
0

N(s)f(s)ds = diag


 0 0 0

0 1 3
2

0 0 0

 ,
 0 0 0

0 1 3
2

0 0 0

 , . . .
×
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×
2∫

0

diag


 1 −1− s2

2 + 3s
2

−4 + 3s
2 0

1 s−1
2

 ,
 1 −1− s2

2 + 3s
2

−4 + 3s
2 0

1 s−1
2

 , . . .
 f(s)ds =

=

2∫
0

diag


 0 0

3s−5
2

3(s−1)
4

0 0

 ,
 0 0

3s−5
2

3(s−1)
4

0 0

 , . . .
 f(s)ds = 0.

After the transformations, we obtain the results which show that the components of
the vector-function f(t) = col

(
f1(t), f2(t), . . .

)
must satisfy the conditions

2∫
0

[
2(3s− 5)f2k−1(s) + 3(s− 1)f2k(s)

]
ds = 0, k = 1, 2, 3, . . . .

These conditions are satisfied, for example, by the vector f(t) = col(0, 1, 0, 1, 0, 1, . . .).
For this vector, the solution of the equation will have the form

z(t) = col

[[
t2

2 − t)c2
4−3t
4 c̃2 + 3t2

2 c3

]
,

[
t2

2 − t)c4
4−3t
4 c̃4 + 3t2

2 c5

]
, . . . ,

]
.

Example 4.2 We find the conditions for the solvability of the integro-differential
equation, which is considered in the finite-dimensional Euclidean space [1, 3]

z(t)−M(t)

2π∫
0

W (s)z(s)ds = g(t),

where

M(t) =

[
cos t sin t
− sin t cos t

]
, W (s) =

1

2π

[
0 0

cos s sin s

]
,

V (s) = 0, g(t) =

[
cos t sin t
− sin t cos t

]
f(t).

For this equation we have

W (s) =

2π∫
s

W (s)ds =
1

2π

[
0 0

sin s cos s− 1

]
, W0 =

2π∫
0

W (s)ds =
1

2π

[
0 0
0 0

]
.

D = I2 −A = I2 −
2π∫
0

W (s)M(s)ds =

[
1 0
0 0

]
, PN(D) = PYD

=

[
0 0
0 1

]
.

The matrix S = PYD
W0 is zero, so PYS

=

[
1 0
0 1

]
and the solvability condition (10)

will have the form

PYS
PYD

2π∫
0

W (s)g(s)ds =
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=
1

2π

[
1 0
0 1

] [
0 0
0 1

] 2π∫
0

[
0 0

sin s cos s− 1

] [
cos s sin s
− sin s cos s

]
f(s).

After the transformations, we obtain the condition

2π∫
0

[
f1(s) sin s+ f2(s)(1− cos s)

]
ds,

which completely coincides with the conditions from [1,3], obtained by other methods.

The proposed research method can be used to study the solvability conditions for
integro-differential systems of the Volterra type equations [18] in the case when the
system is not everywhere solvable.
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