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Abstract: The paper deals with Bayesian approach for multi-mode Kalman fil-
ter estimation for the states x(k) from the set of successive observations Yk =
{y(1)y(2) . . . y(k)} in normal and abnormal operations is driven. Abnormal oper-
ations may be related to fault in one of system components; sudden internal thermal
noise or even missing the input signal and can be extended to the maneuver target
tracking case. Whenever the abnormal operation is detected, we can start tracking
the states in this mode of operation. So the main problem may be reformulated to be
detection of the starting point of the abnormal operation. The numerical simulation
for fault estimation of phosphor furnace in different conditions are used to show the
effectiveness of the proposed approach.
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1 Introduction

Fault detection and isolation problems have many significant applications during the
past three decades, such as parity space Eigen structure assignment, H∞ filtering, H∞
optimization, and unknown input observer [1]. It is known that multiple model systems
(known as hybrid systems) are an important class of combination filtering, which are
mostly used in many practical engineering and industrial fields such as maneuver target
tracking systems and fault detection systems, ets. In general, the multiple model systems
combine hierarchically discrete or continuous state spaces, and each state (which is called
the mode) is associated with a dynamic process [2].
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Many algorithms have been proposed for solving the problem of hybrid systems, such
as the generalized pseudo Bays [3], interacting multiple model [4], expectation propaga-
tion algorithm [5]. These algorithms estimate the states with low computational costs
by approximating of the posterior state distributions in finite mixture models. The main
drawback of these algorithms is that, whenever the system contains nonlinear or non-
Gaussian modes, the mixture models can not approximate the distribution accurately,
that leads to the estimation fail. The interactive multiple model (IMM) algorithm, see [4]
and [9], may be considered one of the most important approaches for solving the switch-
ing systems with the Gaussian linear states. It is basic operation by applying the Kalman
filter for each estimation mode under consideration that this mode is a correct one at this
operational instant. Then, the weighted combination of state estimations by all filters is
calculated to produce the final Gaussian mean and covariance [7]. This mixed estimation
is used for the next estimation. The weights are calculated according to the probabilities
of the models.

In this paper, a Bayesian approach for multi-mode Kalman filter estimation for the
states x(k) from the set of successive observations Yk = {y(1)y(2) . . . y(k)} in normal
and abnormal operations is developed. The rest of the paper is organized as follows:
Statement of the problem is described in Section 2. Multi-mode Kalman filter approach
is described in Section 3. Proposed multi model estimation is described in Section 4.
Simulation Results is described in Section 5. Conclusion is described in Section 6.

2 Statement of The Problem

Consider the classical discrete-time state space problems in case of linear model of the
form:

x(k + 1) = F (k + 1, k)x(k) +BU(k) + Γ(k)v(k), (1)

y(k) = Hx(k) + w(k), (2)

where x(k) is the discrete time state, F is a state transition matrix, B is an input
matrix, the vector U(k) is the input and assumed to be known at perspective times,
y(k) is a vector including the measurements at time k, H is the associated observation
matrix, v(k) is a state noise process (or an input noise), and w(k) is the measurement
noise; both sequences w(k) and v(k) are assumed to be uncorrelated with the white
Gaussian noise sequence with zero means and the covariance matrices Q(k) and R(k), and
v(k)∼N(0, Q(k)), w(k)∼N(0, R(k)), [cov(v(k), v(j)) = E[v(k)v(j)T ]δ(k, j) = Qkδ(k, j)],
δ(k, j) is the Kronecker delta, cov (w(k), w(j))] = E

[
w(k)w(j)T

]
δ(k, j) = Rkδ(k, j).

It is also assumed that w and v are uncorrelated and cov (w(k), v(k)) = 0 for all
k, j. The initial value of x represents a random variable with an average µx(0) and
variance Vx(0) such that E [x(0)] = µx(0) and var [x(0)] = Vx(0). Assume that the
observation noise w(k) is uncorrelated with the system discrete-time state x(k), such
that E

[
x(k)w(k)T

]
= 0 ∀ k ≥ 0.

Now our problem is to estimate the states x(k) from the set of successive observations
Y k = {y(1)y(2). . .y(k)} in normal and abnormal operations. Abnormal operations are
related to the fault in one of the system components; sudden internal thermal noise or
even missing the input signal and can be extended to the maneuver target tracking case.
Whenever the abnormal operation is detected, we can start tracking the states in this
mode of operation. So the main problem may be reformulated to be: detection of the
starting point of the abnormal operation.
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3 Multi-Mode Kalman Filter Approach

Let
∧
x (k/k) be the state estimation, then the estimation error will be:

∼
x = x(k)− ∧x(k/k), (3)

The estimation will be conditionally and unconditionally unbiased, such that

E
{∧
x (k/k) |y (k)

}
= E {x(k)|y(k)} , (4)

which leads to
E
{∧
x (k/k)

}
= E {x(k)} , (5)

which is a linear function of the observations y(k). According to the linear unbiased
estimation algorithms, we choose only the one that gives the minimal variance of error,

i.e., V∼
x
(k/k) = var

{∼
x(k/k)

}
or simply var

{∼
x(k/k)|y(k)

}
is as minimum as possible.

For a given set of observations Y k, the estimate based on the minimum of the mean-
square error coincides with the conditional mean value of x, which is based on linear
Kalman filter process.
1- Extrapolation process:

x̂(k/k − 1) = F (k, k − 1)x̂(k − 1/k − 1). (6)

2- Estimation:

x̂(k/k) = x̂(k/k − 1) +K(k) [y(k)−H(k)x̂(k/k − 1)] . (7)

3- Coefficient gain:

K(k) = P (k/k − 1)HT (k)
[
H(k)P (k/k − 1)HT (k) +R(k)

]−1
. (8)

4- Covariance extrapolation:

P (k + 1/k) = F (k + 1, k)P (k/k)FT (k + 1, k) +Q(k). (9)

5- Covariance filtration:

P (k/k) = [1−K(k)H(k)]P (k/k − 1). (10)

Definition 3.1 Let the innovation process noise ϑ(k) be [8]

ϑ(k) = y(k)−H(k)x̂(k/k − 1). (11)

Assume the innovation process noise ϑ(k) is the white Gaussian noise with zero mean
expectation in the normal operation and, also, the white Gaussian noise but with non-
zero mean expectation in the abnormal operation:

E [ϑ(k)] =

{
0, at the normal operation,
g(k − k0, α), at the abnormal operation,

(12)

where g is a deterministic function, k0 + 1 is the starting of abnormal operation and α is
an intensity vector.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (4) (2018) 372–391 375

Definition 3.2 Let us define the covariance of the additional intensity vector α as

s(k) = H(k)P (k/k − 1)HT (k) +R(k). (13)

Definition 3.3 Let the density of the probability distribution of the innovation pro-
cess noise ϑ(k) be w(ϑ):

w(ϑ) =
1√

(2π)
n

det(s)
e

(
−1

2
ϑT s−1ϑ

)
. (14)

The following equation is a Riccati equation

(15)
P (k + 1/k) = F (k + 1, k)[
P (k/k− 1)−P (k/k− 1)HT (k)s(k)−1H(k)P (k/k− 1)

]
F (k+ 1/k)T +Q(k).

Note: The Riccati equation will converge to the constant matrix P as k → ∞ in
case of the system we are dealing with time invariant. As a result, the gain coefficient
K converges to a constant small value and estimates of the parameters practically inde-
pendent of the observed data. The result, is that, for small intensity α, will not be taken
into account in any way.

The problem of detection the starting point of the abnormal operation ko and es-
timation of its intensity vector α is a problem of detection a useful signal g(k − ko, α)
from the white noise and estimation of its parameters. It is known that, when solving
the problem of detection, various optimality criteria (Bayesian or non-Bayesian) lead to
a general decisive rule - the formation of the likelihood ratio and comparison with the
threshold. The difference lies in the choice of the detection threshold. Here we assume
that the abnormal operation intensity is a nonrandom process. To synthesize the meter
of the intensity of the abnormal operation, it is convenient to use the maximum likeli-
hood criterion. In this subsection we consider a general approach to the synthesis of the
algorithm for simultaneous detection of the moment of the beginning and estimation of
the abnormal operation. Let

U(k) =

{
u(k), at normal operation,

u(k) + α, at abnormal operation.
(16)

It is assumed that the system starts the abnormal operation in the time between the
moments k0 and k0 + 1, therefore the time moment, which is considered the beginning
of the abnormal operation, is k0 + 1. Let ϑ0(k) and ϑ1(k) be the updating processes
corresponding to the absence and presence of an abnormal operation, then the problem of
finding an abnormal operation consists of choosing one of the two alternative hypotheses.

H0 : ϑ(k) = ϑ0(k) at the normal operation, (17)

H1 : ϑ(k) = ϑ1(k) = ϑ0(k) + g(k − k0, α) at the abnormal operation, (18)

where g(k − k0, α) is a useful signal that should be detected, whenever the abnormal
operation is started, g(k − k0, α) is introduced as an offset or bias in the innovation
process at the time k − k0. Since ϑ0(k) is a random process with the white Gaussian
noise with zero expectation and covariance and ϑ1(k) is the mixing of the useful signal
and the white noise ϑ0(k), with the mathematical expectation g(k − k0, α).
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Theorem 3.1 The task is detecting a vector of deterministic signal g(k−k0, α) with
unknown parameters (the intensity α and the moment of the onset of the abnormal op-
eration k0 + 1) from a background of the white noise ϑ0(k).

Proof. The optimal procedure for detection the of intensity vector α may be reduced
to the formation of the likelihood ratio and compared with a predetermined threshold
value λ,

L(k) =
p [ϑ(k −m+ 1), ..., ϑ(k)|H1]

p [ϑ(k −m+ 1), ..., ϑ(k)|H0]
≥ λ, (19)

where m = k − k0 = 1...M , M is the number of samples. Assume that the samples of
the white Gaussian noises are statistically independent, then we have

p [ϑ(k −m+ 1), ..., ϑ(k)|H0] =
k

Π
n=k−m+1

1√
(2π)l det(s(n))

e

(
−1

2
ϑT (n)s−1ϑ(n)

)
, (20)

and

p [ϑ(k −m+ 1), ..., ϑ(k)|H1] =

k

Π
n=k−m+1

1√
(2π)l det(s(n))

e

(
−1

2
[ϑ(n)− g(n− k0, α)]

T
s−1(n) [ϑ(n)− g(n− k0, α)]

)
,

(21)

where l is the order of the vector ϑ(k) and k is the current instant of time. From
the equations (19)–(21) after algebraic transformations, taking into account that s is a
symmetric matrix, ϑ and g are columns vectors,

ϑT s−1g = gT s−1ϑ, (22)

we get

L(k) = e

{
k∑

n=k−m+1

[
gT (n− k0, α)s−1(n)ϑ(n)− 1

2
gT (n− k0, α)s−1(n)g(n− k0, α)

]}
,

(23)
Taking the logarithm of both sides of (23), we get

lnL(k) =

k∑
n=k−m+1

[
gT (n− k0, α)s−1(n)ϑ(n)− 1

2
gT (n− k0, α)s−1(n)g(n− k0, α)

]
,

(24)
2

Let g(m,α) = ϑ1(k) − ϑ0(k) = ϑ1(k0 + m) − ϑ0(k0 + m). Then ϑ1(k0 + m) is the
updating process at the time k = k0 +m under the condition of correspondence between
the real state (presence of the abnormal operation) of the system and the model of system
used by the abnormal operation (model equation with U(k) = u(k) +α), and ϑ0(k0 +m)
is the updating process at time k = k0 +m under the condition of a discrepancy between
the real state (the presence of the abnormal operation) of the system and the model of
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system used by the abnormal operation (model equation 1 with U(k) = u(k)). Then

(25)

_
g (m,α) =

[
y(k0 +m)−H _

x
1

(k0 +m/k0 +m− 1)
]

−
[
y(k0 +m)−H _

x
0

(k0 +m/k0 +m− 1)
]

= H
[
_
x

0
(k0 +m/k0 +m− 1)− _

x
1

(k0 +m/k0 +m− 1)
]

= HF
[
_
x

0
(k0 +m/k0 +m− 1)− _

x
1

(k0 +m/k0 +m− 1)
]
.

Proof: The state estimation equation (1) at the normal and abnormal operation will be:

1. At time step 1

(26)
_
x

0
(k0 + 1/k0 + 1) = [F −K(k0 + 1)HF ]

_
x (k0/k0)

+K(k0 + 1)y(k0 + 1) + [B −K(k0 + 1)HB]u(k),

2. At time step 2

_
x

0
(k0 + 2/k0 + 2) =

[F−K(k0 +2)HF ] [F−K(k0 +1)HF ]
_
x (k0/k0) [F−K(k0 +2)HF ]K(k0 +1)y(k0 +1)

+K(k0 +2)y(k0 +2) {[F −K(k0 +2)HF ] [B−K(k0 +1)HB]+[B−K(k0 +2)HB]}
u(k),

(27)

3. At time step m

_
x

0
(k0 +m/k0 +m) =

m−1∏
i=0

[F −K(k0 +m− i)HF ]
_
x (k0/k0)

+

m−2∑
j=0

{[
j∏
i=0

[F −K(k0 +m− i)HF ]

]
K(k0 +m− j − 1)y(k0 +m− j − 1)

}
+K(k0 +m)y(k0 +m)

+

m−2∑
j=0

{[
j∏
i=0

[F −K(k0 +m− i)HF ]

]
[B −K(k0 +m− j − 1)HB]

}
+ [B −K(k0 +m)HB]u(k),

(28)

from the above equations (25)–(28) and after the substitution m = k− k0, we obtain the
expression for the ”useful signal” g(m,α) in the following form

(29)

g(m,α) = HF


m−2∑
j=0

{[
j∏
i=0

[F −K(k − i)HF ]

]
[B −K(k − j − 1)HB]

}

+ [B −K(k)HB]

u(k)

= G(m)u(k),
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where

(30)

G(m) = HF...
m−2∑
j=0

{[
j∏
i=0

[F −K(k− i)HF ]

]
[B−K(k−j−1)HB]

}
+[B−K(k)HB]

 ,

m ≥ 1. When m = 1, the term
m−2∑
j=0

{[∏j
i=0 [F −K(k − i)HF ]

]
[B −K(k − j − 1)HB]

}
will be equal to zero, and the matrix G(m) becomes square matrix with dimensions l× l,
l is the order of the observation vector. Substituting equation (29) into (24), we obtain

lnL(k, α) =

k∑
n=k−m+1

[
αTGT (n− k0)s−1(n)ϑ(n)− 1

2
αTGT (n− k0)s−1(n)G(n− k0)α

]
,

(31)
then

(32)

lnL(k, α) = αT

[
k∑

n=k−m+1

[
GT (n− k0)s−1(n)ϑ(n)

]]

− 1

2
αT

[
k∑

n=k−m+1

[
GT (n− k0)s−1(n)GT (n− k0)

]]
α.

From equation (32), by the criterion of maximum likelihood ratio, we find the estimate
of the intensity vector,

(33)

∂ lnL(k, α)

∂α
=

k∑
n=k−m+1

[
GT (n− k0)s−1(n)ϑ(n)

]
−

[
k∑

n=k−m+1

[
GT (n− k0)s−1(n)GT (n− k0)

]]
α

= 0.

Then

_
αm=

[
k∑

n=k−m+1

[
GT (n− k0)s−1(n)G(n− k0)

]]−1[ k∑
n=k−m+1

[
GT (n− k0)s−1(n)ϑ(n)

]]
.

(34)
Taking the second order derivative, we get

∂2 lnL(k, α)

∂α∂αT
=

[
k∑

n=k−m+1

[
GT (n− k0)s−1(n)GT (n− k0)

]]
≺ 0. (35)

The function lnL(k) will reach its maximum value at the point α =
_
αm.

Theorem 3.2 var {Xy} = X [var {y}]XT .
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Proof. Let X be an m × n matrix and y be a n ×1 random vector. Then

var {Xy} = E
[
(Xy −XE(y))(Xy −XE(y))T

]
= E

[
X(y − E(y))(y − E(y))TXT ,

]
= XE

[
(y − E(y))(y − E(y))T

]
XT = X [var {y}]XT .

2

If all values are scaled by a constant, the variance is scaled by the square of that
constant. Then, the covariance matrix of the estimation is

(36)

var
{
_
αm

}
=

[
k∑

n=k−m+1

[
GT (n− k0)s−1(n)GT (n− k0)

]]−1

...

[
k∑

n=k−m+1

[
GT (n− k0)s−1(n)var {ϑ(n)}

[
GT (n− k0)s−1

]T ]]× ...
[ k∑

n=k−m+1

[
GT (n− k0)s−1(n)G(n− k0)

]]−1
T .

Let the covariance matrix of the innovation process be var {ϑ(n)} = s(n). Since
s−1(n) is a symmetrical matrix, we have that

(37)

[ k∑
n=k−m+1

[
GT (n− k0)s−1(n)G(n− k0)

]]−1
T

=

[
k∑

n=k−m+1

[
GT (n− k0)s−1(n)G(n− k0)

]]−1

,

yields the covariance matrix of this estimate as follows

var
{
_
αm

}
=

[
k∑

n=k−m+1

[
GT (n− k0)s−1(n)GT (n− k0)

]]−1

, (38)

Substituting equation (33) into (32), we get

lnL(k,
_
αm) =

1

2

k∑
n=k−m+1

ϑT s−1G

[
k∑

m=k−m+1

GT s−1G

]−1 k∑
m=k−m+1

GT s−1ϑ ≥ λ̃m,

(39)

It is obvious that for every value of m, there exists an estimate
_
αm. Therefore, the

simultaneous detection of the start of the abnormal operation and estimating the abnor-
mal operation is the abnormal operation in multichannel (M channels). Therefore the
optimal procedure for detecting the moment of the beginning of the abnormal operation
has the form

max
m=1,M

lnL(k,
_
αm) ≥ λ̃m, (40)
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and the moment of the beginning of the abnormal operation is the difference(k −m+ 1),

where m is the channel index, in which lnL(k,
_
αm)takes the maximum value, and k is

the current time moment.
It follows that (equations (39)–(40) ) the optimal procedure for detecting the moment

of the onset of the abnormal operation is reduced to linear accumulation of the values of
the quadratic forms (equation (39)) of the innovation process in m adjacent cycles from
(k0 + 1) to k = (k0 +m)th moments of time. Then, the maximum value is selected from
the set of M different values and is compared with a given threshold λ̃m.

Note: The different channels accumulate different values, so to stabilize the proba-
bility of false alarm, it is necessary to compare the maximum value of the likelihood ratio
(equation (40)) with different thresholds λ̃m, chosen from the given probability of false
alarm PFA. Using the decision rule ( equation (40)), we can detect and evaluate, both
the abnormal operation and the moment of the beginning of the abnormal operation.
To calculate the probability of a false alarm, it is necessary to know the law of distribution

of the quadratic form lnL(k,
_
αm) in the absence of an abnormal operation. It is known

that [8] if ϑ(n) is an l -dimensional vector with independent normally distributed compo-
nents, each of which has the variance σ2

iq(q = 1, 2, ..., l) and the mathematical expectation

E [ϑ(n)] = 0, then the probability distribution density of the quadratic form lnL(k,
_
αm)

is the central χ2-distribution with l ×m degrees of freedom. The corresponding density
of the probability distribution is written in the form

χ2
[
lnL(k,

_
αm)

]
=

[
2

lm
2 Γ(

lm

2
)

]−1 [
lnL(k,

_
αm)

] lm
2 −1

exp

(
1

2
lnL(k,

_
αm)

)
. (41)

Then the probability of false alarm is given by∫ ∞
λ̃m

χ2
[
lnL(k,

_
αm)

]
d
[
lnL(k,

_
αm)

]
, (42)

after detecting the beginning of the abnormal operation, either the Kalman filter pa-
rameters are adjusted (usually the gain factors or the covariance matrix Q (k)), or their
structure is changed by using more complex models of state change taking into account
the abnormal operation.

The general scheme that realizes this algorithm is shown in Figure 1 below.
In the first case, parameters adjustment of the Kalman filter will be changed according

to the following formula

if lnL(k,
_
α1) ≥ λ̃1 then Q

0(k)→ Q1(k), (43)

where Q0(k) and Q1(k) are chosen on the basis of the experiment so that to better reflect
the true estimate of the state, both in the absence and in the presence of an abnormal
operation. According to this, the elements of the matrix Q0(k) must take small values
corresponding to rectilinear and uniform tracking with weak perturbations and Q1(k)
are large values corresponding to tracking with abnormal operation. In general, the
value of Q1(k) is selected on the basis of the possible maximum abnormal operation

intensity of the system [10], for example, one may choose Q0(k) =

[
0.1 0
0 0.1

]
and

Q1(k) =

[
25 0
0 25

]
. The structure of the Kalman filter is changing by take the following
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Figure 1: Kalman filter operation schema for abnormal estimation.

formula in the second case:

if lnL(k,
_
α1) ≥ λ̃1 then model U(k) = u(k) converted to model U(k) = u(k)+α. (44)

Bayes adaptive approach [9] takes into account the possibility that the adopted model
is inadequate, in other words, all possible variants of the parameters or hypotheses con-
cerning the model are taken into account.

4 Proposed Multi Model Estimation

In the problem of filtering tracking of the states, the a priori uncertainty of the statistical
characteristics of the system leads to an uncertainty in the statistical characteristics of
the filtered state vector. According to this, which is unknown to the observer in advance,
leads to a mismatch between the real state and the model used in the estimation devices.
Let ζ be a vector containing all the indeterminate parameters that represent all the
undefined events associated with the hypotheses about the model.

According to this, in the general case, the equations of state of the system and the
observations take the form

x(k + 1) = F (ζk+1)x(k) + Γ(ζk+1)v(k), (45)

y(k) = Hx(k) + w(k). (46)

Then, in this section, we have to estimate the conditional mathematical expectation

∧
x (k/k) = E

[
x(k)|Y k

]
. (47)

According to the Bayesian approach, this operation is performed on the basis of the total
probability theorem:

p
[
x (k)

∣∣Y k ] =

∫
Υ

p
[
x (k)

∣∣ζ, Y k ] p [ζ ∣∣Y k ] dζ, (48)

where Υ is the set of all possible values of ζ, p
[
x (k)

∣∣Y k ] is the conditional probabil-

ity distribution of states x (k) for given observation, p
[
x (k)

∣∣ζ, Y k ] is the conditional
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probability distribution of states x (k) for given observation and accepted value of ζ for
undefined parameters and events, p

[
ζ
∣∣Y k ] is the posteriori distribution of vector ζ for

given observations. From equations (47) and (48) the optimal mean square estimate of
∧
x (k/k) and its covariance matrix

∧
P (k/k) are

∧
x (k/k) =

∫
Υ

_
x
ζ

(k/k)p
[
ζ
∣∣Y k ] dζ, (49)

P̂ (k/k) =

∫
Υ

{
P̂ ζ(k/k) +

[
x̂ζ(k/k)− x̂(k/k)

] [
x̂ζ(k/k)− x̂(k/k)

]T}
p
[
ζ|Y k

]
dζ, (50)

where x̂ζ(k/k) and P̂ ζ(k/k) are the partial estimate and its covariance obtained for a
given value of ζ, respectively, and equal to

x̂α(k/k) = E
{
x(k)|α, Y k

}
, (51)

P̂ ζ(k/k) = E
{[
x̂ζ(k/k)− x(k)

] [
x̂ζ(k/k)− x(k)

]T ∣∣ζ, Y k} , (52)

Therefore, the obtained estimate can be represented as a linear combination of partial
estimates x̂ζ(k/k), each of which is obtained under a certain hypothesis with respect
to the model. The weight coefficients of this linear combination expressing the total
estimate are determined by the probabilities of each hypothesis under consideration. A
complete covariance matrix is calculated similarly, as a linear combination (with the same
weights) of conditional matrices P̂ ζ(k/k). Therefore, in principle, by the equations (49)–
(52) we can obtain the optimal estimate x̂(k/k). In addition, as follows from equation
(48), p

[
x(k)|Y k

]
is a linear combination of Gaussian probabilities. So, {ζk = i} or

{
ζik
}

the event consists the state in accordance with the state i at the k th instant of time;

Υ(k) = {Υ1,Υ2, ...,Υk} =
{{
ζi1
}
,
{
ζj2

}
, ..., {ζsk}

}
, i, j, ..., s = 0,M − 1, is the set of all

possible values that the discrete-random process ζk can take from the initial value to the
k th time moment. And Υ(k, lk) = {Υ(k) ∩ lk} lk = 1,Mk is a subset containing k-value.
Figure 2 describes the set of possible values of Υ.

Figure 2: The set of possible values of Υ.

From Figure 2; Υ(k, lk) is the lk
th branch with the duration k. Hence the number of

different branches in Υ(k) is equal to Mk. In this case, according to the Bayes formula,
we obtain the posterior probability density of the state vector as follows:

p
[
x (k)

∣∣Y k ] =

Mk∑
lk=1

p
[
x(k)|Υ(k, lk), Y k

]
P (Υ(k, lk)|Y k), (53)
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the indices i(lk), j(lk), ..., s(lk) are varying between the limits [0,M-1] and the index lk ∈
1,Mk. Let the a posteriori probability density of the lk-th branch Υ(k, lk) be

(54)

P (Υ(k, lk)|Y k) = P (ζi1, ζ
j
2 , ..., ζ

s
k|y(k), Y k−1)

=
p
[
y(k)|ζi1, ζ

j
2 , ..., ζ

s
k, Y

k−1
]
P
[
ζi1, ζ

j
2 , ..., ζ

s
k|Y k−1

]
p [y(k)|Y k−1]

,

then equation (53) in base of indices will be

p
[
x (k)

∣∣Y k ] =

M−1∑
i=0

M−1∑
j=0

...

M−1∑
s=0

p
[
x(k)|ζi1, ζ

j
2 , ..., ζ

s
k, Y

k
]
P (ζi1, ζ

j
2 , ..., ζ

s
k|Y k), (55)

To reduce possible hypotheses, it is assumed that [4] the unknown parameter ζk
is a simply-connected Markov chain, with a matrix of transition probabilities P =
[pts]t,s=0,M−1, where pts = P

(
ζsk|ζtk−1

)
. Since the algorithm starts working at the k th

time point, at the kth instant of time equation (55) will be

p
[
x(k)|Y k

]
=

M−1∑
s=0

p
[
x(k)|ζsk, Y k

]
P (ζsk|Zk). (56)

The Bayes description of the expression p
[
x(k)|ζsk, Y k

]
is written in the form

p
[
x(k)|ζsk, Y k

]
= p

[
x(k)|ζsk, y(k), Y k−1

]
=
p
[
y(k)|ζsk, x(k), Y k−1

]
p
[
x(k)|ζsk, Y k−1

]
p [y(k)|ζsk, Y k−1]

.

(57)
This leads to

p
[
x(k)|ζsk, y(k), Y k−1

]
=

M−1∑
i=0

p
[
x(k)|ζik−1, ζ

s
k, Y

k−1
]
P
(
ζik−1|ζsk, Y k−1

)
. (58)

Equation (58) proves that the term p
[
x(k)|ζik−1, ζ

s
k, Y

k−1
]

is the Gaussian apriori

probability density of the state vector corresponding to the values
{
ζik−1, ζ

s
k

}
between

two adjacent moments. Thus

(59)
p[x(k)|ζik−1, ζ

s
k, Y

k−1] = N
[
x(k);F (k/k − 1, ζsk)

_
x
i

(k − 1/k − 1),

F (k/k − 1, ζsk)P i(k − 1/k − 1)F (k/k − 1, ζsk)T + Γ(ζsk)Q(k − 1)Γ(ζsk)T
]
.

If it is assumed that the probability density p
[
x(k)|ζsk, Y k−1

]
of the state vector corre-

sponding to the value ζsk is Gaussian, then taking into account (58)–(59) we obtain

N [x(k);
_
x
s

(k/k− 1),
_

P
s

(k/k− 1)] ' N

[
x(k);

M−1∑
i=0

F (ζsk)
_
x
i

(k/k− 1)P (ζik−1|ζsk, Y k−1),

M−1∑
i=0

F (ζsk)
_

P
i

(k − 1/k − 1)F (ζsk)T + Γ(ζsk)Q(k − 1)Γ(ζsk)T + [F (ζsk)
_
x
i

(k − 1/k − 1)

− x̂s(k/k − 1)][[F (ζsk)
_
x
i

(k − 1/k − 1)− x̂s(k/k − 1)]T ]P (ζik−1|ζsk, Y k−1)

]
,

(60)
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equating both sides of this expression, we obtain

_
x
s

(k/k − 1) = F (ζsk)

M−1∑
i=0

x̂i(k − 1/k − 1)P (ζik−1|ζsk, Y k−1), (61)

or
_
x
s

(k/k − 1) = F (ζsk)x̂0s(k − 1/k − 1), (62)

where

x̂0s(k − 1/k − 1) =

M−1∑
i=0

x̂i(k − 1/k − 1)P (ζik−1|ζsk, Y k−1), (63)

and

P̂ s(k/k − 1) =

M−1∑
i=0

F (ζsk)
_

P
i

(k − 1/k − 1)F (ζsk)T + Γ(ζsk)Q(k − 1)Γ(ζsk)T +

[
F (ζsk)

_
x
i

(k − 1/k − 1)− x̂s(k/k − 1)
] [[

F (ζsk)
_
x
i

(k − 1/k − 1)− x̂s(k/k − 1)
]T]

P (ζik−1|ζsk, Y k−1).

(64)

Substituting (63) into (64), we obtain

[P̂ s(k/k − 1) = F (ζsk)P̂ 0s(k/k − 1)F (ζsk)T + Γ(ζsk)Q(k − 1)Γ(ζsk)T , (65)

where

P̂ 0s(k − 1/k − 1) =

M−1∑
i=0

P (ζik−1|ζsk, Y k−1)...

[
P̂ i(k−1/k−1)+

(
x̂i(k−1/k−1)− x̂s(k/k−1)

)
×
(
x̂i(k−1/k−1)− x̂s(k/k−1)

)T ] ∂2Ω

∂v2
,

(66)

and

[P (ζik−1|ζsk, Y k−1) =
P (ζsk|ζik−1)P (ζik−1|Y k−1)∑M−1
i=0 P (ζsk|ζik−1)P (ζik−1|Y k−1)

. (67)

The output estimates is calculated from equations (59) and (60)

[
_
x (k/k) =

M−1∑
i=0

M−1∑
j=0

· · ·
M−1∑
s=0

x̂ij...s(k/k)P (ζi1, ζ
j
2 , · · ·, ζsk|Y k), (68)

and its covariance matrix:

P̂ (k/k) =

M−1∑
i=0

M−1∑
j=0

· ·

·
M−1∑
s=0

[
P̂ ij...s(k/k) +

[
x̂ij...s(k/k)− x̂(k/k)

] [
x̂ij...s(k/k)− x̂(k/k)

]T ]
P (ζi1, ζ

j
2 , · · ·, ζsk|Y k),,

(69)
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where estimation

x̂ij...s(k/k) = x̂ζ
i
1,ζ

j
2 ,...,ζ

s
k(k/k), (70)

and covariance matrix

P̂ ij...s(k/k) = P̂ ζ
i
1,ζ

j
2 ,...,ζ

s
k(k/k), (71)

the corresponding lk
th branch of the algorithm M parallel Kalman filters Algorithm. The

algorithm consists of M parallel Kalman filters, each of them is tuned to a single value
ζi, as described below, Figure 3 shows the realization diagram of the algorithm.

1. Initialization:

(a) Set the initial value of the M – estimates of the state vector x̂i(k/k):

x̂0s(k − 1/k − 1) =

M−1∑
i=0

x̂i(k − 1/k − 1)P (ζik−1|ζsk, Y k−1), (72)

(b) Set the initial value of the M – covariance P̂ i(k − 1/k − 1):

P̂ 0s(k − 1/k − 1) =

M−1∑
i=0

P (ζik−1|ζsk, Y k−1)[
P̂ i(k−1/k−1)+

(
x̂i(k−1/k−1)− x̂s(k/k−1)

)
×
(
x̂i(k−1/k−1)− x̂s(k/k−1)

)T ]
∂2Ω

∂v2
,

(73)

2. Estimation process:

(a) Extrapolation of the state vectors:

_
x
s

(k/k − 1) = F (ζsk)x̂0s(k − 1/k − 1), (74)

(b) Extrapolation of correlation matrices:

P̂ s(k/k − 1) = F (ζsk)P̂ 0s(k/k − 1)F (ζsk)T + Γ(ζsk)Q(k − 1)Γ(ζsk)T . (75)

(c) Coefficient gain:

Ks(k) = P̂ s(k/k − 1)H
[
HP̂ s(k/k − 1)HT +R(k)

]−1

. (76)

(d) Estimation:

x̂s(k/k) = x̂s(k/k − 1) +Ks(k) [y(k)−Hx̂s(k/k − 1)] . (77)

(e) Covariance filtration

P s(k/k) = [I −Ks(k)H(k)] P̂ s(k/k − 1). (78)
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3. Calculate the conditional probability density of observation, corresponding to the
states of ζsk, we obtain

Ls(k) = p[y(k)|ζsk, Y k−1] = p
[
y(k)|ζsk, Hx̂s(k/k − 1), P̂ s(k/k − 1)

]
= [(2π)s det(ss)(k)]

−1/2 exp
[
−0.5ϑs(k)T ss(k)−1ϑj(k)

] , (79)

where

ϑs(k) = y(k)−H(k)x̂s(k/k − 1), (80)

and

ss(k) = HP̂ s(k/k − 1)HT (k) +R(k). (81)

4. Calculate the a posteriori probabilities of the state ζsk, according to the Bayes
formula

P
[
ζsk|Y k

]
= P

[
ζsk|y(k), Y k−1

]
=

p
[
y(k)|ζsk, Y k−1

]
P
[
ζsk|Y k−1

]∑M−1
s=0 p [y(k)|ζsk, Y k−1]P [ζsk|Y k−1]

, (82)

where

P
[
ζsk|Y k

]
=

Ls(k)
∑M−1
i=o pisP

[
ζik−1|Y k−1

]∑M−1
s=0 Ls(k)

∑M−1
i=o pisP

[
ζik−1|Y k−1

] . (83)

5. The output estimate of the target state vector and its covariance were obtained on
the basis of a linear combination of a posteriori probabilities

_
x (k/k) =

M−1∑
s=0

x̂s(k/k)P (ζsk|Y k), (84)

P̂ (k/k) =

M−1∑
s=0

[
P̂ s(k/k) + [x̂s(k/k)− x̂(k/k)] [x̂s(k/k)− x̂(k/k)]

T
]
P
[
ζsk|Y k

]
.

(85)

5 Simulation Results

The proposed algorithm was applied to the phosphorus furnace type RKZ-80F. The
system has the following specifications: a linear model of indirect control of electro-
thermal processes in a three-electrode. This model is based on the well-known band
structure of electric furnace baths and takes into account its geometric symmetry with
respect to the three electrodes. Therefore, all the variables used in the model below will
have indices i = 1,2,3; they relate to one of the three electrodes or the corresponding
near-electrode region. The index 0 of the variable will indicate its relation to the whole
bath of the furnace as a whole. The vector of state space x(k) ∈ Rn (n = 7) has the
following states:

xT (k) =
[
x1
len(k) x1

vol(k) x2
len(k) x2

vol(k) x3
len(k) x3

vol(k) x0
high(k)

]
,
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Figure 3: Proposed algorithm implementation.

Figure 4: Fault signals forms.

where xilen(k) is the length of the i-th electrode, m; xivol(k) is the volume of the crucible
of the i−th near-electrode region, m3; x0

high(k) is the height of the total working (carbon)
zone in the furnace, m. The control vector u(k) ∈ Rp (p = 7) has the following structure:

uT (k) =
[
u1
byp(k) u1

pa(k) u2
bup(k) u2

pa(k) u3
len(k) u3

byp(k) u0
c(k)

]
,

uT (k) =
[
u1

?5@(k) u1
P (k) u2

?5@(k) u2
P (k) u3

?5@(k) u3
P (k) u0

C(k)
]
.
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Figure 5: Estimations of the length and volume of the first electrode.

Figure 6: Estimations of the length and volume of the second electrode.

uibyp(k is the bypass of the ith electrode, m;

uipa(k) is the average useful active power, in the i-th near-electrode region, MW;
u0
c(k) is the the amount of carbon entering the furnace with the charge, T.

The vector of observation y(k) ∈ Rm (m = 15) has the following structure:

yT (k)=
[
y1

1(k)y1
2(k)y1

3(k)y1
4(k)y2

1(k)y2
2(k)y2

3(k)y2
4(k)y3

1(k)y3
2(k)y3

3(k)y3
4(k)y0

1(k)y0
2(k)y0

3(k)
]
,

where
yi1(k) is the position of the electrode holder of the i-th electrode relative to the slag tap,
m;
yi2(k) is the active resistance of the i-th phase, mΩ;
yi3(k) is the temperature under the arch at the i-th electrode,◦C;
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Figure 7: Estimations of the length and volume of the third electrode.

Figure 8: Estimations of the high of the working area.

yi4(k) is the gathering of charge for the i-th electrode, T;
y0

1(k) is the the average temperature under the roof of the entire furnace, ◦C;
y0

2(k) is the current furnace capacity, T;
y0

3(k) is the relative recoverability of the product, (%P2O5 in the batch /% P2O5 in the
slag).

The matrices parameters Φ, Γ and H are as follows

Φ=


Φ1 0 0 f01

0 Φ1 0 f01

0 0 Φ1 f01

f10 f10 f10 f00

,Γ=


Γ1 0 0 0
0 Γ1 0 0
0 0 Γ1 0
0 0 0 g00

, H=


H1 0 0 h01

0 H1 0 h01

0 0 H1 h01

H10 H10 H10 h00

,



390 ALI HUSSEIN HASAN, ALIA MUHSIN MNATI AND ALI OBIED

where Φ1 =

[
a1 −a2

0 a4

]
, f01 =

[
a3
a5

]
, f10 =

[
0 a6

]
, f00 = a7, g00 = β2, Γ1 =

[
1 0
0 β1

]
, H1 =


1 0
γ2 0
0 γ4

0 γ6

 , h01 =


γ1

γ3

γ5

0

 , H10 =

 0 γ7

0 γ9

0 0

 , h00 =

 γ8

0
γ10

 ,
θ = [a1, ..., a7, β1, β2, γ1, ..., γ10]. The parameters values are described in Table below:

No. Parameter Physical di-
mension

Admissible values Recommended initial
approximation

1 α1 − 0.95− 1.0 0.999

2 α2 1/M2 0.0002− 0.002 0.001

3 α3 − 0.0001− 0.002 0.001

4 α4 − 0.0− 1.0 0.5

5 α5 M2 0.0− 1.0 0.5

6 α6 1/M2 0.0001− 0.005 0.001

7 α7 − 0.8− 1.0 0.9

8 β1 M3/MW 0.2− 0.4 0.28

9 β2 M/T 0.004− 0.0045 0.0042

10 γ1 - 0.5− 1.0 0.75

11 γ2 mΩ/M 0.05− 0.5 0.1

12 γ3 mΩ/M 0.2− 0.8 0.5

13 γ4
◦C/M3 1.0− 10.0 5.0

14 γ5
◦C/M 300− 500 400

15 γ6 t/M3 1.0− 2.0 1.5

16 γ7
◦C/M3 1.0− 10.0 5

17 γ8
◦C/M 250− 400 300

18 γ9 T/M3 0.05− 0.2 0.1

19 γ10 1/M 20− 40 30

The initial values of states are: x = [5.25 25 5.18 20 5.36 22 1.5]T ; the number of
samples is 600 samples; the input vector is generated as random signal in the interval
[-0.05, 0.05]; different faults scenarios are added to the input vectors. The simulation
results are shown in figures below, in which Figure 4 represents the fault signals forms.
Figure 5 shows that the algorithm starts tracking in the abnormal state in sample time
number 100 for both states estimations and could not return to the normal operation
even the input signal return without fault. Figures 6 to 8 show the switching between
modes to track the changes in states directly after the abnormal operation is detected to
start the fault tracking.

6 Conclusion

In this paper we proposed a multi-operational mode based on Bayes approach to select
the best Kalman filter estimator. The estimation was focused on internal state estima-
tion during the fault operation which may be caused by many different resources. The
simulation fault testing inputs signals failure, which were lost by composed signals. The
fault scenarios started at time sample 100 with different shapes and values for each input
and ended at time sample 200. Another faults signals were inserted at time sample 400
and ended at time sample 500. From the simulation results of states estimations, we
noted that the estimation of the lengths of the electrodes were very satisfied in which
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most of estimations values were very near from the estimations in normal operation.
The volume of the first electrode during the fault was not estimated correctly where a
negative values was estimated. While the volumes of the second and third electrodes
during the fault was estimated correctly. Finally, estimations of the high of the working
area may be accepted with some error percentage. As a result the proposed algorithm
provide a good results with some acceptable range of error during the faults operations.

References

[1] Maiying Zhong, Hao Ye, Steven X. Ding, Guizeng Wang, and Zhou Donghua. Fault de-
tection filter for linear time-delay systems. Nonlinear Dynamics and Systems Theory 5 (3)
(2005) 273–284.

[2] Wu, H. and Noe, F. A flat Dirichlet process switching model for Bayesian estimation of
hybrid systems. IEEE Transaction on Automatic Control 15 (1) (2002) 10–17.

[3] Ackerson, G. and Fu, K. On state estimation in switching environments. Procedia Computer
Science (4) (2011) 1393–1402.

[4] Blom, H. and Bar-Shalom, Y. The interacting multiple model algorithm for systems with
Markovian switching coefficients. IEEE Transaction on Automatic Control (17) (2001)
362–369.

[5] Minka, T. Expectation propagation for approximate Bayesian inference. Proceedings of
Uncertainty in Artificial Intelligence 33 (8) (2002) 780–783.

[6] Bar-Shalom, Y., Kirubasrajan, T. and Li, X.R. Estimation with Applications to Tracking
and Navigation. Wiley, New York, 2002.

[7] Evgenia Suzdaleva and Ivan Nagy. Recursive state estimation for hybrid systems. Applied
Mathematical Modelling (36) (2012) 1347–1358.

[8] F. van der Heijden, Duin, R.P.W., D. de Ridder and Tax, D.M.J. Classification, Parameter
Estimation and State Estimation. John Wiley & Sons, 2004.

[9] Bar-Shalom, Y. and Fortmann, T.E. Tracking Data Association. Academic Press, 1988.

[10] Ali Hussein Hasan and Grachev, A.N. Adaptive α− β−filter for target tracking using real
time genetic algorithm. Journal of Electrical and Control Engineering 3 (4) (203) 32–38.


	Introduction
	Statement of The Problem 
	Multi-Mode Kalman Filter Approach 
	Proposed Multi Model Estimation
	Simulation Results
	Conclusion

