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Abstract: The main goal of this work is the mathematical formulation, the analysis
and the numerical simulation of a prey-predator model by taking into account the
toxin produced by the phytoplankton species. The mathematical study of the model
leads us to have an idea on the existence of solution, the existence of equilibria and the
stability of the stationary equilibria. These results are obtained through the principle
of comparison. Finally, the numerical simulations in two-dimensional allowed us to
establish the formation of spatial patterns and a threshold of release of the toxin,
above which we talk about the phytoplankton blooms.
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1 Introduction

Ecology and harmful toxic release in marine environment are major fields of study in their
own right, but there are some common features of these systems. It is interesting and
important from biological viewpoints to study ecological systems under the influence
of the toxic substance release factors. However, this goal remains difficult to attain
due to the complexity of natural systems, especially in the aquatic environment where
many processes of all types interact with living organisms. The fundamental basis of all
aquatic food chains is plankton, and phytoplankton in particular occupies the first trophic
level and the fluctuations in its abundance determine the production of a whole marine
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biological output. The dynamics of rapid (massive) increase or almost equally decrease
of phytoplankton populations is a common feature in marine plankton ecology and is
known as bloom. This phenomenon can occur in a matter of days and can disappear just
as rapidly.

Several authors have argued that there has been a global increase in harmful phy-
toplankton blooms in recent decades, see [7, 14, 24]. The rapid massive growth of phy-
toplankton is, general1y, caused by high nutrient levels and favorable conditions (water
temperature, salinity levels, etc.). Herbivore grazing takes an important role in the bloom
dynamics, see [7,24,26]. Toxic substances produced by phytoplankton species reduce the
growth of zooplankton by decreasing grazing pressure and this is one of the important
common phenomena in plankton ecology, see [10,17,22].

Within the broad perspective drawn above, the present paper explores and compares
the coupled dynamics of phytoplankton and zooplankton in a number of mathematical
models. The system of phytoplankton-zooplankton has attracted considerable attention
from various fields of research, see [10, 21, 25]. It is an important issue in mathematical
ecology. The literature abounds in models focusing on various aspects of the problem.
Recently, the attention has been focused on the role of the space in explaining hetero-
geneity and the distribution of the species and the influence of the spatial structure on
their abundance, [10, 17, 29]. However, the very question of the interactions between
phytoplankton and zooplankton depending on space is far from being fully elucidated.

As part of our work, we will highlight a threshold value of the toxin released by
phytoplankton below which the effect of the toxin influences less the dynamics of the
zooplankton-fish system. The proposed model consists of two interactive component:
zooplankton and toxin-producing phytoplankton that reduces the growth of zooplank-
ton population. The model studied here is of the reaction-diffusion type describing the
dynamics of the phytoplankton-zooplankton system in the sense of the works of F. Cour-
champ [8,28].

The paper is organized as follows. As far as Section 3 is concerned, we will es-
tablish mathematical results such as the existence of a solution, stability of equilibria,
persistence, relating to the constructed model in Section 2. Section 4 will be devoted
to numerical experiments to illustrate the mathematical results. Finally, Section 5 is
devoted to the conclusion and perspectives.

2 Mathematical Model

In this section, we propose a model to describe the dynamics of the phytoplankton-
zooplankton system in the presence of toxin. We begin our modeling by a general model
describing the dynamics of the prey-predator system, based on the equations with ordi-
nary derivatives. And then we transform this model into a model of reaction-diffusion
type while remaining in the logic of the work of F. Courchamp [8] and Bendahmane
et al [5]. The aim is to take into account the effect of the toxin on the zooplankton-
phytoplankton dynamics.

2.1 Original model formulation

Let P be the density of the prey population and Z be the density of the predator pop-
ulation. According to [5, 8, 18, 28], the general model at any time T > 0 is written as
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follows: 
dP

dT
= φ1(P )− g2(P,Z)Z,

dZ

dT
= g3(P,Z)Z − g4(P,Z)Z,

(1)

where

• φ1, g2, g3, g4 are positive functions and C∞,

• φ1(P ) is the growth function of the prey population,

• g2(P,Z) is the amount of prey consumed by a predator per time unit,

• g3(P,Z) represents the rate of conversion of the prey into predator,

• g4(P,Z) is the predator mortality rate due to harmful prey consumption.

We continue our modeling by fixing the expressions of the functions intervening in the
model (1), see [5, 8]. The dynamics of the system can be represented by the following
figure:

zooplankton phytoplankton

θp + α2 α0 + α1

Figure 1: The compartmental model of the zooplankton-phytoplankton system.

According to Figure 1, at any time T > 0, the dynamics of the phytoplankton (prey)-
zooplankton (predator) system is governed by the following ODE system:

dP

dT
= rpP − α0P

2 − α1Z

P + γ1
P, P (0) = P0 ≥ 0,

dZ

dT
= rzZ − θpZ −

α2Z
2

P + γ2
, Z(0) = Z0 ≥ 0,

(2)

where

• rp denotes the phytoplankton growth rates,

• α0 denotes the mortality rate due to competition between the individuals of the
phytoplankton population,

• α1 is the maximum value that the reduction rate per individual phytoplankton can
reach,

• α2 is the maximum value that the reduction rate per individual zooplankton can
reach,
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• rz denotes the zooplankton growth rates,

• θp is the rate of toxic phytoplankton consumed by zooplankton,

• γ1 is the protection of prey P from the environment,

• γ2 is the protection of predator Z from the environment.

2.2 A spatially structured model

Here, our aim is to introduce the notion of spatial structuring in the model. By consid-
ering the relationship between the climate and the diffusion of species and the fact of the
existence of diffusion in population, system (1) is developed into a spatial system with
diffusion. We expect to explore the effect of climate change on the plankton population
by studying the spatial dynamics of the diffusion system. We will introduce the concept
of spatial structure in the model, that is to say that the population densities depend now
on the time and space. Diffusion models are a simple and reasonable choice for modeling
dispersion of populations on a spatial domain, see [3, 12, 18, 25]. Indeed, let δ0(x) and
δ1(x) be respectively the diffusion terms of P and Z. Based on the results established
in [5, 8, 28], the reaction-diffusion model associated with the model (1) can be modeled
for x ∈ Ω as follows:{

∂TP − div(δ0(x)∇P ) = φ1(P )− g2(P,Z)P,

∂TZ − div(δ1(x)∇Z) = g3(P,Z)Z − g4(P,Z)Z,
(3)

where Ω ⊂ Rn(n ≥ 1) is the spatial domain in which species occur. We consider the
zero-flux boundary condition

δi(x)∇Q(x, t).ν(x) = 0, i = 0, 1, x ∈ ∂Ω, T > 0

for Q = P,Z, where ν is the unit normal vector to ∂Ω on Ω, and the nonnegative initial
and bounded conditions

Q(x, 0) = Q0(x) > 0, Q = P,Z x ∈ Ω.

We make the following assumptions:

(H1) : all demographic parameters of the system (2) are positive constants,

(H2) : the diffusion coefficients of the system (3) are independent of the spatial variable.

By considering δ0(x) = δ0, δ1(x) = δ1, and taking into account the hypotheses (H1) and
(H2), the model (3) obtained previously is written as:

∂P

∂T
=

(
rp − α0P −

α1Z

P + γ1

)
P + δ0∆P,

∂Z

∂T
=

(
rz − θp −

α2Z

P + γ2

)
Z + δ1∆Z,

Q(x, 0) = Q0(x) > 0, Q = P,Z, x ∈ Ω.

(4)

3 Mathematical Results

In this section, we aim to establish the mathematical results of the system (4). The
mathematical results are based on the works [5, 6, 25].
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3.1 Reduction of model parameters

To simplify the writing, we will make changes of variables in the following way:

r = rz − θp, t = rpT , U1(t) =
α0

rp
P (T ), U2(t) =

α0α2

rpr
Z(T ),

a =
rα1

rpα2
, b =

r

rp
, d1 =

α0γ1

rp
, d2 =

α0γ2

rp
,

x = X

(
rp
δ0

) 1
2

, y = Y

(
rp
δ0

) 1
2

, dz =
δ1
δ0

.

Thus, the systems (2) and (4) can be written respectively as follows:
dE1

dt
=

(
1− E1 −

aE2

E1 + d1

)
E1 = f(E1, E2),

dE2

dt
= b

(
1− E2

E1 + d2

)
E2 = g(E1, E2),

(5)

and 
∂U1

∂t
=

(
1− U1 −

aU2

U1 + d1

)
U1 + ∆U1 = f(U1, U2) + ∆U1

∂U2

∂t
= b

(
1− U2

U1 + d2

)
U2 + dz4U2 = g(U1, U2) + dz∆U2.

(6)

3.2 Existence and boundedness of solution

Before stating the boundedness of the solution, we give the local existence of the solution.
The following theorem ensures the existence and uniqueness of the local solution of the
system (4).

Theorem 3.1 [1, 2] The system (4) has a unique local solution (U1(., t), U2(., t))
under the condition 0 ≤ t < Tmax, where Tmax depends on nonnegative initial data
U01(x) and U02(x).

The following theorem ensures the global solution existence for the system (6).

Theorem 3.2 For any regular positive functions U01(x) ≤ 1 and U02(x), the system
(6) admits a global solution (U1(., t), U2(., t)) for any t > 0.

Proof: Indeed:

• on the one hand, we have U1(x, t) ≥ 0 and U2(x, t) ≥ 0 because 0 is the sub-solution
of each equation of the system (6).

• on the other hand, U1 satisfies the following problem:
∂U1(x, t)

∂t
≤ U1(1− U1) + ∆U1,

∂U1

∂ν
= 0 , t > 0,

U1(x, 0) = U01(x) ≤ U01 ≡ maxΩ U01(x), x ∈ Ω.

(7)
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According to the principle of comparison, we have U1(x, t) ≤ U(t) ≤ 1, where

U(t) =
U0

U0 + (1− U0)e−t
is the solution of the problem

∂U

∂t
= U(1− U), U(0) = U0 ≤ 1. (8)

In the same order U2 satisfies

∂U2

∂t
= b

(
1− U2

U1 + d2

)
U2 + dz∆U2,

and we obtain the following inequality:

∂U2

∂t
≤ dE2

dt
,

where E2 is a solution of the second equation of the system (5) with the initial
condition E2(0) = maxΩ U02(x).

∂U2

∂t
≤ dE2

dt
+
dE1

dt
.

Let us denote by σ = E2 + E1, we deduce that

∂U2

∂t
≤ dσ

dt
≤ 5

4
+

(1 + b)2(1 + d2)

4b
− σ.

Using the Gronwall lemma, see [10, 18, 29], we deduce that U2 ≤ 5

4
+

(1 + b)2(1 + d2)

4b
. Thus, the solutions U1 and U2 are bounded.

The following theorem ensures the boundedness of the system (6).

Theorem 3.3 The domain R+ ×R+ is positively invariant for the system (6). Fur-
thermore, any solution of the system (6) whose initial condition is in R+×R+ converges

to the set defined by S1 = [0, 1]×
[
0,

5

4
+

(1 + b)2(1 + d2)

4b

]
.

Proof: For the initial condition (U01(x), U02(x)) of the system (6), we have

0 ≤ U1 ≤ E1, E1(0) = maxΩ U01(x),

0 ≤ U2 ≤ E2, E2(0) = maxΩ U02(x).

On the other hand, according to [3, 13], we have

limt−→+∞E1(t) ≤ 1, limt−→+∞(E1(t) +E2(t)) ≤ 5

4
+

(1 + b)2(1 + d2)

4b
. �
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3.3 Analysis of stationary solutions

Now, we study the existence of positive equilibrium states of the system (6). Let us
consider the following system:

(
1− U1 −

aU2

U1 + d1

)
U1 + ∆U1 = 0, x ∈ Ω,

b

(
1− U2

U1 + d2

)
U2 + dz∆U2 = 0, x ∈ Ω,

∂U1

∂ν
=
∂U2

∂ν
= 0.

(9)

Then, (U1, U2) is a positive equilibrium state of the system (6) if it satisfies the system
(9).

Remark 3.1 Let V1(x) = (U1(x), U2(x)) and V2(x) = (U1(x), U2(x)). According
to [4], V1(x) is an over-solution and V2(x) is a sub-solution of the system (9) if we have

U1

∂ν
≥ 0 ≥ U1

∂ν
on ∂ Ω,

U2

∂ν
≥ 0 ≥ U2

∂ν
on ∂ Ω,

and

−∆U1 − U1

(
1− U1 −

aU2

U1 + d1

)
≥ 0 ≥ −∆U1 − U1

(
1− U1 −

aU2

U1 + d2

)
, (10)

−∆U2 − bU2

(
1− U2

U1 + d2

)
≥ 0 ≥ −∆U2 − bU2

(
1− U2

U1 + d2

)
. (11)

Let us consider the following conditions

a < 1, d1 − a+ 1−A > 0, (12)

where A is an over-solution of the second equation of the system (9).

Theorem 3.4 [6,12] If the conditions (12) are satisfied, then the system (9) admits
at least one positive solution (U1(x), U2(x)).

Proof: We write the system (9) as follows:
−∆U1 =

(
1− U1 +

aU2

U1 + d1

)
U1 = f(U1, U2), x ∈ Ω,

−dz∆U2 =

(
1− U2

U1 + d2

)
U2 = g(U1, U2) x ∈ Ω,

∂U1

∂ν
=
∂U2

∂ν
= 0.

(13)

If U1 ≥ 0, U2 ≥ 0, we obtain

∂f

∂U2
=
−aU1

U1 + d1
≤ 0,

∂g

∂U2
=

bU2
2

(U1 + d2)2
≥ 0.

This means that the function f is quasi-monotone decreasing and the function g is quasi-
monotone increasing. The system (9) is then called a quasi-monotonic mixed system.
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We will now construct a pair of over-solution and sub-solution of the system (9) that we
denote respectively by V1(x) = (U1(x), U2(x)) and V2(x) = (U1(x), U2(x)).

Let U1(x) = 1, then for every U2 ≥ 0, the first inequality of (10) is satisfied. By fixing

A such that A ≥ 5

4
+

(1 + b)2(1 + d2)

4b
and by considering U2(x) = A, the inequality of

(11) is satisfied. If we consider that U2(x) = A, the second inequality of (10) becomes

−∆U1 − U1

(
1− U1 −

aA

U1 + d2

)
≤ 0.

Let U1(x) be the strictly positive solution of the following system:
∆U1 − U1

(
1− U1 −

aA

U1 + d2

)
= 0,

∂U1

∂ν
= 0.

(14)

We will show that if the conditions a < 1 and d2−a+1−M > 0 are satisfied, then
the system (14) will admit a positive solution. If a < 1 and d2−a+1−A > 0, then one
can easily verify that (1; 1− a) is a pair of over-solution and sub-solution of the equation
(14). This equation admits a positive solution U1(x) which checks 1 − a ≤ U1(x) ≤ 1.
Obviously, we have U1(x) ≥ U1(x).

We take arbitrarily U1(x), U1(x) and U2(x). If d2−a+1−A > 0, then we can choose
U2(x) constant positive and small enough so that the following inequality is satisfied:

−∆U2 − bU2

(
1− U2

U1 + d2

)
≤ 0.

Note that this inequality is satisfied as soon as 0 < U2 < 1− a− d2. Thus we build a
pair of over-solution and sub-solution (U1(x), U2(x)) and (U1(x), U2(x)) of the system
(9).
Thus, the system (9) admits at least one solution (U1(x), U2(x)) which satisfies

U1(x) ≤ U1(x) ≤ U1(x), U2(x) ≤ U2(x) ≤ U2(x). �

3.4 Stability of homogeneous stationary solutions

The following result gives the stationary states and their stability condition for the system
(6).

Proposition 3.1 [3, 13, 29]

(i) E0 = (0, 0) is the trivial state. This equilibrium is unstable.

(ii) E1 = (1, 0) is an equilibrium point. This equilibrium is unstable.

(iii) E2 = (0, d2) is an equilibrium point. This state is unstable if d1 > ad2 and stable
if d1 < ad2

For the proof of the local stability of Ei, we consider the eigenvalue problem of the cor-
responding linearized operator, see [3,4,13,28,29]. In fact, we consider (U1(x, t), U2(x, t))
the solution of the system (6), then, we have

(U1(x, t), U2(x, t)) = Ei +W (x, t) = Ei + (w1(x, t), w2(x, t)).
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We will make the following hypothesis:

(H3) : a ≥ 1

2
and 0 < d1 < d1 with d1 = −(a+1)+

√
ξ, ξ = (a+1)2 +2a(1+2a)−1.

Theorem 3.5 [6, 12, 27, 29] The interior equilibrium point E3 = (U∗1 , U
∗
2 ) of the

system (6) is stable if the hypothesis (H3) is satisfied.

With regard to the analysis of the global stability of the interior equilibrium state,
we will make the following hypothesis:
(H4) : 1 ≤ d1 ≤ d2.

Theorem 3.6 Suppose that (H4) is satisfied, then the equilibrium (U∗1 , U
∗
2 ) of the

system (9) is globally asymptotically stable.

Proof: Let us consider the functions l and L defined by

l(U1, U2) =

∫ U1

U∗
1

(η − U∗1 )(η + d1)

aη(η + d2)
dη +

U∗1 + d2

bU∗2

∫ U2

U∗
2

η − U∗2
η

dη,

L(U1, U2)=

∫
Ω

l(U1, U2)dx=

∫
Ω

(∫ U1

U∗
1

(η − U∗1 )(η + d1)

aη(η + d2)
dη +

U∗1 + d2

bU∗2

∫ U2

U∗
2

η − U∗2
η

dη

)
dx.

Our goal is to show that L is a Lyapunov function, with a negative orbital derivative.
For any solution (U1, U2) of (6) whose initial condition (U01(x), U02(x)) is in the positive
quadrant, L(U1, U2) is positive. Moreover, L(U1, U2) = 0 if and only if (U1, U2) =

(U∗1 , U
∗
2 ). It remains to prove the following inequality

dL

dt
< 0.

Indeed,

dL

dt
=

∫
Ω

(
(U1 − U∗1 )(U1 + d1)

aU1(U1 + d2)

)(
∆U1 + U1(1− U1)− aU1U2

U1 + d1

)
dx

+

∫
Ω

U∗1 + d2

bU∗2

U2 − U∗2
U2

(
dz∆U2 + b

(
1− U2

U1 + d2

)
U2

)
dx

=

∫
Ω

(
(U1 − U∗1 )(U1 + d1)

aU1(U1 + d2)

)(
U1(1− U1)− aU1U2

U1 + d1

)
dx

+

∫
Ω

U∗1 + d2

bU∗2

U2 − U∗2
U2

bU2

(
1− U2

U1 + d2

)
dx

+

∫
Ω

(
∆U1

(U1 − U∗1 )(U1 + d1)

aU1(U1 + d2)
+ dz∆U2

U∗1 + d2

bU∗2

U2 − U∗2
U2

)
dx.

(15)

Let us denote by T1 the first two right terms of the equality (15) and by T2 the last
term on the right. After a simple calculation followed by a reduction, T1 becomes:
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T1 = −
∫

Ω

(
(U1 + U∗1 + d1 − 1)

(U1 − U∗1 )2

a(U1 + d2)
+

(U2 − U∗2 )2

U1 + d2

)
dx (16)

By the green formula, T2 becomes

T2 = −
∫

Ω

(
| ∇U1 |2

d

dU1

(
(U1 − U∗1 )(U1 + d1)

aU1(U1 + d2)

)

+dz
U∗1 + d2

bU∗2
| ∇U2 |2

d

dU2

(
U2 − U∗2
U2

))
dx

= −
∫

Ω

(
| ∇U1 |2

(
d2 − d1 + 1 + U∗1
a(U1 + d2)2

+
U∗1 d1(2U1 + d2)

a(U2
1 + d2U1)2

)

+dz
U∗1 + d2

bU∗2
| ∇U2 |2

U∗2
U2

2

)
dx

(17)

According to the expressions of T1 and T2, we have
dL

dt
(U1, U2) < 0.

Therefore, according to the LaSalle’s theorem [7], the equilibrium point (U∗1 , U
∗
2 ) is

globally asymptotically stable.

4 Numerical Results

In this section, we perform extensive numerical simulations of the spatial model system
(9) in two dimensional space using the forward finite difference method. The set of
parameter values used for the numerical simulation is given in Table 1, see [5, 9, 11, 12].
Here, the system is studied on a spatial domain Ω = [0, 50] × [0, 50]. It is assumed
that the zooplankton and phytoplankton populations are spread over the whole domain
at the beginning. These results show that for every strictly positive initial condition,
under the assumptions (H1)−(H4), the non-homogeneous equilibrium is always globally
asymptotically stable.

Param Description Values Refs
rp the natural growth-rate of phytoplankton 1.58 [9, 20]
δ0 diffusivity coefficient of P 5 [9, 20]
δ1 diffusivity coefficient of Z 600.5 [5]
α0 mortality rate due to competition between the individuals of P 0.30 [9]
γ1 the protection of prey P from the environment 0.00661 [5]
rz the zooplankton growth rates 0.25 [9]
α2 maximum value of the reduction rate per individual of Z 0.26 [9]
γ2 the protection of predator Z from the environment 0.231 [15]
P0 initial condition of the phytoplankton 150 [16]
F0 initial condition of the zooplankton 100 [15]

Table 1: Parameters values for the numerical simulation of the system.
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4.1 Pattern formation

Here, we will illustrate the mathematical predictions, by numerical simulations, concern-
ing the behavior of the dynamics under the hypotheses (H1) − (H4). The qualitative
results of different pattern formations due to the variation of α1 are shown. We consider
the value of released toxin θp = 0.06. These numerical results show that for every strictly
positive initial condition, under the assumptions (H1)−(H4), the non-homogeneous equi-
librium is always globally asymptotically stable. Figure 2−7 show the spatial structures
formation for the two species described in (9). This numerical results confirm the mathe-
matical results for the existence of positive equilibrium and its stability according to the
values of α1. In this case, we will speak of a subsistence phenomenon of the zooplankton
population.

Figure 2: Spatial distribution of the two species, zooplankton and phytoplankton, if we consider
in the system α1 = 0.125 and dz = 120.1.

Figure 3: Spatial distribution of the two species, zooplankton and phytoplankton, if we consider
in the system α1 = 0.195 and dz = 120.1.

Remark 4.1 From a biological point of view, these results (Figure 2− 7) show that
there is coexistence between the two populations despite the release of the toxin into the
aquatic environment. This means that despite the harmful effects of the toxin released
by phytoplankton, the zooplankton population persists.
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Figure 4: Spatial distribution of the two species, zooplankton and phytoplankton, if we consider
in the system α1 = 0.198 and dz = 120.1.

Figure 5: Spatial distribution of the two species, zooplankton and phytoplankton if we consider
in the system α1 = 0.205 and dz = 120.1.

Figure 6: Spatial distribution of the two species, zooplankton and phytoplankton, if we consider
in the system α1 = 0.23 and dz = 120.1.
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Figure 7: Spatial distribution of the two species, zooplankton and phytoplankton, if we consider
in the system α1 = 0.26 and dz = 120.1.

4.2 Analysis of the dynamics behavior with toxin effect

We continue our numerical study in this sub-section to look at the dynamics behavior
of the system by considering different values of the toxin parameter. Here, we consider
that α1 = 0.25. The numerical simulations show that after a transitional phase, the
equilibrium can be established with coexistence of the two populations. Figure 8 − 11
show the behavior of the two populations. As a biological interpretation we can say that
if the toxin is released below this value the impact is not significant on the zooplankton
population (Figure 8 − 10). In fact, the effect does not disrupt the survival of other
species. Figure 11 shows the spatial distributions of the two populations. A less dense
distribution of the zooplankton population than the previous one was observed. This
explains the considerable decrease of these species due to the increase in the number of
toxic phytoplankton. There is a strong distribution of the phytoplankton population.
Since the distribution is high, this explains the release of the toxin in large quantities by
this population. This period corresponds to the phytoplankton bloom.

Figure 8: Dynamics behavior of the two species with α1 = 0.26, dz = 120.1 and θp = 0.2
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Figure 9: Dynamics behavior of the two species with α1 = 0.26, dz = 120.1 and θp = 0.35.

Figure 10: Dynamics behavior of the two species with α1 = 0.26, dz = 120.1 and θp = 0.504.

Figure 11: Dynamics behavior of the two species with α1 = 0.26, dz = 120.1 and θp = 1.4.
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5 Conclusion

In this paper, our interest is the formulation of a reaction-diffusion model to represent
the dynamics of zooplankton and phytoplankton population by taking into account the
effect of the toxin. The model construction is derived from an ODE system by consid-
ering an isotropic distribution as in [5, 8]. It should be noted that we consider diffusion
independently of the spatial variable in the construction of the reaction-diffusion model.
The mathematical results allowed us to establish conditions of existence of equilibrium
which depend on the demographic parameters. We also gave some results about the sta-
bility of the stationary equilibria and we established the conditions on the non existence
of the equilibrium with strictly positive components.

We continued our study through numerical experiments in order to confirm our math-
ematical results. The numerical results have yielded interesting results on the effect of
the toxin on the dynamics. This is why we are led to conclude that the release of the
toxin under certain conditions, in the aquatic environment contributes to the regulation
of the system. The phytoplankton bloom was observed during our simulations and is in
perfect agreement with the biological observations.

Despite of important results on this dynamics, in order to further our study, we
consider, for our future work, to clearly subdivide the phytoplankton population into
toxic phytoplankton and non-toxic phytoplankton to extend our results to these types of
cross-diffusion system.
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Université Paris 7.

[8] Courchamp, F., Langlais, M. and Sugihara, G. Rabbits Killing birds: modelling the
hyperpredation process. Journal of Animal Ecology 69 (2000) 154–164.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (4) (2018) 392–408 407

[9] Dockery, J., Hutson, V., Mischaikow, K. and Pernarowski, M. The evolution of slow
dispersal rates : a reaction diffusion model. Journal of Mathematical Biology 37 (1)
(1998) 61–83.

[10] Edward, A.M. and Brindley, J. Zooplankton Mortality and the Dynamical Behaviour
of Plankton Population Models. Bulletin of Mathematical Biology 61 (1999) 303–339.

[11] Galiano, G., Garzon, M.L. and Jungel, A. Semi-discretization in time and numerical
convergence of solutions of a nonlinear cross-diffusion population model. Numerical
Mathematics 93 (4) (2003) 655–673.

[12] Gaucel, S., Langlais, M. and Pontier, D. Invading introduced species in insular het-
erogeneous environments. Ecology Modelling 188 (2005) 62–75.

[13] Kohlmeier, C. and Ebenhh, W. The stabilizing role of cannibalism in a predator-prey
system. Bulletin of Mathematical Biology 57 (1995) 401–411.

[14] Koutou, O., Traoré, B. and Sangaré B. Mathematical modeling of malaria transmission
global dynamics: taking into account the immature stages of the vectors. Advance in
Difference Equation 2018 (220) (2018) 1–34.

[15] Kot, M. Elements of Mathematical Ecology. Cambridge University Press, 2001.

[16] Kreisselmeir, G. and Engel, R. Nonlinear observer autonomous Lipschitz continuous
systems. IEEE Trans. on Automatic control. 48 (2003) 451–464.

[17] Mathews, L. and Brindley, J. Patchiness in plankton populations. Dynamics and Sta-
bility of Systems 12 (1996) 39–59.

[18] Narayan Guin, L. and Acharya, S. Dynamic behaviour of a reaction-diffusion
predator-prey model with both refuge and harvesting. Nonlinear Dynamical, DOI
10.1007/s11071-016-3326-8.
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