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Abstract: In this paper, we attempt to investigate the boundedness of a new hyper-
chaotic system using the combination of the Lyapunov stability theory with the com-
parison principle method. Furthermore, explicit estimation of the two-dimensional
parabolic ultimate bound with respect to x-z is established. Finally, a linear feedback
approach with one input is used to realize the global synchronization of two four-
dimesional hyperchaotic systems. Some numerical simulations are also used to verify
the effectiveness and correctness of the proposed scheme.
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1 Introduction

Hyperchaotic systems are dissipative nonlinear dynamical systems with more than one
positive Lyapunov exponent. The Lyapunov exponent of a chaotic system is a mea-
sure of the divergence of points which are initially very close and this can be used to
quantify chaotic systems. So, the hyperchaos may be more useful in some fields such as
communication encryption, and so forth.

An important paradigm of a 3-D chaotic system was discovered by Lorenz |7] while he
was studying a 3-D weather model. Subsequently, many chaotic systems have attracted
tremendous research interest, and many chaotic and hyperchaotic systems have been
presented.

Chaotic systems are ultimately bounded. Thus, the phase portraits of the systems
will be ultimately trapped in some compact sets. The ultimate boundedness of a chaotic
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system is very important for the study of the qualitative behavior of a chaotic system. In
fact, except for the stability property, boundedness is also one of the foundational con-
cepts of dynamical systems, which plays an important role in investigating the uniqueness
of equilibrium, global asymptotic stability, global exponential stability, the existence of
the periodic solution, its control and synchronization and so on. Furthermore, it can be
applied in estimating the fractal dimensions of chaotic attractors, such as the Hausdorff
dimension and the Lyapunov dimension of chaotic attractors [3].

Ultimate bound estimation of chaotic systems is a difficult yet interesting mathemat-
ical question. At present, several works on this topic were realized for some 3D and 4D
dynamical systems, see 246} 8-12}/14]15].

Recently, Chen Hai-tao, Chen Di-yi and Ma Xiao-yi [1] introduced the following new
system

x/:a(y—x),
Y =vyr -2 -y,

1
2 =ay— Bz, (1)
w = —x — aqw,

where (o, 3,7) € R? is a vector parameter. When a = 5, 8 = 0.7, v = 26, system (1)
has a hyperchaotic attractor. Fig. 1. shows the phase portraits of system (1).

In this paper, we firstly investigate the boundedness for this new hyperchaotic system
using a combination of Lyapunov stability theory with the comparison principle method.
In addition, the two-dimensional parabolic ultimate bound with respect to z — z is es-
tablished.

Synchronization of chaotic systems has become an important topic in nonlinear sci-
ence not only for its importance in theory but also for its potential applications in various
areas, for example, secure communication, chemical and biomedical science, life science,
electromechanical engineering and so on. During the last decades, many methods have
been successfully applied to chaos synchronization such as PC method, linear feedback
control, adaptive control, backstepping design, active control and nonlinear control, etc.

In this paper, based on the bounds previously obtained, we use linear feedback con-
trol with one input to realize global synchronization between two identical hyperchaotic
systems.

The rest of this paper is organized as follows. In Section 2, we study the boundedness
of the hyperchaotic systems (1). In Section 3, the two-dimensional bound estimation
with respect to x — z is established. In Section 4, our outcomes are applied between the
master system and the slave system to the study of completely chaos synchronization.
In Section 5, numerical simulation is presented to show the effectiveness of our results.
Section 6 is the conclusion of the paper.
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Fig. 1: Phase portrait of the system (1) in the z — y — z space with
parameters a = 5, § = 0.7, v = 26.

2 Bounds for Solutions of the New Hyperchaotic System

Lemma 2.1 E]/ Define a set

2 2 PRV
F:{(m,y,z)/i;"'zz—’—(zcgd =1,a>0,b>0,c>0} (2)

and G =z + 1y + 22, H= 2>+ y® + (2 — 2¢)°, (2,y,2) € . Then we have

o
5, a>b, a>V2,
a? —c¢
max G = max H =< 4¢%, a < V2¢ b< 2, (3)
(z,y,2)€l (z,y,2)€T b4
m, b > a, b 2 \/50.
Theorem 2.1 Fora >0, 8> 0, v > 0 the following set
2 R?
0= {(om0) 2 4+ (e ma - SR wP s Q
is the bound for system (1), where
B a+7)? .
_ > 2 <1
RP=q (a+7)° ,if B <20, B<2, (5)
B+ .
— ifa>1, >2.
4(8-1)

Proof. Construct the following Lyapunov function

V(x,y,z):x2+y2+(z—a7’y)2. (6)
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Then, its time derivative along the orbits of system (1) is

at+v\*, L lat)?
V-2:c;b+2yy+2(z—a—'y)fz——2ax2—2y2—2/3<z— 3 >+B (7)

s

Therefore, V= 0, that means, the surface

a+y
=< (v,y,2)/ o + v +<Z— 2 ) =1 (8)
T B+t Blat)? (o +7)°
4o 4 4

is an ellipsoid in three-dimensional space. Outside I, V< 0, while inside T, V > 0. Since
the function V = 22 + 42 + (z — a — 7)” is continuous on the closed set T', V' can reach
its maximum on the surface I'. Next, we use Lemma 1 and obtain the optimal value of

VonT.

B la+9)
- ifg>2 <1
4a (ﬁ _ a) ) 1 /3 - a’ « —_ )
V< max V=R*={ (a+17)?,if <20, B<2, (9)
et B (a+ )’
P27V fa>1, B>2.
4(B-1)
Thus, we have
lz| <R (10)
and
w' =—-2—oaw < —aw+ R. (11)
By the comparison principle, we obtain
R R
t) < = ty) — — | emat=t0) 12
wi < g+ (w1 ) (12)
and R
. < B
t_lgrnoow (t) < . (13)

RZ
Consequently, we get w? < — as t = +oo0. Summarizing the above, we have the main
o

result that

2
0= {(om0) 2 4+ o SR w0 (1)

is the bound for the hyperchaotic systems (1). This completes the proof.

3 Estimate of the Two-Dimensional Parabolic Ultimate Bound with Respect
to x—z

Theorem 3.1 When < 2a, the system (1) has the following two-dimensional

parabolic ultimate bound

2
2> g—a (15)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (4) (2018) 413

Proof. Define
1

V()= 23"

2(t) — =2 ().

Then, its time derivative along the orbits of system (1) is
Vz—zi—fz:—mQ—Fﬂz.
@

Thus,
V+BV:—x2+5z+£ 2 _Bz= <5—1>x2.

204x 2c
When 8 < 2a, we have
V4BV <0.

For any initial valueV (¢y) = Vo, according to the comparison theorem, we have
V() < Voe Bl—t0) 5 (t — o00).

Thus,
lim V (t) = lim ixz (t)— =z (t)} <0.

t—o00 t—00 |:20¢
So, we get that system orbits satisfy the parabolic ultimate bound

72

z > —.
2

This completes the proof.

4 The Application in Chaos Synchronization
In this section, we will use the results obtained in Section 2 to study chaos synchronization
via linear feedback. For the master system (1), we construct another system called the

slave system, which is designed as

T = a(y — 1),

?,Jl =r1 —x121 — Y1 — k (yl - y) ’ (16)
21 = x1y1 — Bz,
wl = —X1 — val,

where 1, y1, 21, w1 are the state variables and k£ > 0 is the control. From Theorem 2.1,
we obtain

lyl <R, |2 <R+a+y. (17)

Theorem 4.1 Systems (1) and (16) are globally and asymptotically synchronized
when

k>

2
et 2513f§2+ 2 (a N % . o) | (18)
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Proof. The complete synchronization error is defined by e; = x1 — x, e2 = y1 — v,
es = z1 — 2, 4 = w1 — w. Then, the error dynamics is obtained as

e1=a(es —eq),

és = (y—2)e; —xe3 —ereg — (k+ 1) eq,
ez = ye1 + xex + ejex — fes,

é4 = —€1 — («eéy.

(19)

Define the following Lyapunov function

2 2 2
V(€1,62,€3) =oe] + €5 + €3,

2
where o is a positive constant and o > ﬁ > (0. Then, its time derivative along the
o

system (19) is

1. . . .
§V = oeje + egea + eses

=oe (aeg —aey) +ex ((7— 2) e —xes —ejes — (k+ 1) es)

+ ez (ye1 + zex + ere2 — Pes)

= —cae? — (k+1)e2 — Be2 + (ca+v — 2)erea + yeres

< —oaet — (k+1)e3 — Bei + (a (0 +1) + R+ 2y) [ex|[ea] + Rlex| les|

= —ETPE,
where
alc+1)+R+2y R
(o) 0% — 5 75
1 2
E = leil,lesl lesl)”, P= | —0L0F )?:RJF ’ k+1 0o |,
= 0
5 B
which is positive definite when
R? Ba(c+1)+R+2v)°
— >0, k> -1
7% 4ap = 1afo — 2

Thus, according to the Lyapunov function theory, it follows that
lim |e;| =0, lim |ex| =0, lim [ez| =0. (20)
t—+oo t—+oo t—+o0
In the following, we will prove lim e4 = 0. From (20), we have lim e; = 0. Therefore,
t—+oo t—+oo

e
for any € > 0, there is a sufficiently large T > ¢y such that, when ¢t > T', we have ‘—1’ <e.
o
So, for any € > 0, when ¢t > T, from (19), we have

t
eq(t) = 64(t0)e*a(t7t°) + 67‘”/ (—eq) e dr

to

¢
< ey(tg)e”t—to) 4 e_at/ ace*dr
to

= (ealto) =) e +c.
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Thus, if the initial value e4(tg) > € and ¢t — +o00, we obtain
84(t) — & S (64(t0) — &‘) €_a(t_t0) — 0.

Also, we have

t
eq(t) = 64(t0)67a(t7t0) + efo‘t/ (—e1)e"dr

to

¢
> ey(tg)e”t—t0) e_at/ ace*7dr
to

= (eq(to) + &) e t7t0) _ ¢
Thus, if the initial value e4(tg) < —e and t — 400, we get
64(t) +e< (64(t0) + 6) €7a(t7t0) — 0.

Consequently, when the initial value |e4(tp)] > € and t — +o0, we have the distance
d(eq(t),I) — 0, where I = [—&,¢]. So, for any sufficiently small ¢ > 0, there is a
sufficiently large T > o such that, when t > T, we have |e4(t)| < e. By the definition of
limit, we obtain

lim e4(t) = 0. (21)

t——+oo
Summarizing the above, we have
lim |e;| =0, lim |ez] =0, lim |e3] =0, lim |e4| =0.
t——+oo t——+oo t——+o0 t—+oo

Finally, we conclude that the master system (1) and the slave system (16) are globally
synchronized. This completes the proof.

5 Simulation Studies

In this section, using the MATLAB 7.4, some numerical simulations are presented.

As initial conditions for the master and slave systems, we take (1,—0.5,3,4) and

(—8,—1,—4, —1), respectively. When o« =5, 8 = 0.7, v = 26, it is easy to obtain R = 31,
2

R
o> m = 68.64, according to Theorems 2.1 and 4.1. Choose o = 69, k = 26248, then

Fig. 2. shows the complete synchronization between systems (1) and (16).
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Fig. 2: Time evolution of synchronization errors e1, ez, e3 and e4 between the master
system (1) and the slave system (16).

6 Conclusion

In this research work, the boundedness of a new hyperchaotic system has been investi-
gated. Furthermore, the two-dimensional parabolic estimate with respect to  — z for the
new system is established. Finally, the result is applied to the chaos synchronization and
numerical simulations are presented to show the effectiveness of the proposed scheme.
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