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Abstract: The purpose of this paper is to present some general results concerning
the existence of solutions for systems of di�erential equations. The existence results
to be presented will be based on an e�ective procedure for constructing approximate
solution. Namely, a numerical scheme using the Sinc function, in which it is shown
that the solution converges exponentially. Furthermore, a numerical example and
comparisons are presented to prove the validity of the suggested method.
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1 Introduction

In addition to its intrinsic mathematical interest, the theory of ordinary di�erential equa-
tions has extensive applications in many general �elds, for instance, physics, chemistry,
biology, economics and engineering. The existence and uniqueness of a solution to a �rst-
order di�erential equation, given a set of initial conditions, is one of the most fundamental
results of ordinary di�erential equations.

In this paper, we shall con�ne our discussion to systems of �rst order di�erential
equations of the form

dx 1
dt = F1(x1; x2; :::; xn ; t);

dx 2
dt = F2(x1; x2; :::; xn ; t);

...
dx n
dt = Fn (x1; x2; :::; xn ; t);

(1)

� Corresponding author: mailto:kamel@just.edu.jo

c
 2018 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/ http://e-ndst.kiev.ua 319



320 K. AL-KHALED

that are often encountered in many mathematical models such as the Neutron 
ow,
electrical networks, residential segregation. Also the �rst order di�erential equations are
shown to be adequate models for various physical phenomena in the areas like damping
laws, and di�usion processes. Ifx = ( x1; x2; :::; xn )t denotes an element inRn , the system
of equations (1) can be written in a more compact form

x0 = F (t)x + g(t; x ); (2)

where F (t) is a continuous n � n matrix function, its norm is de�ned as
k F k= supkx k=1 k F x k :

Consider a special case of the system of �rst order di�erential equations

du 1
dt = b11(t)u1 + b12(t)u2 + f 1(t; u1; u2);

du 2
dt = b21(t)u1 + b22(t)u2 + f 2(t; u1; u2)

(3)

on the interval [a; T ] with the conditions

u1(a) = u0
1; u2(a) = u0

2: (4)

We write equation (3) in a vector form as

d~u
dt

= B (t)~u + ~f (t; ~u); (5)

where B is the matrix [ bij (t)]2� 2; i; j = 1 ; 2 and ~u = ( u1; u2)t ; ~f = ( f 1; f 2)t :
Many other authors have studied, under some conditions, the existence and unique-

ness of solutions for systems of �rst-order di�erential equations. For example, in [8]
Fransis and Miller examined fundamental and general existence theorems along with the
Picard iterations. The author in [12] extended the version of Caratheodory’s existence
theorem for ordinary di�erential equations. While in [9], representation and approxima-
tion of the solutions to linear equations are studied. The authors in [14] used a recent
Schauder-type result for discontinuous operators to study the existence of absolutely con-
tinuous solutions of �rst order initial value problems. Existence theorems for iterative
di�erential equations as well as convergence theorems for a �xed point iteration designed
to approximate the solutions are proved in [5]. Some applications of the �xed point the-
ory to a nonlinear di�erential equations are presented in [7]. The fractional derivatives
accurately describe natural phenomena that occur in general physical problems, exis-
tence and uniqueness of solutions for coupled systems of fractional di�erential equations
are studied in [1]. The authors in [11], studied su�cient conditions for the existence of
optimal controls for system of functional-di�erential equations.

The objectives of this paper are twofold. Firstly, we use the Schauder �xed point the-
orem to develop an existence theory for a general class of systems of �rst order di�erential
equations (1), subject to the linear constraint

‘ x = r; (6)

where r 2 Rn . Mainly, we will redo the �rst section from [2]. Secondly, we aim to
implement the Sinc methodology to �nd approximate solutions for systems of di�erential
equations (5).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (4) (2018) 319{330 321

2 Preliminary Results

Let us review some notations and facts that will be used in this paper. LetC[�; � ] denote
the Banach space of continuous functions such thatx(t) is a map that transforms the
closed interval [�; � ] into Rn , where the norm is de�ned as

k x k� max
[�;� ]

k x(t) k : (7)

We also de�ne the domain D = f (t; x ); t 2 [�; � ]; x 2 Rn g, then we assume the following
three hypotheses:

H1. F (t) is a square matrix of sizen in which each entry is a continuous function on
[�; � ].

H2. g(t; x ) is continuous on the domainD de�ned above.

H3. M = M (�; � ) is a bounded linear mapping fromC[�; � ] into Rn with bound
k M k� supkx k=1 k Mx k :

A function x (t) 2 C[�; � ] which has a continuous derivative that satis�es equation (2) on
[�; � ] is called the solution to (2). We consider the following mappings that are de�ned
from the spaceC[�; � ] into Rn

M 0x � x (� );
M 1x � (x1(t1); x2(t2); :::; xn (tn )) ;
M 2x �

R�
� x (� )d�:

(8)

In order to prove our main result in this paper, we do need a sequence of lemmas.

Lemma 2.1 The above de�ned mappingsM 0 ; M 1 ; and M 2 satisfy k M 0 k= 1 ,
k M 1 k� n and k M 2 k= � � �:

Proof: Linearity of the mappings is obvious. For bounds, we have

k M 0 (x ) k= k x (� ) k� max
[�;� ]

k x (t ) k :

Using Equation (7), we arrive at k M 0 k�k x k. For x (t) � c 2 Rn we obtain the
equality k M 0 (x ) k= 1. For the mapping M 1 (x ), we have

k M 1 (x ) k=
nX

i = 1

jx (t i )j � n k x k;

which implies that k M 1 k� n. Finally,

k M 2 (x ) k= k
Z �

�
x (� )d � k �

Z �

�
k x (� ) k d � � (� � � ) k x k :

For equality, let x (t) � c 2 Rn ; that is, kM 2k = ( � � � ).

Lemma 2.2 (Schauder, see [6]) LetB be a convex compact subset of a normal linear
spaceX , then any continuous mappingL from B into B has a �xed point in B .
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Lemma 2.3 If B is a closed convex subset of the Banach spaceX , and L is a con-
tinuous mapping of B into B such that L (B ) is relatively compact, then L has a �xed
point in B .

Proof: As L (B ) is a subset of the closed setB , then cl(L (B )) is also a subset of
B . Let B̂ denote the closed convex hull ofcl(L (B )). By Lemma 2.2, B̂ is compact and
is also the smallest closed convex set containingcl(L (B )), this would imply that B̂ is
subset of B . Therefore L (B̂ ) � L (B ) � cl(L (B )) � B̂ . By Lemma 2.2, L has a �xed
point in B̂ . We would like to impose one more hypothesis in addition toH1 ; H2 and
H3 mentioned above:

H4 The initial value problem

x0 = F (t)x ; ‘ x = r; (9)

for any r 2 Rn , the problem in (9) has a unique solution. Therefore, for the
n� dimensional space of solutions, call itF , to the problem x0 = F (t)x , (‘ jF ) � 1 ex-
ists, i.e., the null space of‘ jF is f 0g.

For the application of Lemma 2.3, we de�ne an appropriate mapping together with
the following lemma.

Lemma 2.4 If F (t) satis�es H1 , then the problem

x0 = F (t)x + z(t); x (t0) = r (10)

has a unique solution ! (t) on [�; � ] for any t0 2 [�; � ); z 2 C[�; � ]; and r 2 Rn .
Moreover, for any t, t0 in [�; � ],

k! (t)k � k ! (t0)k exp
���
Z t

t 0

kF (� )kd�
��� +

���
Z t

t 0

exp
���
Z t

�
kF (s)kds

���kz(� )d� k
���: (11)

The existence and uniqueness of solutions to such initial value problems is well known [10].

Lemma 2.5 If H1 ; H3 and H4 are satis�ed, then the problem

x0 = F (t)x + z(t); ‘ x = r (12)

has a unique solution! (t) for any r 2 Rn and z 2 C[�; � ].

Proof: Let
! (t) � ! 0(t) + ( ‘ jF ) � 1(� ‘! 0) + ( ‘ jF ) � 1r; (13)

where ! 0 is the unique solution to

x0 = F (t)x + z(t); x (� ) = 0 : (14)

It is easily veri�ed by di�erentiation that ! (t) is a solution to (12). If ! 1(t); ! 2(t) are
two solutions to (12), then ! 1(t) � ! 2(t) is the unique solution to

x0 = F (t)x ; ‘ x = 0 : (15)

Hence, by property H4 , ! 1(t) � ! 2(t), that is, ! (t) is the unique solution to (12).
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Lemma 2.6 SupposeH1 and H4 are satis�ed. If !̂ 0(t) is the unique solution to
(12) with r = 0 , then

k!̂ 0(t)k �
Z �

�

�
exp

Z �

�
kF (s)kds

�
kz(� )kd�

�
1 + k(‘ jF ) � 1‘ k

�
: (16)

In particular,
k!̂ 0k � K 1kzk; (17)

where K 1 = ( � � � ) exp
R�

� kF (s)kds(1 + k(‘ jF ) � 1‘ k).

Proof: We have from (2.7) that

!̂ 0(t) = ! 0(t) + ( ‘ jF ) � 1(� ‘! 0); (18)

where ! 0(t) is the unique solution to the initial value problem

x0 = F (t)x + z(t); x (� ) = 0 : (19)

Thus
k ^! 0k � k ! 0k + k(‘ jF ) � 1‘ k k! 0k � k ! 0k(1 + k(‘ jF ) � 1‘ )k: (20)

From Lemma 2.4 with t0 = � and r = 0, we have

k! 0k �
Z �

�

�
exp

Z �

�
kF (s)kds

�
kz(� )kd� (21)

and so (16) holds.
The following notation will be used in this paper. Let H be a positive number,

~H = ( H1; H2; :::; Hn ), where each H i is positive, and H (t) be a continuous positive
function for � � t � �: Let

 (r ) =  (t; r; �; � ) � (‘ (�; � )jF ) � 1r;
C(H ) = C(H; r; �; � ) � f y 2 C[�; � ] : ky �  (r )k � H g;
D (H ) = D (H; r; �; � ) � f (t; y ) 2 D (�; � ) : ky �  (t; r )k � H g;
D (H; t ) = D (H; r; t ) � f y 2 Rn : ky �  (t; r )k � H g;
C(H (t)) = C(H (t); r; �; � ) � f y 2 C[�; � ] : ky(t) �  (t; r )k � H (t); 8t 2 [�; � ]g;
C( ~H ) = C( ~H (t); r; �; � ) � f y 2 C[�; � ] : kyi (t) �  i (t; r )k � H i ; i = 1 ; :::; n; t 2 [�; � ]g:

(22)
Note that C(H ); C(H (t)) ; and C( ~H ) are closed, convex subsets ofC[�; � ]. Note also

that if y 2 C(H ), then ( t; y (t)) 2 D (H ) and y(t) 2 C(H; t ) for t 2 [�; � ]. If H2 is satis�ed
and y 2 C[�; � ], then g(t; y (t)) is continuous on [�; � ]. By Lemma 11, the problem

x0 = F (t)x + g(t; y (t)) ; ‘ x = r; (23)

has a unique solution. We denote this solution byu(r; y ) = u(t; r; y ). Note that

u(r; y ) =  (r ) + u(0; y): (24)

We now de�ne a mapping L on C[�; � ] by

L (y) � u(r; y ): (25)

Note that if Lx = x, then x is a solution to the problem (2), (6).
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Lemma 2.7 If H1 to H4 are satis�ed, then L (C(H )) is relatively compact in C[�; � ].

Proof: By Lemma 12 and equation (24), fory 2 C(H ), we have

kLy k = ku(r; y )k � k  (r )k + ku(0; y)k � k (‘ jF ) � 1kkr k + K 1 max
[�;� ]

kg(t; y (t))k

� k (‘ jF ) � 1kkr k + K 1 max
D (H )

kg(t; z)k � B1;

that is, L (C(H )) is bounded by B1. By Ascoli’s theorem, it is su�cient to show that
L (C(H )) is equicontinuous. For y 2 C(H ); Ly = u(r; y ) and

ku0(t; r; y )k = kF (t)u(t; r; y ) + g(t; y (t))k � k F kB1 + max
D (H )

kg(t; z)k � B2: (26)

By the mean value theorem, fort1; t2 2 [�; � ];

ku(t2; r; y ) � u(t1; r; y )k � B2jt2 � t1j: (27)

Thus L (C(H )) is equicontinuous.

Lemma 2.8 If H1 to H4 are satis�ed, then L is continuous on C(H ).

Proof: Let � > 0 be given. SinceD (H ) is compact, g is uniformly continuous on
D (H ). There exists � > 0 such that if ( t1; x1) and (t2; x2) are in D (H ) and jt1 � t2j +
kx1 � x2k < � , then kg(t1; x1) � g(t2; x2)k � �=K 1, where K 1 is de�ned in Lemma 12. If
y1; y2 2 C(H ), then Ly1 � Ly2 is the solution to

x0 = F (t)x + g(t; y1(t)) � g(t; y2(t)) ; ‘ x = 0 : (28)

By Lemma 12, we have

kLy1 � Ly2k � K 1 max
[�;� ]

kg(t; y1(t)) � g(t; y2(t))k: (29)

If ky1 � y2k < � , that is, ky1(t) � y2(t)k < � for t 2 [�; � ], then

max
[�;� ]

kg(t; y1(t)) � g(t; y2(t))k <
�

K 1
; kLy1 � Ly2k < K 1

�
K 1

= �: (30)

Hence,L is continuous onC(H ).

3 Existence Results

With the aid of the preceding lemmas we can prove our main results.

Theorem 3.1 SupposeH1 to H4 are satis�ed. If there exists H > 0 such that

M (H ) = M (H; r; �; � ) � sup
y2 C (H )

ku(0; y)k � H; (31)

then problem (2), (6) has a solutionx (t ) 2 C(H ).
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Proof: From (24) we haveLy �  (r ) = u(r; y ) �  (r ) = u(0; y). Thus, for y 2 C(H ),
(31) yields

kLy �  (r )k = ku(0; y)k � H; (32)

that is, Ly 2 C(H ), and L (C(H )) � C(H ). Since C(H ) is closed and convex, we can
conclude from Lemmas 2.7 and 2.8 and the Schauder theorem in the form of Lemma 2.3
that L has a �xed point x 2 C(H ); that is, problem (2),(6) has a solution x 2 C(H ). 2

We may easily obtain some natural generalization of Theorem 31.

Theorem 3.2 SupposeH1 to H4 are satis�ed. If there exists a positive, continuous
function H (t) on [�; � ] such that

M (t; H (t)) � sup
y2 C (H ( t ))

ku(t; 0; y)k � H (t); (33)

for t 2 [�; � ], then the problem (2), (6) has a solutionx 2 C(H (t)) .

Proof: We have Ly (t) �  (t; r ) = u(t; r; y ) �  (t; r ) = u(t; 0; y). The condition (33)
implies that, for y 2 C(H (t)), (31) yields

kLy (t) �  (t; r )k = ku(t; 0; y)k � H (t); (34)

for t 2 [�; � ]. Thus Ly 2 C(H (t)), that is, L (C(H (T ))) � C(H (t)). If H �
max[�;� ] H (t), then C(H (t)) � C(H ). Moreover, L (C(H (t))) � L (C(H )) : By Lemma
2.7, L (C(H )) is a relatively compact subset of C[�; � ]; hence,L (C(H (t))) is relatively
compact. By Lemma 2.8,L is continuous on C(H ); henceL is continuous on C(H (t)).
Since C(H (t)) is a closed, convex subset ofC[�; � ], we may conclude from Lemma 2.3
that L has a �xed point x in C(H (t)), that is, problem (2),(6) has a solution x 2 C(H (t)).

In what follows, we use the Sinc methodology to �nd a numerical solution for equation
(5).

4 Description of the Sinc Approximation

The goal of this section is to recall notations and de�nitions of the Sinc function that
will be used in this paper. These are discussed in [3,15]. The Sinc function is de�ned on
the whole real line R by

sinc(x) =
sin(�x )

�x
; x 2 R: (35)

Recall that a radial basis function is a function whose value depends only on the distance
of its input to a central point. For a series of nodes equally spacedh apart, the Sinc
function can be written as a radial basis function:

S(j; h )(kh) = � (0)
jk =

�
1; k = j;
0; k 6= j: (36)

Let

� ( � 1)
kj =

1
2

+ � kj =
Z k � j

0

sin(�t )
�t

dt:

We de�ne a matrix I ( � 1) whose (k; j )th entry is given by � ( � 1)
kj . If a function f (x) is

de�ned on the real line, then for h > 0, the series

C(f; h )(x) =
1X

j = �1

f (jh )sinc
� x � jh

h

�
; j = 0 ; � 1; :::
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is called the Whittaker cardinal expansion, which has been extensively studied in [13,15].
In practice, we need to use a �nite number of terms in the above series, sayj = � N; :::; N ,
where N is the number of Sinc grid points. For a restricted class of functions known as
the Paly-Weiner class, which are entire functions, the Sinc interpolation and quadrature
formulae are exact [15]. A less restricted class of functions that are analytic only on
an in�nite strip containing the real line, and that allow speci�c growth restriction has
exponentially decaying absolute errors in the Sinc approximation.

De�nition 4.1 Let Dd denote the in�nite strip domain of width 2 d; d > 0, given by

Dd = f w = u + iv : jvj < d � �= 2g:

To construct an approximation on the interval � = ( a; T), which is our space interval
in this paper, we consider the conformal map� (x) = ln( x � a

T � x ), the map � carries the
eye-shaped region

D =
n

z = x + iy :
��� arg

� z � a
T � z

� ��� < d � �= 2
o

onto the in�nite strip Dd. For the Sinc method, the basis functions on the interval � at
z 2 D are derived from the composite translated Sinc functions

Sj (z) = S(j; h ) � � (z) = sinc
� � (z) � jh

h

�
:

The function z = � � 1(w) = a+ T exp( w )
1+exp( w ) is an inverse mapping of thew = � . We de�ne

the range of � � 1 on the real line as

� = f � � 1(y) 2 D : �1 < y < 1g = (0 ; T ):

The Sinc grid points zk 2 � in D will be denoted by xk , because they are real, and are
given by

xk = � � 1(kh) =
a + T exp(kh)
1 + exp(kh)

; k = 0 ; � 1; � 2; :::

To further explain the Sinc method, an important class of functions is denoted by
L � (D). The properties of the functions in L � (D) and detailed discussion are given in [15].
We recall the following de�nition followed by two theorems for our purpose.

De�nition 4.2 Let L � (D) be the class of all analytic functions f in D, for which
there is a numberC0 such that, for � (z) = exp( � (z)), we have

jf (z)j � C0
j� (z)j �

[1 + j� (z)j]2� ; 8z 2 D :

The class L � (D) is important in Sinc methodology since it guarantees the rapid
convergence of Sinc approximations. In the next theorem, we shall give a general formula
for approximating the integral

R�
a F (u)du; � 2 �. To this end, we state the following

result, which we will use to approximate the obtained integral equation.

Theorem 4.1 Let F ( t )
� 0( t ) 2 L � (D), with 0 < � � 1, � ( � 1)

jk be de�ned as above,N be a
positive integer, andh be selected ash =

p
�d= (�N ), then there exists a positive constant

K independent ofN , such that
���
Z t k

a
F (t)dt � h

NX

j = � N

� ( � 1)
jk

F (tk )
� 0(tk )

��� � K exp(�
p

�d�N ):
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It is convenient, for deriving an approximate solution for the system (5) by the Sinc-
Galerkin method, to start with the scalar �rst order di�erential equation

du
dt

= B (t)u(t) + f (t); t 2 (a; T) (37)

subject to the initial condition
u(a) = u0: (38)

Integrating with respect to t, and using the initial condition we arrive at the integral
equation

u(t) =
Z t

a

h
B (� )u(� ) + f (� )

i
d� + u0: (39)

To approximate over � = ( a; T), we make use of the conformal mapping� (x) men-
tioned above. We also assume that bothB=� 0 and f belong to the class of func-
tions L � (D). If B is a matrix, this shall imply that all the components of B=� 0 (or
f as a vector) are in the classL � (D). Now in equation (39) we collocate via the
use of the inde�nite integration formula (as in Theorem 4.1). We use the notation
D(1=� 0(t i )) = diag[1=� 0(t � N ); :::; 1=� 0(tN )], then equation (39) can be written as a sys-
tem of m = 2N + 1 linear equations

U = hI ( � 1)
m D(B=� 0(t i ))U + hI ( � 1)

m D(1=� 0(t i ))F + U0; (40)

where U = [ u� N ; :::; uN ]t ; F = [ f � N ; :::; f N ]t with the nodes t i = � � 1(ih ) for i =
� N; :::; N where h =

p
�d=�N , and U0 denotes the vector of 2N + 1 constant values

U0 = [ u0
z� N ; :::; u0

zN
]t . De�ne the matrices A and E by A = hI ( � 1)

m D(B=� 0(t i )), E =
hI ( � 1)

m D(1=� 0(t i )). Then equation (40) can be written as

U = AU + EF + U0: (41)

To prove convergence of the method, we evaluate the integral in (39) at the nodest i ,
where i = � N; :::; N , to get

u(t i ) =
Z t i

a

h
B (� )u(� ) + f (� )

i
d� + u0

with the same matrices A; E and U0 as mentioned above, and using the approximation
in Theorem 4.1 we get, in matrix form, the approximation

U + AU + EF + U0 + ~K exp(�
p

�d�N );

where the constant ~K is a vector such that each entry is bounded by the constantK in
Theorem 4.1. So, the error ERR can be bounded as

kERR k � k U � (AU + EF + U0)k � ~K exp(�
p

�d�N );

i.e., the discretization error that arises when a di�erential equation is replaced by a
discrete system of algebraic equations is exponentially small. With the notation as above,
we just proved the following theorem.
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Theorem 4.2 Let B=� 0; f 2 L � (D), let the function u(t) be de�ned as in (39), and
let the matrix U be de�ned as in (41). Then for h =

p
�d= (�N ) there exists a constant

K independent ofN such that

supk[u(t i )] � Uk � K exp(�
p

�d�N ):

Now, we may attempt to solve the linear systems of equations (41) by successive
approximations, that is, by means of the iterative scheme:

U(n +1) = AU (n ) + EF + U0: (42)

It is easy to show that the convergence of the scheme depends on the‘ 1 norm of B ,
as noted in the following theorem.

Theorem 4.3 The sequenceU(n ) de�ned in (42) converges, for all N being su�-
ciently large, to the exact solution provided that(T � a) < 11=(10kB k1 ).

Proof: Recall that by de�nition of � ( � 1) as de�ned in Section 2, it satis�es the
inequality [15, p. 172] � ( � 1) � 11=10, we have

kB k1 = khI ( � 1)
m D(1=� 0(t i ))k = j max

i

NX

j = � N

h� ( � 1)
i � j (B (zj )=� 0(zj )) j

�
11
10

h
NX

j = � N

(B (zj )=� 0(zj )) �
11
10

Z T

a
jB (t)jdt �

11
10

(T � a) sup
t 2 (a;T )

jB (t)j

�
11
10

(T � a)kB k1 ;

where in the third inequality we used Theorem 4.1, with the fact that B=� 0 2 L � (D). For
the iteration scheme to converge we require thatkB k1 < 1. Therefore we can achieve
convergence of the scheme (42) by choosing (T � a) < 11

10kB k1
.

It remains to show that the approximate solution U � of node values of equation (41)
converges to the node values of the exact solutionU (see, [4]). For that end, choose a
constant R so that U and U� belong to the ball B = f X : kX k1 < 11

10 kB k1 < R= 2g. It
is enough to show that jU � U � j is small. If U � is the approximate solution and satis�es
equation (41), then (U � U � ) � A(U � U � ) = Error , or

k(U � U � )k � k A(U � U � )k + kError k: (43)

Now we can �nd a small constant r , that is 0 < r < 1 such that the Jacobian of the
matrix A is less thanr , so by the mean-value theorem, we obtainkU � AU k � r kU � U � k,
so equation (43) reduces to

k(U � U � )k �
1

1 � r
kError k: (44)

This shows that the approximate solution is su�ciently close to the exact solution. With
the above notations, we have proved the following theorem.

Theorem 4.4 For a constant R > 0, with kB k1 < 1, the solution in equation (5)
with the iteration scheme (41) converges to the unique solution.
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t Errors x(t) Errors y(t)
0:1 1.048 E -07 2.098 E -08
0:3 3.549 E -07 1.560 E -08
0:6 2.963 E -06 3.905 E -08
0:9 4.998 E -06 4.848 E -08
1:2 1.009 E -05 3.555 E -08
1:5 2.286 E -05 9.098 E -08
0:8 5.201 E -05 8.948 E -08
1:8 7.579 E -05 8.011 E -08

Table 1 : Numerical results for the example given in 45. Comparison between the Sinc solution
and the exact solution.

5 Test Example

Consider the initial value problem in equation (2) of the form

X 0(t ) =
�

2 � 3
1 � 2

�
X (t ) +

�
e2t

1

�
; X (0) =

�
� 1
0;

�
; (45)

that is, we consider equation (2) with n = 2 ; F (t) =
�

2 � 3
1 � 2

�
; g(t; X ) =

�
e2t

1

�

and r =
�

� 1
0

�
: Since F (t) and g(t; X ) are continuous, H1 and H2 are satis�ed.

Assumption H3 can be established by Lemma (8). While assumptionH4 is an immediate
consequence of Lemma (34). To prove the existence of the solution for (45), with the

fact that in our case u(t; r ; y) is given by u(t; r; y ) = ret +
Rt

0 et � s
�

e2s

1

�
ds, it is easy

to manipulate the steps of Example 4:2 in [2]. To show the e�ciency of the Sinc method
in comparison with the exact solution of the given equation, which is known to be

X (t ) =
�

x(t)
y(t)

�
=

0

@
� 9

2 et � 5
6 e� t + 4

3 e2t � 3

� 3
2 et � 5

6 e� t + 1
3 e2t + 2

1

A ;

we use the Sinc method to solve the problem in (45) with the parametersd = 1
2 ; � = 1

and N = 32. In Table 1, the comparison of the numerical results demonstrates the
accuracy of this approach.

Conclusions

The study of systems of ODEs is still a very active area of research due to its application
in modeling various physical, chemical, biological, engineering and social systems. This
paper mainly focused on the application of the Schauder �xed point theorem to study the
existence of solutions for systems of ODE. On the other hand, a numerical scheme using
Sinc functions is developed to approximate the solution of a 2� 2 system of �rst order
di�erential equations. The numerical results demonstrate the reliability and e�ciency
of using the Sinc method to solve such problems. The error in the numerical solution is
shown to converge exponentially.
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Abstract: By means of the theory of generalized inversion of operators in Banach
spaces, a solvability criterion and a general form of solutions for integro-di�erential
equations with a degenerate kernel in Banach spaces have been established. The
obtained results have been illustrated by examples.
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1 Introduction

The investigation of the solvability of integro-di�erential equations is a problem the
speci�c nature of which lies in the fact that the integro-di�erential operator has no
inverse. Such equations in Euclidean spaces were considered in [1{4] and others.

Su�cient conditions for the existence and uniqueness of piecewise-continuous mild
solutions of fractional integro-di�erential equations in a Banach space with non instanta-
neous impulses were obtained in [5]. In paper [6] V. Gupta and J. Dabas established the
existence and uniqueness of solution for a class of impulsive fractional integro-di�erential
equations with nonlocal boundary conditions.

In this paper, we propose a somewhat di�erent approach to the study of integro-
di�erential equations in Banach spaces. In its realization, the theory of generalized
inversion of operators in Banach spaces is e�ectively used [7,8].

The proposed approach can be used in the study of the phenomena of energy transfer
and di�usion of neutrons, viscoelastic oscillations various systems and structures, in
nuclear physics and the mathematical theory of biological populations (see [9{11]).
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2 Formulation of the Problem

Consider the integro-di�erential equation

z(t) � M (t)
bZ

a

�
W (s)z(s) + V (s) _z(s)

�
ds = f (t); (1)

where the operator-valued functionM (t) acts from the Banach spaceB 2 into the Banach
spaceB 1 and is strongly continuous with the norm jjj M jjj = sup

t 2I
kM (t)kB 2 = M 0 < 1 ,

and the operator-valued functionsW (t) and V (t) act from the Banach spaceB 1 into the
Banach spaceB 2 and are strongly continuous with the norms jjj W jjj = sup

t 2I
kW (t)kB 1 =

W0 < 1 and jjj V jjj = sup
t 2I

kV (t)kB 1 = V0 < 1 , the vector- function f (t) acts from the

interval I into the Banach spaceB 1 : f (t) 2 C (I ; B 1) :=
�

f (�) : I ! B 1; jjj f jjj =
supt 2I kf (t)k

	
, C (I ; B 1) is the Banach space of vector-functions continuous onI with

values in B 1.
By the solution z(t) of the operator equation (1) we mean vector-functions such

that z(t) 2 C (I ; B 1), _z(t) 2 C1(I ; B 1), where C1(I ; B 1) is the Banach space of con-
tinuously di�erentiable vector-functions with the norm jjj zjjj =

P 1
k=0 supt 2I kz(k ) (t)k

	
,

where z(k ) (t) is the k-th derivative z(t). The derivative _z(t) is understood in the sense
of [12, p. 140].

The problem is to obtain a solvability criterion and to �nd the structure of solutions
for the integro-di�erential equation (1).

3 Preliminary Information

Consider the linear integral Fredholm equation with a degenerate kernel

z(t) � M (t)
bZ

a

N (s)z(s)ds = f (t); (2)

where the operator-valued functionN (t) acts from the Banach spaceB 1 into the Banach
spaceB 2 and is strongly continuous with the norm jjj N jjj = sup

t 2I
kN (t)kB 1 = N0 < 1 .

Denote: D = I B 2 � A; A =
bR

a
N (s)M (s) ds; D : B 2 ! B 2. In [8] it is shown

that if D is a bounded generalized invertible operator, then the integral operatorL is
generalized invertible.

In this case, there exist bounded projectionsPN (D ) ; PYD onto the null space N (D )
and the subspaceYD = I B 2 	 R(D ) of the operator D; respectively [13] and the bounded
generalized inverse operatorD � to the operator D [7].

The following theorem holds for the integral equation (2).

Theorem 3.1 [14] Let D : B 2 ! B 2. Then the homogeneous (f(t)=0) integral
equation (2) has a family of solutions

z(t) = M (t)PN (D ) c;
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where c is an arbitrary element of the Banach spaceB 2:
Under and only under the condition

PYD

bZ

a

N (s)f (s)ds = 0

the nonhomogeneous integral equation (2) has a family of solutions

z(t) = M (t)PN (D ) c + f (t) + M (t)D �

bZ

a

N (s)f (s)ds:

4 The Main Result

1. We obtain the solvability conditions for the general form of solutions of the equation
(1).

We make the substitution _z(t) = y(t) in (1), then

z(t) =
tZ

a

y(s)ds + c0; c0 2 B 1: (3)

Putting (3) in (1), we obtain the integral equation

y(t) � M (t)
bZ

a

h
W (s)

sZ

a

y(� )d� + V (s)y(s)
i
ds = f (t) + M (t)W0c0; (4)

where W0 =
bR

a
W (s)ds, W0 : B 1 ! B 2.

Changing the order of integration in the integral
bR

a
W (s)

sR

a
y(� )d�ds , we obtain from

(4)

y(t) � M (t)
bZ

a

N (s)y(s)ds = g(t); (5)

where

N (s) =
bZ

s

W (� )d� + V (s);

g(t) = f (t) + M (t)W0c0: (6)

By Theorem 3.1, under and only under the condition

PYD

bZ

a

N (s)g(s)ds = 0 (7)
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the integral equation (5) has a family of solutions

y(t) = M (t)PN (D ) c + g(t) + M (t)D �

bZ

a

N (s)g(s)ds; (8)

where c is an arbitrary element of the Banach spaceB 2.
From the solvability condition (7) we �nd the value of c0 2 B 1, for which the integral

equation (5) has a solution. We put (6) in (7)

PYD

bZ

a

N (s)
h
f (s) + M (s)W0c0

i
ds = 0 :

After the transformations, we obtain the operator equation

Sc0 = b0; (9)

where

b0 = �P YD

bZ

a

N (s)f (s)ds:

S = PYD

bZ

a

N (s)M (s)W0ds = PYD AW0 = PYD

�
I � D

�
W0 = PYD W0;

becausePYD D = 0.
Let the operator S : B 1 ! B 2 be generalized invertible. Then there exist bounded

projectors PN (S) : B 1 ! B 1 and PYS : B 2 ! B 2 and a bounded generalized inverse
operator S� : B 2 ! B 1 to the operator S. The operator equation (9) is solvable under
and only under the condition [7]

PYS b0 = PYS PYD

bZ

a

N (s)f (s)ds = 0 ; (10)

and, under this condition, the equation (9) has a family of solutions

c0 = PN (S) ~c + S� b0;

where ~c is an arbitrary element of the Banach spaceB 1.
Then g(t) takes the form

g(t) = f (t) + M (t)W0

h
PN (S) ~c + S� b0

i
:

We put g(s) in the solution (8) of the integral equation (5)

y(t) = M (t)PN (D ) c + f (t) + M (t)W0

h
PN (S) ~c + S� b0

i
+

+ M (t)D �
bR

a
N (s)

n
f (s) + M (s)W0

h
PN (S) ~c + S� b0

io
ds:

(11)
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Denoting eD = ( I B 1 + D � A)W0, after the transformations we obtain the general
solution of the equation (5)

y(t) = M (t)
h
PN (D ) ; eDPN (S)

i �
c
~c

�
+ f (t)+

+ M (t)D �

bZ

a

N (s)f (s)ds � M (t) eDS � PYD

bZ

a

N (s)f (s)ds =

= M (t)
h
PN (D ) ; eDPN (S)

i �
c
~c

�
+ f (t)+

+ M (t)
h
D � � eDS � PYD

i bZ

a

N (s)f (s)ds;

where c 2 B 2, ~c 2 B 1 are arbitrary constants.
Putting the obtained y(t) in (2), we obtain the general solution of the integro-

di�erential equation (1)

z(t) =
h

fM (t)PN (D ) ; fM (t)
� eDPN (S) + PN (S)

� i �
c
~c

�
+ ~f (t) + F (t);

where
fM (t) =

tR

a
M (s)ds; ~f (t) =

tR

a
f (s)ds;

F (t) =
n

fM (t)
h
D � � eDS � PYD

i
� S� PYD

o bR

a
N (s)f (s)ds:

(12)

Thus, the following theorem holds for the integro-di�erential equation (1).

Theorem 4.1 Let the operators D : B 2 ! B 2 and S : B 1 ! B 2 be generalized
invertible. Then the integro-di�erential equation (1) is solvable for those and only those
f (t) 2 C ([a; b]; B 1), that satisfy the condition

PYS PYD

bZ

a

N (s)f (s)ds = 0

and has a family of solutions

z(t) =
h

fM (t)PN (D ) ;
� fM (t) eDPN (S) + PN (S)

� i �
c
~c

�
+ ~f (t) + F (t):

Remark 4.1 As shown in [3] the integro-di�erential equation

(Lz )( t) := _z(t) + H (t)z(t) � M (t)
bZ

a

�
W (s)z(s) + V (s) _z(s)

�
ds = f (t);

where the operator-valued functionH (t) acts from the Banach spaceB 1 to the Banach
spaceB 1 and is strongly continuous with the norm jjj H jjj = sup

t 2I
kH (t)kB 1 = H0 < 1 ,

with the help of substitution z(t) = X (t)y(t), whereX (t) is the fundamental operator [12,
p. 148] _z(t) = � H (t)z(t), is reduced to an equation of the form (1).
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Remark 4.2 The integro-di�erential equation

(Lz )( t) := _z(t) �
qX

i =1

M i (t)
bZ

a

�
Wi (s)z(s) + Vi (s) _z(s)

�
ds = f (t)

is reduced to an equation of the form (1), if we denote the operator matrices
M (t) =

�
M 1(t); M 2(t); : : : ; M q(t)

�
, W (t) = col

�
W1(t); W2(t); : : : ; Wq(t)

�
, V (t) =

col
�
V1(t); V2(t); : : : ; Vq(t)

�
.

2. In the case when the integro-di�erential equation is considered in Euclidean spaces,
the proposed method of investigation can be re�ned and concretized.

Consider the equation (1) under the assumption thatM (t) is an (n � m)-dimensional
matrix, W (t) and V (t) are (m � n)-dimensional matrices, f (t) is an (n � 1)-dimensional
matrix whose elements belong to the spaceL 2[a; b]. The solution will be sought in the
class of functionsz(t) 2 D n

2 [a; b], _z(t) 2 L n
2 [a; b].

In this case, the operator D = I m � A; A =
bR

a
N (s)M (s) ds and orthoprojectors

PN (D ) , PN (D � ) [15,16] are (m � m)-dimensional matrices.
Let rankD = n1. Denote an (m � r )-dimensional matrix by PN r (D ) , which is composed

of r = m � n1 linearly independent columns of the orthoprojector matrix PN (D ) , and
an (r � m)-dimensional matrix by PN r (D � ) , which is composed ofr linearly independent
rows of the orthoprojector matrix PN (D � ) .

Then by Theorem 3.1, under and only underr linearly independent conditions

PN r (D � )

bZ

a

N (s)g(s)ds = 0 (13)

the integral equation (5) has r linearly independent solutions

y(t) = M (t)PN r (D ) cr + g(t) + M (t)D +

bZ

a

N (s)g(s)ds; (14)

where cr is an arbitrary element of the Euclidean spaceR r , D + is the Moor-Penrose
pseudoinverse matrix to the matrix D [15,16].

From the condition (13) we obtain an algebraic system with respect to the vector
c0 2 R n

Sc0 = b0; (15)

where S = PN r (D � ) W0 is an (r � n)-dimensional matrix, b0 = � PN r (D � )

bR

a
N (s)f (s)ds.

Let rankS = n2. Denote an (n � k)-dimensional matrix by PN k (S) , which is composed
of k = n � n2 linearly independent columns of the orthoprojector matrix PN (S) , and
an (d � r )-dimensional matrix by PN d (S � ) , which is composed ofd = r � n2 linearly
independent rows of the orthoprojector matrix PN (S � ) .

The system (15) is solvable if and only if the vectorb0 satis�es the condition

PN d (S � ) b0 = PN d (S � ) PN r (D � )

bZ

a

N (s)f (s)ds = 0 ; (16)
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under which the equation (15) has a family of solutions

c0 = PN k (S) ~ck + S+ b0;

where ~ck is an arbitrary element of the Euclidean spaceR k , S+ is the Moor-Penrose
pseudoinverse matrix to the matrix S [15,16].

The condition (16) consists of d linearly independent conditions. Indeed, since the
matrices PN d (S � ) , PN r (D � ) are of the full rank: rankPN d (S � ) = d, rankPN r (D � ) = r and
d � r , we have from the Sylvester inequality [17, p. 31] that

rankPN d (S � ) + rank PN r (D � ) � r � rank
�
PN d (S � ) PN r (D � )

�
�

� min
�
rankPN d (S � ) ; rankPN r (D � )

�

or
d + r � r � rank

�
PN d (S � ) PN r (D � )

�
� d:

It follows that rank
�
PN d (S � ) PN r (D � )

�
= d:

Then the following theorem holds for the integro-di�erential equation (1).

Theorem 4.2 Let rankD = n1, and rankS = n2.
Then the integro-di�erential equation (1) is solvable for those and only thosef (t) 2

R n , that satisfy d = r � n2 linearly independent conditions

PN d (S � ) PN r (D � )

bZ

a

N (s)f (s)ds = 0 ;

and at the same time it has an(r + k)-parametric family of linearly independent solutions

z(t) =
h

fM (t)PN r (D ) ;
� fM (t) eDPN k (S) + PN k (S)

� i �
cr
~ck

�
+ ~f (t) + F (t);

where cr 2 R r , ~ck 2 R k are arbitrary constants; eD = ( I m + D + A)W0; fM (t); ~f (t) have
the form (12);

F (t) =
n

fM (t)
h
D + � eDS+ PN r (D � )

i
� S+ PN r (D � )

o bZ

a

N (s)f (s)ds:

Example 4.1 Consider the integro-di�erential equation

(Lz )( t) := _z(t) � M (t)
2Z

0

[W (s)z(s) + V (s) _z(s)] ds = f (t); (17)

where
M (t) = diag

��
0 t � 1 0
1 0 3t

�
;
�

0 t � 1 0
1 0 3t

�
; : : :

�
;

W (s) = diag

8
<

:

2

4
0 s � 3

2
� 3

2 0
1 0

3

5 ;

2

4
0 s � 3

2
� 3

2 0
1 0

3

5 ; : : :

9
=

;
;
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V (s) = diag

8
<

:

2

4
1 0

� 1 0
s � 1 s� 1

2

3

5 ;

2

4
1 0

� 1 0
s � 1 s� 1

2

3

5 ; : : :

9
=

;
:

Let the vector-function f (t) act from the interval [0 ; 2] into the Banach spacec of all
convergent numerical sequences:f (t) 2 C ([0; 2]; c) := f f (�) : [0; 2] ! cg, the operator-
valued functions M (t), W (t) and V (t) act from the Banach spaceC ([0; 2]; c) to itself
with the norms jjj M jjj C ([0 ;2];c) = sup t 2 [0;2]kM (t)kc , jjj W jjj C ([0 ;2];c) = sup t 2 [0;2]kW (t)kc ,
jjj V jjj C ([0 ;2];c) = sup t 2 [0;2]kV (t)kc .

It is obvious that the operator L is a linear bounded operator acting from the Banach
space of continuously di�erentiable functions C1([0; 2]; c) on the interval [0; 2] into the
Banach space of continuous functionsC ([0; 2]; c).

For this equation we have:

N (s) =
2Z

s

W (s)ds + V (s) =

= diag

8
<

:

2

4
1 � 1 � s2

2 + 3s
2

� 4 + 3s
2 0

1 s� 1
2

3

5 ;

2

4
1 � 1 � s2

2 + 3s
2

� 4 + 3s
2 0

1 s� 1
2

3

5 ; : : :

9
=

;
;

W0 =
2Z

0

W (s)ds = diag

8
<

:

2

4
0 � 1

� 3 0
2 0

3

5 ;

2

4
0 � 1

� 3 0
2 0

3

5 ; : : :

9
=

;
:

Then

D = I � A = I �
2Z

0

N (s)M (s)ds = diag

8
<

:

2

4
4
3 0 0
0 0 0
0 0 0

3

5 ;

2

4
4
3 0 0
0 0 0
0 0 0

3

5 ; : : :

9
=

;
;

PN (D ) = PYD = diag

8
<

:

2

4
0 0 0
0 1 0
0 0 1

3

5 ;

2

4
0 0 0
0 1 0
0 0 1

3

5 ; : : :

9
=

;
;

D � = diag

8
<

:

2

4
3
4 0 0
0 0 0
0 0 0

3

5 ;

2

4
3
4 0 0
0 0 0
0 0 0

3

5 ; : : :

9
=

;
:

To �nd the solvability condition, we compute the operator

S = PYD W0 = diag

8
<

:

2

4
0 0

� 3 0
2 0

3

5 ;

2

4
0 0

� 3 0
2 0

3

5 ; : : :

9
=

;
;

PN (S) = diag
��

0 0
0 1

�
;
�

0 0
0 1

�
; : : :

�
; PYS = diag

8
<

:

2

4
1 0 0
0 1 3

2
0 0 0

3

5 ;

2

4
1 0 0
0 1 3

2
0 0 0

3

5 ; : : :

9
=

;
:

Then the solvability condition for the equation (17) takes the form

PYS PYD

2Z

0

N (s)f (s)ds = diag

8
<

:

2

4
0 0 0
0 1 3

2
0 0 0

3

5 ;

2

4
0 0 0
0 1 3

2
0 0 0

3

5 ; : : :

9
=

;
�
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�
2Z

0

diag

8
<

:

2

4
1 � 1 � s2

2 + 3s
2

� 4 + 3s
2 0

1 s� 1
2

3

5 ;

2

4
1 � 1 � s2

2 + 3s
2

� 4 + 3s
2 0

1 s� 1
2

3

5 ; : : :

9
=

;
f (s)ds =

=
2Z

0

diag

8
<

:

2

4
0 0

3s� 5
2

3(s� 1)
4

0 0

3

5 ;

2

4
0 0

3s� 5
2

3(s� 1)
4

0 0

3

5 ; : : :

9
=

;
f (s)ds = 0 :

After the transformations, we obtain the results which show that the components of
the vector-function f (t) = col

�
f 1(t); f 2(t); : : :

�
must satisfy the conditions

2Z

0

h
2(3s � 5)f 2k � 1(s) + 3( s � 1)f 2k (s)

i
ds = 0 ; k = 1 ; 2; 3; : : : :

These conditions are satis�ed, for example, by the vectorf (t) = col(0 ; 1; 0; 1; 0; 1; : : :).
For this vector, the solution of the equation will have the form

z(t) = col

""
t 2

2 � t)c2
4� 3t

4 ~c2 + 3t 2

2 c3

#

;

"
t 2

2 � t)c4
4� 3t

4 ~c4 + 3t 2

2 c5

#

; : : : ;

#

:

Example 4.2 We �nd the conditions for the solvability of the integro-di�erential
equation, which is considered in the �nite-dimensional Euclidean space [1,3]

z(t) � M (t)
2�Z

0

W (s)z(s)ds = g(t);

where

M (t) =
�

cost sin t
� sin t cost

�
; W (s) =

1
2�

�
0 0

coss sins

�
;

V (s) = 0 ; g(t) =
�

cost sin t
� sin t cost

�
f (t):

For this equation we have

W (s) =
2�Z

s

W (s)ds =
1

2�

�
0 0

sins coss � 1

�
; W0 =

2�Z

0

W (s)ds =
1

2�

�
0 0
0 0

�
:

D = I 2 � A = I 2 �
2�Z

0

W (s)M (s)ds =
�

1 0
0 0

�
; PN (D ) = PYD =

�
0 0
0 1

�
:

The matrix S = PYD W0 is zero, soPYS =
�

1 0
0 1

�
and the solvability condition (10)

will have the form

PYS PYD

2�Z

0

W (s)g(s)ds =
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=
1

2�

�
1 0
0 1

� �
0 0
0 1

� 2�Z

0

�
0 0

sins coss � 1

� �
coss sins

� sins coss

�
f (s):

After the transformations, we obtain the condition

2�Z

0

�
f 1(s) sin s + f 2(s)(1 � coss)

�
ds;

which completely coincides with the conditions from [1,3], obtained by other methods.

The proposed research method can be used to study the solvability conditions for
integro-di�erential systems of the Volterra type equations [18] in the case when the
system is not everywhere solvable.
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Abstract: We study Krasnoselskii’s �xed point theorem on the sum of two operators
restricted to the Banach space of continuous functions with the supremum norm. The
work is based on \open mappings" in the sense that our mapping P maps a closed
bounded convex set M into its interior M o . We show that any �xed point of a
mapping of the whole space must reside in M o . This is very informative in case of
non-uniqueness. We also extend a known transformation to hold for integral equations
being the sum of a contraction and a compact map where the \forcing function" is the
contraction. Several examples are given showing the construction of the unusually
simple mapping sets.

Keywords: Krasnoselskii’s �xed points; open mappings; transformations; unique-
ness.

Mathematics Subject Classi�cation (2010): 34A08, 34A12, 45D05, 45G05,
4H09.

1 Introduction

Much has been written about �xed point mappings which are either contractions or
compact. But around 1954 Krasnoselskii studied a paper by Schauder on di�erential
equations and concluded a variant of the idea that the inversion of a perturbed di�er-
ential operator yields the sum of a contraction and a compact map. Embodied in that
theorem are both Banach’s contraction mapping principle and Schauder’s second �xed
point theorem. All three of these are conveniently found in the monograph by Smart [15].
Accordingly, Krasnoselskii o�ered the following �xed point theorem [15, p. 31 ].
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Theorem 1.1 Let M be a closed convex non-empty subset of a Banach space(B; k�k).
Suppose thatA and B map M into B and that

(i) x; y 2 M =) Ax + By 2 M ,
(ii) A is continuous and maps bounded sets into compact sets.
(iii) B is a contraction mapping with constant � < 1.

Then there existsy 2 M such that Ay + By = y.

We can get the idea from the survey paper by Park [14] that this has generated much
interest. In fact, the literature on it is so large that we make no e�ort to survey it here.

It is noteworthy that investigators focus on the very general form of (i), but gloss
over the common assumption that (A + B ) : M ! M . Moreover, nothing is said about
uniqueness or where another �xed point might reside. In real-world problems it can be a
complete disaster if there is another �xed point and if it is in a set having fundamental
features very di�erent from those of points in M . We discuss these later.

We loosen (i) to just the mapping (A + B ) and then tighten it to ( A + B ) : M ! M o,
the interior of M . Then we restrict the space to continuous functions. This allows us
to prove the result and be certain that any �xed point will reside in M . Hence, we will
know that the �xed point has the general properties displayed in M . The next paragraph
justi�es the restriction of the space.

Normed spaces and even Banach spaces are very general and contain examples which
have almost none of our intuitive properties in common. There is a classical example
showing how wrong we can be when we see a counterexample to a conjecture when
the counterexample involves sequence spaces, but our main interest lies in spaces of
continuous functions with the supremum norm. A 1980 article in Smart [15, p. 39]
states that there appears to be an open conjecture that [every shrinking mapping of the
closed unit ball in a Banach space has a �xed point]. In fact, it is true for important
spaces of continuous functions, but was shown to be false for sequence spaces in 1967.
See MR3695827.

We believe that the same thing is at work here and it involves the property that
a continuous function starting inside a Jordan curve cannot pass from the inside to
the outside without explicitly crossing the curve. That is used frequently in stability
theory of ordinary di�erential equations, but fails completely for corresponding results
for di�erence equations in which the solution jumps over the boundary without touching
it.

It is for these reasons that we believe that Krasnoselskii’s theorem may be simple for
Banach spaces of continuous functions� : [0; E ] ! < with the supremum norm denoted
by (B; k � k[0;E ]) which typically concern a general class of integral equations represented
as

x (t) = g (t; x (t)) +
Z t

0
a (t; s) f (s; x (s)) ds, t � 0; (E)

in the aforementioned space. A special case of (E) is

x(t) = g(t; x (t)) �
Z t

0
C(t � s)f (s; x(s))ds: (1)

In the context of Krasnoselskii’s theorem,g(t; x ) is B - the contraction, while the integral
is A - the compact map. The natural mapping is then P = B + A and we seek an
appropriate closed bounded convex subset ofB. While we have greatly simpli�ed (i),
among other things we ask that P : M ! M o the interior of M and we also have
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asked that M be bounded. But this will yield far more than just a �xed point. With
these conditions in hand we will use an old combination of Schaefer’s theorem with
Krasnoselskii’s theorem and obtain a �xed point. With reference now to future remarks
on non-uniqueness, we can be assured that any other solution will also reside inM which
tells us also that all solutions are bounded.

Non-anticipative : The entire paper rests on the following two paragraphs.
We will assume throughout that we are dealing with Volterra operators [8, p. 84].

For any pair of functions x; y 2 B if x(s) = y(s) on 0 � s � t � E then the operator
V satis�es (V x)( t) = ( V y)( t). When the operator P is the natural operator de�ned by
(E) and the integral has, at t = 0, constant value for any function x 2 B , say zero, then
(P x)(0) = g(0; x(0)) for any function x 2 B . In particular, if � 2 B is a �xed point so
that P � = � , then it is true that

(P � )(0) = � (0) = g(0; � (0)) ;

and the last equality is an algebraic relation in � (0). Since g is a contraction, this has a
unique solution � (0) independent of which �xed point of P is under discussion. As we
have asked no smoothness conditions onf , there may be many �xed points of P but they
all start at this single � (0). Frequently we can solve that algebraic relation explicitly for
� (0).

Looking ahead, we will be �nding a closed convex bounded setM with the property
that P mapsM into its interior. If  belongs toM and has the property that � (0) =  (0),
then P  is in the interior of M , so the distance from � (0) to the complement of M is
positive.

2 The Location of a Fixed Point

Let (B; k � k[0;E ]) be the Banach space of continuous� : [0; E ] ! < with the supremum
norm. If B; A : B ! B are the operators de�ned, respectively, byg and the integral in
(E), then we want A to be compact in the sense that it is continuous and maps bounded
subsets ofB into compact sets, whileB is a contraction. The central idea here is that if
P� is the non-anticipative mapping P� : B ! B de�ned by

P� � := �B (�=� ) + �A�; 0 < � � 1; (2)

then conditions of the following theorem can be veri�ed if for every � 2 B the number
(P� � )(0) is completely known. This is readily seen in (E) which we later explain in detail.

Throughout the paper, for a positive number K we denote byM K the closed ball of
center 0 and radiusK in the Banach spaceB, i.e.,

M K := f x 2 B : jj � jj � K g :

Theorem 2.1 Let the conditions on A, B , and P� of (2) hold. Assume that there is
a K > 0 such that the unique �xed point x0 of g (0; x) = x belongs to(� K; K ), and, for
each � 2 (0; 1] the mapping P� of (2) satis�es P� M K � M o

K := ( M K )o. Then P � = �
has a solution in M o

K . Moreover, any solution � of P � = � resides in M o
K .

Proof. We �rstly prove that all �xed points of P (if any) reside in M o
K . Recall that

any �xed point of P starts from the unique solution of the equationg (0; x) = x. We now
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come to the idea introduced in [5]. Let � be a �xed point of P which does not reside
in M o

K : As � (0) = x0 2 (� K; K ), we see that there existsT 2 (0; E ] such that either
� (T ) = K or � (T ) = � K , while � K < � (t) < K , t 2 [0; T ), say it holds � (T ) = K .
Then for the function

� T (t) :=
�

� (t) ; t 2 [0; T );
K; T � t � E;

we see that� T 2 M K henceP � T 2 M o
K := f x 2 B : jj � jj < K g, and sojjP � T jj < K . But

� T (t) = � (t) for t 2 [0; T ], thus, as P is non-anticipative, we take P � T (T ) = P � (T ) =
K which implies jjP � T jj � K , a contradiction to P � T 2 M o

K . Thus, all �xed points of P
(if any) reside in M o

K . Then, in view of P = P1, existence of a solution of the equation
P � = � is yielded by the following result of Burton and Kirk [4] applied on the Banach
spaceB and the fact that, by assumption, for any � 2 (0; 1) we haveP� M � M o

K which
excludes (ii) in that theorem.

Theorem 2.2 Let (B; k � k) be a Banach space,A; B : B ! B , B be a contraction
with constant � < 1, and A be continuous with A mapping bounded sets into compact
sets. Either

(i) x = �B (x=� ) + �Ax has a solution in B for � = 1 , or
(ii) the set of all solutions � 2 (0; 1) (if any), is unbounded.

We now want to employ Theorem 2.1 to look at solutions to the equation

x (t) = g (t; x (t)) +
Z t

0
a (t; s) f (s; x (s)) ds, t � 0: (E)

We assume thatg; f : [0; 1 ) � < ! < are continuous with g (t; z) being a contraction
in its second variablez, i.e., there exists an� 2 (0; 1) such that

jg (t; z1) � g (t; z2)j � � jz1 � z2j , t � 0, z1; z2 2 < ,

and that the kernel a (t; s) : f (t; s) : 0 < s < t g ! < is absolutely integrable with respect
to the second variable on [0; t], for t > 0, and such that the function ea de�ned by

ea(t) :=
Z t

0
ja (t; s)j ds; t � 0;

is well de�ned and continuous for t � 0. Note that a(t; s) may not be de�ned for
t = 0 but we ask that lim

t ! 0+

Rt
0 ja (t; s)j ds 2 < , in other words mild singularities of a are

allowed. Clearly, if a is continuous on the closed triangle setsf (t; s) : 0 � s � tg, then a
is absolutely integrable and lim

t ! 0+

Rt
0 ja (t; s)j ds = 0.

In each one of the following three theorems we focus on giving conditions ensuring the
existence of a ballM in the Banach spaceB so that for each � 2 (0; 1] the corresponding
mapping P� de�ned in (2) satis�es P� M � M o. Recall that we have also assumed that
g is a contraction and that A is compact. Then Theorem 2.1 not only yields existence
of (at least one) solution to (E), but also ensures that all solutions reside inM o. As E
may vary and the set M in Theorem 2.1 is taken to be a ball, for the sake of clarity we
adopt the following notation:

For an E > 0 we denote byBE the Banach space of bounded continuous functions
� : [0; E ] ! R equipped with the usual supremum norm

k� kE := sup
t 2 [0;E ]

j� (t)j ,
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(or, simply jj � jj when E is �xed), and set

M K := f � 2 BE : k� k � K g ,

where K is a positive number. Asg (t; 0) is continuous on [0; E ] for any E > 0, we set

L E := sup
t 2 [0;E ]

jg (t; 0)j .

Clearly, L E is a well de�ned nonnegative real number for anyE > 0.
For � 2 (0; 1], we consider the mappingP� on BE de�ned by � 2 BE implies

(P� � ) ( t) := �g
�

t;
� (t)

�

�
+ �

Z t

0
A (t; s) f (s; � (s)) ds, t 2 [0; E ] . (3)

Then P� � is continuous on [0; E ], so P� � : BE ! B E .

Our �rst result presents a limit condition posed on the kernel a(t; s) ensuring that
P� M K � M o

K for properly chosen positive numbersE and K .

Theorem 2.3 Assume that

lim
t ! 0+

Z t

0
ja (t; s)j ds = 0 : (4)

Then there always exist E > 0 and K > 0 such that for the mappingP� de�ned by (3)
we haveP� : M K ! M o

K for any � 2 (0; 1].

Proof. Let � 2 (0; 1] and consider an arbitrary E1 > 0. As L E 1 := sup
t 2 [0;E 1 ]

jg (t; 0)j is

a nonnegative real number, we may consider aK > 0 such that

L E 1 + 1
1 � �

< K . (5)

By continuity of f on the compact setS1 := [0 ; E1] � [� K; K ] we see that

m := sup
( t;z )2 S1

jf (t; z)j 2 < .

In view of (4), if necessary, we may choose anE 2 (0; E1] such that

m
Z t

0
ja (t; s)j ds < 1; t 2 [0; E ]. (6)

With the real numbers E and K de�ned above, we consider the Banach spaceBE and
the ball

M K := f � 2 BE : k� k � K g ,

and note that as [0; E ] � [0; E1], we have

S := [0 ; E ] � [� K; K ] � [0; E1] � [� K; K ] = S1,

so
jf (t; z)j � m for all ( t; z) 2 [0; E ] � [� K; K ] ,
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and
jf (t; � (t)) j � m for all t 2 [0; E ] , � 2 M K .

Now for � 2 M K and � 2 (0; 1] we have fort 2 [0; E ]
����g

�
t;

� (t)
�

�
� g (t; 0)

���� � �
����
� (t)

�

���� =)
����g

�
t;

� (t)
�

� ���� � j g (t; 0)j + �
����
� (t)

�

���� ,

so

j(P� � ) ( t)j �
���� �g

�
t;

� (t)
�

� ���� + �
Z t

0
ja (t; s)j j f (s; � (s)) j ds

� �
�
jg (t; 0)j + �

����
� (t)

�

����

�
+ �

Z t

0
ja (t; s)j j f (s; � (s)) j ds

� L E 1 + ��
j� (t)j

�
+

Z t

0
ja (t; s)j mds

� L E 1 + � k� k + m
Z t

0
ja (t; s)j ds;

from which, by the use of (6) we �nd

j(P� � ) ( t)j < L E 1 + �K + 1, t 2 [0; E ] , � 2 M K .

Consequently, in view of (5) we have

kP� � k � L E 1 + �K + 1 := K 0 < K , � 2 M K ,

and hence for any� 2 M K it holds

P� � 2
�

� 2 BE : k� k < K 0 +
K � K 0

2

�
� M o

K ;

i.e., P� (M K ) � M o
K .

As already mentioned, when a is continuous on the closed triangle sets
f (s; t) : 0 � s � tg ; t > 0, then (4) is automatically satis�ed. However, if the kernel a has
singularity at t = 0, the limit condition (4) may not be satis�ed. Indeed, the function
a (t; s) : f 0 < s < t g ; ! R, de�ned by a (t; s) = 1p

t (t � s) � 1=2 ; 0 < s < t , is absolutely

integrable with respect to s on [0; t] for any t > 0, also the function ea(t) =
Rt

0 ja (t; s)j ds
may be well de�ned and continuous on [0; t] by setting

ea(0) = lim
t ! 0+

Z t

0
a (t; s) ds = lim

t ! 0+

1
p

t

Z t

0
(t � s) � 1=2 ds = lim

t ! 0+

1
p

t
2
p

t = 2,

however, the limit condition (4) is not satis�ed.

Example 2.1 Fractional kernels of the type

a (t; s) = ( t � s)q� 1 ; 0 < s < t;

with q 2 (0; 1) do satisfy condition (4) since

lim
t ! 0+

Z t

0
(t � s)q� 1 ds = lim

t ! 0+

tq

q
= 0,
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and so Theorem 2.3 may be applied on the equation with fractional kernel

x (t) = g (t; x (t)) +
Z t

0
(t � s)q� 1 f (s; x (s)) ds, t � 0,

with q 2 (0; 1), g, f continuous, and g being a contraction. In particular, Caputo type
fractional equations can be considered as special cases of the above equation.

Theorem 2.3 yields the existence of a (su�ciently small) interval [0; E ] and a corre-
sponding K > 0 so that it holds P� M K � M o

K . When f is bounded we may always
�nd a K E > 0 so that P� M K E � M o

K E
for any (arbitrarily large) E > 0, yet without

assuming (4). In view of continuity of the function ea (t) :=
Rt

0 ja (t; s)j ds, we set

aT := sup
0� t � T

ea(t) = sup
0� t � T

Z t

0
ja (t; s)j ds; T > 0:

Theorem 2.4 Assume that there exists anmf � 0 with

jf (t; z)j � mf , (t; z) 2 [0; 1 ) � < .

Then for an arbitrary E > 0, there always exists aK E > 0 so that for the mappingP�
de�ned by (3) we haveP� M K E � M o

K E
for any � 2 (0; 1].

Proof. Let � 2 (0; 1] and consider an arbitrary E > 0. Take K E > 0 with

L E + mf aE

1 � �
< K E . (7)

Then for � 2 M K E , t 2 [0; E ], we have

j(P� � ) ( t)j �
���� �g

�
t;

� (t)
�

� ���� + �
Z t

0
ja (t; s)j j f (s; � (s)) j ds

� L E + � j� (t)j + mf

Z t

0
ja (t; s)j ds

� L E + � k� k + mf sup
0� t � E

Z t

0
ja (t; s)j ds

� L E + �K E + mf aE := bK E ;

so by (7) we takek(P� � )k � bK E < K E , � 2 M K E , from which it follows that P� M K E �
M o

K E
.

Example 2.2 In relation to Example 2.1, as the function f (t; x ) = sin 3 x + x
x 2 +1 is

bounded, one can easily see that Theorem 2.4 applies to the equation

x (t) = g (t; x (t)) +
Z t

0
(t � s)q� 1

�
sin3 x (s) +

x (s)
x2 (s) + 1

�
ds; t � 0;

with q 2 (0; 1), g continuous and contraction in x.
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In the next result the strict condition of boundedness of f is removed and su�cient
conditions yielding that for a given E > 0 there exists a setM E � BE so that P� M E �
M o

E are given.

Theorem 2.5 Assume that for a givenE > 0, there existsK E > 0 such that

L E + aE

"

sup
(s;z )2 [0;E ]� [� K E ;K E ]

jf (s; z)j

#

< (1 � � ) K E . (8)

Then for the mapping P� de�ned by (3) we haveP� M K E ) � M o
K E

for any � 2 (0; 1].

Proof. Let E > 0 be given andK E > 0 be such that (8) holds true, i.e.,

L E

(1 � � ) K E
+

aE

(1 � � ) K E

"

sup
(s;z )2 [0;E ]� [� K E ;K E ]

jf (s; z)j

#

< 1. (9)

Then for � 2 (0; 1], � 2 M K E , t 2 [0; E ], we have

j(P� � ) ( t)j � �
����g

�
t;

� (t)
�

� ���� + �
Z t

0
ja (t; s)j j f (s; � (s)) j ds

� �L E + ��
����
� (t)

�

���� + �
Z t

0
ja (t; s)j

"

sup
(s;z )2 [0;E ]� [� K E ;K E ]

jf (s; z)j

#

ds

� L E + �K E + aE

"

sup
(s;z )2 [0;E ]� [� K E ;K E ]

jf (s; z)j

#

,

thus

kP� � k � L E + �K E + aE

"

sup
(s;z )2 [0;E ]� [� K E ;K E ]

jf (s; z)j

#

:= eK E .

In view of (9) we have eK E < K E and so

P� � 2
n

� 2 BE : k� k � eK E

o
� (M K E )o ;

i.e., P MK E � M o
K E

.

Example 2.3 Consider the equation

x (t) = g0 (t) +
t

2t + 1
sinx (t)

+
1

2 (112t + 1)

Z t

0
(t � s) � 1=2

�
x2 (s) +

p
jx (s)j

�
sinsds, t � 0

with g0 continuous and bounded by 1. Here we have

g (t; x ) = g0 (t) +
t

2t + 1
sinx; t � 0; x 2 < ;

and
jg (t; x ) � g (t; y )j =

t
2t + 1

jsinx � sinyj �
1
2

jx � yj ;



350 T.A. BURTON AND I.K. PURNARAS

so g is a contraction with � = 1=2. Setting

a (t; s) =
(t � s) � 1=2

2 (112t + 1)
, 0 < s < t ,

we may see that the functionea(t) is continuous and for any t 2 [0; 1] we have

Z t

0
ja (t; s)j ds =

1
2 (112t + 1)

Z t

0
(t � s) � 1=2 ds =

2
p

t
2 (112t + 1)

�
1

2 � 11
,

thus, for any T � 0 it holds

aT := sup
0� t � T

Z t

0
ja (t; s)j ds �

1
2 � 11

.

Next, we let f (s; x) =
�

x2 +
p

jx j
�

sins; s � 0, x 2 < and so, taking K E = 3 for any
E > 0, we have

sup
(s;z )2 [0;E ]� [� K E ;K E ]

jf (s; z)j � sup
z2 [� 3;3]

�
z2 +

p
jzj

�
= 9 +

p
3;

and

L E + AE

"

sup
(s;z )2 [0;E ]� [� K E ;K E ]

jf (s; z)j

#

� 1 +
1

2 � 11

�
9 +

p
3
�

< 1 +
1

2 � 11
(9 + 2)

=
3
2

=
�

1 �
1
2

�
3

= (1 � � ) K E ,

i.e., condition (8) is satis�ed with K E = 3 for any E > 0, so Theorem 2.5 is applied. We
conclude that for any � 2 (0; 1], if P� is the mapping de�ned by (3), then P� M 3 � M o

3
for any E > 0. In particular, for any � 2 M 3 we have

kP� � k �
31 +

p
3

11
< 3:

To get a more convenient condition than (8), for a �xed (but arbitrary) z 2 < we set

f E (z) := sup
s2 [0;E ]

jf (s; z)j ; z 2 < ;

and consider bf E : < ! < + with

bf E (z) := sup
t 2 [� z;z ]

f E (t) z 2 < :

From Theorem 2.5 we have the following corollary.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (4) (2018) 342{358 351

Corollary 2.1 If for some E > 0 it holds

aE lim inf
z !1

bf E (z)
z

< 1 � � , (10)

then there always exists anM E � BE such that for the mappingP� de�ned by (3) we
haveP ME � M E )o, for any � 2 (0; 1].

Proof. Let E > 0 be such that (10) holds. Since lim
z !1

L E
z = 0, by (10) we may �nd

a z0 > 0 so large that

L E

z
+ aE lim inf

z !1

bf E (z)
z

< 1 � � , z > z 0.

It follows that we may choose aK E > z 0 so that

L E

K E
+ aE

bf E (z)
K E

< 1 � � ,

i.e.,
L E + aE bf E (z) < K E (1 � � ) , (11)

or

L E + aE

"

sup
(s;z )2 [0;E ]� [� K E ;K E ]

jf (s; z)j

#

< K E (1 � � ) ,

which is (8), so Theorem 2.5 is applied.

3 Non-uniqueness and Examples

If M is bounded, then the conclusion that any solution resides inM can be far more
important than Krasnoselskii’s theorem itself for it can be a suitable substitute for unique-
ness, a property that neither Krasnoselskii’s nor Schauder’s theorem yield. This brings
us to another main idea. It was Kneser [12] in 1923 who jolted us with the idea that
non-uniqueness is the father of disaster, as the examplex0 = x1=3; x(0) = 0, shows by
having both a bounded solution, namelyx(t) identically zero, and an in�nite collection
of unbounded solutions. In such cases what possible good can come from the information
that there is a solution in the form of a �xed point of a natural mapping?

That information was one of the great motivating factors in the study of stability
theory showing that solutions of di�erential equations starting near each other will stay
near each other.

Our focus here will be on the mapping intoM o and on uniqueness which we believe
is a new project.

Example 3.1 We consider the scalar integral equation

x(t) = (1 =2)x(t) sin t +
Z t

0
a(t � s)x1=3(s)ds

in which a : (0; 1 ) ! [0; 1 ) is continuous and there is anE > 0 with
Z E

0
a(s)ds � 1:
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The mapping set is
M = f � : [0; E ] ! < : j� (t)j � 8g

and our Banach space is the continuous functions on [0; E ] with the supremum norm.
The natural mapping P : M ! M is de�ned by � 2 M implies

(P � )( t) = (1 =2)� (t) sin t +
Z t

0
a(t � s)� 1=3(s)ds

so that by inserting � as in (3) and then taking norms we obtain

kP � k � (1=2)k� k + k� k1=3
Z E

0
a(s)ds � (1=2)8 + 81=3 = 6 < 8

and so P : M ! M o for every � 2 (0; 1]. A result in [10] shows the continuity and
the compactness of the integral maps. The conditions of Theorem 2.1 are satis�ed and
there is a �xed point. Moreover, every �xed point resides in M . More general results on
compact mappings by integrals are found in [7] and [6].

Our next example will show that the mapping into M but not into M o results in a
�xed point in M and one which is not in M . This problem starts from a di�erential
equation about which we know a great deal. This enables us to see what the �xed point
theorem can do and cannot do.

Example 3.2 Consider the initial value problem

x0 = x1=3; x(0) = 0

which has one solutionx(t) � 0. Separation of variables yields

x � 1=3dx = dt =) (3=2)x2=3 = (3 =2)x(0)2=3 + t

and

x2=3 = (2 =3)t =) x = �
�

2
3

t
� 3=2

as second and third solutions which are unbounded and hence are of a very di�erent type
than the �rst solution.

This problem occurs in elementary text books, but it is enormously complicated.
Kneser’s theorem tells us that there is a continuum of solutions between

x = 0 and x = (2 t=3)3=2

as well as between
x = 0 and x = � (2t=3)3=2:

If we applied Schauder’s �xed point theorem it would tell us that there is a solution,
but would not suggest which of the three types it might be. But things can get worse.
Do we really know that these are the only kinds which might arise? We are going to �nd
out.

It is a routine matter to convert our initial value problem into an integral equation
which is

x(t) =
Z t

0
e� ( t � s) (x(s) + x1=3(s))ds; (12)
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still retaining the solution x(t) � 0.
Let E > 0 be given and �nd

Z E

0
e� sds = 1 � e� E :

Next, �nd a > 0 so that

(a + a1=3)
�

1 � e� E
�

< a: (13)

This is possible since
a + a1=3

a
! 1

as a ! 1 .
Let

M = f � : [0; E ] ! < : 0 � � (t) � ag

and de�ne P : M ! M by � 2 M implies

0 � (P � )( t) =
Z t

0
e� ( t � s)

h
� (s) + � 1=3(s)

i
ds � [a + a1=3]

�
1 � e� E �

< a:

Notice that P M is not in M o since � (t) � 0. It is shown in [10] that P is a compact
map, so by Schauder’s theoremP has a �xed point. As this is not an open map, we
cannot be sure that all �xed points are in M , as we already know.

First, there is a parallel mapping with

M = f � : [0; E ] ! < : 0 � � (t) � � ag

which is mapped into itself, but not into its interior as it still contains the zero function.
We now combine the two and take

M = f � : [0; E ] ! < : k� k � ag

with a and E generated as before. This time when we take the natural mapping we �nd
that M is mapped into M o and we now know that all solutions reside in this set.

Note that Theorem 2.5 can be applied here withg � 0; a(t; s) = e� ( t � s) ; f (s; x) =
x + x1=3. We �nd

L E = 0 ; aE = 1 � e� E ; sup
(s;z )2 [0;E ]� [� x;x ]

jf (s; z)j = x + x1=3:

Sinceg � 0 may be considered as a contraction with contraction constant any� 2 (0; 1),
condition (8) reduces to asking for a constantK E with

aE

h
K E + ( K E )1=3

i
< (1 � � )K E (14)

and � being any convenient number in (0; 1). This is equivalent to asking for a K E > 0
with

aE

h
K E + ( K E )1=3

i
< K E : (15)

Indeed, if a K E > 0 satisfying (15) exists, then (14) is satis�ed by taking 0 < � <

1 � aE [K E +( K E )1= 3 ]
K E

. Clearly, (15) is (13) with a = K E .
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4 The Transformation: Large Kernels

The reader has noticed that some of our examples involve small kernels, quite unlike the
vast majority of real-world problems. That can be remedied in an interesting and useful
way provided that the kernel a(t) satis�es a set of conditions ensuring the existence of a
resolvent, R(t), having a small integral. The conditions are as follows and they include
kernels typi�ed by ( t � s)q� 1, 0 < q < 1, occurring in heat problems and fractional
di�erential equations of both Riemann-Liouville and Caputo type, as well as many others.
That class is discussed in depth by Miller [13, p. 209] with consequences on pp. 212{213
and Gripenberg [11]. They are de�ned as follows:

(A1) a(t) 2 C(0; 1 ) \ L 1(0; 1).
(A2) a(t) is positive and non-increasing fort > 0.
(A3) For each T > 0 the function a(t)=a(t + T ) is non-increasing in t for 0 < t < 1 .
In those references it is shown that whena has an in�nite integral then the resolvent

equation is

R(t) = a(t) �
Z t

0
a(t � s)R(s)ds (16)

and that
0 < R (t) � a(t);

Z 1

0
R(t)dt = 1 : (17)

When Z 1

0
a(t)dt = � < 1

then Z 1

0
R(t)dt =

�
1 + �

and that can simplify some of the calculations we previously saw withE .
In the work to follow, notice that if J is a positive constant, then Ja(t) still satis�es

(A1){(A3).
In a sequence of papers we showed the advantages of transforming an integral equation

x(t) = b(t) �
Z t

0
a(t � s)f (s; x(s))ds (18)

using a variation of parameters formula of Miller [13, pp. 191-192] into

x(t) = z(t) +
Z t

0
R(t � s)

�
x(s) �

f (s; x(s))
J

�
ds; (19)

with

z(t) = b(t) �
Z t

0
R(t � s)b(s)ds: (20)

Here are the steps. Starting with (18) andb(t) continuous on [0; 1 ) while a satis�es
(A1){(A3) we have

x(t) = b(t) �
Z t

0
a(t � s)[Jx (s) � Jx (s) + f (s; x(s))ds]

= b(t) �
Z t

0
Ja(t � s)x(s)ds +

Z t

0
Ja(t � s)

�
x(s) �

f (s; x(s))
J

�
ds:
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The linear part is

z(t) = b(t) �
Z t

0
Ja(t � s)z(s)ds (21)

and the resolvent equation is

R(t) = Ja(t) �
Z t

0
Ja(t � s)R(s)ds (22)

so that by the linear variation-of-parameters formula we have

z(t) = b(t) �
Z t

0
R(t � s)b(s)ds (23)

and the non-linear variation of parameters formula then yields

x(t) = z(t) +
Z t

0
R(t � s)

�
x(s) �

f (s; x(s))
J

�
ds: (24)

Miller [13, p. 192] points out that all steps are reversible and that will be important
for our next step. This transformation was �rst given in [3] for integral equations of
Caputo type and has since been worked out in a variety of situations. Many �ne details
are found in [1].

5 Extending the Transformation

Our transformation involves

x(t) = b(t) �
Z t

0
a(t � s)f (s; x(s))ds (25)

and that does not cover the sum of two operators as in

x(t) = g(t; x (t)) �
Z t

0
a(t � s)f (s; x(s))ds (26)

with g a contraction and the last term a compact mapping. But we are reminded of
an old trick that can be found in Bellman [2, p. 35]. The idea is to say: if there is a
solution x(t), then we can identify g(t; x (t)) as the forcing function b(t) and perform the
transformation. Recall that Miller [13, p. 192] points out that all steps are reversible and
that will be important for our next step. According to our transformation, this equation
is transformed into

x(t) = b(t) �
Z t

0
R(t � s)b(s)ds +

Z t

0
R(t � s)

�
x(s) �

f (s; x(s))
J

�
ds: (27)

If we can show that this equation has a solution, then reversing the steps we haveb(t) =
g(t; x (t)) so that this last equation is now

x(t) = g(t; x (t)) +
Z t

0
R(t � s)

�
x(s) � g(s; x(s)) �

f (s; x(s))
J

�
ds: (28)



356 T.A. BURTON AND I.K. PURNARAS

Once again we are looking at the sum of two operators, one is the same original function,
while the integral is the compact map.

Strategy In this form, the equation is more algebraic than it is di�erential. With
the integral of R being 1, when we take the norm of both sides the integrand slips out as
the sup of g and f , multiplied by the integral of R which is bounded by 1. Now in the
derivation of the transformation the idea is to work inside a bounded mapping set in which
we can takeJ so large that x(s) dominates f (s; x(s))=J. But now we have g(s; x(s)) in
the integrand but it is a contraction, so x(s) can still dominate it AND f (s; x(s))=J. In
many problems from applied mathematicsf satis�es the \spring condition", f has the
sign of x.

What this means is that we can very often get a mapping set as simply

M = f � : k� k � constantg

and that is going to be a set whereP : M ! M o. The problems become almost entirely
algebraic.

Example 5.1 We will go through the details for an integral equation of the type of
(1), namely

x(t) = g(t; x (t)) �
Z t

0
C(t � s)f (s; x(s))ds: (1)

Using the transformation and the nonlinear variation of parameters formula, we write
(1) as

x(t) = g(t; x (t)) +
Z t

0
R(t � s)

�
x(s) � g(s; x(s)) �

f (s; x(s))
J

�
ds (29)

where J is an arbitrary positive constant and

0 < R (t) � C(t);
Z 1

0
R(s)ds = 1 : (30)

Compactness: There are many known conditions under which
Rt

0 R(t � s)h(s; � (s))ds
maps bounded sets into compact sets. The prime example isC(t) = tq� 1; 0 < q < 1,
which includes heat transfer problems as well as fractional di�erential equations of both
Caputo and Riemann-Liouville type. See, for example, [13, pp. 207-213] and [9].

To get a bound on solutions we ask the \spring conditions"

x 6= 0 = ) xg(t; x ) > 0; xf (t; x ) � 0: (31)

In view of Krasnoselskii’s theorem we ask thatg(t; 0) = 0 and that there exist 0 <
� < 1 with

jg(t; x ) � g(t; y )j � � jx � yj; (32)

for all x; y 2 < , t � 0. Concerning f we ask that there exist aK > 0 and a J > 0 such
that jx j � K and t � 0 imply that

1 � � �
f (t; x )

Jx
� 1; x 6= 0 : (33)
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Proposition 5.1 For h continuous and bounded for � bounded, let
Rt

0 R(t �
s)h(s; � (s))ds map bounded sets in(B; k � k[0;E ]) into compact sets. Under conditions
(30){(33) with � � 1=2, K > 0 �xed and

M = f � 2 B : k� k � K g;

there is a solution of (29) in M and if there is any other solution of (29), then it also
resides in M . As M is bounded, all possible solutions of (29) share that bound.

Proof. We verify the conditions of Theorem 2.1. For a �xed K > 0 let J > 0 be
such that (32) and (33) hold. Following (2) we change (29) to

x(t) = �g
�

t;
x(t)

�

�
+ �

Z t

0
R(t � s)

�
x(s) � g(s; x(s)) �

f (s; x(s))
J

�
ds; (34)

for 0 < � � 1, and de�ne P� : M ! B by � 2 M implies

(P� � )( t) = �g (t; � (t)=� ) + �
Z t

0
R(t � s)

�
� (s) � g(s; � (s)) �

f (s; � (s))
J

�
ds; t � 0:

Then, in view of (32) we have jg(s; x)j � ajx j and

1 � � �
g(s; x)

x
+

f (s; x)
Jx

� 1 + �

or
� � �

�
g(s; x)

x
+

f (s; x)
Jx

�
� 1 � �;

thus ����1 �
�

g(s; x)
x

+
f (s; x)

Jx

� ���� � �:

It follows that for any � 2 M we take for t 2 [0; E ]

j(P� � )( t)j � � jg(t; � (t)=� )j +
Z t

0
R(t � s)j� (s)j

����1 �
�

g(s; � )
�

+
f (s; � )

J�

� ���� ds

� �� j� (t)j=� +
Z t

0
R(t � s)k� k�ds

� k � k
�
� + �

Z t

0
R(t � s)ds]

�
� �

 

1 +
Z E

0
R(t � s)ds

!

k� k

so, by � � 1=2 and in view of
RE

0 R(t � s)ds < 1 we conclude thatP� M � M o:
The conditions of Theorem 2.1 hold, so there is a solution inM which also contains

any other solution of (29). This proves Proposition 5.1.

We may easily see that if there exist positive numbersm1; m2 with 1 � � � m 1
m 2

and
such that

m1jx j � j f (t; x )j � m2jx j; t 2 [0; E ]; jx j � K;

then condition (33) is satis�ed by taking J = m2.
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We note that the requirement that the contraction constant satis�es � � 1=2 may
be relaxed to � � 2=3 by replacing (33) in Proposition 5.1 by the assumption that there
exists a J > 0 such that f satis�es

� �
f (t; x )

Jx
� 2(1 � � ); t 2 [0; E ]; 0 6= jx j � K: (35)

Indeed, by (32) and (35) we take

� � 1 �
g(s; x)

x
+

f (s; x)
Jx

� 1 � 1 � �;

so ����
g(s; x)

x
+

f (s; x)
Jx

� 1
���� � 1 � �;

and the result is obtained following the arguments in the proof of Proposition 5.1.

References

[1] Becker, L.C., Burton, T.A., and Purnaras, I.K. An inversion of a fractional di�erential
equation and �xed points. Nonlinear Dynamics and Systems Theory 15 (4) (2015) 242{
271.

[2] Bellman, Richard. Stability Theory of Di�erential Equations , McGraw-Hill, New York,
1953.

[3] Burton, T.A. Fractional di�erential equations and Lyapunov functionals. Nonlinear
Anal.: TMA 74 (2011) 5648{5662.

[4] Burton, T.A. and Kirk, Colleen. A �xed point theorem of Krasnoselskii-Schaefer type.
Math. Nachr. 189 (1998) 23{31.

[5] Burton, T. A. and Purnaras, I.K. Equivalence of di�erential, fractional di�erential, and
integral equations: Fixed points by open mappings Mathematics in Engineering, Science
and Aerospace 8(3) (2017) 293{305.

[6] Burton, T.A. and Zhang, Bo. Fixed points and fractional di�erential equations: Examples.
Fixed Point Theory 14 (2) (2013) 313{326.

[7] Burton, T.A. and Zhang, Bo. A NASC for equicontinuous maps for integral equations.
Nonlinear Dynamics and Systems Theory 17 (3) (2017) 247{265.

[8] Corduneanu, C. Integral Equations and Applications , Cambridge, 1991.
[9] Diethelm, Kai. The Analysis of Fractional Di�erential Equations . Springer, Berlin Heidel-

berg, 2010
[10] Dwiggins, D.P. Fixed point theory and integral equations. Dynamics of Continuous, Dis-

crete and Impulsive Systems Series A: Mathematical Analysis 23 (2016) 47{57.
[11] Gripenberg, G. On positive, nonincreasing resolvent of Volterra equations. J. Di�erential

Equations 30 (1978) 380{390.
[12] Kneser, H. Uber die L�osungen eines Systems gew�ohnlicher Di�erential gleichungen das der

Lipschitzschen Bedingung nicht gen�gt. S. B. Preuss, Akad. Wiss. Phys.-Math. Kl. (II4)
(1923) 171{174.

[13] Miller, R.K. Nonlinear Volterra Integral Equations . Benjamin, Menlo Park, CA, 1971.
[14] Park, Sehie. Generalizations of Krasnosleskii �xed point theorem. Nonlinear Analysis 67

(2007) 3401{3410.
[15] Smart, D.R. Fixed Point Theorems . Cambridge, 1980.



Nonlinear Dynamics and Systems Theory,18 (4) (2018) 359{371

Dual Star Induction Motor Supplied with Double
Photovoltaic Panels Based on Fuzzy Logic Type-2

F. Hamidia 1, A. Abbadi 1, A. Tlem�cani 1� and M.S. Boucherit2

1 LREA Laboratory, Yahia Feres University, Medea, Algeria
2 LCP Laboratory, Ecole Nationale Polytechnique, ENP, Algiers, Algeria

Received: March 24, 2018; Revised: October 10, 2018

Abstract: Production of electrical energy is carried out mainly from fossil fuels and
nuclear fuel. The excessive consumption of these energies during the 20th century has
led to an aggravated pollution of the atmosphere. Since this form of energy covers
most of the current energy production, it is necessary to �nd alternative solutions.
The constraint is therefore to have an economical and sustainable source of energy,
since environmental protection has also become a very important point. Several
studies have been carried out in the �eld of renewable energies, such as photovoltaic
energy, it has gained a lot of attention in recent years because it is environmentally
friendly and sustainable compared to traditional energy sources. We can consider
also the direct torque control (DTC) as an alternative to conventional methods of
control by pulse width modulation (PWM) and by �eld oriented control (FOC), the
direct torque control (DTC) found by Takahashi o�ers high performance in terms
of simplicity in control and fast electromagnetic torque response. With dominant
characteristics, the direct torque control for AC electric motor drive supplied by a
solar energy is alternative in industrial applications. This paper discusses and presents
the application of direct torque control (DTC) in open and closed loop, using voltage
source inverter to control motor torque and 
ux with maximum power point tracking
in weather conditions and load variation.

The P&O MPPT algorithm is mostly used, due to its ease of implementation,
however, this MPPT algorithm gives us more torque ripples mainly with load vari-
ation. To resolve this problem, we will propose in this paper a fuzzy logic type-2
technique to replace the �rst one (P&O).

Keywords: DTC; DSIM; Photovoltaic (PV) array; MPPT; DC/DC converter;
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1 Introduction

At present, photovoltaic (PV) cell arrays are a promising source of renewable energy
since solar energy is free, abundant and readily available in many locations [1]. It is
durable, clean and environmentally friendly. Solar energy is an attractive alternative
solution to the energy of fossil fuels. Photovoltaic energy develops very quickly. It is
multidisciplinary in nature, involving mechanics, power electronics, control theory, and
other �elds.

In order to control the electrical power delivered by PV panel, various methods are
used: the action on the physicochemical properties of the cells, the action on the mechan-
ical trackers for automatic orientation of the solar panels, and the action on the interface
power electronics that connects the PV generator with its load. This last action is com-
monly called the electrical control of PV systems. It consists in the development of
topologies of static converters and the development of MPPT (Maximum Power Point
Tracking) control algorithms for the best capture of maximum power. Several studies
have dealt with the problem of �nding the operating point to draw the maximum en-
ergy from the PV modules using di�erent MPPT methods. However, the non-linearity
of the characteristic of the PV modules, their dependence on temperature, sunlight and
the level of degradation of the characteristic make the implementation of these methods
very complex. In the case of variations in weather conditions, these methods also exhibit
poor convergence or oscillation around the optimum power point under normal operating
conditions. If the transfer of power between the renewable energy sources and the load
is not optimal, the overall e�ciency of the system will be greatly a�ected. The research
is going on to make these methods more e�ective.

The perturbation and observation (P & O) and incontinence (IncCond) techniques are
widely used in the literature, but they fail under a rapid variation of weather conditions.
This is why many researchers have made changes to these algorithms to improve their
performance. Kook Soon et al. proposed an improvement of the IncCond algorithm to
attenuate inaccurate responses during abrupt changes in the level of sunlight. There are
also other techniques such as the method based on short-circuit current measurement,
the method based on open-circuit voltage measurement, the method based on arti�cial
neural networks and the method based on fuzzy logic [2{5].

Among the techniques mentioned above, the MPPT method based on fuzzy logic
type-2 is presented in this paper. The application of this method allows to adapt the
load to the PV modules and to follow the PPM whatever the variations of the meteo-
rological conditions. In recent years, the �eld of the AC machines application is signif-
icantly expanded with the development of power electronics, the Microelectronics and
computer engineering. Indeed, technological developments have allowed alternative ma-
chines, especially the double stator machine DSM, to acquire the control 
exibility and
dynamic performance naturally obtained. Since the late 1920s, stator machines with two
three-phase windings were introduced to increase the power of synchronous generators of
high-power. Multi-phase machines have subsequently been a growing interest, especially
the dual star induction machine (DSIM), which has many advantages compare to asyn-
chronous machines. Indeed, multiphase drives have several advantages over conventional
three-phase machine, such as power segmentation, minimizing torque ripples and rotor
losses, reduction of harmonic currents, high reliability and high power etc. Multi-phase
machines are used much more in high power applications. Among these applications
there are pumps, fans, compressors, compressor mills, cement mill. It uses a power elec-
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tronics devices which allow a higher commutation frequency if compared to the simple
three phases machines. Usually, high performance motor drive systems used in robotics,
rolling mills, machine tools etc. require fast and accurate speed response, quick recovery
of speed from any disturbance and uncertainties [6]. The introductions of new control
such as DTC are very promising. In PV systems, they achieve great performance, fast
responses and less 
uctuations in steady state, for rapid irradiance and/or temperature
variation improving the amount of energy e�ectively extracted from PV generator [7],
the �rst idea of direct torque control was developed in 1986. This method of controlling
that has progressed during past decade, provides a fast torque response and also it is
robust against machine parameter variations [8{10].

In this paper, we study and discuss the application of Fuzzy logic type-2 for DTC-
DSIM which is supplied with photovoltaic energy.

2 PV Module

A practical PV array consists of a collection of solar cells connected in series and/or
parallel. An equivalent circuit model for a solar cell is shown in Fig. 1. The model
consists of a current source, a diode, a shunt resistor RP and a series resistance RS .

Figure 1 : PV cell model.

The topology of boost converter is shown in Fig. 2. For this converter, the output
voltage is always higher than the input PV voltage. Power 
ow is controlled by the on/o�
duty cycle of the switching transistor.

Figure 2 : Boost converter DC/DC.
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For sizing a photovoltaic system, we have to specify �rst the motor consumption
in order to de�ne the energy need for the load. Second we must take into account
the obtained results and also the meteorological data as the input parameters of the
photovoltaic installation of the input program. The sizing of the photovoltaic system is
carried out according to the algorithm [11].

3 MPPT Control

To optimize the power provided by the generator, a static converter which operates as
an adapter must be added as cited below. It exploits the MPPT technique, there are
many algorithms that are used to control the MPPT, classical as P and O or arti�cial
intelligent technique as ANN.

The commercialized solar modules are formed generally by a number of cells assembled
in parallel NP or /and in series NS . In addition, a data sheet is provided and includes
the following main information about the product presented in Table 1. 12 panels are
assembled in series and parallel to generate a DC voltage range in a MPP operation
under di�erent load changes.

The nominal open-circuit voltage 42.1V
The nominal short-circuit current 3.87A
The voltage at the MPP 33.7V
The maximum experimental peak output power 120W
The current at the MPP 3.56A
Parallel resistance Rs 0.473

Serie resistance Rp 1367


Table 1 : Data sheet information on a PV panel BP MSX120.

The algorithms that are most commonly used are the perturbation and observation
method (P&O), the dynamic approach method and the incremental conductance algo-
rithm. The P&O method is used because of its simplicity [11]. The Perturbation and
observation (P&O) method has a simple feedback structure and fewer measured param-
eters. The P&O method is the most widely applied method in PV industry. It is based
on the idea of introducing perturbation to the operating voltage and observing whether
the power increases or decreases [12].

However, when we use this method on the panel related to the DTC-DSIM we face
a problem to couple the inverter and the boost chopper, which appears in high torque
ripples (Fig. 8) to resolve this problem, we propose in this paper to replace P&O by
fuzzy logic type-2 approach (Fig. 3).

4 MPPT With Fuzzy Logic Type-2

Fuzzy logic is an approach for easy and 
exible modeling of complex systems whose
modeling is di�cult and in some cases impossible by mathematics or classic modeling
methods [10,13{15].

In this section, we will replace the most algorithms of P&O (used to get the maximum
of power provided by the PVG), by fuzzy logic type-2. The Fig. 4 presents the structure
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Figure 3 : Boost converter DC/DC using MPPT-FL2.

of fuzzy logic type-2.

Figure 4 : Structure of type-2 fuzzy logic system.

Fuzzy controller contains the �ve Gaussian membership function forms. The FL2
membership function has lower and upper bounds, their rules are almost similar to those
for the conventional type-1.

The Reduction type used in this paper is centroid. The input and the output present
respectively the power error and the duty cycle of the switching transistor.

Figure 5 : Fuzzy logic-2 MPPT.
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5 Dual-Star Induction Motor

The most used example of multi-phase motors is the dual-star induction motor. In the
conventional con�guration, the double stator induction machine needs a double three-
phase supply; the two stars share the same stator and are shifted by an electrical angle
� (in this work � = 30o) and a rotor is either wound or a squirrel cage. To simplify
the study, we consider the electrical circuits of the rotor as equivalent to a three-phase
short-circuit winding.

The position of the winding axes of the nine phases constituting the machine is shown
in Fig. 6. There are six phases for the stator and three phases for the rotor. The six-
stator phases are divided into two wyes-connected three phase sets labeled AS1, BS1,
CS1, and AS2, BS2, CS2, The windings of each three phase set are uniformly distributed
with their axes spaced by 2� /3 in the space. The three phase rotor windings Ar , Br , Cr
are also sinusoidal distributed and have axes that are displaced apart by 2� /3 [17].

The following assumptions are made [18]:

� Motor windings are sinusoidal distributed.

� The two stars have same parameters.

� Symmetrical construction machine.

� The magnetic saturation, the mutual leakage inductances and the core losses are
negligible.

� Resistances of the windings do not vary with the temperature and neglect the e�ect
of skin (skin e�ect).

� Flux path is linear.

Figure 6 : Windings of the six phase induction machine [18].

The equations for the stator are calculated in the reference frame related to the rotor.
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d’ sd 1
dt = Vsd1 � Rs1I sd1 + ! s ’ sq1;

d’ sq 1
dt = Vsq1 � Rs1I sq1 � ! s ’ sd1;

d’ sd 2
dt = Vsd2 � Rs2I sd2 + ! s ’ sq2;

d’ sq 2
dt = Vsq2 � Rs2I sq2 � ! s ’ sd2;

d’ rd
dt = Vrd � Rr I rd + ( ! s � ! r )’ rq ;

d’ rq
dt = Vrq � Rr I rq + ( ! s � ! r )’ rd ;

(1)

where the expressions for the stator and rotor 
ux are:

’ sd1 = L s1I sd1 + L m (I sd1 + I sd2 + I rd );
’ sq1 = L s1I sq1 + L m (I sq1 + I sq2 + I rq );
’ sd2 = L s2I sd2 + L m (I sd1 + I sd2 + I rd );
’ sq2 = L s2I sq2 + L m (I sq1 + I sq2 + I rq );
’ rd = L r I rd + L m (I sd1 + I sd2 + I rd );
’ rq = L r I rq + L m (I sq1 + I sq2 + I rq ):

(2)

The electromagnetic torque is obtained by:

Te = P L m
L r + L m

[(’ rd (I sq1 + I sq2) � ’ rq (I sq1 + I sq2)]: (3)

6 Direct Torque Control (DTC)

With the development of power electronics components, numerous studies of AC drive
control have been proposed.One of most known, presents the vector control, which was
in latest years the most important �eld research and most suitable to industrial require-
ments; however, this structure su�ers from some drawbacks because it need establishment
of a mechanical sensor and it is very sensitive to parameter variations.To resolve these
problems,a new technique called control DTC (the Direct Torque Control) has been
applied as an alternative.

The basic idea of DTC focuses on the 
ux orientation, using the instantaneous values
of voltage vector. An inverter provides eight voltage vectors, among which two are
zeros [19]. These vectors are chosen from a switching table according to the 
ux and
torque errors as well as the stator 
ux vector position. In this technique, we do not need
a modulator and a mechanical sensor to ensure feedback of speed or position [18].

To determine the electromagnetic state of the motor in order to determine the control
of the inverter switches, a suitable model of the machine must be available. From the
measurements of the DC voltage at the input of the inverter and of the stator currents,
the model gives at each moment:

� actual stator 
ux of the machine,

� the real torque that it develops,

� its rotor speed.

Measurement of the rotor speed is not necessary, which is a great advantage of these
methods. Which is independent of the rotor machine parameters, it provides a faster
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torque response and it has a simpler con�guration. The structure of the DTC-DSIM fed
by double PV panel is shown in Fig 7, the basic idea of DTC control is to choose the
best stator voltage vector, which is taken from a switching table according to the stator

ux vector position, the 
ux and torque errors. During this rotation, the amplitude of
the 
ux rests in a pre-de�ned band [20], [21]. In this technique, we do not need the rotor
position in order to choose the voltage vector. This particularity de�nes the DTC as an
adapted control technique of AC machines and is inherently a motion sensor-less control
method [19].

Figure 7 : Schematic diagram of DTC-DSIM supplied by double PVG.

Figure 8 : Torque, 
ux and current responses using DTC-DSIM in open loop with P&O method
and load variation (G=1000W/m 2 , T=298K ).

The stator 
ux vector can be estimated using the measured current and voltage
vectors [20]:

d’ s
dt = Vs � RsI s (4)
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Figure 9 : Torque, 
ux and current responses using DTC-DSIM in open loop by using Fuzzy
logic type-2 with T=298K � , G=1000W/m 2 .

Figure 10 : Torque, 
ux and current responses using DTC-DSIM in open using Fuzzy logic
type-2 with T=298K � , G=1000W/m 2 .

or
’ s =

Z
(Vs� RsI s) dt: (5)

7 Digital Simulation

Firstly, our system has been simulated in the same conditions to compare the perfor-
mances of dynamic torque control with and without speed control. To verify the e�ec-
tiveness of the proposed techniques, simulations are performed in this section by using
MATLAB/SIMULINK. In this simulation of dual-star asynchronous machine, the nom-
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Figure 11 : Torque and rotor speed responses using DTC-DSIM in closed loop using Fuzzy
logic type-2 with T=298K � , G=1000W/m2 and load parameters variation (stator and rotor
resistance, friction f and moment of inertia J).

inal voltage is 220V, nominal power is 4.5kw, stator resistances are 3.72 Ohm, rotor
resistance is 2.12Ohm, mutual inductance is 0.3672H, rotor inductance is 0.006H, mo-
ment of inertia is 0.0662kg.m2 and friction coe�cient is 0.001.

8 Discussion of Results

As a �rst step, we have presented simulation results of DTC-DSIM without speed regu-
lation (in open loop) as shown Figs. 8,9 and 10.

It can be seen that the estimated values follow their references by applying a load
torque 10N, with a changing load torque applied from 10Nm to -10Nm (at 0.5sec) and
constant command 
ux of 1Wb.

It can be noticed that these results obtained by using P&O algorithm give us higher
torque and 
ux ripples (Fig 8) than the results obtained by using fuzzy logic type-2 (Fig.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (4) (2018) 359{371 369

Figure 12 : Torque, 
ux, current and rotor speed responses using DTC-DSIM (in closed loop)
with load torque, speed variation.

Figure 13 : Torque and rotor speed responses using DTC-DSIM (in closed loop) with load
torque, speed, irradiation and temperature variation.

9 and Fig. 10).
In order to veri�ed the robustness of the proposed approach under load parameters

variation (stator and rotor resistance, friction f and moment of inertia J) we carried out
a test for DTC-DSIM in closed loop as is shown in Fig. 11.

Fig. 12 depicts, during the starting up with no load,the system simulated with chang-
ing speed reference; (50rad/sec changed to 200 and 100 rad/sec, at 3sec the rotor speed
is inversed to -200rad/sec). The speed reaches quickly its reference value without over-
shoot, however, when the nominal load is applied at 2.5sec, a little overtaking is noticed
and the command reject rapidly the disturbance.
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Fig. 13 presents also the same responses as the �rst one but simulated under di�er-
ent conditions, that means by changing the load (electromagnetic torque) and weather
conditions such the temperature and irradiation. From this �gure, it can be found that
our system has satisfactory performance.

9 Conclusion

Direct torque controlling dual star induction motor with and without speed regulation
has been discussed in this paper. As can be analyzed from current waveforms,it shows
that it is nearly sinusoidal; stator 
ux and electromagnetic torque track their references.
So, the obtained results were very successful and con�rm the validity of the proposed
technique. It has been possible to obtain satisfactory results using DSIM supplied by
double PVG which alone fed power to the AC motor and maintained the output voltage at
a predetermined value. Summing up the results, it can be concluded that this study show
the feasibility of fuzzy logic type-2 approaches and the improved dynamic performance
of the machine in the case of variations in weather conditions or load. This can o�er a
very interesting solution to the conventional controller, and give us a control of the AC
motor in a friendly and clean environment.
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Abstract: The paper deals with Bayesian approach for multi-mode Kalman �l-
ter estimation for the states x(k) from the set of successive observationsYk =
f y(1)y(2) : : : y(k)g in normal and abnormal operations is driven. Abnormal oper-
ations may be related to fault in one of system components; sudden internal thermal
noise or even missing the input signal and can be extended to the maneuver target
tracking case. Whenever the abnormal operation is detected, we can start tracking
the states in this mode of operation. So the main problem may be reformulated to be
detection of the starting point of the abnormal operation. The numerical simulation
for fault estimation of phosphor furnace in di�erent conditions are used to show the
e�ectiveness of the proposed approach.

Keywords: Bayesian estimation; multi mode operation; interactive multiple model;
Kalman �lter fault estimation.
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1 Introduction

Fault detection and isolation problems have many signi�cant applications during the
past three decades, such as parity space Eigen structure assignment,H1 �ltering, H1
optimization, and unknown input observer [1]. It is known that multiple model systems
(known as hybrid systems) are an important class of combination �ltering, which are
mostly used in many practical engineering and industrial �elds such as maneuver target
tracking systems and fault detection systems, ets. In general, the multiple model systems
combine hierarchically discrete or continuous state spaces, and each state (which is called
the mode) is associated with a dynamic process [2].
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Many algorithms have been proposed for solving the problem of hybrid systems, such
as the generalized pseudo Bays [3], interacting multiple model [4], expectation propaga-
tion algorithm [5]. These algorithms estimate the states with low computational costs
by approximating of the posterior state distributions in �nite mixture models. The main
drawback of these algorithms is that, whenever the system contains nonlinear or non-
Gaussian modes, the mixture models can not approximate the distribution accurately,
that leads to the estimation fail. The interactive multiple model (IMM) algorithm, see [4]
and [9], may be considered one of the most important approaches for solving the switch-
ing systems with the Gaussian linear states. It is basic operation by applying the Kalman
�lter for each estimation mode under consideration that this mode is a correct one at this
operational instant. Then, the weighted combination of state estimations by all �lters is
calculated to produce the �nal Gaussian mean and covariance [7]. This mixed estimation
is used for the next estimation. The weights are calculated according to the probabilities
of the models.

In this paper, a Bayesian approach for multi-mode Kalman �lter estimation for the
states x(k) from the set of successive observationsYk = f y(1)y(2) : : : y(k)g in normal
and abnormal operations is developed. The rest of the paper is organized as follows:
Statement of the problem is described in Section 2. Multi-mode Kalman �lter approach
is described in Section 3. Proposed multi model estimation is described in Section 4.
Simulation Results is described in Section 5. Conclusion is described in Section 6.

2 Statement of The Problem

Consider the classical discrete-time state space problems in case of linear model of the
form:

x(k + 1) = F (k + 1 ; k)x(k) + BU (k) + �( k)v(k); (1)

y(k) = Hx (k) + w(k); (2)

where x(k) is the discrete time state, F is a state transition matrix, B is an input
matrix, the vector U(k) is the input and assumed to be known at perspective times,
y(k) is a vector including the measurements at timek, H is the associated observation
matrix, v(k) is a state noise process (or an input noise), andw(k) is the measurement
noise; both sequencesw(k) and v(k) are assumed to be uncorrelated with the white
Gaussian noise sequence with zero means and the covariance matricesQ(k) and R(k), and
v(k)� N (0; Q(k)) ; w(k)� N (0; R(k)), [cov(v(k); v(j )) = E [v(k)v(j )T ]� (k; j ) = Qk � (k; j )];
� (k; j ) is the Kronecker delta, cov(w(k); w(j ))] = E

�
w(k)w(j )T �

� (k; j ) = Rk � (k; j ).
It is also assumed that w and v are uncorrelated and cov(w(k); v(k)) = 0 for all

k; j . The initial value of x represents a random variable with an average� x (0) and
variance Vx (0) such that E [x(0)] = � x (0) and var [x(0)] = Vx (0). Assume that the
observation noisew(k) is uncorrelated with the system discrete-time state x(k), such
that E

�
x(k)w(k)T �

= 0 8 k � 0:
Now our problem is to estimate the statesx(k) from the set of successive observations

Y k = f y(1)y(2): : :y(k)g in normal and abnormal operations. Abnormal operations are
related to the fault in one of the system components; sudden internal thermal noise or
even missing the input signal and can be extended to the maneuver target tracking case.
Whenever the abnormal operation is detected, we can start tracking the states in this
mode of operation. So the main problem may be reformulated to be: detection of the
starting point of the abnormal operation.
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3 Multi-Mode Kalman Filter Approach

Let
^x (k=k) be the state estimation, then the estimation error will be:

�x = x(k) �
^x(k=k); (3)

The estimation will be conditionally and unconditionally unbiased, such that

E
n ^x (k=k) jy (k)

o
= E f x(k)jy(k)g ; (4)

which leads to
E

n ^x (k=k)
o

= E f x(k)g ; (5)

which is a linear function of the observations y(k). According to the linear unbiased
estimation algorithms, we choose only the one that gives the minimal variance of error,
i.e., V�x (k=k) = var

n �x(k=k)
o

or simply var
n �x(k=k)jy(k)

o
is as minimum as possible.

For a given set of observationsY k , the estimate based on the minimum of the mean-
square error coincides with the conditional mean value ofx, which is based on linear
Kalman �lter process.
1- Extrapolation process:

bx(k=k � 1) = F (k; k � 1)bx(k � 1=k � 1): (6)

2- Estimation:

bx(k=k) = bx(k=k � 1) + K (k) [y(k) � H (k)bx(k=k � 1)] : (7)

3- Coe�cient gain:

K (k) = P (k=k � 1)H T (k)
�
H (k)P (k=k � 1)H T (k) + R(k)

� � 1
: (8)

4- Covariance extrapolation:

P (k + 1=k) = F (k + 1 ; k)P (k=k)F T (k + 1 ; k) + Q(k): (9)

5- Covariance �ltration:

P (k=k) = [1 � K (k)H (k)] P (k=k � 1): (10)

De�nition 3.1 Let the innovation process noise#(k) be [8]

#(k) = y(k) � H (k)bx(k=k � 1): (11)

Assume the innovation process noise#(k) is the white Gaussian noise with zero mean
expectation in the normal operation and, also, the white Gaussian noise but with non-
zero mean expectation in the abnormal operation:

E [#(k)] =
�

0; at the normal operation;
g(k � k0; � ) ; at the abnormal operation; (12)

where g is a deterministic function, k0 + 1 is the starting of abnormal operation and � is
an intensity vector.
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De�nition 3.2 Let us de�ne the covariance of the additional intensity vector � as

s(k) = H (k)P (k=k � 1)H T (k) + R(k): (13)

De�nition 3.3 Let the density of the probability distribution of the innovation pro-
cess noise#(k) be w(#):

w(#) =
1

q
(2� )

n
det(s)

e
�

� 1
2

#T s� 1#
�

: (14)

The following equation is a Riccati equation

(15)P (k + 1=k) = F (k + 1 ; k)�
P (k=k � 1) � P (k=k � 1)H T (k)s(k) � 1H (k)P (k=k � 1)

�
F (k + 1=k)T + Q(k):

Note : The Riccati equation will converge to the constant matrix P as k ! 1 in
case of the system we are dealing with time invariant. As a result, the gain coe�cient
K converges to a constant small value and estimates of the parameters practically inde-
pendent of the observed data. The result, is that, for small intensity � , will not be taken
into account in any way.

The problem of detection the starting point of the abnormal operation ko and es-
timation of its intensity vector � is a problem of detection a useful signalg(k � ko; � )
from the white noise and estimation of its parameters. It is known that, when solving
the problem of detection, various optimality criteria (Bayesian or non-Bayesian) lead to
a general decisive rule - the formation of the likelihood ratio and comparison with the
threshold. The di�erence lies in the choice of the detection threshold. Here we assume
that the abnormal operation intensity is a nonrandom process. To synthesize the meter
of the intensity of the abnormal operation, it is convenient to use the maximum likeli-
hood criterion. In this subsection we consider a general approach to the synthesis of the
algorithm for simultaneous detection of the moment of the beginning and estimation of
the abnormal operation. Let

U(k) =

(
u(k); at normal operation,
u(k) + �; at abnormal operation.

(16)

It is assumed that the system starts the abnormal operation in the time between the
moments k0 and k0 + 1, therefore the time moment, which is considered the beginning
of the abnormal operation, is k0 + 1. Let #0(k) and #1(k) be the updating processes
corresponding to the absence and presence of an abnormal operation, then the problem of
�nding an abnormal operation consists of choosing one of the two alternative hypotheses.

H0 : #(k) = #0(k) at the normal operation; (17)

H1 : #(k) = #1(k) = #0(k) + g(k � k0; � ) at the abnormal operation; (18)

where g(k � k0; � ) is a useful signal that should be detected, whenever the abnormal
operation is started, g(k � k0; � ) is introduced as an o�set or bias in the innovation
process at the timek � k0. Since #0(k) is a random process with the white Gaussian
noise with zero expectation and covariance and#1(k) is the mixing of the useful signal
and the white noise#0(k), with the mathematical expectation g(k � k0; � ).
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Theorem 3.1 The task is detecting a vector of deterministic signalg(k � k0; � ) with
unknown parameters (the intensity � and the moment of the onset of the abnormal op-
eration k0 + 1 ) from a background of the white noise#0(k).

Proof. The optimal procedure for detection the of intensity vector � may be reduced
to the formation of the likelihood ratio and compared with a predetermined threshold
value � ,

L (k) =
p [#(k � m + 1) ; :::; #(k)jH1]
p [#(k � m + 1) ; :::; #(k)jH0]

� �; (19)

where m = k � k0 = 1 :::M , M is the number of samples. Assume that the samples of
the white Gaussian noises are statistically independent, then we have

p [#(k � m + 1) ; :::; #(k)jH0] =
k
�

n = k � m +1

1
p

(2� ) l det(s(n))
e

�
� 1
2

#T (n)s� 1#(n)
�

; (20)

and

p [#(k � m + 1) ; :::; #(k)jH1] =
k
�

n = k � m +1

1
p

(2� ) l det(s(n))
e

�
� 1
2

[#(n) � g(n � k0; � )]T s� 1(n) [#(n) � g(n � k0; � )]
�

;

(21)

where l is the order of the vector #(k) and k is the current instant of time. From
the equations (19){(21) after algebraic transformations, taking into account that s is a
symmetric matrix, # and g are columns vectors,

#T s� 1g = gT s� 1#; (22)

we get

L (k) = e

(
kX

n = k � m +1

�
gT (n � k0; � )s� 1(n)#(n) �

1
2

gT (n � k0; � )s� 1(n)g(n � k0; � )
� )

;

(23)
Taking the logarithm of both sides of (23), we get

ln L (k) =
kX

n = k � m +1

�
gT (n � k0; � )s� 1(n)#(n) �

1
2

gT (n � k0; � )s� 1(n)g(n � k0; � )
�

;

(24)
2

Let g(m; � ) = #1(k) � #0(k) = #1(k0 + m) � #0(k0 + m). Then #1(k0 + m) is the
updating process at the timek = k0 + m under the condition of correspondence between
the real state (presence of the abnormal operation) of the system and the model of system
used by the abnormal operation (model equation withU(k) = u(k) + � ), and #0(k0 + m)
is the updating process at timek = k0 + m under the condition of a discrepancy between
the real state (the presence of the abnormal operation) of the system and the model of
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system used by the abnormal operation (model equation 1 withU(k) = u(k)). Then

(25)

_g (m; � ) =
h
y(k0 + m) � H

_x
1

(k0 + m=k0 + m � 1)
i

�
h
y(k0 + m) � H

_x
0

(k0 + m=k0 + m � 1)
i

= H
h_x

0
(k0 + m=k0 + m � 1)�

_x
1

(k0 + m=k0 + m � 1)
i

= HF
h_x

0
(k0 + m=k0 + m � 1)�

_x
1

(k0 + m=k0 + m � 1)
i
:

Proof: The state estimation equation (1) at the normal and abnormal operation will be:

1. At time step 1

(26)_x
0

(k0 + 1=k0 + 1) = [ F � K (k0 + 1) HF ]
_x (k0=k0)

+ K (k0 + 1) y(k0 + 1) + [ B � K (k0 + 1) HB ] u(k);

2. At time step 2

_x
0

(k0 + 2=k0 + 2) =
[F � K (k0 +2) HF ] [F � K (k0 +1) HF ]

_x (k0=k0) [F � K (k0 +2) HF ] K (k0 +1) y(k0 +1)
+ K (k0 +2) y(k0 +2) f [F � K (k0 +2) HF ] [B � K (k0 +1) HB ]+ [ B � K (k0 +2) HB ]g

u(k);
(27)

3. At time step m

_x
0

(k0 + m=k0 + m) =
m � 1Y

i =0

[F � K (k0 + m � i )HF ]
_x (k0=k0)

+
m � 2X

j =0

(" jY

i =0

[F � K (k0 + m � i )HF ]

#

K (k0 + m � j � 1)y(k0 + m � j � 1)

)

+ K (k0 + m)y(k0 + m)

+
m � 2X

j =0

(" jY

i =0

[F � K (k0 + m � i )HF ]

#

[B � K (k0 + m � j � 1)HB ]

)

+ [ B � K (k0 + m)HB ] u(k);
(28)

from the above equations (25){(28) and after the substitution m = k � k0, we obtain the
expression for the "useful signal"g(m; � ) in the following form

(29)

g(m; � ) = HF

8
<

:

m � 2X

j =0

(" jY

i =0

[F � K (k � i )HF ]

#

[B � K (k � j � 1)HB ]

)

+ [ B � K (k)HB ]

9
=

;
u(k)

= G(m)u(k);
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where

(30)

G(m) = HF:::8
<

:

m � 2X

j =0

(" jY

i =0

[F � K (k � i )HF ]

#

[B � K (k � j � 1)HB ]

)

+[ B � K (k)HB ]

9
=

;
;

m � 1. When m = 1, the term
m � 2P

j =0

nhQ j
i =0 [F � K (k � i )HF ]

i
[B � K (k � j � 1)HB ]

o

will be equal to zero, and the matrix G(m) becomes square matrix with dimensionsl � l ,
l is the order of the observation vector. Substituting equation (29) into (24), we obtain

ln L (k; � ) =
kX

n = k � m +1

�
� T GT (n � k0)s� 1(n)#(n) �

1
2

� T GT (n � k0)s� 1(n)G(n � k0)�
�

;

(31)
then

(32)
ln L (k; � ) = � T

"
kX

n = k � m +1

�
GT (n � k0)s� 1(n)#(n)

�
#

�
1
2

� T

"
kX

n = k � m +1

�
GT (n � k0)s� 1(n)GT (n � k0)

�
#

�:

From equation (32), by the criterion of maximum likelihood ratio, we �nd the estimate
of the intensity vector,

(33)

@ln L (k; � )
@�

=
kX

n = k � m +1

�
GT (n � k0)s� 1(n)#(n)

�

�

"
kX

n = k � m +1

�
GT (n � k0)s� 1(n)GT (n � k0)

�
#

�

= 0 :

Then

_� m =

"
kX

n = k � m +1

�
GT (n � k0)s� 1(n)G(n � k0)

�
#� 1" kX

n = k � m +1

�
GT (n � k0)s� 1(n)#(n)

�
#

:

(34)
Taking the second order derivative, we get

@2 ln L (k; � )
@�@�T

=

"
kX

n = k � m +1

�
GT (n � k0)s� 1(n)GT (n � k0)

�
#

� 0: (35)

The function ln L (k) will reach its maximum value at the point � =
_� m .

Theorem 3.2 var f Xy g = X [var f yg] X T .
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Proof. Let X be an m � n matrix and y be a n � 1 random vector. Then

var f Xy g = E
�
(Xy � XE (y))( Xy � XE (y))T �

= E
�
X (y � E (y))( y � E (y))T X T ;

�

= XE
�
(y � E (y))( y � E (y))T �

X T = X [var f yg] X T :

2
If all values are scaled by a constant, the variance is scaled by the square of that

constant. Then, the covariance matrix of the estimation is

(36)

var
n_� m

o
=

"
kX

n = k � m +1

�
GT (n � k0)s� 1(n)GT (n � k0)

�
#� 1

:::

"
kX

n = k � m +1

h
GT (n � k0)s� 1(n)var f #(n)g

�
GT (n � k0)s� 1� T

i #

� :::

2

4
"

kX

n = k � m +1

�
GT (n � k0)s� 1(n)G(n � k0)

�
#� 13

5
T

:

Let the covariance matrix of the innovation process bevar f #(n)g = s(n). Since
s� 1(n) is a symmetrical matrix, we have that

(37)

2

4
"

kX

n = k � m +1

�
GT (n � k0)s� 1(n)G(n � k0)

�
#� 13

5
T

=

"
kX

n = k � m +1

�
GT (n � k0)s� 1(n)G(n � k0)

�
#� 1

;

yields the covariance matrix of this estimate as follows

var
n_� m

o
=

"
kX

n = k � m +1

�
GT (n � k0)s� 1(n)GT (n � k0)

�
#� 1

; (38)

Substituting equation (33) into (32), we get

ln L (k;
_� m ) =

1
2

kX

n = k � m +1

#T s� 1G

"
kX

m = k � m +1

GT s� 1G

#� 1 kX

m = k � m +1

GT s� 1# � ~� m ;

(39)
It is obvious that for every value of m, there exists an estimate

_� m . Therefore, the
simultaneous detection of the start of the abnormal operation and estimating the abnor-
mal operation is the abnormal operation in multichannel (M channels). Therefore the
optimal procedure for detecting the moment of the beginning of the abnormal operation
has the form

max
m =1 ;M

ln L (k;
_� m ) � ~� m ; (40)
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and the moment of the beginning of the abnormal operation is the di�erence(k � m + 1),
where m is the channel index, in which lnL (k;

_� m )takes the maximum value, and k is
the current time moment.

It follows that (equations (39){(40) ) the optimal procedure for detecting the moment
of the onset of the abnormal operation is reduced to linear accumulation of the values of
the quadratic forms (equation (39)) of the innovation process inm adjacent cycles from
(k0 + 1) to k = ( k0 + m)th moments of time. Then, the maximum value is selected from
the set of M di�erent values and is compared with a given threshold ~� m .

Note: The di�erent channels accumulate di�erent values, so to stabilize the proba-
bility of false alarm, it is necessary to compare the maximum value of the likelihood ratio
(equation (40)) with di�erent thresholds ~� m , chosen from the given probability of false
alarm PF A . Using the decision rule ( equation (40)), we can detect and evaluate, both
the abnormal operation and the moment of the beginning of the abnormal operation.
To calculate the probability of a false alarm, it is necessary to know the law of distribution
of the quadratic form ln L (k;

_� m ) in the absence of an abnormal operation. It is known
that [8] if #(n) is an l -dimensional vector with independent normally distributed compo-
nents, each of which has the variance� 2

iq (q = 1 ; 2; :::; l) and the mathematical expectation
E [#(n)] = 0, then the probability distribution density of the quadratic form ln L (k;

_� m )
is the central � 2-distribution with l � m degrees of freedom. The corresponding density
of the probability distribution is written in the form

� 2
h
ln L (k;

_� m )
i

=
�
2

lm
2 �(

lm
2

)
� � 1 h

ln L (k;
_� m )

i lm
2 � 1

exp
�

1
2

ln L (k;
_� m )

�
: (41)

Then the probability of false alarm is given by
Z 1

~� m

� 2
h
ln L (k;

_� m )
i

d
h
ln L (k;

_� m )
i

; (42)

after detecting the beginning of the abnormal operation, either the Kalman �lter pa-
rameters are adjusted (usually the gain factors or the covariance matrix Q (k)), or their
structure is changed by using more complex models of state change taking into account
the abnormal operation.

The general scheme that realizes this algorithm is shown in Figure 1 below.
In the �rst case, parameters adjustment of the Kalman �lter will be changed according

to the following formula

if ln L (k;
_� 1) � ~� 1 then Q0(k) ! Q1(k); (43)

whereQ0(k) and Q1(k) are chosen on the basis of the experiment so that to better re
ect
the true estimate of the state, both in the absence and in the presence of an abnormal
operation. According to this, the elements of the matrix Q0(k) must take small values
corresponding to rectilinear and uniform tracking with weak perturbations and Q1(k)
are large values corresponding to tracking with abnormal operation. In general, the
value of Q1(k) is selected on the basis of the possible maximum abnormal operation

intensity of the system [10], for example, one may chooseQ0(k) =
�

0:1 0
0 0:1

�
and

Q1(k) =
�

25 0
0 25

�
. The structure of the Kalman �lter is changing by take the following
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Figure 1 : Kalman �lter operation schema for abnormal estimation.

formula in the second case:

if ln L (k;
_� 1) � ~� 1 then model U(k) = u(k) converted to model U(k) = u(k)+ �: (44)

Bayes adaptive approach [9] takes into account the possibility that the adopted model
is inadequate, in other words, all possible variants of the parameters or hypotheses con-
cerning the model are taken into account.

4 Proposed Multi Model Estimation

In the problem of �ltering tracking of the states, the a priori uncertainty of the statistical
characteristics of the system leads to an uncertainty in the statistical characteristics of
the �ltered state vector. According to this, which is unknown to the observer in advance,
leads to a mismatch between the real state and the model used in the estimation devices.
Let � be a vector containing all the indeterminate parameters that represent all the
unde�ned events associated with the hypotheses about the model.

According to this, in the general case, the equations of state of the system and the
observations take the form

x(k + 1) = F (� k+1 )x(k) + �( � k+1 )v(k); (45)

y(k) = Hx (k) + w(k): (46)

Then, in this section, we have to estimate the conditional mathematical expectation

^x (k=k) = E
�
x(k)j Y k �

: (47)

According to the Bayesian approach, this operation is performed on the basis of the total
probability theorem:

p
�
x (k)

��Y k �
=

Z

�
p

�
x (k)

�� �; Y k �
p

�
�

��Y k �
d�; (48)

where � is the set of all possible values of � , p
�
x (k)

��Y k �
is the conditional probabil-

ity distribution of states x (k) for given observation, p
�
x (k)

�� �; Y k �
is the conditional
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probability distribution of states x (k) for given observation and accepted value of� for
unde�ned parameters and events,p

�
�

��Y k �
is the posteriori distribution of vector � for

given observations. From equations (47) and (48) the optimal mean square estimate of
^x (k=k) and its covariance matrix

^
P (k=k) are

^x (k=k) =
Z

�

_x
�

(k=k)p
�
�

��Y k �
d�; (49)

P̂ (k=k) =
Z

�

n
P̂ � (k=k) +

�
x̂ � (k=k) � x̂(k=k)

� �
x̂ � (k=k) � x̂(k=k)

� T
o

p
�
� jY k �

d�; (50)

where x̂ � (k=k) and P̂ � (k=k) are the partial estimate and its covariance obtained for a
given value of � , respectively, and equal to

x̂ � (k=k) = E
�

x(k)j�; Y k 	
; (51)

P̂ � (k=k) = E
n�

x̂ � (k=k) � x(k)
� �

x̂ � (k=k) � x(k)
� T �� �; Y k

o
; (52)

Therefore, the obtained estimate can be represented as a linear combination of partial
estimates x̂ � (k=k), each of which is obtained under a certain hypothesis with respect
to the model. The weight coe�cients of this linear combination expressing the total
estimate are determined by the probabilities of each hypothesis under consideration. A
complete covariance matrix is calculated similarly, as a linear combination (with the same
weights) of conditional matrices P̂ � (k=k). Therefore, in principle, by the equations (49){
(52) we can obtain the optimal estimate x̂(k=k). In addition, as follows from equation
(48), p

�
x(k)jY k �

is a linear combination of Gaussian probabilities. So,f � k = ig or
�

� i
k
	

the event consists the state in accordance with the statei at the k th instant of time;
�( k) = f � 1; � 2; :::; � k g =

n�
� i

1
	

;
n

� j
2

o
; :::; f � s

k g
o

; i; j; :::; s = 0 ; M � 1, is the set of all
possible values that the discrete-random process� k can take from the initial value to the
k th time moment. And �( k; lk ) = f �( k) \ lk g lk = 1 ; M k is a subset containingk-value.
Figure 2 describes the set of possible values of �.

Figure 2 : The set of possible values of �.

From Figure 2; �( k; lk ) is the lk th branch with the duration k. Hence the number of
di�erent branches in �( k) is equal to M k . In this case, according to the Bayes formula,
we obtain the posterior probability density of the state vector as follows:

p
�
x (k)

��Y k �
=

M kX

l k =1

p
�
x(k)j�( k; lk ); Y k �

P (�( k; lk )jY k ); (53)
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the indices i (lk ); j (lk ); :::; s(lk ) are varying between the limits [0,M-1] and the index lk 2
1; M k . Let the a posteriori probability density of the lk -th branch �( k; lk ) be

(54)
P (�( k; lk )jY k ) = P (� i

1; � j
2 ; :::; � s

k jy(k); Y k � 1)

=
p

h
y(k)j� i

1; � j
2 ; :::; � s

k ; Y k � 1
i

P
h
� i

1; � j
2 ; :::; � s

k jY k � 1
i

p [y(k)jY k � 1]
;

then equation (53) in base of indices will be

p
�
x (k)

��Y k �
=

M � 1X

i =0

M � 1X

j =0

:::
M � 1X

s=0

p
h
x(k)j� i

1; � j
2 ; :::; � s

k ; Y k
i

P (� i
1; � j

2 ; :::; � s
k jY k ); (55)

To reduce possible hypotheses, it is assumed that [4] the unknown parameter� k
is a simply-connected Markov chain, with a matrix of transition probabilities P =
[pts ]t;s =0 ;M � 1, where pts = P

�
� s

k j� t
k � 1

�
. Since the algorithm starts working at the k th

time point, at the k th instant of time equation (55) will be

p
�
x(k)jY k �

=
M � 1X

s=0

p
�
x(k)j� s

k ; Y k �
P (� s

k jZ k ): (56)

The Bayes description of the expressionp
�
x(k)j� s

k ; Y k �
is written in the form

p
�
x(k)j� s

k ; Y k �
= p

�
x(k)j� s

k ; y(k); Y k � 1�
=

p
�
y(k)j� s

k ; x(k); Y k � 1�
p

�
x(k)j� s

k ; Y k � 1�

p [y(k)j� s
k ; Y k � 1]

:

(57)
This leads to

p
�
x(k)j� s

k ; y(k); Y k � 1�
=

M � 1X

i =0

p
�
x(k)j� i

k � 1; � s
k ; Y k � 1�

P
�
� i

k � 1j� s
k ; Y k � 1�

: (58)

Equation (58) proves that the term p
�
x(k)j� i

k � 1; � s
k ; Y k � 1�

is the Gaussian apriori
probability density of the state vector corresponding to the values

�
� i

k � 1; � s
k
	

between
two adjacent moments. Thus

(59)
p[x(k)j� i

k � 1; � s
k ; Y k � 1] = N

h
x(k); F (k=k � 1; � s

k )
_x

i
(k � 1=k � 1);

F (k=k � 1; � s
k )P i (k � 1=k � 1)F (k=k � 1; � s

k )T + �( � s
k )Q(k � 1)�( � s

k )T
i

:

If it is assumed that the probability density p
�
x(k)j� s

k ; Y k � 1�
of the state vector corre-

sponding to the value � s
k is Gaussian, then taking into account (58){(59) we obtain

N [x(k);
_x

s
(k=k � 1);

_
P

s
(k=k � 1)] ’ N

"

x(k);
M � 1X

i =0

F (� s
k )

_x
i

(k=k � 1)P (� i
k � 1j� s

k ; Y k � 1);

M � 1X

i =0

F (� s
k )

_
P

i
(k � 1=k � 1)F (� s

k )T + �( � s
k )Q(k � 1)�( � s

k )T + [ F (� s
k )

_x
i

(k � 1=k � 1)

� x̂s(k=k � 1)][[F (� s
k )

_x
i

(k � 1=k � 1) � x̂s(k=k � 1)]T ]P (� i
k � 1j� s

k ; Y k � 1)

#

;

(60)
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equating both sides of this expression, we obtain

_x
s

(k=k � 1) = F (� s
k )

M � 1X

i =0

x̂ i (k � 1=k � 1)P (� i
k � 1j� s

k ; Y k � 1); (61)

or
_x

s
(k=k � 1) = F (� s

k )x̂0s(k � 1=k � 1); (62)

where

x̂0s(k � 1=k � 1) =
M � 1X

i =0

x̂ i (k � 1=k � 1)P (� i
k � 1j� s

k ; Y k � 1); (63)

and

P̂ s(k=k � 1) =
M � 1X

i =0

F (� s
k )

_
P

i
(k � 1=k � 1)F (� s

k )T + �( � s
k )Q(k � 1)�( � s

k )T +

h
F (� s

k )
_x

i
(k � 1=k � 1) � x̂s(k=k � 1)

i � h
F (� s

k )
_x

i
(k � 1=k � 1) � x̂s(k=k � 1)

i T �

P (� i
k � 1j� s

k ; Y k � 1):
(64)

Substituting (63) into (64), we obtain

[P̂ s(k=k � 1) = F (� s
k )P̂0s(k=k � 1)F (� s

k )T + �( � s
k )Q(k � 1)�( � s

k )T ; (65)

where

P̂0s(k � 1=k � 1) =
M � 1X

i =0

P (� i
k � 1j� s

k ; Y k � 1):::

h
P̂ i (k � 1=k� 1)+

�
x̂ i (k � 1=k� 1) � x̂s(k=k � 1)

�
�

�
x̂ i (k � 1=k� 1) � x̂s(k=k � 1)

� T
i @2


@v2
;

(66)

and

[P (� i
k � 1j� s

k ; Y k � 1) =
P (� s

k j� i
k � 1)P (� i

k � 1jY k � 1)
P M � 1

i =0 P (� s
k j� i

k � 1)P (� i
k � 1jY k � 1)

: (67)

The output estimates is calculated from equations (59) and (60)

[
_x (k=k) =

M � 1X

i =0

M � 1X

j =0

� � �
M � 1X

s=0

x̂ ij:::s (k=k)P (� i
1; � j

2 ; � � � ; � s
k jY k ) ; (68)

and its covariance matrix:

P̂ (k=k) =
M � 1X

i =0

M � 1X

j =0

� �

�
M � 1X

s=0

h
P̂ ij:::s (k=k) +

�
x̂ ij:::s (k=k) � x̂(k=k)

� �
x̂ ij:::s (k=k) � x̂(k=k)

� T
i

P (� i
1; � j

2 ; � � �; � s
k jY k ) ; ;

(69)
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where estimation
x̂ ij:::s (k=k) = x̂ � i

1 ;� j
2 ;:::;� s

k (k=k); (70)

and covariance matrix
P̂ ij:::s (k=k) = P̂ � i

1 ;� j
2 ;:::;� s

k (k=k); (71)

the correspondinglk th branch of the algorithm M parallel Kalman �lters Algorithm. The
algorithm consists of M parallel Kalman �lters, each of them is tuned to a single value
� i , as described below, Figure 3 shows the realization diagram of the algorithm.

1. Initialization:

(a) Set the initial value of the M { estimates of the state vector x̂ i (k=k):

x̂0s(k � 1=k � 1) =
M � 1X

i =0

x̂ i (k � 1=k � 1)P (� i
k � 1j� s

k ; Y k � 1); (72)

(b) Set the initial value of the M { covariance P̂ i (k � 1=k � 1):

P̂0s(k � 1=k � 1) =
M � 1X

i =0

P (� i
k � 1j� s

k ; Y k � 1)

h
P̂ i (k � 1=k� 1)+

�
x̂ i (k � 1=k� 1) � x̂s(k=k � 1)

�
�

�
x̂ i (k � 1=k� 1) � x̂s(k=k � 1)

� T
i

@2

@v2

;

(73)

2. Estimation process:

(a) Extrapolation of the state vectors:

_x
s

(k=k � 1) = F (� s
k )x̂0s(k � 1=k � 1); (74)

(b) Extrapolation of correlation matrices:

P̂ s(k=k � 1) = F (� s
k )P̂0s(k=k � 1)F (� s

k )T + �( � s
k )Q(k � 1)�( � s

k )T : (75)

(c) Coe�cient gain:

K s(k) = P̂ s(k=k � 1)H
h
H P̂ s(k=k � 1)H T + R(k)

i � 1
: (76)

(d) Estimation:

x̂s(k=k) = x̂s(k=k � 1) + K s(k) [y(k) � H x̂s(k=k � 1)] : (77)

(e) Covariance �ltration

P s(k=k) = [ I � K s(k)H (k)] P̂ s(k=k � 1): (78)
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3. Calculate the conditional probability density of observation, corresponding to the
states of � s

k , we obtain

L s(k) = p[y(k)j� s
k ; Y k � 1] = p

h
y(k)j� s

k ; H x̂s(k=k � 1); P̂ s(k=k � 1)
i

= [(2 � )s det(ss)(k)]
� 1/2 exp

�
� 0:5#s(k)T ss(k) � 1#j (k)

� ; (79)

where
#s(k) = y(k) � H (k)bxs(k=k � 1); (80)

and
ss(k) = H P̂ s(k=k � 1)H T (k) + R(k): (81)

4. Calculate the a posteriori probabilities of the state � s
k , according to the Bayes

formula

P
�
� s

k jY k �
= P

�
� s

k jy(k); Y k � 1�
=

p
�
y(k)j� s

k ; Y k � 1�
P

�
� s

k jY k � 1�

P M � 1
s=0 p [y(k)j� s

k ; Y k � 1] P [� s
k jY k � 1]

; (82)

where

P
�
� s

k jY k �
=

L s(k)
P M � 1

i = o pis P
�
� i

k � 1jY k � 1�

P M � 1
s=0 L s(k)

P M � 1
i = o pis P

�
� i

k � 1jY k � 1
� : (83)

5. The output estimate of the target state vector and its covariance were obtained on
the basis of a linear combination of a posteriori probabilities

_x (k=k) =
M � 1X

s=0

x̂s(k=k)P (� s
k jY k ); (84)

P̂ (k=k) =
M � 1X

s=0

h
P̂ s(k=k) + [ x̂s(k=k) � x̂(k=k)] [x̂s(k=k) � x̂(k=k)]T

i
P

�
� s

k jY k �
:

(85)

5 Simulation Results

The proposed algorithm was applied to the phosphorus furnace type RKZ-80F. The
system has the following speci�cations: a linear model of indirect control of electro-
thermal processes in a three-electrode. This model is based on the well-known band
structure of electric furnace baths and takes into account its geometric symmetry with
respect to the three electrodes. Therefore, all the variables used in the model below will
have indices i = 1,2,3; they relate to one of the three electrodes or the corresponding
near-electrode region. The index 0 of the variable will indicate its relation to the whole
bath of the furnace as a whole. The vector of state spacex(k) 2 Rn (n = 7) has the
following states:

xT (k) =
�

x1
len (k) x1

vol (k) x2
len (k) x2

vol (k) x3
len (k) x3

vol (k) x0
high (k)

�
;
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Figure 3 : Proposed algorithm implementation.

Figure 4 : Fault signals forms.

where x i
len (k) is the length of the i-th electrode, m; x i

vol (k) is the volume of the crucible
of the i� th near-electrode region,m3; x0

high (k) is the height of the total working (carbon)
zone in the furnace, m. The control vectoru(k) 2 Rp (p = 7) has the following structure:

uT (k) =
�

u1
byp(k) u1

pa (k) u2
bup (k) u2

pa (k) u3
len (k) u3

byp(k) u0
c(k)

�
;

uT (k) =
�
u1

?5@(k) u1
P (k) u2

?5@(k) u2
P (k) u3

?5@(k) u3
P (k) u0

C (k)
�

:
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Figure 5 : Estimations of the length and volume of the �rst electrode.

Figure 6 : Estimations of the length and volume of the second electrode.

ui
byp(k is the bypass of the ith electrode, m;

ui
pa (k) is the average useful active power, in the i-th near-electrode region, MW;

u0
c(k) is the the amount of carbon entering the furnace with the charge, T.

The vector of observation y(k) 2 Rm (m = 15) has the following structure:

yT (k)=
�
y1

1(k)y1
2(k)y1

3(k)y1
4(k)y2

1(k)y2
2(k)y2

3(k)y2
4(k)y3

1(k)y3
2(k)y3

3(k)y3
4(k)y0

1(k)y0
2(k)y0

3(k)
�

;

where
yi

1(k) is the position of the electrode holder of the i-th electrode relative to the slag tap,
m;
yi

2(k) is the active resistance of the i-th phase, m
;
yi

3(k) is the temperature under the arch at the i-th electrode,� C;
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Figure 7 : Estimations of the length and volume of the third electrode.

Figure 8 : Estimations of the high of the working area.

yi
4(k) is the gathering of charge for the i-th electrode, T;

y0
1(k) is the the average temperature under the roof of the entire furnace,� C;

y0
2(k) is the current furnace capacity, T;

y0
3(k) is the relative recoverability of the product, (%P 2O5 in the batch /% P 2O5 in the

slag).
The matrices parameters �, � and H are as follows

�=

2

664

� 1 0 0 f 01
0 � 1 0 f 01
0 0 � 1 f 01

f 10 f 10 f 10 f 00

3

775 ; �=

2

664

� 1 0 0 0
0 � 1 0 0
0 0 � 1 0
0 0 0 g00

3

775 ; H =

2

664

H1 0 0 h01
0 H1 0 h01
0 0 H1 h01

H10 H10 H10 h00

3

775 ;
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where � 1 =
�

a1 � a2
0 a4

�
; f 01 =

h
a3
a5

i
; f 10 =

�
0 a6

�
; f 00 = a7; g00 = � 2; � 1 =

�
1 0
0 � 1

�
; H1 =

2

664

1 0

 2 0
0 
 4
0 
 6

3

775 ; h01 =

2

664


 1

 3

 5
0

3

775 ; H10 =

2

4
0 
 7
0 
 9
0 0

3

5 ; h00 =

2

4

 8
0


 10

3

5 ;

� = [ a1; :::; a7; � 1; � 2; 
 1; :::; 
 10]. The parameters values are described in Table below:

No. Parameter Physical di-
mension

Admissible values Recommended initial
approximation

1 � 1 � 0:95 � 1:0 0.999
2 � 2 1=M 2 0:0002� 0:002 0:001
3 � 3 � 0:0001� 0:002 0:001
4 � 4 � 0:0 � 1:0 0:5
5 � 5 M 2 0:0 � 1:0 0:5
6 � 6 1=M 2 0:0001� 0:005 0:001
7 � 7 � 0:8 � 1:0 0:9
8 � 1 M 3=MW 0:2 � 0:4 0:28
9 � 2 M=T 0:004 � 0:0045 0:0042
10 
 1 - 0:5 � 1:0 0:75
11 
 2 m
 =M 0:05 � 0:5 0:1
12 
 3 m
 =M 0:2 � 0:8 0:5
13 
 4

� C=M 3 1:0 � 10:0 5:0
14 
 5

� C=M 300 � 500 400
15 
 6 t=M 3 1:0 � 2:0 1:5
16 
 7

� C=M 3 1:0 � 10:0 5
17 
 8

� C=M 250 � 400 300
18 
 9 T=M 3 0:05 � 0:2 0:1
19 
 10 1=M 20 � 40 30

The initial values of states are: x = [5.25 25 5.18 20 5.36 22 1.5]T ; the number of
samples is 600 samples; the input vector is generated as random signal in the interval
[-0.05, 0.05]; di�erent faults scenarios are added to the input vectors. The simulation
results are shown in �gures below, in which Figure 4 represents the fault signals forms.
Figure 5 shows that the algorithm starts tracking in the abnormal state in sample time
number 100 for both states estimations and could not return to the normal operation
even the input signal return without fault. Figures 6 to 8 show the switching between
modes to track the changes in states directly after the abnormal operation is detected to
start the fault tracking.

6 Conclusion

In this paper we proposed a multi-operational mode based on Bayes approach to select
the best Kalman �lter estimator. The estimation was focused on internal state estima-
tion during the fault operation which may be caused by many di�erent resources. The
simulation fault testing inputs signals failure, which were lost by composed signals. The
fault scenarios started at time sample 100 with di�erent shapes and values for each input
and ended at time sample 200. Another faults signals were inserted at time sample 400
and ended at time sample 500. From the simulation results of states estimations, we
noted that the estimation of the lengths of the electrodes were very satis�ed in which
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most of estimations values were very near from the estimations in normal operation.
The volume of the �rst electrode during the fault was not estimated correctly where a
negative values was estimated. While the volumes of the second and third electrodes
during the fault was estimated correctly. Finally, estimations of the high of the working
area may be accepted with some error percentage. As a result the proposed algorithm
provide a good results with some acceptable range of error during the faults operations.
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Abstract: The main goal of this work is the mathematical formulation, the analysis
and the numerical simulation of a prey-predator model by taking into account the
toxin produced by the phytoplankton species. The mathematical study of the model
leads us to have an idea on the existence of solution, the existence of equilibria and the
stability of the stationary equilibria. These results are obtained through the principle
of comparison. Finally, the numerical simulations in two-dimensional allowed us to
establish the formation of spatial patterns and a threshold of release of the toxin,
above which we talk about the phytoplankton blooms.

Keywords: toxin e�ect; populations dynamics; predator-prey model; reaction-
di�usion; pattern formation.
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1 Introduction

Ecology and harmful toxic release in marine environment are major �elds of study in their
own right, but there are some common features of these systems. It is interesting and
important from biological viewpoints to study ecological systems under the in
uence
of the toxic substance release factors. However, this goal remains di�cult to attain
due to the complexity of natural systems, especially in the aquatic environment where
many processes of all types interact with living organisms. The fundamental basis of all
aquatic food chains is plankton, and phytoplankton in particular occupies the �rst trophic
level and the 
uctuations in its abundance determine the production of a whole marine
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biological output. The dynamics of rapid (massive) increase or almost equally decrease
of phytoplankton populations is a common feature in marine plankton ecology and is
known as bloom. This phenomenon can occur in a matter of days and can disappear just
as rapidly.

Several authors have argued that there has been a global increase in harmful phy-
toplankton blooms in recent decades, see [7, 14, 24]. The rapid massive growth of phy-
toplankton is, general1y, caused by high nutrient levels and favorable conditions (water
temperature, salinity levels, etc.). Herbivore grazing takes an important role in the bloom
dynamics, see [7,24,26]. Toxic substances produced by phytoplankton species reduce the
growth of zooplankton by decreasing grazing pressure and this is one of the important
common phenomena in plankton ecology, see [10,17,22].

Within the broad perspective drawn above, the present paper explores and compares
the coupled dynamics of phytoplankton and zooplankton in a number of mathematical
models. The system of phytoplankton-zooplankton has attracted considerable attention
from various �elds of research, see [10, 21, 25]. It is an important issue in mathematical
ecology. The literature abounds in models focusing on various aspects of the problem.
Recently, the attention has been focused on the role of the space in explaining hetero-
geneity and the distribution of the species and the in
uence of the spatial structure on
their abundance, [10, 17, 29]. However, the very question of the interactions between
phytoplankton and zooplankton depending on space is far from being fully elucidated.

As part of our work, we will highlight a threshold value of the toxin released by
phytoplankton below which the e�ect of the toxin in
uences less the dynamics of the
zooplankton-�sh system. The proposed model consists of two interactive component:
zooplankton and toxin-producing phytoplankton that reduces the growth of zooplank-
ton population. The model studied here is of the reaction-di�usion type describing the
dynamics of the phytoplankton-zooplankton system in the sense of the works of F. Cour-
champ [8,28].

The paper is organized as follows. As far as Section 3 is concerned, we will es-
tablish mathematical results such as the existence of a solution, stability of equilibria,
persistence, relating to the constructed model in Section 2. Section 4 will be devoted
to numerical experiments to illustrate the mathematical results. Finally, Section 5 is
devoted to the conclusion and perspectives.

2 Mathematical Model

In this section, we propose a model to describe the dynamics of the phytoplankton-
zooplankton system in the presence of toxin. We begin our modeling by a general model
describing the dynamics of the prey-predator system, based on the equations with ordi-
nary derivatives. And then we transform this model into a model of reaction-di�usion
type while remaining in the logic of the work of F. Courchamp [8] and Bendahmane
et al [5]. The aim is to take into account the e�ect of the toxin on the zooplankton-
phytoplankton dynamics.

2.1 Original model formulation

Let P be the density of the prey population and Z be the density of the predator pop-
ulation. According to [5, 8, 18, 28], the general model at any timeT > 0 is written as



394 H. OUEDRAOGO, W. OUEDRAOGO AND B. SANGARE

follows:
8
><

>:

dP
dT

= � 1(P ) � g2(P; Z )Z;

dZ
dT

= g3(P; Z )Z � g4(P; Z )Z;
(1)

where

� � 1; g2; g3; g4 are positive functions andC1 ;

� � 1(P ) is the growth function of the prey population,

� g2(P; Z ) is the amount of prey consumed by a predator per time unit,

� g3(P; Z ) represents the rate of conversion of the prey into predator,

� g4(P; Z ) is the predator mortality rate due to harmful prey consumption.

We continue our modeling by �xing the expressions of the functions intervening in the
model (1), see [5, 8]. The dynamics of the system can be represented by the following
�gure:

zooplankton phytoplankton

� p + � 2 � 0 + � 1

Figure 1 : The compartmental model of the zooplankton-phytoplankton system.

According to Figure 1, at any time T > 0, the dynamics of the phytoplankton (prey)-
zooplankton (predator) system is governed by the following ODE system:

8
>><

>>:

dP
dT

= r pP � � 0P2 �
� 1Z

P + 
 1
P; P(0) = P0 � 0;

dZ
dT

= r zZ � � pZ �
� 2Z 2

P + 
 2
; Z (0) = Z0 � 0;

(2)

where

� r p denotes the phytoplankton growth rates,

� � 0 denotes the mortality rate due to competition between the individuals of the
phytoplankton population,

� � 1 is the maximum value that the reduction rate per individual phytoplankton can
reach,

� � 2 is the maximum value that the reduction rate per individual zooplankton can
reach,
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� r z denotes the zooplankton growth rates,

� � p is the rate of toxic phytoplankton consumed by zooplankton,

� 
 1 is the protection of prey P from the environment,

� 
 2 is the protection of predator Z from the environment.

2.2 A spatially structured model

Here, our aim is to introduce the notion of spatial structuring in the model. By consid-
ering the relationship between the climate and the di�usion of species and the fact of the
existence of di�usion in population, system (1) is developed into a spatial system with
di�usion. We expect to explore the e�ect of climate change on the plankton population
by studying the spatial dynamics of the di�usion system. We will introduce the concept
of spatial structure in the model, that is to say that the population densities depend now
on the time and space. Di�usion models are a simple and reasonable choice for modeling
dispersion of populations on a spatial domain, see [3, 12, 18, 25]. Indeed, let� 0(x) and
� 1(x) be respectively the di�usion terms of P and Z . Based on the results established
in [5, 8, 28], the reaction-di�usion model associated with the model (1) can be modeled
for x 2 
 as follows:

(
@T P � div (� 0(x)r P ) = � 1(P ) � g2(P; Z )P;

@T Z � div (� 1(x)r Z ) = g3(P; Z )Z � g4(P; Z )Z;
(3)

where 
 � Rn (n � 1) is the spatial domain in which species occur. We consider the
zero-
ux boundary condition

� i (x)r Q(x; t ):� (x) = 0 ; i = 0 ; 1; x 2 @
 ; T > 0

for Q = P; Z , where � is the unit normal vector to @
 on 
, and the nonnegative initial
and bounded conditions

Q(x; 0) = Q0(x) > 0; Q = P; Z x 2 
 :

We make the following assumptions:

(H1) : all demographic parameters of the system (2) are positive constants,

(H2) : the di�usion coe�cients of the system (3) are independent of the spatial variable.

By considering � 0(x) = � 0, � 1(x) = � 1, and taking into account the hypotheses (H1) and
(H2), the model (3) obtained previously is written as:

8
>>>>><

>>>>>:

@P
@T

=
�

r p � � 0P �
� 1Z

P + 
 1

�
P + � 0� P;

@Z
@T

=
�

r z � � p �
� 2Z

P + 
 2

�
Z + � 1� Z;

Q(x; 0) = Q0(x) > 0; Q = P; Z; x 2 
 :

(4)

3 Mathematical Results

In this section, we aim to establish the mathematical results of the system (4). The
mathematical results are based on the works [5,6,25].
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3.1 Reduction of model parameters

To simplify the writing, we will make changes of variables in the following way:

r = r z � � p; t = r pT , U1(t) =
� 0

r p
P (T ), U2(t) =

� 0� 2

r pr
Z (T ),

a =
r� 1

r p� 2
, b =

r
r p

, d1 =
� 0
 1

r p
, d2 =

� 0
 2

r p
,

x = X
�

r p

� 0

� 1
2

, y = Y
�

r p

� 0

� 1
2

, dz =
� 1

� 0
.

Thus, the systems (2) and (4) can be written respectively as follows:
8
>><

>>:

dE1

dt
=

�
1 � E1 �

aE2

E1 + d1

�
E1 = f (E1; E2);

dE2

dt
= b

�
1 �

E2

E1 + d2

�
E2 = g(E1; E2);

(5)

and
8
>><

>>:

@U1
@t

=
�

1 � U1 �
aU2

U1 + d1

�
U1 + � U1 = f (U1; U2) + � U1

@U2
@t

= b
�

1 �
U2

U1 + d2

�
U2 + dz4 U2 = g(U1; U2) + dz � U2:

(6)

3.2 Existence and boundedness of solution

Before stating the boundedness of the solution, we give the local existence of the solution.
The following theorem ensures the existence and uniqueness of the local solution of the
system (4).

Theorem 3.1 [1, 2] The system (4) has a unique local solution(U1(:; t); U2(:; t))
under the condition 0 � t < T max ; where Tmax depends on nonnegative initial data
U01(x) and U02(x):

The following theorem ensures the global solution existence for the system (6).

Theorem 3.2 For any regular positive functions U01(x) � 1 and U02(x); the system
(6) admits a global solution(U1(:; t); U2(:; t)) for any t > 0:

Proof: Indeed:

� on the one hand, we haveU1(x; t ) � 0 and U2(x; t ) � 0 because 0 is the sub-solution
of each equation of the system (6).

� on the other hand, U1 satis�es the following problem:
8
>>><

>>>:

@U1(x; t )
@t

� U1(1 � U1) + � U1;
@U1
@�

= 0 ; t > 0;

U1(x; 0) = U01(x) � U01 � max 
 U01(x); x 2 
 :

(7)
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According to the principle of comparison, we haveU1(x; t ) � U(t) � 1, where

U(t) =
U0

U0 + (1 � U0)e� t is the solution of the problem

@U
@t

= U(1 � U); U(0) = U0 � 1: (8)

In the same orderU2 satis�es

@U2
@t

= b
�

1 �
U2

U1 + d2

�
U2 + dz � U2;

and we obtain the following inequality:

@U2
@t

�
dE2

dt
;

where E2 is a solution of the second equation of the system (5) with the initial
condition E2(0) = max 
 U02(x).

@U2
@t

�
dE2

dt
+

dE1

dt
:

Let us denote by � = E2 + E1, we deduce that

@U2
@t

�
d�
dt

�
5
4

+
(1 + b)2(1 + d2)

4b
� �:

Using the Gronwall lemma, see [10, 18, 29], we deduce thatU2 �
5
4

+
(1 + b)2(1 + d2)

4b
: Thus, the solutions U1 and U2 are bounded.

The following theorem ensures the boundedness of the system (6).

Theorem 3.3 The domain R+ � R+ is positively invariant for the system (6). Fur-
thermore, any solution of the system(6) whose initial condition is in R+ � R+ converges

to the set de�ned byS1 = [0 ; 1] �
�
0;

5
4

+
(1 + b)2(1 + d2)

4b

�
:

Proof: For the initial condition ( U01(x); U02(x)) of the system (6), we have

0 � U1 � E1; E1(0) = max 
 U01(x);

0 � U2 � E2; E2(0) = max 
 U02(x):

On the other hand, according to [3,13], we have

lim t �! + 1 E1(t) � 1; lim t �! + 1 (E1(t) + E2(t)) �
5
4

+
(1 + b)2(1 + d2)

4b
: �
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3.3 Analysis of stationary solutions

Now, we study the existence of positive equilibrium states of the system (6). Let us
consider the following system:

8
>>>>><

>>>>>:

�
1 � U1 �

aU2

U1 + d1

�
U1 + � U1 = 0 ; x 2 
 ;

b
�

1 �
U2

U1 + d2

�
U2 + dz � U2 = 0 ; x 2 
 ;

@U1
@�

=
@U2
@�

= 0 :

(9)

Then, (U1; U2) is a positive equilibrium state of the system (6) if it satis�es the system
(9).

Remark 3.1 Let V1(x) = ( U1(x); U2(x)) and V2(x) = ( U1(x); U2(x)) : According
to [4], V1(x) is an over-solution and V2(x) is a sub-solution of the system (9) if we have

U1

@�
� 0 �

U1

@�
on @
 ;

U2

@�
� 0 �

U2

@�
on @
 ;

and

� � U1 � U1

�
1 � U1 �

aU2

U1 + d1

�
� 0 � � � U1 � U1

�
1 � U1 �

aU2

U1 + d2

�
; (10)

� � U2 � bU2

�
1 �

U2

U1 + d2

�
� 0 � � � U2 � bU2

�
1 �

U2

U1 + d2

�
: (11)

Let us consider the following conditions

a < 1; d1 � a + 1 � A > 0; (12)

where A is an over-solution of the second equation of the system (9).

Theorem 3.4 [6,12] If the conditions (12) are satis�ed, then the system(9) admits
at least one positive solution(U1(x); U2(x)) :

Proof: We write the system (9) as follows:
8
>>>>><

>>>>>:

� � U1 =
�

1 � U1 +
aU2

U1 + d1

�
U1 = f (U1; U2); x 2 
 ;

� dz � U2 =
�

1 �
U2

U1 + d2

�
U2 = g(U1; U2) x 2 
 ;

@U1
@�

=
@U2
@�

= 0 :

(13)

If U1 � 0; U2 � 0; we obtain

@f
@U2

=
� aU1

U1 + d1
� 0;

@g
@U2

=
bU2

2

(U1 + d2)2 � 0:

This means that the function f is quasi-monotone decreasing and the functiong is quasi-
monotone increasing. The system (9) is then called a quasi-monotonic mixed system.
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We will now construct a pair of over-solution and sub-solution of the system (9) that we
denote respectively byV1(x) = ( U1(x); U2(x)) and V2(x) = ( U1(x); U2(x)) :

Let U1(x) = 1 ; then for every U2 � 0; the �rst inequality of (10) is satis�ed. By �xing

A such that A �
5
4

+
(1 + b)2(1 + d2)

4b
and by consideringU2(x) = A; the inequality of

(11) is satis�ed. If we consider that U2(x) = A; the second inequality of (10) becomes

� � U1 � U1

�
1 � U1 �

aA
U1 + d2

�
� 0:

Let U1(x) be the strictly positive solution of the following system:
8
><

>:

� U1 � U1

�
1 � U1 �

aA
U1 + d2

�
= 0 ;

@U1
@�

= 0 :
(14)

We will show that if the conditions a < 1 and d2 � a+1 � M > 0 are satis�ed, then
the system (14) will admit a positive solution. If a < 1 and d2 � a+1 � A > 0; then one
can easily verify that (1; 1 � a) is a pair of over-solution and sub-solution of the equation
(14). This equation admits a positive solution U1(x) which checks 1� a � U1(x) � 1:
Obviously, we haveU1(x) � U1(x):

We take arbitrarily U1(x); U1(x) and U2(x). If d2 � a+1 � A > 0; then we can choose
U2(x) constant positive and small enough so that the following inequality is satis�ed:

� � U2 � bU2

�
1 �

U2

U1 + d2

�
� 0:

Note that this inequality is satis�ed as soon as 0< U 2 < 1 � a � d2: Thus we build a
pair of over-solution and sub-solution (U1(x); U2(x)) and (U1(x); U2(x)) of the system
(9).
Thus, the system (9) admits at least one solution (U1(x); U2(x)) which satis�es

U1(x) � U1(x) � U1(x); U2(x) � U2(x) � U2(x): �

3.4 Stability of homogeneous stationary solutions

The following result gives the stationary states and their stability condition for the system
(6).

Proposition 3.1 [3,13,29]

(i ) E0 = (0 ; 0) is the trivial state. This equilibrium is unstable.

(ii ) E1 = (1 ; 0) is an equilibrium point. This equilibrium is unstable.

(iii ) E2 = (0 ; d2) is an equilibrium point. This state is unstable if d1 > ad 2 and stable
if d1 < ad 2

For the proof of the local stability of E i , we consider the eigenvalue problem of the cor-
responding linearized operator, see [3,4,13,28,29]. In fact, we consider (U1(x; t ); U2(x; t ))
the solution of the system (6), then, we have

(U1(x; t ); U2(x; t )) = E i + W (x; t ) = E i + ( w1(x; t ); w2(x; t )) :
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We will make the following hypothesis:

(H3) : a �
1
2

and 0 < d 1 < d1 with d1 = � (a+1)+
p

�; � = ( a+1) 2 +2a(1+2a) � 1:

Theorem 3.5 [6, 12, 27, 29] The interior equilibrium point E3 = ( U �
1 ; U �

2 ) of the
system (6) is stable if the hypothesis(H3) is satis�ed.

With regard to the analysis of the global stability of the interior equilibrium state,
we will make the following hypothesis:
(H4) : 1 � d1 � d2:

Theorem 3.6 Suppose that(H4) is satis�ed, then the equilibrium (U �
1 ; U �

2 ) of the
system (9) is globally asymptotically stable.

Proof: Let us consider the functionsl and L de�ned by

l(U1; U2) =
Z U1

U �
1

(� � U �
1 )( � + d1)

a� (� + d2)
d� +

U �
1 + d2

bU�
2

Z U2

U �
2

� � U �
2

�
d�;

L (U1; U2)=
Z



l(U1; U2)dx =

Z




 Z U1

U �
1

(� � U �
1 )( � + d1)

a� (� + d2)
d� +

U �
1 + d2

bU�
2

Z U2

U �
2

� � U �
2

�
d�

!

dx:

Our goal is to show that L is a Lyapunov function, with a negative orbital derivative.
For any solution (U1; U2) of (6) whose initial condition ( U01(x); U02(x)) is in the positive
quadrant, L (U1; U2) is positive. Moreover, L (U1; U2) = 0 if and only if ( U1; U2) =

(U �
1 ; U �

2 ): It remains to prove the following inequality
dL
dt

< 0:

Indeed,

dL
dt

=
Z




�
(U1 � U �

1 )(U1 + d1)
aU1(U1 + d2)

� �
� U1 + U1(1 � U1) �

aU1U2

U1 + d1

�
dx

+
Z




U �
1 + d2

bU�
2

U2 � U �
2

U2

�
dz � U2 + b

�
1 �

U2

U1 + d2

�
U2

�
dx

=
Z




�
(U1 � U �

1 )(U1 + d1)
aU1(U1 + d2)

� �
U1(1 � U1) �

aU1U2

U1 + d1

�
dx

+
Z




U �
1 + d2

bU�
2

U2 � U �
2

U2
bU2

�
1 �

U2

U1 + d2

�
dx

+
Z




�
� U1

(U1 � U �
1 )(U1 + d1)

aU1(U1 + d2)
+ dz � U2

U �
1 + d2

bU�
2

U2 � U �
2

U2

�
dx:

(15)

Let us denote by T1 the �rst two right terms of the equality (15) and by T2 the last
term on the right. After a simple calculation followed by a reduction, T1 becomes:
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T1 = �
Z




�
(U1 + U �

1 + d1 � 1)
(U1 � U �

1 )2

a(U1 + d2)
+

(U2 � U �
2 )2

U1 + d2

�
dx (16)

By the green formula, T2 becomes

T2 = �
Z




�
j r U1 j2

d
dU1

�
(U1 � U �

1 )(U1 + d1)
aU1(U1 + d2)

�

+ dz
U �

1 + d2

bU�
2

j r U2 j2
d

dU2

�
U2 � U �

2

U2

��
dx

= �
Z




�
j r U1 j2

�
d2 � d1 + 1 + U �

1

a(U1 + d2)2 +
U �

1 d1(2U1 + d2)
a(U2

1 + d2U1)2

�

+ dz
U �

1 + d2

bU�
2

j r U2 j2
U �

2

U2
2

�
dx

(17)

According to the expressions ofT1 and T2, we have
dL
dt

(U1; U2) < 0:

Therefore, according to the LaSalle’s theorem [7], the equilibrium point (U �
1 ; U �

2 ) is
globally asymptotically stable.

4 Numerical Results

In this section, we perform extensive numerical simulations of the spatial model system
(9) in two dimensional space using the forward �nite di�erence method. The set of
parameter values used for the numerical simulation is given in Table 1, see [5, 9, 11, 12].
Here, the system is studied on a spatial domain 
 = [0; 50] � [0; 50]. It is assumed
that the zooplankton and phytoplankton populations are spread over the whole domain
at the beginning. These results show that for every strictly positive initial condition,
under the assumptions (H 1) � (H 4); the non-homogeneous equilibrium is always globally
asymptotically stable.

Param Description Values Refs
r p the natural growth-rate of phytoplankton 1:58 [9,20]
� 0 di�usivity coe�cient of P 5 [9,20]
� 1 di�usivity coe�cient of Z 600:5 [5]
� 0 mortality rate due to competition between the individuals of P 0:30 [9]

 1 the protection of prey P from the environment 0:00661 [5]
r z the zooplankton growth rates 0:25 [9]
� 2 maximum value of the reduction rate per individual of Z 0:26 [9]

 2 the protection of predator Z from the environment 0:231 [15]
P0 initial condition of the phytoplankton 150 [16]
F0 initial condition of the zooplankton 100 [15]

Table 1 : Parameters values for the numerical simulation of the system.
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4.1 Pattern formation

Here, we will illustrate the mathematical predictions, by numerical simulations, concern-
ing the behavior of the dynamics under the hypotheses (H1) � (H4): The qualitative
results of di�erent pattern formations due to the variation of � 1 are shown. We consider
the value of released toxin� p = 0 :06: These numerical results show that for every strictly
positive initial condition, under the assumptions (H1) � (H4); the non-homogeneous equi-
librium is always globally asymptotically stable. Figure 2 � 7 show the spatial structures
formation for the two species described in (9). This numerical results con�rm the mathe-
matical results for the existence of positive equilibrium and its stability according to the
values of � 1. In this case, we will speak of a subsistence phenomenon of the zooplankton
population.

Figure 2 : Spatial distribution of the two species, zooplankton and phytoplankton, if we consider
in the system � 1 = 0 :125 and dz = 120 :1.

Figure 3 : Spatial distribution of the two species, zooplankton and phytoplankton, if we consider
in the system � 1 = 0 :195 and dz = 120 :1.

Remark 4.1 From a biological point of view, these results (Figure 2� 7) show that
there is coexistence between the two populations despite the release of the toxin into the
aquatic environment. This means that despite the harmful e�ects of the toxin released
by phytoplankton, the zooplankton population persists.
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Figure 4 : Spatial distribution of the two species, zooplankton and phytoplankton, if we consider
in the system � 1 = 0 :198 and dz = 120 :1.

Figure 5 : Spatial distribution of the two species, zooplankton and phytoplankton if we consider
in the system � 1 = 0 :205 and dz = 120 :1.

Figure 6 : Spatial distribution of the two species, zooplankton and phytoplankton, if we consider
in the system � 1 = 0 :23 and dz = 120 :1.
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Figure 7 : Spatial distribution of the two species, zooplankton and phytoplankton, if we consider
in the system � 1 = 0 :26 and dz = 120 :1.

4.2 Analysis of the dynamics behavior with toxin e�ect

We continue our numerical study in this sub-section to look at the dynamics behavior
of the system by considering di�erent values of the toxin parameter. Here, we consider
that � 1 = 0 :25. The numerical simulations show that after a transitional phase, the
equilibrium can be established with coexistence of the two populations. Figure 8� 11
show the behavior of the two populations. As a biological interpretation we can say that
if the toxin is released below this value the impact is not signi�cant on the zooplankton
population (Figure 8 � 10). In fact, the e�ect does not disrupt the survival of other
species. Figure 11 shows the spatial distributions of the two populations. A less dense
distribution of the zooplankton population than the previous one was observed. This
explains the considerable decrease of these species due to the increase in the number of
toxic phytoplankton. There is a strong distribution of the phytoplankton population.
Since the distribution is high, this explains the release of the toxin in large quantities by
this population. This period corresponds to the phytoplankton bloom.

Figure 8 : Dynamics behavior of the two species with � 1 = 0 :26; dz = 120 :1 and � p = 0 :2
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Figure 9 : Dynamics behavior of the two species with � 1 = 0 :26; dz = 120 :1 and � p = 0 :35.

Figure 10 : Dynamics behavior of the two species with � 1 = 0 :26; dz = 120 :1 and � p = 0 :504.

Figure 11 : Dynamics behavior of the two species with � 1 = 0 :26; dz = 120 :1 and � p = 1 :4.
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5 Conclusion

In this paper, our interest is the formulation of a reaction-di�usion model to represent
the dynamics of zooplankton and phytoplankton population by taking into account the
e�ect of the toxin. The model construction is derived from an ODE system by consid-
ering an isotropic distribution as in [5, 8]. It should be noted that we consider di�usion
independently of the spatial variable in the construction of the reaction-di�usion model.
The mathematical results allowed us to establish conditions of existence of equilibrium
which depend on the demographic parameters. We also gave some results about the sta-
bility of the stationary equilibria and we established the conditions on the non existence
of the equilibrium with strictly positive components.

We continued our study through numerical experiments in order to con�rm our math-
ematical results. The numerical results have yielded interesting results on the e�ect of
the toxin on the dynamics. This is why we are led to conclude that the release of the
toxin under certain conditions, in the aquatic environment contributes to the regulation
of the system. The phytoplankton bloom was observed during our simulations and is in
perfect agreement with the biological observations.

Despite of important results on this dynamics, in order to further our study, we
consider, for our future work, to clearly subdivide the phytoplankton population into
toxic phytoplankton and non-toxic phytoplankton to extend our results to these types of
cross-di�usion system.
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Abstract: In this paper, we attempt to investigate the boundedness of a new hyper-
chaotic system using the combination of the Lyapunov stability theory with the com-
parison principle method. Furthermore, explicit estimation of the two-dimensional
parabolic ultimate bound with respect to x-z is established. Finally, a linear feedback
approach with one input is used to realize the global synchronization of two four-
dimesional hyperchaotic systems. Some numerical simulations are also used to verify
the e�ectiveness and correctness of the proposed scheme.
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chaos synchronization; comparison principle method.

Mathematics Subject Classi�cation (2010): 65P20, 65P30, 65P40.

1 Introduction

Hyperchaotic systems are dissipative nonlinear dynamical systems with more than one
positive Lyapunov exponent. The Lyapunov exponent of a chaotic system is a mea-
sure of the divergence of points which are initially very close and this can be used to
quantify chaotic systems. So, the hyperchaos may be more useful in some �elds such as
communication encryption, and so forth.

An important paradigm of a 3-D chaotic system was discovered by Lorenz [7] while he
was studying a 3-D weather model. Subsequently, many chaotic systems have attracted
tremendous research interest, and many chaotic and hyperchaotic systems have been
presented.

Chaotic systems are ultimately bounded. Thus, the phase portraits of the systems
will be ultimately trapped in some compact sets. The ultimate boundedness of a chaotic
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system is very important for the study of the qualitative behavior of a chaotic system. In
fact, except for the stability property, boundedness is also one of the foundational con-
cepts of dynamical systems, which plays an important role in investigating the uniqueness
of equilibrium, global asymptotic stability, global exponential stability, the existence of
the periodic solution, its control and synchronization and so on. Furthermore, it can be
applied in estimating the fractal dimensions of chaotic attractors, such as the Hausdor�
dimension and the Lyapunov dimension of chaotic attractors [3].

Ultimate bound estimation of chaotic systems is a di�cult yet interesting mathemat-
ical question. At present, several works on this topic were realized for some 3D and 4D
dynamical systems, see [2,4{6,8{12,14,15].

Recently, Chen Hai-tao, Chen Di-yi and Ma Xiao-yi [1] introduced the following new
system 8

>><

>>:

x
0

= � (y � x) ;
y0 = 
x � xz � y;
z0 = xy � �z;
w0 = � x � �w;

(1)

where (�; �; 
 ) 2 R3 is a vector parameter. When� = 5, � = 0 :7, 
 = 26, system (1)
has a hyperchaotic attractor. Fig. 1: shows the phase portraits of system (1).

In this paper, we �rstly investigate the boundedness for this new hyperchaotic system
using a combination of Lyapunov stability theory with the comparison principle method.
In addition, the two-dimensional parabolic ultimate bound with respect to x � z is es-
tablished.

Synchronization of chaotic systems has become an important topic in nonlinear sci-
ence not only for its importance in theory but also for its potential applications in various
areas, for example, secure communication, chemical and biomedical science, life science,
electromechanical engineering and so on. During the last decades, many methods have
been successfully applied to chaos synchronization such as PC method, linear feedback
control, adaptive control, backstepping design, active control and nonlinear control, etc.

In this paper, based on the bounds previously obtained, we use linear feedback con-
trol with one input to realize global synchronization between two identical hyperchaotic
systems.

The rest of this paper is organized as follows. In Section 2, we study the boundedness
of the hyperchaotic systems (1). In Section 3, the two-dimensional bound estimation
with respect to x � z is established. In Section 4, our outcomes are applied between the
master system and the slave system to the study of completely chaos synchronization.
In Section 5, numerical simulation is presented to show the e�ectiveness of our results.
Section 6 is the conclusion of the paper.
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Fig. 1 : Phase portrait of the system (1) in the x � y � z space with
parameters � = 5, � = 0 :7, 
 = 26 :

2 Bounds for Solutions of the New Hyperchaotic System

Lemma 2.1 [5] De�ne a set

� =

(

(x; y; z) =
x2

a2 +
y2

b2 +
(z � c)2

c2 = 1 ; a > 0; b > 0; c > 0

)

(2)

and G = x2 + y2 + z2, H = x2 + y2 + ( z � 2c)2, (x; y; z) 2 � . Then we have

max
(x;y;z )2 �

G = max
(x;y;z )2 �

H =

8
>>><

>>>:

a4

a2 � c2 ; a � b; a �
p

2c;

4c2; a <
p

2c; b <
p

2c;
b4

b2 � c2 ; b > a; b �
p

2c.

(3)

Theorem 2.1 For � > 0, � > 0, 
 > 0 the following set


 =
�

(x; y; z; w) =x2 + y2 + ( z � � � 
 )2 � R2; w2 �
R2

� 2

�
(4)

is the bound for system (1), where

R2 =

8
>>>><

>>>>:

� 2 (� + 
 )2

4� (� � � )
, if � � 2�; � � 1;

(� + 
 )2 , if � < 2�; � < 2;
� 2 (� + 
 )2

4 (� � 1)
, if � > 1; � � 2.

(5)

Proof. Construct the following Lyapunov function

V (x; y; z) = x2 + y2 + ( z � � � 
 )2 : (6)
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Then, its time derivative along the orbits of system (1) is

:
V = 2x

:
x + 2y

:
y + 2 ( z � � � 
 )

:
z = � 2�x 2 � 2y2 � 2�

�
z �

� + 

2

� 2

+ �
(� + 
 )2

2
: (7)

Therefore,
:

V = 0, that means, the surface

� =

8
>>><

>>>:

(x; y; z) =
x2

� (� + 
 )2

4�

+
y2

� (� + 
 )2

4

+

�
z �

� + 

2

� 2

(� + 
 )2

4

= 1

9
>>>=

>>>;

(8)

is an ellipsoid in three-dimensional space. Outside �,
:

V < 0, while inside �,
:

V > 0. Since
the function V = x2 + y2 + ( z � � � 
 )2 is continuous on the closed set �,V can reach
its maximum on the surface �. Next, we use Lemma 1 and obtain the optimal value of
V on �.

V � max
(x;y;z )2 �

V = R2 =

8
>>>><

>>>>:

� 2 (� + 
 )2

4� (� � � )
, if � � 2�; � � 1;

(� + 
 )2 , if � < 2�; � < 2;
� 2 (� + 
 )2

4 (� � 1)
, if � > 1; � � 2.

(9)

Thus, we have
jxj � R (10)

and
w0 = � x � �w � � �w + R: (11)

By the comparison principle, we obtain

w (t) �
R
�

+
�

w (t0) �
R
�

�
e� � ( t � t 0 ) (12)

and

lim
t ! + 1

w (t) �
R
�

: (13)

Consequently, we getw2 �
R2

� 2 as t ! + 1 . Summarizing the above, we have the main

result that


 =
�

(x; y; z; w) =x2 + y2 + ( z � � � 
 )2 � R2; w2 �
R2

� 2

�
(14)

is the bound for the hyperchaotic systems (1). This completes the proof.

3 Estimate of the Two-Dimensional Parabolic Ultimate Bound with Respect
to x{z

Theorem 3.1 When � < 2� , the system (1) has the following two-dimensional
parabolic ultimate bound

z �
x2

2�
: (15)
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Proof. De�ne

V (t) =
1

2�
x2 (t) � z (t) :

Then, its time derivative along the orbits of system (1) is

:
V =

1
�

x
:
x �

:
z = � x2 + �z:

Thus,
:

V + �V = � x2 + �z +
�
2�

x2 � �z =
�

�
2�

� 1
�

x2:

When � < 2� , we have
:

V + �V � 0:

For any initial value V (t0) = V0, according to the comparison theorem, we have

V (t) � V0e� � ( t � t 0 ) ! 0 (t ! 1 ) :

Thus,

lim
t !1

V (t) = lim
t !1

�
1

2�
x2 (t) � z (t)

�
� 0:

So, we get that system orbits satisfy the parabolic ultimate bound

z �
x2

2�
:

This completes the proof.

4 The Application in Chaos Synchronization

In this section, we will use the results obtained in Section 2 to study chaos synchronization
via linear feedback. For the master system (1), we construct another system called the
slave system, which is designed as

8
>><

>>:

:
x1 = � (y1 � x1) ;
:
y1 = 
x 1 � x1z1 � y1 � k (y1 � y) ;
:
z1 = x1y1 � �z 1;
:
w1 = � x1 � �w 1;

(16)

where x1, y1, z1, w1 are the state variables andk > 0 is the control. From Theorem 2.1,
we obtain

jyj � R; jzj � R + � + 
: (17)

Theorem 4.1 Systems (1) and (16) are globally and asymptotically synchronized
when

k >
� (� (� + 1) + R + 2 
 )2

4��� � R2 � 1:
�

� >
R2

4��
> 0

�
: (18)
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Proof. The complete synchronization error is de�ned by e1 = x1 � x, e2 = y1 � y,
e3 = z1 � z, e4 = w1 � w. Then, the error dynamics is obtained as

8
>><

>>:

:
e1 = � (e2 � e1) ;
:
e2 = ( 
 � z) e1 � xe3 � e1e3 � (k + 1) e2;
:
e3 = ye1 + xe2 + e1e2 � �e 3;
:
e4 = � e1 � �e 4:

(19)

De�ne the following Lyapunov function

V (e1; e2; e3) = �e 2
1 + e2

2 + e2
3;

where � is a positive constant and � >
R2

4��
> 0. Then, its time derivative along the

system (19) is

1
2

:
V = �e 1

:
e1 + e2

:
e2 + e3

:
e3

= �e 1 (�e 2 � �e 1) + e2 (( 
 � z) e1 � xe3 � e1e3 � (k + 1) e2)

+ e3 (ye1 + xe2 + e1e2 � �e 3)

= � ��e 2
1 � (k + 1) e2

2 � �e 2
3 + ( �� + 
 � z) e1e2 + ye1e3

� � ��e 2
1 � (k + 1) e2

2 � �e 2
3 + ( � (� + 1) + R + 2 
 ) je1j je2j + R je1j je3j

= � E T PE;

where

E = [ je1j ; je2j ; je3j]T ; P =

2

6
6
6
6
4

�� �
� (� + 1) + R + 2 


2
�

R
2

�
� (� + 1) + R + 2 


2
k + 1 0

�
R
2

0 �

3

7
7
7
7
5

;

which is positive de�nite when

� >
R2

4��
> 0; k >

� (� (� + 1) + R + 2 
 )2

4��� � R2 � 1:

Thus, according to the Lyapunov function theory, it follows that

lim
t ! + 1

je1j = 0 ; lim
t ! + 1

je2j = 0 ; lim
t ! + 1

je3j = 0 : (20)

In the following, we will prove lim
t ! + 1

e4 = 0. From (20), we have lim
t ! + 1

e1 = 0. Therefore,

for any " > 0, there is a su�ciently large T > t 0 such that, when t � T, we have
�
�
�
e1

�

�
�
� < " .

So, for any " > 0, when t � T, from (19), we have

e4(t) = e4(t0)e� � ( t � t 0 ) + e� �t
Z t

t 0

(� e1) e�� d�

� e4(t0)e� � ( t � t 0 ) + e� �t
Z t

t 0

�"e �� d�

= ( e4(t0) � " ) e� � ( t � t 0 ) + ":
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Thus, if the initial value e4(t0) > " and t ! + 1 , we obtain

e4(t) � " � (e4(t0) � " ) e� � ( t � t 0 ) ! 0:

Also, we have

e4(t) = e4(t0)e� � ( t � t 0 ) + e� �t
Z t

t 0

(� e1) e�� d�

� e4(t0)e� � ( t � t 0 ) � e� �t
Z t

t 0

�"e �� d�

= ( e4(t0) + " ) e� � ( t � t 0 ) � ":

Thus, if the initial value e4(t0) < � " and t ! + 1 , we get

e4(t) + " � (e4(t0) + " ) e� � ( t � t 0 ) ! 0:

Consequently, when the initial value je4(t0)j > " and t ! + 1 , we have the distance
d(e4(t); I ) ! 0, where I = [ � "; " ]. So, for any su�ciently small " > 0, there is a
su�ciently large T > t 0 such that, when t > T , we haveje4(t)j < " . By the de�nition of
limit, we obtain

lim
t ! + 1

e4(t) = 0 : (21)

Summarizing the above, we have

lim
t ! + 1

je1j = 0 ; lim
t ! + 1

je2j = 0 ; lim
t ! + 1

je3j = 0 ; lim
t ! + 1

je4j = 0 :

Finally, we conclude that the master system (1) and the slave system (16) are globally
synchronized. This completes the proof.

5 Simulation Studies

In this section, using the MATLAB 7.4, some numerical simulations are presented.
As initial conditions for the master and slave systems, we take (1; � 0:5; 3; 4) and
(� 8; � 1; � 4; � 1), respectively. When� = 5, � = 0 :7, 
 = 26, it is easy to obtain R = 31,

� >
R2

4��
= 68:64, according to Theorems 2.1 and 4.1. Choose� = 69, k = 26248, then

Fig. 2: shows the complete synchronization between systems (1) and (16).
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Fig. 2 : Time evolution of synchronization errors e1 , e2 , e3 and e4 between the master
system (1) and the slave system (16):

6 Conclusion

In this research work, the boundedness of a new hyperchaotic system has been investi-
gated. Furthermore, the two-dimensional parabolic estimate with respect tox � z for the
new system is established. Finally, the result is applied to the chaos synchronization and
numerical simulations are presented to show the e�ectiveness of the proposed scheme.
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Abstract: In this paper, we deal with regional stabilization of in�nite dimensional
bilinear system evolving in a spatial domain 
 with unbounded control operator. It
consists in studying the asymptotic behaviour of such a system in a subregion ! of

. Hence, we give su�cient conditions to obtain weak and strong stabilization on ! .
An example and simulations are presented.
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1 Introduction

Bilinear systems constitute an important subclass of nonlinear systems. The nonlinear-
ity in mathematical models appears in the multiplication of state and control in the
dynamical process. Bilinear systems model several phenomena in nature and in industry,
e.g. the mass action law in chemistry, the transfer of heat by conduction convection in
energetic systems, the generation of cells via cellular division, and the dynamics of the
blood's organs in biology [4]. Yet, the modeling may give rise to an unbounded control
operator which allows us to describe some interesting phenomena when the control is
acting in regions or on a boundary or when the measure is taken at some sensing point.
The problem of feedback stabilization of distributed systems has been studied in many
works along with various types of controls [1{3,5].

The question of regional stabilization for linear systems was tackled and developed by
Zerrik and Ouzahra [7], and consists in studying the asymptotic behaviour of a distributed
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system only within a subregion ! interior or in the boundary of its evolution domain

. The principal reason for introducing this notion is that it makes sense for the usual
concept of stabilization taking into account the spacial variable and then it becomes closer
to real world problems, where one wishes to stabilize a system on a critical subregion of
its geometrical domain. Regional stabilization of bilinear systems with bounded control
operator has been considered by Zerrik and Ouzahra [6]. Many approaches were used to
characterize di�erent kinds of stabilization, and mainly the control which achieves the
stabilization minimizing a given functional cost.

In this paper, we examine regional stabilization of in�nite dimensional bilinear sys-
tems with unbounded control operator. The paper is organized as follows : in Section
2, we discuss di�erent kinds of regional stabilization, and we give su�cient conditions to
achieve weak and strong stabilization of such a system on! . Finally, an example and
simulations are given to illustrate the e�ciency of the obtained results.

2 Regional Stabilization

2.1 Considered system and notations

De�ne an open, regular set 
 � Rn (n = 1 ; 2; :::) and consider the bilinear system
(

_z(t) = Az(t) + v(t)Bz(t);
z(0) = z0;

(1)

where A : D(A) � H ! H generates a strongly continuous semigroup of contractions
S(t)t � 0 on a Hilbert spaceH := L 2(
), endowed with norm and scalar product denoted,
respectively, by k:k and h:; :i , v(:) 2 L 2(0; 1 ) denotes the control function and B is an
unbounded linear operator fromH into itself, positive and self-adjoint but bounded from
a subspaceV � H to some large spaceV 0 such that H � V 0. Identify H with its dual
H 0 so that V ,! H ,! V 0, and hh; wi V 0;V = hh; wi 8 h; w 2 H:
We suppose that the state z(t) 2 V . The solution of system (1) is a solution of the
equation

z(t) = S(t)z0 +
Z t

0
v(s)S(t � s)Bz(s)ds: (2)

Let ! be an open subregion of 
 and Lebesgue non-null measure,� ! : L 2(
) ! L 2(! )
the restriction operator to ! , while � �

! denotes the adjoint operator given by

� �
! y(x) =

(
y(x); if x 2 !;
0; if x 2 
 n!:

Denote i ! = � �
! � ! and suppose that

(H1) hi ! Ay; yi � 0; 8y 2 D (A);
(H2) By 2 H; 8y 2 V ;
(H3) hi ! By; y i V 0;V � 0; 8y 2 V .

De�nition 2.1 System (1) is said to be
1. weakly stabilizable on! , if � ! z(t) tends to 0 weakly, ast ! 1 :
2. strongly stabilizable on ! , if � ! z(t) tends to 0 strongly, as t ! 1 :

Remark 2.1 It is clear that we are only interested in the behaviour of system (1) on
a subregion! without constraints on the residual part 
 n! , and when! = 
 we retrieve
the classical de�nition of stabilization.
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2.2 Regional weak stabilization

The following result gives su�cient conditions for weak stabilization of system (1) on ! .

Theorem 2.1 Let A generate a semigroupS(t) of contractions on H , the assump-
tions (H1); (H2) and (H3) hold, B be compact fromV to V 0, and if the condition

hi ! BS(t)y; S(t)yi V 0;V = 0 ; 8t � 0 =) � ! y = 0 ; (3)

is veri�ed, then the control v(t) = �h i ! Bz(t); z(t)i V 0;V weakly stabilizes system (1) on
! .

Proof. From hypothesis (H1), we have

d
dt

k� ! z(t)k2 � 2v(t)hi ! Bz(t); z(t)i V 0;V : (4)

In order to make the energy non increasing, a natural choice for the control is

v(t) = �h i ! Bz(t); z(t)i V 0;V :

SinceA generates a semigroup of contractions, we have

kz(t)k2 � k z(0)k2 � � 2
Z t

0
hi ! Bz(s); z(s)i V 0;V hBz(s); z(s)i V 0;V ds: (5)

Due to (H3) and the fact that B is positive, it follows that

kz(t)k � k z0k: (6)

From (2), (6), and Schwartz's inequality, we deduce

kz(t) � S(t)z0k � � kz0k
p

T � (0); 8t 2 [0; T]; (7)

where � = kB kL (V;V 0) and � (t) =
Z t + T

t
jhi ! Bz(s); z(s)i V 0;V j2ds:

For all s � 0, we have

hi ! BS(s)z0; S(s)z0i V 0;V = �h i ! B (z(s) � S(s)z0); S(s)z0)i V 0;V

� h i ! Bz(s); (z(s) � S(s)z0)i V 0;V + hi ! Bz(s); z(s)i V 0;V :

Since� ! is continuous, there exists a constantC > 0 such that

jhi ! BS(s)z0; S(s)z0i V 0;V j � 2C� kz0kkz(s) � S(s)z0k + jhi ! Bz(s); z(s)i V 0;V j: (8)

Now, let �( t)z0 := z(t) de�ne a non-linear semigroup of contractions onH and replacing
z0 by �( t)z0 in (7) and (8), we have

jhi ! BS(s)�( t)z0; S(s)�( t)z0i V 0;V j � 2C� 2kz0k2
p

T � (t) (9)

+ jhi ! B �( s + t)z0; �( s + t)z0i V 0;V j; 8t; s � 0:
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Integrating (9) over the interval [0 ; T] and using Schwartz's inequality, we arrive at

Z T

0
jhi ! BS(s)�( t)z0; S(s)�( t)z0i V 0;V jds � M

p
� (t); (10)

where M =
�

2C� 2kz0k2T
3
2 +

p
T

�
is a non-negative constant depending onkz0k and T.

By virtue of (4), we have

Z + 1

0
jhi ! B �( s)z0; �( s)z0i V 0;V j2ds < + 1 :

From the Cauchy criterion, we deduce that

� (t) ! 0; as t ! 1 : (11)

To show that � ! z(t) * 0, as t ! + 1 , let us consider a sequence (tn ) � R such that
tn ! 1 .
From (6), there exists a subsequence (t ' (n ) ) of (tn ) such that

�( t ' (n ) )z0 * y in V ;as n ! 1 :

Using the continuity of � ! and sinceB is a compact operator fromV to V 0, we have for
all t � 0 that

S(t)�( t ' (n ) )z0 * S (t)y in V and BS(t)�( t ' (n ) )z0 * BS (t)y in V 0; asn ! 1 :

Then

lim
n !1

hi ! BS(t)�( t ' (n ) )z0; S(t)�( t ' (n ) z0)i V 0;V = hi ! BS(t)y; S(t)yi V 0;V :

By the dominated convergence theorem, we have

lim
n !1

Z T

0
jhi ! BS(t)�( t ' (n ) )z0; S(t)�( t ' (n ) z0)i V 0;V jdt =

Z T

0
jhi ! BS(t)y; S(t)y)i V 0;V jdt:

From (10) and (11), it follows that

Z T

0
jhi ! BS(t)y; S(t)y)i V 0;V jdt = 0 :

and then
hi ! BS(t)y; S(t)y)i V 0;V = 0 ; 8t 2 [0; T]:

Using (3), we have
� ! �( t ' (n ) )z0 * 0 as n ! + 1 : (12)

On the other hand, it is clear that (12) holds for each subsequence (t � (n ) ) of (tn ) such
that � ! �( t � (n ) )z0 weakly converges inL 2(! ). This shows that for all ' 2 L 2(! ),
h� ! �( tn )z0; ' i * 0, as n ! + 1 . Hence � ! �( t)z0 * 0; as t ! + 1 , which completes
the proof. 2
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Remark 2.2 In the case! = 
, we retrieve the result established in [2] concerning
the weak stabilisation of system (1) on the whole domain 
.

2.3 Regional strong stabilization

The following result gives su�cient conditions for strong stabilization of system (1) on
! .

Theorem 2.2 Let A generate a semigroupS(t) of contractions on H , the assump-
tions (H1); (H2); (H3) hold, and assume that the condition

Z T

0
jhi ! BS(t)y; S(t)yi V 0;V jdt � � k� ! yk2

L 2 ( ! ) ; for someT; � > 0 (13)

is veri�ed, then the control v(t) = �h i ! Bz(t); z(t)i V 0;V strongly stabilizes system (1) on
! with the following decay estimate

k� ! z(t)kL 2 ( ! ) = O(t � 1=2); as t ! + 1 :

Proof. From (10) and (13), we deduce that

�
p

� (kT ) � k � ! �( kT )z0k2; 8k � 0; (14)

where � =
1
�

M:

Integrating the following inequality

d
dt

k� ! �( t)z0k2 � � 2jhi ! B �( t)z0; �( t)z0i V 0;V j2

from kT to (k + 1) T, (k 2 N); and using (14), we obtain

k� ! �( kT )z0k2 � k � ! �( kT + T)z0k2 � 2� (kT ); 8k � 0:

It follows that

� 2k� ! �( kT + T)z0k2 � � 2k� ! �( kT )z0k2 � � 2k� ! �( kT )z0k4; 8k � 0: (15)

Let us introduce the sequencesk = k� ! �( kT )z0k2; 8k � 0:
From (15), we deduce that

sk � sk+1

s2
k

�
2

� 2 ; 8k � 0:

Since the sequence (sk ) decreases, we get

sk � sk+1

sk :sk+1
�

2
� 2 ; 8k � 0;

so
1

sk+1
�

1
sk

�
2

� 2 ; 8k � 0:

We deduce that
sk �

s0
2s0
� 2 k + 1

; 8k � 0:

Finally, introducing the integer part k = E( t
T ) and using the fact that k� ! �( t)z0k

decreases, we deduce the estimate

k� ! z(t)k = O(t � 1=2); as t ! + 1 :

2
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3 Example and Simulations

Let us consider the system de�ned in 
 =]0 ; + 1 [ by the following equation
8
>><

>>:

@z(x; t )
@t

= �
@z(x; t )

@x
+ v(t)b(x)z(x; t ); 
 � ]0; + 1 [;

z(0; t) = 0 ; ]0; + 1 [;
z(x; 0) = z0(x); 
 ;

(16)

where H = L 2(
), b(x) � 0, a.e on 
, and b(x) � c > 0 a.e on ! , Az = �
@z
@x

with

the domain D(A) = f z 2 H 1(
) j z(0) = 0 g, and consider the operatorB : D(B )( �
L 2(
)) ! L 2(
) given by Bz = b(x)z. The operator B is unbounded onL 2(
). By the
Sobolev embeddingsH 1(
) ,! L 2(
), B is bounded from H 1(
) to L 2(
). Hence, the
spaceV is given by V = H 1(
).

The operator A generates the following semi-group of contractions

(S(t)z0)(x) =

(
z0(x � t); if x � t;
0; if x < t:

Let ! =]0 ; a[, with a > 0 we have

hi ! Az; zi = �
Z a

0
z0(x)z(x)dx = �

z2(a)
2

� 0;

so hypothesis (H1) holds. For T = 1, we have
Z 1

0
hi ! b(x)S(t)z0; S(t)z0i V 0;V dt =

Z 1

0

Z 1� t

0
b(x)jz0(x)j2dxdt � ck� ! z0k2:

Then, the control v(t) = �
Z a

0
b(x)jz(x; t )j2dx strongly stabilizes system (16) on! .

We consider system (16) withb(x) =
1

p
x(x2 + 1)

and z0(x) = sin( �x ).

� For ! =]0 ; 2[, we have

Figure 1 : The stabilization on ! =]0 ; 2[:
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Figure 2 : Control function.

Figure 1 shows that the system (16) is strongly stabilized on! =]0 ; 2[.
� For ! =]0 ; 3[, we have

Figure 3 : The stabilization on ! =]0 ; 3[:
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Figure 4 : Control function.

Figure 3 shows that the system (16) is strongly stabilized on! =]0 ; 3[.

4 Conclusion

Regional stabilization of a class of in�nite dimensional bilinear systems with unbounded
control operator is considered. Under su�cient conditions, we give a control that ensures
weak and strong regional stabilization. Questions are still open; this is, the case of
boundary subregion.
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