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Abstract: In this paper we analyse the heat transfer in two-dimensional straight
fins. Both heat transfer coefficient and thermal conductivity are temperature depen-
dent. The resulting 2+1 dimension partial differential equation (PDE) is rendered
nonlinear and difficult to solve exactly, particularly with prescribed initial and bound-
ary conditions. The three-dimensional differential transform method (3D DTM) is
used to construct the approximate analytical solutions. The effects of parameters,
appearing in the boundary value problem (BVP), on temperature profile of the fin
are studied.
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1 Introduction

Fins are surfaces that extend from a primary body to a surrounding fluid. They are
predominantly used to increase the heat transfer rate between the body and its sur-
roundings. Fins are designed in such a way that they increase the surface area of an
object and hence its contact with the environment. They come in various shapes, geome-
tries and profiles that cater for a diverse range of problems and applications (the reader is
referred to [1] for a detailed theory). Fins are widely used in devices that exchange heat,
common examples would include vehicle engine radiators, refrigerators, air conditioning
devices and compressors. Consequently, the study of heat transfer in fins continues to be
of interest.

Two-dimensional fin problems have received much attention, however, it is assumed in
most works that the thermal conductivity and the heat transfer coefficient are constants,
and the internal heat generation is omitted. In [2], the authors provided the approximate
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solutions using homotopy analysis for the transient problem with constant thermal prop-
erties. Moitsheki and Rowjee [3] constructed exact solutions for a two-dimensional steady
state problem with the temperature-dependent thermal conductivity, heat transfer coef-
ficient and internal heat generation. Analysis of transient heat transfer in straight fins
of various shapes and with constant heat flux was carried out in [4]. A two-dimensional
rectangular fin with variable heat transfer coefficient was analysed using the Fourier se-
ries approach [5]. In [6], two-dimensional trapezoidal fins were analysed wherein heat
loss through fins at various slopes were compared. Exact solutions for heat transfer in
rectangular fins were constructed in [7].

In this paper, the two-dimension heat flow in straight fins is analysed using the 3D
DTM. The DTM was introduced in [8] and an account for the higher dimension DTM may
be found in [9]. In Section 2, a mathematical description of the problem in question is
provided. A brief account of the DTM is provided in Section 3. In Section 4, approximate
analytical solutions are constructed. Some discussions and conclusion are given in Section
5.

2 Mathematical Description

The fin is attached to a primary surface of temperature Tb. The coordinate system
has the origin at the intersection of the fin surface and the fin tip, with the X-axis
extending towards the fin base and the Y -axis extending towards the centre of the fin.
The fin height is L and the length from the X-axis to the center of the fin is δ. The
temperature of the surrounding fluid into which the fin extends is designated by Ts. The
thermal conductivity and the heat transfer coefficient are dependent on temperature
and are denoted by K(T ) and H(T ), respectively. For our problem under consideration
we assume no internal heat generation. Therefore, in the dimensionless variables and
parameters, the governing BVP is given by (see also [1])

∂θ

∂τ
=

∂

∂x

[
k(θ)

∂θ

∂x

]
+ E2 ∂

∂y

[
k(θ)

∂θ

∂y

]
, (1)

subject to the initial condition

θ(0, x, y) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (2)

and the boundary conditions

θ(τ, 1, y) = 1, 0 ≤ y ≤ 1, τ > 0, (3)

∂θ

∂x
= 0, x = 0, 0 ≤ y ≤ 1, τ > 0, (4)

k(θ)
∂θ

∂y
= −Bih(θ)θ, y = 0, 0 ≤ x ≤ 1, τ > 0, (5)

∂θ

∂y
= 0, y = 1, 0 ≤ x ≤ 1, τ > 0, (6)

where the dimensionless quantities are given by

t =
L2ρcp
Ka

τ, X = Lx, Y = δy,K = Kak, H = Hbh, T = (Tb − Ts)θ + Ts,
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with τ , x, y, k, h and θ being the dimensionless variables. Ka and Hb are the ambient
thermal conductivity and the fin base heat transfer coefficient, respectively, and E = L

δ

and Bi = δHb

Ka
are the fin extension factor and the Biot number, respectively. An account

of studies of diffusion equations in higher dimensions may be found, for example, in [10].
For practicality purposes, two cases will be considered for the relation of the thermal

conductivity and temperature [11], namely, the linear function relation and the power
law. We also consider the heat transfer coefficient given by the power law. The two cases
for the thermal conductivity (see e.g. [12, 13]) are given by
Case (i) the power law

k(θ) = θn, (7)

where n is a dimensionless constant and
Case (ii) the linear function

k(θ) = 1 + βθ, (8)

where β = ε(Tb − Ts) is the thermal conductivity parameter and ε is the thermal con-
ductivity gradient. For most engineering applications the heat transfer coefficient has a
power law relation with temperature [1], that is,

h(θ) = θm. (9)

Here m is a dimensionless constant, which in engineering applications takes values from
-3 to 3.

3 A Brief Account of the p-Dimensional DTM

For an analytic multivariable function f(x1, x2, ..., xp), we have the p-dimensional trans-
form given by

F (k1, k2, ..., kp) =
1

k1!k2!...kp!

[
∂k1+k2+...+kpf(x1, x2, ..., xp)

∂xk11 ∂x
k2
2 ...∂x

kp
p

]∣∣∣∣
(x1,x2,...,xp)=(0,0,...,0)

. (10)

The upper and lower case letters stand for the transformed and the original functions, re-
spectively. The transformed function is also referred to as the T-function, the differential
inverse transform is given by

f(x1, x2, ..., xp) =

∞∑
k1=0

∞∑
k2=0

...

∞∑
kp=0

F (k1, k2, ..., kp)

p∏
l=1

xkll . (11)

It can be easily deduced that the substitution of equation (10) into equation (11) gives the
Taylor series expansion of the function f(x1, x2, ..., xp) about the point (x1, x2, ..., xp) =

(0, 0, ..., 0). This is given by

f(x1, x2, ..., xp) =

∞∑
k1=0

∞∑
k2=0

...

∞∑
kp=0

∏p
l=1 x

kl
l

k1!k2!...kp!

[
∂k1+k2+...+kpf(x1, x2, ..., xp)

∂xk11 ∂x
k2
2 ...∂x

kp
p

]∣∣∣∣
x1=0,...,xp=0

.

(12)
For real world applications the function f(x1, x2, ..., xp) is given in terms of a finite series
for some q, r, s ∈ Z. Then equation (11) becomes

f(x1, x2, ..., xp) =

q∑
k1=0

r∑
k2=0

...

s∑
kp=0

F (k1, k2, ..., kp)

p∏
l=1

xkll . (13)
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Original function f(x1, x2, ..., xp) T-function F (k1, k2, ..., kp)
f(x1, x2, ..., xp) = λg(x1, x2, ..., xp) F (k1, k2, ..., kp) = λG(k1, k2, ..., kp)
f(x1, x2, ..., xp)=g(x1, x2, ..., xp)±p(x1, x2, ..., xp) F (k1, k2, ..., kp) = G(k1, k2, ..., kp)

±P (k1, k2, ..., kp)

f(x1, x2, ..., xp) =
∂r1+r2+...+rpg(x1,x2,...,xp)

∂x
r1
1 ∂x

r2
2 ...∂x

rp
p

F (k1, k2, ..., kp) =
(k1+r1)!...(kp+rp)!

k1!...kp!

(k1 + r1, ..., kp + rp)
f(x1, x2, ..., xp) =

∏p
l=1 x

el
l F (k1, k2, ..., kp) = δ(k1 − e1,

k2 − e2, ..., kp − ep)

Table 1: Theorems and operations performed in the p-dimensional DTM.

We now give some important operations and theorems performed in the p-dimensional
DTM in Table 1. Those have been derived using the definition in (10) together with
previously obtained results [14].

In the table

δ(k1 − e1, k2 − e2, ..., kp − ep) =

{
1, if ki = ei for i = 1, 2, .., p.

0, otherwise.

4 Approximate Analytical Solutions

4.1 Constant and linear function thermal conductivity

The work presented in this section will cover two cases, namely, the linear model case
with β = 0, and the nonlinear case with β 6= 0. Equation (1) may be given by

∂θ

∂τ
=

∂

∂x

[
(1 + βθ)

∂θ

∂x

]
+ E2 ∂

∂y

[
(1 + βθ)

∂θ

∂y

]
, (14)

subject to the conditions (2) - (6). We now apply the three-dimensional DTM to the
governing equation (14) and the above mentioned conditions to obtain the approximate
analytical solution

θ(τ, x, y) = cτ + cτy + cτy2 + cτy3 + cτy4 + cτy5 + cτy6 + cτy7 + .......

+ cτx2 − Bicm+1

(1 + βc)
τyx2 − 5c

E2
τy2x2 +

5Bicm+1

3E2(1 + βc)
τy3x2 + ......

+ cτx3 − Bicm+1

(1 + βc)
τyx3 − 9c

E2
τy2x3 +

3Bicm+1

E2(1 + βc)
τy3x3 + ......

...

(15)

For this problem we will choose the boundary x = 1. Along this boundary c must satisfy
the equation

cτ+cτy+cτy2 + ...+cτ− Bicm+1

(1 + βc)
τy− 5c

2E2
τy2...+cτ− Bicm+1

(1 + βc)
τy− 9c

E2
τy2 + ... = 1.

(16)
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Figure 1: Approximate analytical solutions for a two-dimensional rectangular fin with a con-
stant thermal conductivity (β = 0) for τ = 0.4. The parameters are set such that E = 2.8,
Bi = 0.2, and m = 3.

(y,x) 0 0.2 0.4 0.6 0.8 1

0 0.2000 0.2100 0.2520 0.3567 0.5779 1
0.2 0.2493 0.2590 0.2993 0.3986 0.6064 1
0.4 0.3465 0.3558 0.3933 0.4829 0.6646 1
0.6 0.5075 0.5157 0.5475 0.6194 0.7574 1
0.8 0.6883 0.6943 0.7168 0.7650 0.8528 1
1 0.7801 0.7837 0.7975 0.8286 0.8894 1

Table 2: Approximate analytical solutions for a two-dimensional rectangular fin with a constant
thermal conductivity for τ = 0.4.

Upon solution of (16) one obtains an expression for θ(τ, x, y).The solution θ(τ, x, y) will
be discontinuous in the y direction. Taking the first six terms in every direction, that is,
taking the first 216 terms of the series, we give the profile and plot for the case β = 0
over the (x, y) plane. The solution is depicted in Figures 1 and 2, and the numerical
account is provided in Table 2.

4.2 Power law thermal conductivity

In this section we focus on the rectangular fin with a power law thermal conductivity.
The problem is given by the equation

∂θ

∂τ
=

∂

∂x

[
θn
∂θ

∂x

]
+ E2 ∂

∂y

[
θn
∂θ

∂y

]
, (17)

which is subject to the conditions presented in (2)- (6). Applying the three-dimensional
DTM to the governing equation (17) and the above mentioned conditions one obtains
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Figure 2: Approximate analytical solutions for a two-dimensional rectangular fin with a linear
function thermal conductivity (β = 2) for τ = 0.4. The parameters are set such that E = 3.2,
Bi = 0.2, and m = 3.

the series solution

θ(τ, x, y) = cτ −Bicmτy + cτy2 + cτy3 + cτy4 + cτy5 + cτy6 + cτy7 + .......

cτx2 −Bicmτyx2 − 18c+ 2E2c− 2BiE2cm − 3

2E2
τy2x2 + ......

cτx3 −Bicmτyx3 − 40c+ 2E2c− 2BiE2cm − 3

2E2
τy2x3 + ......

...

(18)

In order to find a value for c, we choose the boundary x = 1. This results in an equation
in terms of τ and y given by

cτ −Bicmτy + ...+ cτ −Bicmτy + ...+ cτ −Bicmτy + ... = 1.

...
(19)

The obtained value of c can then be substituted back into (18) to get an expression for
θ(τ, x, y). The solution is depicted in Figure 3. It turns out that the 3D DTM works
well only when n = 1, which is equivalent to rescaling of the linear thermal conductivity
in equation (15). A question arises of whether this observation is the only case in this
problem for which DTM is efficient. Figures 4 and 5 depict the temperature profiles for
transient heat transfer.

5 Conclusion

As far as we know, the 3D DTM has never been applied to transient problems of heat
transfer in 2D straight fins with temperature-dependent thermal properties. We have
demonstrated that these methods are effective in providing approximate analytical solu-
tions. Figures 1 to 3 provide the temperature profile of heat transfer in the 2D rectangular
straight fins. One may notice that the transient solutions approach the steady state so-
lution in Figures 4 and 5. Numerical results are provided in Table 2. The dependency
of the thermal properties on temperature rendered the considered equation nonlinear.
The effects of the Biot number and aspect ratio were studied in [3]. Similar results are
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Figure 3: Approximate analytical solutions for a two-dimensional rectangular fin with a power
law thermal conductivity for τ = 0.4. The parameters are set such that E = 25, Bi = 0.2, and
m = 3.
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Figure 4: Plots of the transient profile for varying τ , against the steady state profile along
y = 0.5. The parameters are set such that E = 2.9, Bi = 0.2, and m = 3.
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Figure 5: Plots of the transient profile for varying τ , against the steady state profile along
y = 0.5. The parameters are set such that E = 2.9, Bi = 0.1, and m = 2.
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obtained in this study, namely, that the fin performance decreases with the increased
aspect ratio and the large Biot number yields a decreased fin efficiency.
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