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Special Issue

Recent Trends in Theoretical Aspects and

Computational Methods in Differential and Difference

Equations

Preface

Firstly, in recognition of Professor I.P. Stavroulakis’s significant contributions to non-
linear dynamics and systems theory, we include a Personage in Science to introduce his
biographical sketch and scientific activities.

After that, the first paper, entitled “On stability of a second order integro-differential
equation”, obtains new stability condition for the second order integro-differential equa-
tion.

In the second paper, entitled “Application of extended Fan sub-equation method to
generalized Zakharov equation”, the extended Fan sub-equation method is applied to
obtain exact analytical solutions of the generalized Zakharov equation.

The third paper, entitled “Lie group classification of a generalized coupled Lane-
Emden-Klein-Gordon-Fock system with central symmetry”, is concerned with the sym-
metry analysis of a generalized Lane-Emden-Klein-Fock system with central symmetry.
Several cases for the non-equivalent forms of the arbitrary elements are obtained.

The fourth paper, entitled “Numerical solutions of fractional chemical kinetics sys-
tem”, studies the numerical solution of the fractional chemical kinetics model using the
operational matrices of fractional integration and multiplication based on the Bernstein
polynomials.

In the fifth paper, entitled “A recursive solution approach to linear systems with
non-zero minors”, a recursive algorithm is presented to solve linear system of differential
equations which has advantage over other existing algorithms.

The sixth paper, entitled “Comparison of new iterative method and natural homo-
topy perturbation method for solving nonlinear time-fractional wave-like equations with
variable coefficients”, investigated a comparison between an iterative method which is
presented by Dafterdar and Jafari and natural homotopy perturbation method (NHPM)
for solving nonlinear time-fractional wave-like equations with variable coefficients.

In the seventh paper, entitled “Mathematical analysis of a differential equation mod-
eling charged elements aggregating in a relativistic zero-magnetic field”, the authors
analyze, in spaces of distributions with finite higher moments, discrete mass and mo-
mentum dependent equations describing the movement of charged particles (electrons,
ions) aggregating and moving in a relativistic zero-magnetic field. The model is a combi-
nation of two processes (kinetic and aggregation), each of which is proven to be separately
conservative.

c© 2019 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua111
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112 PREFACE TO THE SPECIAL ISSUE

The eighth paper, entitled “Oscillation of second order nonlinear differential equations
with several sub-linear neutral terms”, is concerned with some new sufficient conditions
for oscillation of all solutions of a class of second order differential equations with several
sub-linear neutral terms.

The ninth paper, entitled “Approximate analytical solutions for transient heat trans-
fer in two-dimensional straight fins”, studies the numerical solution of the problem on
heat transfer in two dimensional straight fins. The three-dimensional differential trans-
form method (3D DTM) is used to construct the approximate analytical solutions.

In the tenth paper, entitled “Complete symmetry and µ-symmetry analysis of the
Kawahara-KdV type equation”, the ordinary and µ-symmetries methods are used for
the Kawahara-KdV type equation.

The eleventh paper, entitled “A phase change problem including space-dependent
latent heat and periodic heat flux”, investigated a mathematical model related to a
problem of phase-change process with periodic surface heat flux and space-dependent
latent heat. The homotopy analysis method has been used to acquire the solution to the
problem.

In the last paper entitled “Dual phase synchronization of chaotic systems using nonlin-
ear observer based technique” the dual phase synchronization is achieved using nonlinear
state observer technique and stability theory. The Qi and Newton-Leipnik systems are
considered during demonstration of dual phase synchronization.

We would like to express our warmest thanks to authors who submitted their papers to
be considered for publication in this Special Issue. We highly appreciate the contributions
from the reviewers for their careful and critical evaluation of the manuscripts. It is our
pleasure to thank Professor A.A. Martynyuk, Editor-in-Chief of ND&ST, for his support
and encouragement during the process of editing this Special Issue.

Guest Editors:

Hossein Jafari, University of South Africa, South Africa,
mailto:jafari.usern@gmail.com;

Subir Das, Indian Institute of Technology (BHU) Varanasi, India,
mailto:sdas.apm@iitbhu.ac.in;

Marcia Moremedi, University of South Africa, South Africa,
mailto:moremgm@unisa.ac.za

mailto: jafari.usern@gmail.com
mailto: sdas.apm@iitbhu.ac.in 
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PERSONAGE IN SCIENCE

Professor Emeritus I.P. Stavroulakis

H. Jafari 1∗, G. Ladas 2, and I. Gyori 3

1 Department of Mathematical Sciences, University of South Africa,
Florida Campus, 0003 South Africa

2University of Rhode Island, Kingston, Rhode Island, United States
3Department of Mathematics, University of Pannonia, Hungary

Ioannis P. Stavroulakis (denoted by IPS throughout this paper) was born on January
2, 1949 (registered as on December 28, 1948) on the island of Crete, Greece. After six
years at the primary school in his birthplace Episkopi-Rethymnis he continued Gymna-
sium (High school) in Rethymnon (the capital town of the prefecture).

Graduating from high school he took state entrance examinations and was accepted
at the University of Ioannina, Department of Mathematics, Faculty of Sciences. In 1971
he graduated from the University of Ioannina and right after he was accepted for post-
graduate studies at the City University of New York obtaining a Master’s Degree in
Mathematics in 1973. His doctoral work began in 1973 under the direction of the late
Vassilios A. Staikos who was a student of the late Demetrios Kappos who in turn was
a student of Constantine Caratheodory. His Ph.D. thesis defense at the University of
Ioannina was in 1976. At this point it should be noted that IPS was (chronologically) the
first from all the graduates of the Department of Mathematics, University of Ioannina
who obtained a doctor’s degree. It is to be also mentioned that during both his under-
graduate and post-graduate studies he was holding scholarships: IKY (State Scholarships
Foundation), Graduate University Scholarship (CUNY), Teaching Assistantship (Univ.
of Ioannina) and Research Fellowship (The National Hellenic Research Foundation).

In the same year 1976 he accepted an academic position at the University of Ioannina,
while in the following three academic years he taught at the University of Crete and
participated in the organization of the Departments of Mathematics and Physics
during the first three academic years (1977–80) of their establishment.

During 1981–84, while on Sabbatical, IPS had a position as Visiting Assistant Pro-
fessor in the Division of Applied Mathematics, Brown University and also taught as
an Assistant Professor in the Department of Mathematics, University of Rhode Island,
USA. In 1985 he was elected Associate Professor, while in 1991 elected (full) Profes-
sor and worked at the University of Ioannina until 2015 where he was elected Professor
Emeritus. He has also held the following positions:

∗ Corresponding author: mailto:jafari.usern@gmail.com
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• Visiting Researcher, Ibaraki University, Japan, 06-07/1992, 06-08/1994, 06-08/1995

• Visiting Scholar, The Flinders University of South Australia, Adelaide, 10-11/1994

• Visiting Professor, Boston University, USA, 01-08/1995

• Visiting Professor, Ankara University, Turkey, 2016-17

• Visiting Professor, Dept. of Mathematical Sciences, Univ. of South Africa, 2017-18.

He has taught several courses on Mathematical Analysis and Ordinary, Difference and
Partial Differential Equations at:

• University of Ioannina

• University of Crete

• University of Rhode Island

• University of Tirana

• University of Gjirokastra

• Hellenic Open University

• Ankara University

and has also supervised 7 post-doctoral researchers (from Slovakia, China, Georgia,
Egypt, Turkey, Albania), 30 Ph. D. Theses and 4 Master Theses (Advisory Committee
or Jury).

Research in various aspects of the Qualitative Theory of Ordinary, Functional, Dif-
ference, and Partial Differential Equations. In particular: Study of the oscillatory and
asymptotic behavior of delay, advanced, mixed, neutral differential and difference equa-
tions and of dynamic equations on time scales. First and higher order linear and non-
linear equations with one or several monotone or non-monotone arguments.

Upon his invitation more than 50 researchers from several foreign Universities (from
Italy, Hungary, Japan, USA, China, Bulgaria, USSR, Czech Republic, Slovakia, Morocco,
Albania, Jugoslavia, Israel, Ukraine, Skopje, Georgia, Poland, Egypt, Turkey) have vis-
ited the University of Ioannina and collaborated with him. He is the author of 3 books
and more than 130 research papers most of them are of high quality and have been
published in superior journals such as:

• Proc. Roy. Soc. Edinburgh

• J. Nonlinear Analysis TMA

• SIAM J. Math. Anal.

• J. Math. Anal. Appl;

• J. Difference Equ. Appl.

• J. London Math. Soc.

• Bull. London Math. Soc.
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• Differentsialnye Uravn.

• Comput. Math. Appl.

• Appl. Math. Comp.

• Pacific J. Math.

• Proc. Amer. Math. Soc.

• Trans. Amer. Math. Soc.

• J. Differential Equations

and also have been cited very frequently (2500 citations) by (more than 500) authors
of (more than 1000) books, monographs, theses and papers on the subject.

He is a referee and/or reviewer in more than 75 research journals and an editor of the
following journals:

• Nonlinear Dynamics and Systems Theory (Managing Editor)

• Memoirs on Differential Equations and Mathematical Physics

• STUDIES of the University of Žilina

• Journal of Advanced Research in Differential Equations

• Journal of the Egyptian Mathematical Society

• Journal Mathematics and Natural Sciences

• Journal of Computational Analysis and Applications

• International Journal: Mathematical Manuscripts (IJMM)

• Bulletin of Mathematical Analysis and Applications

• Alexandria Journal of Mathematics

• Mathematical Sciences Letters (Editor-in-Chief)

• Communications.

It should be emphasized that IPS has been served as Managing Editor of this journal
from the first year of its foundation in 2001 and has done a great job.

He has also been contractor, coordinator and/or leader in many re-
search/scientific projects of the European Union (TEMPUS, ERASMUS/SOCRATES,
TEMPUS PHARE, INTERREG II) ; Japan (”Ampre” Foundation, Canon Foundation);
Australia (Visiting Research Fellowship, The Flinders University of South Australia);
Ministry of National Economy, Ministry of Education and Ministry of Development;
CINAMIL - Centro de Investigao, Desenvolvimento e Inovao da Academia Militar, Por-
tugal, TUBITAK (B. 14.2.TBT.0.06.01.03.220.01, 07/10/2013) of the total amount of
more than 1.000.000 (one million euro).
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He has been a member of:

− IKY (State Scholarships Foundation, Athens, Greece) Examination Committee for
Postgraduate and Postdoctoral Scholarships;

− DIKATSA - DOATAP (Inter-University Center for the recognition of foreign
academic titles, Athens, Greece), Mathematics Committee;

− President of the panel: Mathematical Modelling for Social and Economic Sci-
ences, Evaluation Archimedes Prize 2001, European Commission, Brussels, 8–11
October 2001;

− Academic Expert Meeting, TEMPUS JEP Selection 2004, European Training
Foundation, Brussels, 7–11 February 2005.
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Abstract: There exists a well-developed stability theory for integro-differential equa-
tions of the first order and only a few results on integro-differential equations of the
second order. The aim of this paper is to fill up this gap. Explicit tests for uniform
exponential stability of linear scalar delay integro-differential equations of the second
order

ẍ(t) +

∫ t

g(t)

G(t, s)ẋ(s)ds +

∫ t

h(t)

H(t, s)x(s)ds = 0

are obtained.

Keywords: exponential stability; second order delay integro-differential equations;
a priory estimation; Bohl-Perron theorem.
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1 Introduction

Beginning with the classical book of Volterra [1] integro-differential equations and, more
generally, functional differential equations have many applications in biology, physics, me-
chanics (see, for example, [2, 4–7,22,26]). In particular, second order integro-differential
equations appear in stability problems of viscoelastic shells [3]. There are many papers
devoted to stability of the first order integro-differential equations [8–11,18] and only few
papers on stability for the second order equations [12–14]. Oscillation conditions for the
first and the second order functional differential equations can be found in papers [15–17].

The aim of the present paper is to fill up this gap and obtain new explicit exponential
stability conditions for the equation

ẍ(t) +

∫ t

g(t)

G(t, s)ẋ(s)ds+

∫ t

h(t)

H(t, s)x(s)ds = 0. (1)
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Papers [12–14] are devoted to some asymptotic properties of partial cases of (1).
In [12] an asymptotic behavior of solutions is studied using analysis of a generalized
characteristic equation. In [14] the authors obtain stability results by an application of the
Lyapunov functional method. In [13] the authors use a connection between asymptotic
properties of (1) ( for some special kernels G(t, s), H(t, s)) and a system of infinite number
of ordinary differential equations.

To obtain new stability tests, we apply the method based on the Bohl-Perron theo-
rem together with a priori estimations of solutions, integral inequalities for fundamental
functions of linear delay equations and various transformations of a given equation. We
consider equation (1) in more general assumptions than in the above mentioned papers:
all kernels and delays are measurable functions, derivative of a solution is an absolutely
continuous function.

2 Preliminaries

Denote

a(t) =

∫ t

g(t)

G(t, s)ds, b(t) =

∫ t

h(t)

H(t, s)ds,

a1(t) =

∫ t

g(t)

G(t, s)(t− s)ds, b1(t) =

∫ t

h(t)

H(t, s)(t− s)ds.

We consider scalar delay differential equation (1) under the following conditions:
(a1) G(t, s) ≥ 0, H(t, s) ≥ 0 are Lebesgue measurable on t ≥ s ≥ 0, h, g are measurable
on [0,∞) functions, a, b, a1, b1 are essentially bounded on [0,∞) functions;
(a2) 0 < a0 ≤ a(t) ≤ A0, 0 < b0 ≤ b(t) ≤ B0 for all t ≥ t0 ≥ 0 and some fixed t0 ≥ 0;
(a3) 0 ≤ t− g(t) ≤ σ, 0 ≤ t− h(t) ≤ τ for t ≥ t0 and some σ > 0, τ > 0 and t0 ≥ 0.

Along with (1), we consider for each t0 ≥ 0 an initial value problem

ẍ(t) +

∫ t

g(t)

G(t, s)ẋ(s)ds+

∫ t

h(t)

H(t, s)x(s)ds = f(t), (2)

x(t) = ϕ(t), ẋ(t) = ψ(t), t ≤ t0, (3)

where f : [t0,∞) → R is a Lebesgue measurable locally essentially bounded function,
ϕ : (−∞, t0]→ R , ψ : (−∞, t0)→ R are Borel measurable bounded functions.

Further, we assume that the above conditions hold without mentioning it.

A function x with a locally absolutely continuous on [t0,∞) derivative x′ : R→ R is
called a solution of problem (2) if it satisfies the equation (2) for almost all t ∈ [t0,∞)
and the equalities in (3) for t ≤ t0.

There exists a unique solution of problem (2)-(3), see [6, 21].

Equation (1) is (uniformly) exponentially stable if there exist positive numbers
M and γ such that the solution of problem (3)with f ≡ 0 satisfies the estimate

max{|x(t)|, |ẋ(t)|} ≤Me−γ(t−t0) sup
t∈(−∞,t0]

max{|ψ(t)|, |ϕ(t)|}, t ≥ t0, (4)

where M and γ do not depend on t0 ≥ 0 and functions ψ,ϕ.

Next, we present the Bohl-Perron theorem [6,19].
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Lemma 2.1 Assume that the solution x of the problem (2) with the initial conditions
x(t) = ẋ(t) = 0, t ≤ t0, and its derivative ẋ are bounded on [t0,+∞) for any essentially
bounded function f on [t0,+∞). Then equation (1) is exponentially stable.

Consider now an ordinary differential equation

ẍ(t) + a(t)ẋ(t) + b(t)x(t) = 0 (5)

and denote by X(t, s) the fundamental function of (5).

Lemma 2.2 [20] If A0 ≥ a(t) ≥ a0 > 0, B0 ≥ b(t) ≥ b0 > 0, t ≥ t0 and a20 ≥ 4B0,
then X(t, s) ≥ 0, equation (5) is exponentially stable and∫ t

t0

X(t, s)b(s)ds < 1.

For a fixed bounded interval I = [t0, t1], consider the space L∞[t0, t1] of all essentially
bounded on I functions with the norm ‖y‖[t0,t1] = esssupt∈I |y(t)|, denote

‖f‖[t0,+∞) = esssupt≥t0 |f(t)|

for an unbounded interval, E is the identity operator.
In the sequel, we use the concept of a non-singular M -matrix. For convenience, we

recall this notion.

Definition 2.1 [ [24]] An m ×m matrix A = (aij)
m
i,j=1 is called a non-singular M -

matrix if aij ≤ 0, i, j = 1, . . . ,m, i 6= j and one of the following equivalent conditions
holds:

1. There exists a positive inverse matrix A−1.
2. All the principal minors of matrix A are positive.

3 Explicit Stability Conditions

Theorem 3.1 Assume that for some t0 ≥ 0 and t ≥ t0 a
2
0 ≥ 4B0 and the following

condition holds

‖a‖[t0,∞)

∥∥∥a1
a

∥∥∥
[t0,∞)

+

∥∥∥∥b1b
∥∥∥∥
[t0,∞)

(∥∥∥∥ ba
∥∥∥∥
[t0,∞)

+ ‖b‖[t0,∞)

∥∥∥a1
a

∥∥∥
[t0,∞)

)

+
∥∥∥a1
b

∥∥∥
[t0,∞)

(
‖b‖[t0,∞) + ‖a‖[t0,∞)

∥∥∥∥ ba
∥∥∥∥
[t0,∞)

)
< 1.

(6)

Then equation (1) is exponentially stable.

Proof. For simplicity we omit the index in the norm ‖ · ‖[t0,+∞) of functions.
Consider problem (2) with ‖f‖ < ∞, where x(t) = ẋ(t) = 0, t ≤ t0. We will prove

that the solution x and its derivative are bounded functions on [t0,+∞). First we have
to obtain estimates for x, ẋ, ẍ, t ∈ I = [t0, t1], t1 > t0. Rewrite equation (2)

ẍ(t)+a(t)ẋ(t)+ b(t)x(t) =

∫ t

g(t)

G(t, s)(ẋ(t)− ẋ(s))ds+

∫ t

h(t)

H(t, s)(x(t)−x(s))ds+f(t)
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=

∫ t

g(t)

G(t, s)

∫ t

s

ẍ(τ)dτds+

∫ t

h(t)

H(t, s)

∫ t

s

ẋ(τ)dτds+ f(t).

Hence

x(t) =

∫ t

t0

X(t, s)b(s)

[
1

b(s)

∫ s

g(s)

G(s, ξ)

∫ s

ξ

ẍ(τ)dτdξ

+
1

b(s)

∫ s

h(s)

H(s, ξ)

∫ s

ξ

ẋ(τ)dτdξ

]
ds+ f1(t),

where X(t, s) is the fundamental function of equation (5) and f1(t) =
∫ t
t0
X(t, s)f(s)ds.

Since X(t, s) has an exponential estimate, f1 is essentially bounded on [t0,∞).
By Lemma 2.2 we have

‖x‖[t0,t1] ≤
∥∥∥a1
b

∥∥∥ ‖ẍ‖[t0,t1] +

∥∥∥∥b1b
∥∥∥∥ ‖ẋ‖[t0,t1] + ‖f1‖. (7)

Rewrite now (2) in another form:

ẍ(t) + a(t)ẋ(t) =

∫ t

g(t)

G(t, s)

∫ t

s

ẍ(τ)dτds−
∫ t

h(t)

H(t, s)x(s)ds+ f(t).

Hence

ẋ(t) =

∫ t

t0

e−
∫ t
s
a(ξ)dξa(s)

[
1

a(s)

∫ s

g(s)

G(s, ξ)

∫ s

ξ

ẍ(τ)dτdξ

− 1

a(s)

∫ s

h(s)

H(s, ξ)x(ξ)dξ

]
ds+ f2(t),

where f2(t) =
∫ t
t0
e−

∫ t
s
a(ξ)dξf(s)ds is an essential bounded on [t0,∞) function.

Hence

‖ẋ‖[t0,t1] ≤
∥∥∥a1
a

∥∥∥ ‖ẍ‖[t0,t1] +

∥∥∥∥ ba
∥∥∥∥ ‖x‖[t0,t1] + ‖f2‖. (8)

From equation (2) we have

‖ẍ‖[t0,t1] ≤ ‖a‖‖ẋ‖[t0,t1] + ‖b‖‖x‖[t0,t1] + ‖f‖. (9)

Denote Y = {‖x‖[t0,t1], ‖ẋ‖[t0,t1], ‖ẍ‖[t0,t1]}T , F = {‖f1‖, ‖f2‖, ‖f‖, }T . Inequalities (7)-
(9) imply Y ≤ BY + F , where

B =


0

∥∥ b1
b

∥∥ ∥∥a1
b

∥∥∥∥ b1
b

∥∥ 0
∥∥a1
a

∥∥
‖b‖ ‖a‖ 0

 .

Hence AY ≤ F , where A = E − B. Theorem conditions imply that A is an M-matrix
then Y ≤ A−1F , where A−1F is a constant vector which does not depend on the interval
I. Hence the solution of (2) with its derivative are bounded functions on [t0,∞), therefore
by Lemma 2.1 equation (1) is exponentially stable.
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Corollary 3.1 Assume that for some t0 ≥ 0 and t ≥ t0, a20 ≥ 4B0 and the following
condition holds

σ‖a‖[t0,∞)+τ
(∥∥∥∥ ba

∥∥∥∥
[t0,∞)

+σ‖b‖[t0,∞)

)
+σ

∥∥∥a
b

∥∥∥
[t0,∞)

(
‖a‖[t0,∞)

∥∥∥∥ ba
∥∥∥∥
[t0,∞)

+‖b‖[t0,∞)

)
< 1.

(10)
Then equation (1) is exponentially stable.

Proof. For simplicity we omit the index in the norm on functions. We have t− s ≤
t− g(t) ≤ σ for g(t) ≤ s ≤ t. Similarly, t− s ≤ t− h(t) ≤ τ for h(t) ≤ s ≤ t. Hence

a1(t) =

∫ t

g(t)

G(t, s)(t− s)ds ≤
∫ t

g(t)

G(t, s)σds = σa(t),

b1(t) =

∫ t

h(t)

H(t, s)(t− s)ds ≤
∫ t

h(t)

H(t, s)τds = τb(t).

Then

‖a‖
∥∥∥a1
a

∥∥∥+

∥∥∥∥b1b
∥∥∥∥(∥∥∥∥ ba

∥∥∥∥+ ‖b‖
∥∥∥a1
a

∥∥∥)+
∥∥∥a1
b

∥∥∥(‖b‖+ ‖a‖
∥∥∥∥ ba
∥∥∥∥)

≤ σ‖a‖+ τ

(∥∥∥∥ ba
∥∥∥∥+ σ‖b‖

)
+ σ

∥∥∥a
b

∥∥∥(‖a‖ ∥∥∥∥ ba
∥∥∥∥+ ‖b‖

)
< 1.

By Theorem 3.1 equation (1) is exponentially stable.

Corollary 3.2 Assume there exist

lim
t→∞

a(t) = a > 0, lim
t→∞

b(t) = b > 0, lim
t→∞

a1(t) = a1 > 0, lim
t→∞

b1(t) = b1 > 0.

If

a2 ≥ 4b, 3a1 +
b1(1 + a1)

a
< 1,

then the equation (1) is exponentially stable.

Limits in the corollary 3.2 exist, for example, for kernels of the form M(t−s)ne−γ(t−s)
where n ≥ 0 is a natural number.

Example 3.1 Consider the following equation

ẍ(t) +M1

∫ t

t−σ
e−α1(t−s)ẋ(s)ds+M2

∫ t

t−τ
e−α2(t−s)x(s)ds = 0, (11)

where α > 0, β > 0, σ > 0, τ > 0.
We have

a(t) = a = M1

∫ t

t−σ
e−α1(t−s)ds =

M1

α1

(
1− e−α1σ

)
,

b(t) = b = M2

∫ t

t−τ
e−α2(t−s)ds =

M2

α2

(
1− e−α2τ

)
,

a1(t) = a1 = M1

∫ t

t−σ
(t− s)e−α(t−s)ds =

M1

α

(
1

α
− e−ασ(σ +

1

α
)

)
,

b1(t) = b1 = M2

∫ t

t−τ
(t− s)e−α2(t−s)ds =

M2

α2

(
1

α2
− e−α2τ (τ +

1

β
)

)
.

Hence, if a2 ≥ 4b, 3a1 + b1(1+a1)
a < 1, then equation (11) is exponentially stable.



122 L. BEREZANSKY AND A. DOMOSHNITSKY

Corollary 3.3 Assume for t ≥ t0

0 < a0 ≤ a(t) ≤ A0, 0 < b0 ≤ b(t) ≤ B0, a
2
0 ≥ 4B0,

0 < σ0 ≤ t− g(t) ≤ σ, 0 < τ0 ≤ t− h(t) ≤ τ

and
A0σ

3

2a0σ0
+

B2
0τ

3

2a0b0τ0σ0
(1 +

A0σ
2

2
) +

A0B0τσ2
2b0τ0

(
1 +

A0σ

a0σ0

)
< 1.

Then the equation (1) is exponentially stable.

Proof. The proof follows from the inequalities

a0σ0 ≤ a(t) ≤ A0σ, b0τ0 ≤ b(t) ≤ B0τ, a1(t) ≤ A0
σ2

2
, b1(t) ≤ B0

τ2

2

and Theorem 3.1.
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1 Introduction

In this paper, we study the oscillatory behavior of second order differential equations
with several sub-linear neutral terms of the form

(a(t)z′(t))′ + q(t)xβ(σ(t)) = 0, t ≥ t0 > 0, (1)

where m > 0 is an integer, z(t) = x(t) +
∑m
i=1 pi(t)x

αi(τi(t)) and we assume that

(H1) 0 ≤ αi ≤ 1 for i = 1, 2, ...,m and β are the ratios of odd positive integers;
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(H2) a, pi, q : [t0,∞)→ R+ are continuous functions for i = 1, 2, ...,m with∫ ∞
t0

1

a(t)
dt =∞; (2)

(H3) τi, σ : [t0,∞)→ R are continuous functions with τi(t) < t, σ(t) ≤ t, σ′(t) > 0 and
τi(t), σ(t)→∞ as t→∞ for i = 1, 2, ...,m.

By a solution of equation (1), we mean a function x ∈ C([Tx,∞),R), Tx ≥ t0, which
has the property az′ ∈ C1([Tx,∞),R) and satisfies equation (1) on [Tx,∞). We consider
only those solutions x of equation (1) which satisfy sup{|x(t)| : t ≥ T} > 0 for all
T ≥ Tx, and assume that the equation (1) possesses such solutions. As usual, a solution
of equation (1) is called oscillatory if it has a zero on [T,∞) for all T ≥ Tx; otherwise it
is called nonoscillatory. If all solutions of a differential equation are oscillatory, then the
equation itself is called oscillatory.

The problem of investigating the oscillatory behavior of solutions of particular func-
tional differential equations received a great attention in the past decades, see, for exam-
ple, [1] – [20] for recent references. However, there are few results dealing with the oscil-
lation of second order differential equations with a sub-linear neutral term, see [3, 8, 19],
even though, such equations arise in many applications, see [9]. In establishing some new
criteria for the oscillation of solutions of such equations, we reduce the equation to an
equation with linear neutral term, using some inequalities.

Thus, by using some elementary inequalities, we obtained in this paper some new
oscillation results, which are new, extend and complement those established in [2–5,14–
17,19,20].

2 Oscillation Results

In what follows, all functional inequalities considered here are assumed to hold eventually,
that is, they are satisfied for all t large enough. Due to the assumptions and the form of
the equation (1), we can deal only with eventually positive solutions of equation (1).

We begin with the following lemma.

Lemma 2.1 If a and b are nonnegative, then

aαb1−α ≤ αa+ (1− α)b for 0 < α ≤ 1, (3)

where equality holds if and only if a = b.

Proof. The proof of the lemma can be found in [9]. 2

To simplify our notation, for any function ρ : [t0,∞)→ R+ which is positive, contin-
uous decreasing to zero, we set

P (t) =

(
1−

m∑
i=1

αipi(t)−
1

ρ(t)

m∑
i=1

(1− αi)pi(t)

)
,

Q(t) = q(t)P β(σ(t))

and

R(t) =

∫ t

t1

1

a(s)
ds.
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Remark 2.1 It follows from condition (2), that the lower bound t1 is an absolutely
unimportant constant in the intended oscillatory criteria.

Lemma 2.2 Assume condition (2) and let x be a positive solution of equation (1).
Then the corresponding function z satisfies

z(t) > 0, z′(t) > 0, and (a(t)z′(t))′ < 0, t ≥ t1 ≥ t0, (4)

z(t) ≥ R(t)a(t)z′(t), t ≥ t1 (5)

and
z(t)

R(t)
is decreasing for t ≥ t1. (6)

Proof. Assume that x is a positive solution of (1). Then (a(t)z′(t))′ < 0 for t ≥ t1 ≥
t0 which in view of (2) implies z′(t) > 0 for t ≥ t1 ≥ t0. Since a(t)z′(t) is decreasing, we
have

z(t) ≥
∫ t

t1

a(s)z′(s)
1

a(s)
ds ≥ a(t)z′(t)R(t).

Moreover, using the previous inequality, we have(
z(t)

R(t)

)′
=
a(t)z′(t)R(t)− z(t)

a(t)R2(t)
≤ 0.

We can conclude that z(t)
R(t) is decreasing for t ≥ t1. 2

Theorem 2.1 Let β > 1 and conditions (H1)− (H3) and (2) hold. Let∫ ∞
t1

1

a(u)

∫ ∞
u

q(s)P β(σ(s))ds du =∞. (7)

Assume that there is a positive continuous decreasing function ρ : [t0,∞) → (0,∞)
tending to zero, such that P (t) is positive for t ≥ t0. If there exists a positive function
µ(t) ∈ C1([t0,∞),R) such that

lim
t→∞

sup

∫ t

t0

[
µ(s)Q(s)− a(σ(s))(µ′(s))2

4µ(s)σ′(s)

]
ds =∞, (8)

then every solution of equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0, x(τi(t)) > 0
and x(σ(t)) > 0 for t ≥ t1, some t1 ≥ t0 and for i = 1, 2, ...,m. It is easy to see that
z(t) > 0 for t ≥ t1, and from Lemma 2.2 (4) holds.

Now from the definition of z, we have

x(t) = z(t)−
m∑
i=1

pi(t)x
αi(τi(t))

≥ z(t)−
m∑
i=1

pi(t)z
αi(t)

≥ z(t)−
m∑
i=1

pi(t)(αiz(t) + (1− αi))

=

(
1−

m∑
i=1

αipi(t)

)
z(t)−

m∑
i=1

(1− αi)pi(t), (9)
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where we have used inequality (3) with b = 1. Since z(t) is positive and increasing and
ρ(t) is positive and decreasing to zero, there is a t2 ≥ t1 such that

z(t) ≥ ρ(t) for t ≥ t2. (10)

Using (10) in (9), we obtain

x(t) ≥

(
1−

m∑
i=1

αipi(t)−
1

ρ(t)

m∑
i=1

(1− αi)pi(t)

)
z(t) = P (t)z(t)

and substituting this in equation (1) yields

(a(t)z′(t))′ + q(t)P β(σ(t))zβ(σ(t)) ≤ 0, t ≥ t2. (11)

From condition (7) it follows that z(t)→∞ as for t→∞ and for β > 1, inequality

zβ(σ(t)) > z(σ(t))

holds. Using this inequality in (11), we obtain

(a(t)z′(t))′ +Q(t)z(σ(t)) ≤ 0, t ≥ t2. (12)

Define the function

w(t) = µ(t)
a(t)z′(t)

z(σ(t))
, t ≥ t2.

Then w(t) > 0 for t ≥ t2 and

w′(t) = µ′(t)
a(t)z′(t)

z(σ(t))
+ µ(t)

(a(t)z′(t))′

z(σ(t))
− µ(t)a(t)z′(t)

z2(σ(t))
z′(σ(t)).σ′(t). (13)

Since a(t)z′(t) is positive and nonincreasing, we obtain

a(t)z′(t) ≤ a(σ(t))z′(σ(t)). (14)

Using (14) and (12) in (13), and completing the square, we see that

w′(t) ≤ −µ(t)Q(t) +
a(σ(t))(µ′(t))2

4µ(t)σ′(t)
.

An integration of the last inequality from t2 to t yields∫ t

t2

[
µ(s)Q(s)− a(σ(s))(µ′(s))2

4µ(s)σ′(s)

]
ds ≤ w(t2),

and on taking lim sup as t→∞, we obtain a contradiction with (8). This completes the
proof. 2

Next, we present new oscillation results for equation (1) with β > 1.

Theorem 2.2 Let β > 1 and conditions (H1) − (H3) and (2) hold. Assume that
there is a positive continuous and decreasing function ρ : [t0,∞) → R+ tending to zero
as t → ∞ such that P (t) is positive for all t ≥ t0. If there exists a positive function
µ(t) ∈ C1([t0,∞),R) such that

lim
t→∞

sup

∫ t

t0

[
µ(s)q(s)P β(σ(s))ρβ−1(σ(s))− a(σ(s))(µ′(s))2

4µ(s)σ′(s)

]
=∞, (15)

then every solution of equation (1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0, x(τi(t)) > 0
and x(σ(t)) > 0 for t ≥ t1, some t1 ≥ t0 and i = 1, 2, ...,m. Proceeding as in the proof of
Theorem 2.1, we see that (11) holds. Now using (10) in (11), we obtain

(a(t)z′(t))′ + q(t)P β(σ(t))ρβ−1(σ(t))z(σ(t)) ≤ 0, t ≥ t2.

The rest of the proof is similar to that of Theorem 2.1 and hence it is omitted. 2

If β = 1, then from Theorem 2.2 one can immediately obtain the following oscillation
results for the equation (1).

Theorem 2.3 Let β = 1 and conditions (H1) − (H3) and (2) hold. Assume that
there is a positive continuous and decreasing function ρ : [t0,∞) → R+ tending to zero
as t → ∞, such that P (t) is positive for all t ≥ t0. If there exists a positive function
µ(t) ∈ C1([t0,∞),R) such that

lim
t→∞

sup

∫ t

t0

[
µ(s)q(s)P (σ(s))− a(σ(s))(µ′(s))2

4µ(s)σ′(s)

]
ds =∞, (16)

then every solution of equation (1) is oscillatory.

Next, we obtain an oscillation result for the equation (1) in the case 0 < β < 1.

Theorem 2.4 Let 0 < β < 1 and conditions (H1)− (H3) and (2) hold. Assume that
there is a positive continuous and decreasing function ρ(t) : [t0,∞)→ R+ tending to zero
as t → ∞, such that P (t) is positive for all t ≥ t0. If there exists a positive function
µ(t) ∈ C1([t0,∞),R) such that

lim
t→∞

sup

∫ t

t0

[
µ(s)q(s)P β(σ(s))Rβ−1(σ(s))

K1−β − a(σ(s))(µ′(s))2

4µ(s)σ′(s)

]
ds =∞ (17)

for every constant K > 0, then every solution of equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0, x(τi(t)) > 0
and x(σ(t)) > 0 for t ≥ t1, for some t1 ≥ t0 and i = 1, 2, ...,m. Proceeding as in the proof
of Theorem 2.1, we obtain (11). Now (11) can be written as

(a(t)z′(t))′ + q(t)P β(σ(t))Rβ−1(σ(t))
zβ−1(σ(t))

Rβ−1(σ(t))
z(σ(t)) ≤ 0 (18)

for all t ≥ t2 ≥ t1. Since z(t)
R(t) is decreasing, there is a constant K > 0 such that

z(t)

R(t)
≤ K for t ≥ t2. (19)

Using (19) and β < 1, in (18), we have

(a(t)z′(t))′ + q(t)
P β(σ(t))Rβ−1(σ(t))

K1−β z(σ(t)) ≤ 0, t ≥ t2.

We define function w(t) as in proof of Theorem 2.1. Proceeding exactly as in the proof
of Theorem 2.1, we get

w′(t) ≤ −µ(t)q(t)
P β(σ(t))Rβ−1(σ(t))

K1−β +
a(σ(t))(µ′(t))2

4µ(t)σ′(t)
.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1-SI) (2019) 124–132 129

Integrating the last inequality from t2 to t, we obtain∫ t

t0

[
µ(s)q(s)P β(σ(s))Rβ−1(σ(s))

K1−β − a(σ(s))(µ′(s))2

4µ(s)σ′(s)

]
ds ≤ w(t2),

and on taking limsup as t→∞, we have a contradiction with (17). 2

Next, we use a comparison method to prove our results for the case β ∈ (0,∞).

Theorem 2.5 Let conditions (H1) − (H3) and (2) hold. Assume that there is a
positive, continuous and decreasing function ρ(t) : [t0,∞) → R+ tending to zero such
that P (t) is positive for all t ≥ t0. If the first order delay differential equation

w′(t) + q(t)P β(σ(t))Rβ(σ(t))wβ(σ(t)) = 0, t ≥ t1 (20)

is oscillatory, then every solution of equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0, x(τi(t)) > 0
and x(σ(t)) > 0 for t ≥ t1, for some t1 ≥ t0 and i = 1, 2, ...,m. Proceeding as in the proof
of Theorem 2.1, we see that (11) holds. Using (5) in (11), we obtain

(a(t)z′(t))′ + q(t)P β(σ(t))Rβ(σ(t))(a(σ(t))z′(σ(t)))β ≤ 0, t ≥ t1. (21)

Set w(t) = a(t)z′(t). Thus w(t) > 0, and

w′(t) + q(t)P β(σ(t))Rβ(σ(t))wβ(σ(t)) ≤ 0.

By Lemma 2.2 of [17], the equation (20) has a positive solution which is a contradiction.
This completes the proof. 2

Using the results of [8] and [18], one can easily obtain the following corollaries from
Theorem 2.5.

Corollary 2.1 Let all conditions of Theorem 2.5 hold with β = 1 for all t ≥ t0. If

lim
t→∞

inf

∫ t

σ(t)

q(s)P (σ(s))R(σ(s))ds >
1

e
,

then every solution of equation (1) is oscillatory.

Corollary 2.2 Let all conditions of Theorem 2.5 hold with 0 < β < 1 for all t ≥ t0.
If ∫ ∞

t0

q(t)P β(σ(t))Rβ(σ(t))dt =∞,

then every solution of equation (1) is oscillatory.

Corollary 2.3 Let all conditions of Theorem 2.5 hold with β > 1 for all t ≥ t0. If
σ(t) = t− δ, δ > 0, and

lim
t→∞

inf β−
t
δ log(q(t)P β(t− δ)Rβ(t− δ)) > 0,

then every solution of equation (1) is oscillatory.
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3 Examples

In this section, we provide some examples to illustrate the main results.

Example 3.1 Consider the differential equation with sub-linear neutral terms(
t

(
x(t) +

1

t
x

1
3

(
t

2

)
+

1

t2
x

1
5

(
t

3

))′)′
+ tγx3

(
t

2

)
= 0, t ≥ 8. (22)

Here a(t) = t, p1(t) = 1
t , p2(t) = 1

t2 , τ1(t) = t
2 , τ2(t) = t

3 , σ(t) = t
2 , q(t) = tγ ,

α1 = 1
3 , α2 = 1

5 and β = 3. Let ρ(t) = 1
t then ρ(t)→ 0 as t→∞ and η(t) = 1

t and

P (t) =

(
1− 1

3t
− 1

5t2
− t
(

2

3t
+

4

5t2

))
=

(
1

3
− 1

3t
− 1

5t2
− 4

5t

)
=

5t2 − 17t− 3

15t2
> 0 for t ≥ 8.

By taking µ(t) = t, we see that

lim
t→∞

sup

∫ t

8

(
3

2
sγ−1

(
5s2 − 34s− 12

15s2

)3

− 1

4

)
ds =∞

provides γ > 1. So by Theorem 2.2, every solution of equation (22) is oscillatory.

Example 3.2 Consider the differential equation with sub-linear neutral terms(
t

(
x(t) +

1

t
x

3
5

(
t

2

)
+

1

t2
x

1
3

(
t

3

))′)′
+ tγx

(
t

2

)
= 0. (23)

Here a(t) = t, p1(t) = 1
t , p2(t) = 1

t2 , τ1(t) = t
2 , τ2(t) = t

3 , σ(t) = t
2 , q(t) = tγ ,

α1 = 3
5 , α2 = 1

3 and β = 1. Let ρ(t) = 1
t then ρ(t)→ 0 as t→∞ and

P (t) = 1− 3

5t
− 1

3t2
− t
(

2

5t
+

2

3t2

)
=

(
1− 3

5t
− 1

3t2
− 2

5
− 2

3t

)
=

3

5
− 19

15t
− 1

3t2

=
1

15t2
(9t2 − 19t− 5),

P

(
t

2

)
=

(
9t2 − 38t− 20

15t2

)
> 0 for t ≥ 8.

By taking µ(t) = t, we see that

lim
t→∞

sup

∫ t

8

(
sγ+1

(
9s2 − 38s− 20

15s2

)
− 1

4

)
ds =∞

provides γ ≥ −1. By Theorem 2.3, every solution of equation (23) is oscillatory.
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Example 3.3 Consider the differential equation with sub-linear neutral terms(
t
1
2

(
x(t) +

1

t
x

1
3

(
t

2

)
+

1

t2
x

5
7

(
t

3

))′)′
+ tγx

1
3

(
t

2

)
= 0. (24)

Here a(t) = t
1
2 , p1(t) = 1

t , p2(t) = 1
t2 , α1 = 1

3 , α2 = 5
7 , β = 1

3 , q(t) = tγ , τ1(t) = t
2 ,

τ2(t) = t
3 and σ(t) = t

2 . Let ρ(t) = 1
t , then ρ(t)→ 0 as t→∞ and

P (t) = 1− 1

3t
− 5

7t2
− t
(

2

3t
+

2

7t2

)
= 1− 1

3t
− 5

7t2
− 2

3
− 2

7t
=

(
1

3
− 13

21t
− 5

7t2

)
,

P (σ(t)) =

(
1

3
− 26

21t
− 20

7t2

)
=

(7t2 − 26t− 60)

21t2
> 0, t ≥ 8,

R(t) =

∫ t

8

1

s1/2
ds = 2

√
t− 4

√
2.

By taking µ(t) = 1, we see that

lim
t→∞

sup

∫ t

8

K1/3−1sγ
(

7s2 − 26s− 60

21s2

) 1
3 (

2s
1
2 − 4

√
2
)− 2

3

ds =∞

provides γ ≥ 1
3 . By Theorem 2.4, every solution of equation (22) is oscillatory.

4 Conclusion

The results presented in this paper are new and complement to those of [3, 17, 19, 20].
Further it would be of interest to use this method to study equation (1) with αi > 1 for i =
1, 2, ...,m, that is, equation (1) with several superlinear neutral terms. Also, the results
established in [2–5, 14–17, 19, 20] cannot be applied to equations (22) to (24), since the
neutral term contains more than one sub-linear neutral term. Thus the results obtained
in this paper are applicable to several classes of neutral type differential equations.
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Abstract: In this paper we analyse the heat transfer in two-dimensional straight
fins. Both heat transfer coefficient and thermal conductivity are temperature depen-
dent. The resulting 2+1 dimension partial differential equation (PDE) is rendered
nonlinear and difficult to solve exactly, particularly with prescribed initial and bound-
ary conditions. The three-dimensional differential transform method (3D DTM) is
used to construct the approximate analytical solutions. The effects of parameters,
appearing in the boundary value problem (BVP), on temperature profile of the fin
are studied.

Keywords: 3D DTM; approximate solutions; 2D staright fins, heat transfer.
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1 Introduction

Fins are surfaces that extend from a primary body to a surrounding fluid. They are
predominantly used to increase the heat transfer rate between the body and its sur-
roundings. Fins are designed in such a way that they increase the surface area of an
object and hence its contact with the environment. They come in various shapes, geome-
tries and profiles that cater for a diverse range of problems and applications (the reader is
referred to [1] for a detailed theory). Fins are widely used in devices that exchange heat,
common examples would include vehicle engine radiators, refrigerators, air conditioning
devices and compressors. Consequently, the study of heat transfer in fins continues to be
of interest.

Two-dimensional fin problems have received much attention, however, it is assumed in
most works that the thermal conductivity and the heat transfer coefficient are constants,
and the internal heat generation is omitted. In [2], the authors provided the approximate
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solutions using homotopy analysis for the transient problem with constant thermal prop-
erties. Moitsheki and Rowjee [3] constructed exact solutions for a two-dimensional steady
state problem with the temperature-dependent thermal conductivity, heat transfer coef-
ficient and internal heat generation. Analysis of transient heat transfer in straight fins
of various shapes and with constant heat flux was carried out in [4]. A two-dimensional
rectangular fin with variable heat transfer coefficient was analysed using the Fourier se-
ries approach [5]. In [6], two-dimensional trapezoidal fins were analysed wherein heat
loss through fins at various slopes were compared. Exact solutions for heat transfer in
rectangular fins were constructed in [7].

In this paper, the two-dimension heat flow in straight fins is analysed using the 3D
DTM. The DTM was introduced in [8] and an account for the higher dimension DTM may
be found in [9]. In Section 2, a mathematical description of the problem in question is
provided. A brief account of the DTM is provided in Section 3. In Section 4, approximate
analytical solutions are constructed. Some discussions and conclusion are given in Section
5.

2 Mathematical Description

The fin is attached to a primary surface of temperature Tb. The coordinate system
has the origin at the intersection of the fin surface and the fin tip, with the X-axis
extending towards the fin base and the Y -axis extending towards the centre of the fin.
The fin height is L and the length from the X-axis to the center of the fin is δ. The
temperature of the surrounding fluid into which the fin extends is designated by Ts. The
thermal conductivity and the heat transfer coefficient are dependent on temperature
and are denoted by K(T ) and H(T ), respectively. For our problem under consideration
we assume no internal heat generation. Therefore, in the dimensionless variables and
parameters, the governing BVP is given by (see also [1])

∂θ

∂τ
=

∂

∂x

[
k(θ)

∂θ

∂x

]
+ E2 ∂

∂y

[
k(θ)

∂θ

∂y

]
, (1)

subject to the initial condition

θ(0, x, y) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (2)

and the boundary conditions

θ(τ, 1, y) = 1, 0 ≤ y ≤ 1, τ > 0, (3)

∂θ

∂x
= 0, x = 0, 0 ≤ y ≤ 1, τ > 0, (4)

k(θ)
∂θ

∂y
= −Bih(θ)θ, y = 0, 0 ≤ x ≤ 1, τ > 0, (5)

∂θ

∂y
= 0, y = 1, 0 ≤ x ≤ 1, τ > 0, (6)

where the dimensionless quantities are given by

t =
L2ρcp
Ka

τ, X = Lx, Y = δy,K = Kak, H = Hbh, T = (Tb − Ts)θ + Ts,
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with τ , x, y, k, h and θ being the dimensionless variables. Ka and Hb are the ambient
thermal conductivity and the fin base heat transfer coefficient, respectively, and E = L

δ

and Bi = δHb

Ka
are the fin extension factor and the Biot number, respectively. An account

of studies of diffusion equations in higher dimensions may be found, for example, in [10].
For practicality purposes, two cases will be considered for the relation of the thermal

conductivity and temperature [11], namely, the linear function relation and the power
law. We also consider the heat transfer coefficient given by the power law. The two cases
for the thermal conductivity (see e.g. [12, 13]) are given by
Case (i) the power law

k(θ) = θn, (7)

where n is a dimensionless constant and
Case (ii) the linear function

k(θ) = 1 + βθ, (8)

where β = ε(Tb − Ts) is the thermal conductivity parameter and ε is the thermal con-
ductivity gradient. For most engineering applications the heat transfer coefficient has a
power law relation with temperature [1], that is,

h(θ) = θm. (9)

Here m is a dimensionless constant, which in engineering applications takes values from
-3 to 3.

3 A Brief Account of the p-Dimensional DTM

For an analytic multivariable function f(x1, x2, ..., xp), we have the p-dimensional trans-
form given by

F (k1, k2, ..., kp) =
1

k1!k2!...kp!

[
∂k1+k2+...+kpf(x1, x2, ..., xp)

∂xk11 ∂x
k2
2 ...∂x

kp
p

]∣∣∣∣
(x1,x2,...,xp)=(0,0,...,0)

. (10)

The upper and lower case letters stand for the transformed and the original functions, re-
spectively. The transformed function is also referred to as the T-function, the differential
inverse transform is given by

f(x1, x2, ..., xp) =

∞∑
k1=0

∞∑
k2=0

...

∞∑
kp=0

F (k1, k2, ..., kp)

p∏
l=1

xkll . (11)

It can be easily deduced that the substitution of equation (10) into equation (11) gives the
Taylor series expansion of the function f(x1, x2, ..., xp) about the point (x1, x2, ..., xp) =

(0, 0, ..., 0). This is given by

f(x1, x2, ..., xp) =

∞∑
k1=0

∞∑
k2=0

...

∞∑
kp=0

∏p
l=1 x

kl
l

k1!k2!...kp!

[
∂k1+k2+...+kpf(x1, x2, ..., xp)

∂xk11 ∂x
k2
2 ...∂x

kp
p

]∣∣∣∣
x1=0,...,xp=0

.

(12)
For real world applications the function f(x1, x2, ..., xp) is given in terms of a finite series
for some q, r, s ∈ Z. Then equation (11) becomes

f(x1, x2, ..., xp) =

q∑
k1=0

r∑
k2=0

...

s∑
kp=0

F (k1, k2, ..., kp)

p∏
l=1

xkll . (13)
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Original function f(x1, x2, ..., xp) T-function F (k1, k2, ..., kp)
f(x1, x2, ..., xp) = λg(x1, x2, ..., xp) F (k1, k2, ..., kp) = λG(k1, k2, ..., kp)
f(x1, x2, ..., xp)=g(x1, x2, ..., xp)±p(x1, x2, ..., xp) F (k1, k2, ..., kp) = G(k1, k2, ..., kp)

±P (k1, k2, ..., kp)

f(x1, x2, ..., xp) =
∂r1+r2+...+rpg(x1,x2,...,xp)

∂x
r1
1 ∂x

r2
2 ...∂x

rp
p

F (k1, k2, ..., kp) =
(k1+r1)!...(kp+rp)!

k1!...kp!

(k1 + r1, ..., kp + rp)
f(x1, x2, ..., xp) =

∏p
l=1 x

el
l F (k1, k2, ..., kp) = δ(k1 − e1,

k2 − e2, ..., kp − ep)

Table 1: Theorems and operations performed in the p-dimensional DTM.

We now give some important operations and theorems performed in the p-dimensional
DTM in Table 1. Those have been derived using the definition in (10) together with
previously obtained results [14].

In the table

δ(k1 − e1, k2 − e2, ..., kp − ep) =

{
1, if ki = ei for i = 1, 2, .., p.

0, otherwise.

4 Approximate Analytical Solutions

4.1 Constant and linear function thermal conductivity

The work presented in this section will cover two cases, namely, the linear model case
with β = 0, and the nonlinear case with β 6= 0. Equation (1) may be given by

∂θ

∂τ
=

∂

∂x

[
(1 + βθ)

∂θ

∂x

]
+ E2 ∂

∂y

[
(1 + βθ)

∂θ

∂y

]
, (14)

subject to the conditions (2) - (6). We now apply the three-dimensional DTM to the
governing equation (14) and the above mentioned conditions to obtain the approximate
analytical solution

θ(τ, x, y) = cτ + cτy + cτy2 + cτy3 + cτy4 + cτy5 + cτy6 + cτy7 + .......

+ cτx2 − Bicm+1

(1 + βc)
τyx2 − 5c

E2
τy2x2 +

5Bicm+1

3E2(1 + βc)
τy3x2 + ......

+ cτx3 − Bicm+1

(1 + βc)
τyx3 − 9c

E2
τy2x3 +

3Bicm+1

E2(1 + βc)
τy3x3 + ......

...

(15)

For this problem we will choose the boundary x = 1. Along this boundary c must satisfy
the equation

cτ+cτy+cτy2 + ...+cτ− Bicm+1

(1 + βc)
τy− 5c

2E2
τy2...+cτ− Bicm+1

(1 + βc)
τy− 9c

E2
τy2 + ... = 1.

(16)
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Figure 1: Approximate analytical solutions for a two-dimensional rectangular fin with a con-
stant thermal conductivity (β = 0) for τ = 0.4. The parameters are set such that E = 2.8,
Bi = 0.2, and m = 3.

(y,x) 0 0.2 0.4 0.6 0.8 1

0 0.2000 0.2100 0.2520 0.3567 0.5779 1
0.2 0.2493 0.2590 0.2993 0.3986 0.6064 1
0.4 0.3465 0.3558 0.3933 0.4829 0.6646 1
0.6 0.5075 0.5157 0.5475 0.6194 0.7574 1
0.8 0.6883 0.6943 0.7168 0.7650 0.8528 1
1 0.7801 0.7837 0.7975 0.8286 0.8894 1

Table 2: Approximate analytical solutions for a two-dimensional rectangular fin with a constant
thermal conductivity for τ = 0.4.

Upon solution of (16) one obtains an expression for θ(τ, x, y).The solution θ(τ, x, y) will
be discontinuous in the y direction. Taking the first six terms in every direction, that is,
taking the first 216 terms of the series, we give the profile and plot for the case β = 0
over the (x, y) plane. The solution is depicted in Figures 1 and 2, and the numerical
account is provided in Table 2.

4.2 Power law thermal conductivity

In this section we focus on the rectangular fin with a power law thermal conductivity.
The problem is given by the equation

∂θ

∂τ
=

∂

∂x

[
θn
∂θ

∂x

]
+ E2 ∂

∂y

[
θn
∂θ

∂y

]
, (17)

which is subject to the conditions presented in (2)- (6). Applying the three-dimensional
DTM to the governing equation (17) and the above mentioned conditions one obtains
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Figure 2: Approximate analytical solutions for a two-dimensional rectangular fin with a linear
function thermal conductivity (β = 2) for τ = 0.4. The parameters are set such that E = 3.2,
Bi = 0.2, and m = 3.

the series solution

θ(τ, x, y) = cτ −Bicmτy + cτy2 + cτy3 + cτy4 + cτy5 + cτy6 + cτy7 + .......

cτx2 −Bicmτyx2 − 18c+ 2E2c− 2BiE2cm − 3

2E2
τy2x2 + ......

cτx3 −Bicmτyx3 − 40c+ 2E2c− 2BiE2cm − 3

2E2
τy2x3 + ......

...

(18)

In order to find a value for c, we choose the boundary x = 1. This results in an equation
in terms of τ and y given by

cτ −Bicmτy + ...+ cτ −Bicmτy + ...+ cτ −Bicmτy + ... = 1.

...
(19)

The obtained value of c can then be substituted back into (18) to get an expression for
θ(τ, x, y). The solution is depicted in Figure 3. It turns out that the 3D DTM works
well only when n = 1, which is equivalent to rescaling of the linear thermal conductivity
in equation (15). A question arises of whether this observation is the only case in this
problem for which DTM is efficient. Figures 4 and 5 depict the temperature profiles for
transient heat transfer.

5 Conclusion

As far as we know, the 3D DTM has never been applied to transient problems of heat
transfer in 2D straight fins with temperature-dependent thermal properties. We have
demonstrated that these methods are effective in providing approximate analytical solu-
tions. Figures 1 to 3 provide the temperature profile of heat transfer in the 2D rectangular
straight fins. One may notice that the transient solutions approach the steady state so-
lution in Figures 4 and 5. Numerical results are provided in Table 2. The dependency
of the thermal properties on temperature rendered the considered equation nonlinear.
The effects of the Biot number and aspect ratio were studied in [3]. Similar results are
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Figure 3: Approximate analytical solutions for a two-dimensional rectangular fin with a power
law thermal conductivity for τ = 0.4. The parameters are set such that E = 25, Bi = 0.2, and
m = 3.
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Figure 4: Plots of the transient profile for varying τ , against the steady state profile along
y = 0.5. The parameters are set such that E = 2.9, Bi = 0.2, and m = 3.
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Figure 5: Plots of the transient profile for varying τ , against the steady state profile along
y = 0.5. The parameters are set such that E = 2.9, Bi = 0.1, and m = 2.
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obtained in this study, namely, that the fin performance decreases with the increased
aspect ratio and the large Biot number yields a decreased fin efficiency.
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Abstract: We analyze, in spaces of distributions with finite higher moments, dis-
crete mass and momentum dependent equations describing the movement of charged
particles (electrons, ions) aggregating and moving in a relativistic zero-magnetic field.
The model is a combination of two processes (kinetic and aggregation), each of which
is proven to be separately conservative. Under specific hypothesis, notably on the
relativistic work and aggregation rate, we prove existence results for the full model
using the perturbation theory and the subordination principle. This result may have
a great impact, especially in the full control of the total number of charged particles
described by the model.

Keywords: fractional differential model; magnetic field; perturbation; kinetic pro-
cesses; subordination principle; aggregation; well-posedness.
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1 Introduction

It is well known [1] that magnetic fields can be produced by charged particles moving in
the space. The particles such as electrons or ions, produce complicated but well known
magnetic fields that depend on their charge, and their momentum. There are numerous
applications and implications of the effects caused by the movements of charged parti-
cles in (zero) magnetic fields. The most common example, in consequence of the recent
discoveries in the technology of ultrahigh intensity lasers and high current relativistic
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charged bunch sources, is the use of laser pulses together with charged bunches for exci-
tation of strong waves (for example, plasma containing charged particles). The excited
waves can be used, for example, for acceleration of charged particles and focusing of
bunches [2,3]. Another example in optics is the production of pulses of light of extremely
short duration using the mode-locking technique [3]. In biophysics it was proved [4] that
the 250-fold screening of the geomagnetic field, which is a ”zero” magnetic field with an
induction, affects early embryogenesis and the capacity of some animals (a mouse, for
instance) to reproduce.

On the other side, various types of pure aggregation equations have been comprehen-
sively analyzed in numerous works (see, e.g., [5–12]). Conservative and nonconservative
regimes for pure fragmentation equations have been thoroughly investigated, sometime
leading to dishonesty in the process, that is, a process in which models are based on the
principle of conservation of mass (individuals, or particles) but which generate solutions
that are not conservative.

It is possible to combine the two processes described above into one unique model (the
full model). However the analysis and the well posedness of this model are still hardly
explored in the domain of mathematical and abstract analysis. Kinetic-type models with
diffusion, growth or decay were globally investigated in [13–16], where the authors showed
that the transport part does not affect the breach of the conservation laws.

At a macroscopic level, the discrete mass of charged particles (molar or relative molar
mass) can be considered during the modeling. Thus, we obtain the following generalized
model derived from the combination of Vlasov-Maxwell equations [17] and aggradation
equation [18]:

Dα
t g(t, x, p, n) = −γp

n

∂g(t, x, p, n)

∂x
+ qE

∂g(t, x, p, n)

∂p
− a(x, p, n)g(t, x, p, n)

+
∞∑

m=n+1
a(x, p,m)b(x, p, n,m)g(t, x, p,m),

g(0, x, p, n) = g
o

(x, p, n), t ∈ R, n = 1, 2, 3 . . . ,

(1)

where Dα
t is defined as

Dα
t g(t, x, p, n) =

∂α

∂tα
g(t, x, p, n) =

1

Γ(1− α)

t∫
0

(t− r)−α ∂
∂r
g(r, x, p, n)dr, (2)

with 0 < α ≤ 1 and represents the fractional derivative of the function g in the sense
of Caputo [19], where Γ is the gamma-function Γ(ζ) =

∫∞
0
tζ−1e−tdt. Moreover, the

distribution function gn ≡ g(t, x, p, n) describes the density of groups of size n, that
is, the number of particles (electrons or ions) having approximately the momentum p
near the position x at time t. Here the independent variables (x, p, n) take values in a
set R3 × R3 × N and γ is a Lorentz factor. We assume that the mass n of a cluster
in motion is dependent on γ and the rest mass n0, n = γn0. This implies that the
relativistic momentum relation takes the same form as for the classical momentum, p =
γp0. an = a(x, p, n) ≥ 0 is the average aggregation rate, that is, the average number
at which clusters of size n undergo splitting, bn,m = b(x, p, n,m) ≥ 0 is the average
number of n-groups produced upon the splitting of m-groups. Equation (3) is really
complex: the first member on its right-hand side represents the kinetic process due to
the effect of charged particles in the relativistic zero-magnetic field E, while the second
term represents the fission of groups of size n (the loss due to the fragmentation) and
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the third term is the fission to form groups of size n (the gain due to the fragmentation).
The analysis of such a model required us to proceed step by step as we will see in the
following sections. To analyse the generalized model (1) with 0 < α ≤ 1, we need to
start with the case α = 1. We shall therefore fully study the well-posedness for the case
α = 1 and then extend the analysis to the general case 0 < α ≤ 1 by exploiting the
subordination principle [6, 20–22].

2 Existence Results: The Case α = 1

2.1 Well-posedness of the full model

The case α = 1 yields from (1) the following model

∂g

∂t
(t, x, p, n) = −γp

n

∂g(t, x, p, n)

∂x
+ qE

∂g(t, x, p, n)

∂p
− a(x, p, n)g(t, x, p, n)

+
∞∑

m=n+1
a(x, p,m)b(x, p, n,m)g(t, x, p,m),

g(0, x, p, n) = g
o

(x, p, n), t ∈ R, n = 1, 2, 3 . . . .

(3)

Throughout this work we assume that the following hypotheses are satisfied.

(H1): bn,m = 0 for all m ≤ n (since a group of size m ≤ n cannot split to form a group
of size n);

(H2): a1 = 0 (a cluster of size one cannot split);

(H3):
∑n−1
m=1mbm,n = n, (n = 2, 3, ...), (the sum of all individuals obtained by fragmen-

tation of an n-group is equal to n);

The total number of particles, no matter the momentum in the space, is given by

U(t) =

∫
R3

∫
R3

∞∑
n=1

ng(t, x, p, n)dxdp =

∞∑
n=1

n

∫
R3

∫
R3

g(t, x, p, n)dxdp.

This number is normally not changed by interactions among groups, so we expect the
following conservation law to be satisfied:

d

dt
U(t) = 0. (4)

Since gn = g(t, x, p, n) is the density of groups of size n with the momentum p near the
position x at time t and the total number of particles is expected to be conserved, it is
appropriate to work in the Banach space

X1 :=
{
h = (hn)

∞
n=1 : R3 × R3 × N 3 (x, p, n)→ hn(x, p), ‖h‖1 :=

∫
R3

∫
R3

∞∑
n=1

n|hn(x, p)|dxdp <∞}.

(5)
We choose to restrict our analysis to a smaller class of functions, the class of distributions
with finite higher moments

{Xr :=
{
h = (hn)

∞
n=1 : R3×R3×N 3 (x, p, n)→ hn(x, p), ‖h‖r :=

∫
R3

∫
R3

∞∑
n=1

nr|hn(x, p)|dxdp <∞},

(6)
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r ≥ 1, which coincides with X1 for r = 1. We assume that for each t ≥ 0, the function
(x, p, n) −→ g(x, p, n) = gn(x, p) is such that g = (gn(x, p))∞n=1 is from the space Xr with
r ≥ 1. In Xr we can rewrite (3) in a more compact form

∂

∂t
g = Tg−Ag + BAg := Tg + Fg,

g|t=0
= g

o

.
(7)

Here g is the vector (g(t, x, p, n))n∈N, A is the diagonal matrix (an)n∈N, B =
(bn,m)1≤n≤m−1,m≥2, T is the transport expression defined as (g(t, x, p, n))n∈N −→(
T̃n[g(t, x, p, n)]

)∞
n=1

with

T̃n[g(t, x, p, n)] := −γp
n

∂g(t, x, p, n)

∂x
+ qE

∂g(t, x, p, n)

∂p
. (8)

g
o

is the initial vector (g
o

n(x, p))n∈N which belongs to Xr and F is the fragmentation
expression defined by

Fg :=

(
−ang(t, x, p, n) +

∞∑
m=n+1

bn,mamg(t, x, p,m)

)∞
n=1

. (9)

Proposition 2.1 The fragmentation model described by (9) is formally conservative.

Proof. We aim to show that (4) is satisfied, that is,

d

dt
U(t) =

d

dt

∫
R3

∫
R3

∞∑
n=1

ng(t, x, p, n)dxdp =

∫
R3

∫
R3

∞∑
n=1

n
∂

∂t
g(t, x, p, n)dxdp = 0.

It suffices to show that∫
R3

∫
R3

∞∑
m=1

am|gm(x, p)|mdxdp =

∫
R3

∫
R3

∞∑
n=1

n

( ∞∑
m=n+1

bn,mam|gm(x, p)|

)
dxdp.

Making use of assumptions (H1)–(H3), we have∫
R3

∫
R3

∞∑
n=1

n

( ∞∑
m=n+1

bn,mam|gm(x, p)|

)
dxdp

=

∫
R3

∫
R3

∞∑
m=2

am|gm(x, p)|

( ∞∑
n=1

nbn,m

)
dxdp

=

∫
R3

∫
R3

∞∑
m=2

am|gm(x, p)|

(
m−1∑
n=1

nbn,m

)
dxdp

=

∫
R3

∫
R3

∞∑
m=2

am|gm(x, p)|mdxdp

=

∫
R3

∫
R3

∞∑
m=1

am|gm(x, p)|mdxdp,

(10)
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which ends the proof.
In this work, for any subspace S ⊆ Xr, we will denote by S+ the subset of S defined

as S+ = {h = (hn)∞n=1 ∈ S;hn(x, p) ≥ 0, n ∈ N, x ∈ R3}. Note that any h ∈ (Xr)+
possesses moments

Mq(h) :=

∞∑
n=1

nqhn

of all orders q ∈ [0, r]. Imposing r > 1 ensures that a significant amount of mass after
fragmentation is concentrated in small particles. This has the physical interpretation
that surface effects are reduced, i.e. it is unlikely that a large cluster will fragment into
large groups, therefore making more clusters with small sizes and concentrated at the
origin. In Xr, we define the operators A and B by

Ah := (anhn)
∞
n=1 , D(A) := {h ∈ Xr :

∫
R3

∫
R3

∞∑
n=1

nran|hn(x, p)|dxdp <∞}; (11)

Bh := (Bnhn)
∞
n=1 =

( ∞∑
m=n+1

bn,mamhm

)∞
n=1

, D(B) := D(A). (12)

Throughout, we assume that the coefficients an and bn,m satisfy the mass conservation
conditions (H1)-(H3). Now let us prove that B is well defined on D(A). Using the
condition (H1)–(H3), we can prove that [5]

n−1∑
m=1

mrbm,n ≤ nr (13)

for r ≥ 1, n ≥ 2. Note that the equality holds for r = 1. Using this inequality we have,
for every h ∈ D(A),

‖Bh‖r

=

∫
R3

∫
R3

∞∑
n=1

nr

( ∞∑
m=n+1

bn,mam|hm(x, p)|

)
dxdp

=

∫
R3

∫
R3

∞∑
m=2

am|hm(x, p)|

( ∞∑
n=1

nrbn,m

)
dxdp

=

∫
R3

∫
R3

∞∑
m=2

am|hm(x, p)|

(
m−1∑
n=1

nrbn,m

)
dxdp =

∫
R3

∫
R3

∞∑
m=2

am|hm(x, p)|mrdxdp

= ‖Ah‖r <∞.

Then ‖Bh‖r ≤ ‖Ah‖r, for all h ∈ D(A), so that we can take D(B) := D(A) and
(A + B, D(A)) is well-defined.

3 Analysis of the Transport Operator in Λ = R3 × R3 × N

Our primary objective in this section is to analyze the solvability of the Cauchy problem
for the transport equation

∂

∂t
g(t, x, p, n) = −γp

n

∂g(t, x, p, n)

∂x
+ qE

∂g(t, x, p, n)

∂p
, (14)
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g(0, x, p,m) = g
o

n(x, p), t ∈ R, n = 1, 2, 3 . . .

or its compact form
∂

∂t
p = Tp, p|t=0

= p
o

. (15)

in the space Xr.

3.1 Setting

We note that the operators on the right-hand side of (7) have the property that one
of the variables is a parameter and, for each value of this parameter, the operator has
a certain desirable property (like being the generator of a semigroup) with respect to
the other variable. Thus we need to work with parameter-dependent operators that can
be “glued”together in such a way that the resulting operator inherits the properties of
the individual components. Let us provide a framework for such a technique called the
method of semigroups with a parameter. Let us consider the space X := Lg(S,X) where
1 ≤ p <∞, (S, dm) is a measure space and X is a Banach space. Let us suppose that we
are given a family of operators {(As, D(As))}s∈S in X and define the operator (A, D(A))
acting in X according to the following formulae:

D(A) := {h ∈ X ;h(s) ∈ D(As) for almost every s ∈ S, Ah ∈ X}, (16)

and, for h ∈ D(A),

(Ah)(s) := Ash(s), (17)

for every s ∈ S. We have the following proposition.

Proposition 3.1 (see [5, 13, 14]). If for almost any s ∈ S the operator As is m-
dissipative in X, and the function s −→ R(λ,As)h(s) is measurable for any λ > 0
and h ∈ X , then the operator A is an m-dissipative operator in X . If (Gs(t))t≥0 and
(G(t))t≥0 are the semigroups generated by As and A, respectively, then for almost every
s ∈ S, t ≥ 0, and h ∈ X we have

[G(t)h](s) := Gs(t)h(s). (18)

Using the above ideas, we introduce relevant operators in the present applications.
In the transport part of (7), the variable n is the parameter and x is the main variable.
We set

X := L1(R3 × R3, dxdp) := {ψ : ‖ψ‖ =

∫
R3

∫
R3

|ψ(x, p)|dxdp <∞}

and define in X the operators (Tn, D(Tn)) as

Tngn = T̃ngn, with T̃ngn represented by (8)

D(Tn) := {gn ∈ X, Tngn ∈ X}, n ∈ N.
(19)

Then we introduce the operator T in Xr defined by

Tg = (Tngn)n∈N,

D(T) = {g = (gn)n∈N ∈ Xr, gn ∈ D(Tn) for almost everyn ∈ N, Tg ∈ Xr}.
(20)
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Making use of Proposition 3.1, we can take A = T, X = Xr = L1(N,X) =
L1(Λ, dµdmr) = L1(R3×R3×N, dµdmr), where N is equipped with the weighted count-
ing measure dmr with weight nr and dµ = dxdp = dz is the Lebesgue measure in R6.
In the notation of the proposition, (N, dmr) = (S, dm), X = X and As = Tn, therefore
(Tn, D(Tn))n∈N is a family of operators in X and using (17), we have

(Tg)n := Tngn. (21)

Here, Tngn is understood in the sense of distribution. Now we can properly study the
transport operator T. Let us fix n ∈ N. We consider the function zn : R3 × R3 −→ R3

defined by zn(x, p) = (−γpn , qE(x, p)). For each n ∈ N, we assume the following:
(H4): zn is globally Lipschitz continuous;
(H5): zn ∈ L1

loc(R3 × R3;R3 × R3); and divzn ∈ L1
loc(R3 × R3);

(H6): g
o

n ∈ L∞(R3 × R3). Let us set z = (x, p) ∈ R3 × R3, we rely on the following
definition.

Definition 3.1 A function gn is called a (weak) L∞-solution to (14) if gn ∈
L∞([0, T ]× R3 × R3 and moreover, for every test function Ψ ∈ C∞0 (R3 × R3),∫
R6

Ψ(z)gn(t, z)dz=

∫
R6

Ψ(z)g
o

n(z)dz+

t∫
0

dσ

∫
R6

gn(σ, z)(zn(σ, z)·∇Ψ(z)+Ψ(z)divzn(σ, z))dz,

t ∈ R.

Lemma 3.1 In X the existence and uniqueness of L∞-solutions to (14) hold if the
above assumptions (H4)-(H6) are satisfied.

We prove it by uniquely solving the characteristic ordinary differential equations

n(s)ג̇ = zn(גn(s)), s ∈ R,
n(t)ג = z,

(22)

with z ∈ R3×R3 and t ∈ R, which have one and only one solution n(s)ג taking values in
R3×R3. Thus we find the flow (φnt,s), t, s ∈ R generated by zn with φnt,s : R3×R3 −→
R3 × R3, that is,

1. φnt,s(z) = ,n(s)ג where n(s)ג s ∈ R, solves (22),

2. φnt,s(z) = φnτ,s(φ
n
t,τ (z)), t, s, τ ∈ R,

3. The transformations φnt,s : R3 × R3 −→ R3 × R3 are Lipschitz-homeomorphism.

Note that the functions φnt,s possess many more desirable properties as listed in [5,
23–25] that are relevant for studying the transport operator in Xr. Then making use of
gn(t, φn0,t(z)) = g

o

n(z), we obtain the unique solution to (14) given by

gn(t, x, p) = g
o

n((φn0,t)
−1(x, p)).

It is obvious that this solution belongs to D(Tn). Therefore the operator (Tn, D(Tn))
generates a semigroup given by

[GTn(t)gn] (x, p) = gn((φn0,t)
−1(x, p)), (23)

gn ∈ X. For existence and uniqueness in the full space Xr, we state the following.
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Proposition 3.2 Under the conditions of Lemma 3.1, there is one and only one
L∞-solution to (15) holding in Xr and belonging to D(T).

Proof. The proof follows immediately from relation (21) and Lemma 3.1

4 Generalization: Existence Results for 0 < α ≤ 1

Now, as we have fully analized the special case (3), proved its well-posedness and shown
its existence results, we can come back to the general model (1):

Dα
t g(t, x, p, n) = −γp

n

∂g(t, x, p, n)

∂x
+ qE

∂g(t, x, p, n)

∂p
− a(x, p, n)g(t, x, p, n)

+
∞∑

m=n+1
a(x, p,m)b(x, p, n,m)g(t, x, p,m),

g(0, x, p, n) = g
o

(x, p, n), t ∈ R, n = 1, 2, 3 . . . .

(24)

This model can be written in the same way as the perturbed transport equation (7)
above to read as

Dα
t g = Tg−Ag + Bg,

g|t=0
= g

o

.
(25)

To process we need the following.

Definition 4.1 ( [21,26]) Consider an operator Q applied in the fractional model

Dα
t (g(x, t)) = Qg(x, t), 0 < α < 1, x, t > 0, (26)

subject to the initial condition

g(x, 0) = f(x), x > 0 (27)

and defined in a Banach space X1. A family (GQ(t))t>0 of bounded operators on X1 is
called a solution operator of the fractional Cauchy problem (26)-(27) if

(i) : GQ(0) = IX1
;

(ii) :GQ(t) is strongly continuous for every t ≥ 0;

(iii) :QGQ(t)f = GQ(t)Qf for all f ∈ D(Q);

(iv) :GQ(t)D(Q) ⊂ D(Q);

(v) :GQ(t)f is a (classical) solution of the model (26)− (27) for all f ∈ D(Q), t ≥ 0.

It is well known [5] that an operator Q̃ ∈ G(M,ω) means Q̃ generates a C0-semigroup
(GQ̃(t))t>0 so that there exists M > 0 and ω such that

‖GQ̃(t)‖ ≤Meωt. (28)

Whence, by analogy, if the fractional Cauchy problem (26)-(27) has a solution opera-
tor (GQ(t))t>0 verifying (28), then we say that Q ∈ Gα(M,ω). The solution operator
(GQ(t))t>0 is positive if

GQ(t) ≥ 0

and contractive if
‖GQ(t)‖X1

≤ 1, (29)

and we say Q ∈ Gα(1, 0).
This leads to the following existence result.
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Proposition 4.1 Assume that the conditions of Lemma 3.1 hold, then for (25) there
is an extension (Kα, D(Kα)) of (T −A + B, D(T) ∩ D(A)) that generates a positive
solution operator on Xr, denoted by (GKα(t))t≥0.

Proof. The proof follows from the subordination principle [6, 20–22], by considering
the existence result for (7) with α = 1 and extending it to 0 < α ≤ 1.

5 Results and Conclusion

We have analyzed, in the space Xr of distributions with finite higher moments, the
generalized mass dependent discrete model (1), describing the movement of charged
particles (electrons, ions) aggregating and moving in a relativistic zero-magnetic field.
We showed existence of a solution g to (1) that is positive. Therefore, the evolution of the
number of charged particles, given by this solution, is the same as the one predicted by the
local law given in (4) which was used to construct the model. This is not always true since
the analysis of certain models sometimes leads to the breach of the mass conservation
law (called shattering) and that has been attributed to a phase transition creating a dust
of ”zero-size” particles with nonzero mass [9], which are beyond the model’s resolution.
Then we can use the full combination model (1) to study and control the dynamics of
a number of charged particles moving in a relativistic zero-magnetic field. This work
generalizes the preceding ones with the combination of the mass dependent relativistic
kinetic and aggregation kernels which were not considered before. This work will therefore
help addressing the problem of identifying and characterizing the full generator of our
model which is still an unsolved issue.
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Abstract: In this paper, the extended Fan sub-equation method is applied to obtain
exact solutions of the generalized Zakharov equation. Applying this method, we
obtain various solutions which are benefit to further understand the concepts of the
complicated nonlinear physical phenomena. This method is straightforward, and it
can be applied to many nonlinear equations. In this work, we use Mathematica for
computations and programming.
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1 Introduction

Nonlinear partial differential equations (PDEs) appear in many fields, such as fluid me-
chanics, solid state physics, plasma physics, chemical physics, nonlinear optics , and so
on. Thus, nonlinear PDEs play an important role in the study of nonlinear science,
especially in the study of nonlinear physical science. Exact solutions of nonlinear PDEs
can provide much physical information to understand the mechanism that governs these
physical models or provide better knowledge of the physical problems and possible appli-
cations [2]. For example, the wave phenomena observed in fluid dynamics, plasma and
elastic media are often modeled by the bell-shaped sech solutions and the kink-shaped
tanh solutions. Therefore, finding exact solutions of nonlinear PDEs has been of great
significance. In the past decades, many researchers have paid more attention to various
powerful methods for obtaining exact solutions to nonlinear PDEs. Some of the most
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important methods are the Jacobi elliptic method [4], Taylor-series expansion method [6],
simplest equation method [9], the transformed rational function method [11], variational

iteration method [12], tanh-sech method [14], sine-cosine method [1, 15], G′

G -expansion
method [17], exp function method [7], homotopy analysis method [8], and so on.

Yomba [16] demonstrated that the F-expansion method, the tanh and the extended
tanh function method belonged to a class of methods called the sub-equation methods,
because we can obtain exact solutions of the complicated nonlinear PDEs in use and
study some simple nonlinear ordinary differential equations. These methods consist of
solving the nonlinear PDEs under a suggestion that a polynomial in a variable satisfies an
equation (named the sub-equation). Fan [5] recently developed a new algebraic method,
called the Fan sub-equation method, for obtaining exact analytical solutions to nonlinear
equations. These solutions include polynomial solutions, trigonometric periodic wave so-
lutions, exponential solutions, rational solutions, hyperbolic and solitary wave solutions.
The powerful Fan sub-equation method is widely applied by many scientists, see [3] and
the references therein. In this paper, the extended Fan sub-equation method will be used
to find exact solutions for the generalized Zakharov equation. We show the extended
Fan sub-equation method is a very powerful mathematical technique for finding exact
solutions of nonlinear differential equations. Here the exact solutions of the nonlinear
PDEs can be expressed as a polynomial and the degree of this polynomial can be de-
termined by considering the homogeneous balance between the highest order derivatives
and nonlinear terms in the considered equation. The aim of this paper is to find exact
solutions of the generalized Zakharov equation by using the extended Fan sub-equation
method as follows.

The form of the generalized Zakharov equation is [10] iut + uxx − 2α|u|2u+ 2uv = 0,

vtt − vxx + (|u|2)xx = 0.
(1)

Here the coefficient α is a real arbitrary constant. The nonlinear self-interaction in the
high-frequency subsystem, such as a term corresponding to a self-focusing effect in plasma
physics can be described via the third term of the first equaton in (1). The rest of this
paper is organized as follows. In Section 2, we describe the extended Fan sub-equation
method for solving nonlinear PDEs. In Section 3, we give an application of the proposed
method to the generalized Zakharov equation. In Section 4, some conclusions are given.

2 Extended Fan Sub-Equation Method for Finding the Exact Solutions of Non-
linear PDEs

In this section, we illustrate the basic idea of the extended Fan sub-equation method for
solving nonlinear differential equations. We consider a nonlinear PDE in two independent
variables x, t and dependent variable u. Then by means of an appropriate transformation,
it can be reduced to a nonlinear ordinary differential equation(ODE) as follows:

P (u, u′, u′′, u′′′, ...) = 0. (2)

Here prime denotes the derivative with respect to ξ. Exact solution for this equation can
be constructed as follows:

u(ξ) =
A−n
ψ(ξ)n

+ ...+
A−1
ψ(ξ)

+A0 +A1ψ(ξ) + ...+Anψ(ξ)n; An 6= 0. (3)
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Here Ai (i = 0, 1, 2, · · · , n) are constants to be determined later. Also, ψ = ψ(ξ) satisfies
the following ODE:

ψ′(ξ) = ε

√√√√ 4∑
i=0

ωiψi, (4)

where ε = ±1 and ωi are constants. Thus the derivatives with respect to ξ can be
calculated with respect to the variable ψ as follows:

du

dξ
= ε

√√√√ 4∑
i=0

ωiψi
du

dψ
, (5)

d2u

dξ2
=

1

2

4∑
i=0

iωiψ
i−1 du

dψ
+

4∑
i=0

ωiψ
i d

2u

dψ2
, .... (6)

The solutions of equation (4) are:

• Case 1. When ω0 = ω1 = ω3 = 0, we have the following solutions

ψ =

√
−ω2

ω4
sech(

√
ω2ξ); ω2 > 0, ω4 < 0, (7)

ψ =

√
−ω2

ω4
sec(
√
−ω2ξ); ω2 < 0, ω4 > 0, (8)

ψ = − ε
√
ω4ξ

; ω2 = 0, ω4 > 0. (9)

• Case 2. When ω1 = ω3 = 0, ω0 =
ω2

2

4ω4
, we have the following solutions

ψ = ε

√
− ω2

2ω4
tanh(

√
−ω2

2
ξ); ω2 < 0, ω4 > 0, (10)

ψ = ε

√
ω2

2ω4
tan(

√
ω2

2
ξ); ω2 > 0, ω4 < 0. (11)

• Case 3. When ω1 = ω3 = 0, we have the following solutions

ψ =

√
− ω2m2

ω4(2m2 − 1)
cn(

√
ω2

2m2 − 1
ξ,m); ω2 > 0, ω4 < 0, ω0 =

1−m2

(2m2 − 1)2
,

(12)

ψ = ε

√
− ω2m2

ω4(m2 + 1)
sn(

√
− ω2

m2 + 1
ξ,m); ω2 < 0, ω4 > 0, ω0 =

ω2
2m

2

2ω4(m2 + 1)
,

(13)

where m is the modulus. In limiting cases, the Jacobi elliptic function solutions can
degenerate to hyperbolic function solutions and trigonometric function solutions, for
example, sn(ξ)→ tanh(ξ) as m→ 1, and sn(ξ)→ sin(ξ) as m→ 0.
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• Case 4. When ω0 = ω1 = ω4 = 0, we have the following solutions

ψ = −ω2

ω3
sech2(

√
ω2

2
ξ); ω2 > 0, (14)

ψ = −ω2

ω3
sec2(

√
−ω2

2
ξ); ω2 < 0, (15)

ψ =
1

ω3ξ2
; ω2 = 0. (16)

Substituting (3)-(6) into equation (2) and collecting all terms with the same powers of ψ
together, the left-hand side of equation (2) is converted into a polynomial. After setting
each coefficients of this polynomial to zero, we obtain a set of algebraic equations in terms
of An (n=0,1,2,...,n). Solving the system of algebraic equations and then substituting the
results and the general solutions of (7)-(16) into equation (3), gives solutions of equation
(2).

3 Application of the Extended Fan Sub-Equation Method

In this section, we apply the extended Fan sub-equation method for solving the general-
ized Zakharov equation as follows.

Example 3.1 We consider the generalized Zakharov equation in the form

iut + uxx − 2α|u|2u+ 2uv = 0, (17)

vtt − vxx + (|u|2)xx = 0. (18)

For obtaining exact solutions of (17) and (18), we use

u(x, t) = ρ(x, t) ei(kx+λt), (19)

where k, λ are constants which should to be determined later. Substituting equation (19)
into equations (17) and (18), we get

i(ρt + 2kρx) + ρxx − (λ+ k2)ρ− 2αρ3 + 2ρv = 0, (20)

vtt − vxx + ρ2xx = 0. (21)

We take the traveling wave transformation

ρ = ρ(ξ), v = v(ξ), ξ = ω(x− 2kt), (22)

here ω is a constant which should be determined later. Then equations (20) and (21) are
reduced into two nonlinear ODEs

ωρ′′ − (λ+ k2)ρ− 2αρ3 + 2ρv = 0, (23)

(4k2 − 1)v′′ + (ρ2)′′ = 0, (24)

integrating equation (24) with respect to ξ, we have

v =
ρ2

1− 4k2
. (25)
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Substituting equation (25) into equation (23) yields

ω2ρ′′ − (λ+ k2)ρ− 2αρ3 +
2

1− 4k2
ρ3 = 0. (26)

Balancing ρ′′ with ρ3 in (26) gives n=1. Thus the extended Fan sub-equation method
admits the following solution

ρ(ξ) =
A−1
ψ(ξ)

+A0 +A1ψ(ξ), (27)

where A−1, A0, A1 are constants to be determined and ψ satisfies equation (4).
By substituting equations (27) and (4) into equation (26), collecting the coefficients

of ψi and setting them to be zero, a set of algebraic equations is obtained. Solving this
set of algebraic equations using Mathematica [13], we get

• A0 = 0, A1 =
ω
√
ω4β√

1 + αβ
, A−1 =

[(λ+ k2)− ω2ω2]
√
β

6ω
√
ω4(1 + αβ)

, β = −1 + 4k2, (28)

ω0 = ω0, ω1 = ω3 = 0, ω2 = ω2, ω4 6= 0.

• A0 =

√
βγ

4
√

3
, A1 =

√
3βγω2ω3

2[5ω2ω2 − 2(λ+ k2)]
, A−1 =

√
βγ[−2(λ+ k2)− ω2ω2]

24
√

3ω2ω3

,(29)

γ = 10ω2ω2 − (1 + 4k), ω0 = ω0, ω1 = 0, ω2, ω3 6= 0, ω4 = ω4.

By using (28), (27) and cases (7)-(13) respectively, we get

ρ1(x, t) =
[(λ+ k2)− ω2ω2]

√
β

6ω
√
−ω2(1 + αβ)

cosh[
√
ω2(ω(x− 2kt))] +

ω
√
−ω2β√

1 + αβ

sech[
√
ω2(ω(x− 2kt))], (30)

ρ2(x, t) =
[(λ+ k2)− ω2ω2]

√
β

6ω
√
−ω2(1 + αβ)

cos[
√
−ω2(ω(x− 2kt))] +

ω
√
−ω2β√

1 + αβ

sec[
√
ω2(ω(x− 2kt))], (31)

ρ3(x, t) = −
√
β√

1 + αβ

{
[(λ+ k2)− ω2ω2](ω(x− 2kt))

6 ε ω
+

ε ω

ω(x− 2kt)

}
, (32)

ρ4(x, t) =
[(λ+ k2)− ω2ω2]

√
2β

6 ε ω
√
−ω2(1 + αβ)

coth[

√
−ω2

2
(ω(x− 2kt))] +

ε ω
√
−ω2β√

2(1 + αβ)

tanh[

√
−ω2

2
(ω(x− 2kt))], (33)

ρ5(x, t) =
[(λ+ k2)− ω2ω2]

√
2β

6 ε ω
√
−ω2(1 + αβ)

cot[

√
ω2

2
(ω(x− 2kt))] +

ε ω
√
−ω2β√

2(1 + αβ)

tan[

√
ω2

2
(ω(x− 2kt))], (34)
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ρ6(x, t) =
[(λ+ k2)− ω2ω2]

√
β(2m2 − 1)

6ω
√
−ω2m2(1 + αβ)

1

cn(
√

ω2

2m2−1 ω(x− 2kt),m)
,

ω
√
−ω2m2β√

(2m2 − 1)(1 + αβ)
cn(

√
ω2

2m2 − 1
ω(x− 2kt),m), (35)

ρ7(x, t) =
[(λ+ k2)− ω2ω2]

√
β(m2 + 1)

6 ε ω
√
−ω2m2(1 + αβ)

1

sn(
√
− ω2

m2+1 ω(x− 2kt),m)
,

ε ω
√
−ω2m2β√

(m2 + 1)(1 + αβ)
sn(

√
− ω2

m2 + 1
ω(x− 2kt),m). (36)

Substituting (30)-(36) into (19) and (25) respectively, we have

u1(x, t) = { [(λ+ k2)− ω2ω2]
√
β

6ω
√
−ω2(1 + αβ)

cosh[
√
ω2(ω(x− 2kt))] +

ω
√
−ω2β√

1 + αβ

sech[
√
ω2(ω(x− 2kt))]}ei(kx+λt),

v1(x, t) =
1

1− 4k2
{ [(λ+ k2)− ω2ω2]

√
β

6ω
√
−ω2(1 + αβ)

cosh[
√
ω2(ω(x− 2kt))] +

ω
√
−ω2β√

1 + αβ

sech[
√
ω2(ω(x− 2kt))]}2,

u2(x, t) = { [(λ+ k2)− ω2ω2]
√
β

6ω
√
−ω2(1 + αβ)

cos[
√
−ω2(ω(x− 2kt))] +

ω
√
−ω2β√

1 + αβ

sec[
√
ω2(ω(x− 2kt))]}ei(kx+λt),

v2(x, t) =
1

1− 4k2
{ [(λ+ k2)− ω2ω2]

√
β

6ω
√
−ω2(1 + αβ)

cos[
√
−ω2(ω(x− 2kt))] +

ω
√
−ω2β√

1 + αβ

sec[
√
ω2(ω(x− 2kt))]}2,

u3(x, t) = {−
√
β√

1 + αβ

{
[(λ+ k2)− ω2ω2](ω(x− 2kt))

6 ε ω
+

ε ω

ω(x− 2kt)

}
}ei(kx+λt),

v3(x, t) =
1

1− 4k2
{−

√
β√

1 + αβ

{
[(λ+ k2)− ω2ω2](ω(x− 2kt))

6 ε ω
+

ε ω

ω(x− 2kt)

}
}2,

u4(x, t) = { [(λ+ k2)− ω2ω2]
√

2β

6 ε ω
√
−ω2(1 + αβ)

coth[

√
−ω2

2
(ω(x− 2kt))] +

ε ω
√
−ω2β√

2(1 + αβ)

tanh[

√
−ω2

2
(ω(x− 2kt))]}ei(kx+λt),

v4(x, t) =
1

1− 4k2
{ [(λ+ k2)− ω2ω2]

√
2β

6 ε ω
√
−ω2(1 + αβ)

coth[

√
−ω2

2
(ω(x− 2kt))] +

ε ω
√
−ω2β√

2(1 + αβ)

tanh[

√
−ω2

2
(ω(x− 2kt))]}2.
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u5(x, t) = { [(λ+ k2)− ω2ω2]
√

2β

6 ε ω
√
−ω2(1 + αβ)

cot[

√
ω2

2
(ω(x− 2kt))] +

ε ω
√
−ω2β√

2(1 + αβ)

tan[

√
ω2

2
(ω(x− 2kt))]}ei(kx+λt),

v5(x, t) =
1

1− 4k2
{ [(λ+ k2)− ω2ω2]

√
2β

6 ε ω
√
−ω2(1 + αβ)

cot[

√
ω2

2
(ω(x− 2kt))] +

ε ω
√
−ω2β√

2(1 + αβ)

tan[

√
ω2

2
(ω(x− 2kt))]}2,

u6(x, t) = {
[(λ+ k2)− ω2ω2]

√
β(2m2 − 1)

6ω
√
−ω2m2(1 + αβ)

1

cn(
√

ω2

2m2−1 ω(x− 2kt),m)

ω
√
−ω2m2β√

(2m2 − 1)(1 + αβ)
cn(

√
ω2

2m2 − 1
ω(x− 2kt),m)}ei(kx+λt),

v6(x, t) =
1

1− 4k2
{

[(λ+ k2)− ω2ω2]
√
β(2m2 − 1)

6ω
√
−ω2m2(1 + αβ)

1

cn(
√

ω2

2m2−1 ω(x− 2kt),m)

ω
√
−ω2m2β√

(2m2 − 1)(1 + αβ)
cn(

√
ω2

2m2 − 1
ω(x− 2kt),m)}2,

u7(x, t) = {
[(λ+ k2)− ω2ω2]

√
β(m2 + 1)

6 ε ω
√
−ω2m2(1 + αβ)

1

sn(
√
− ω2

m2+1 ω(x− 2kt),m)

ε ω
√
−ω2m2β√

(m2 + 1)(1 + αβ)
sn(

√
− ω2

m2 + 1
ω(x− 2kt),m)}ei(kx+λt),

v7(x, t) =
1

1− 4k2
{

[(λ+ k2)− ω2ω2]
√
β(m2 + 1)

6 ε ω
√
−ω2m2(1 + αβ)

1

sn(
√
− ω2

m2+1 ω(x− 2kt),m)

ε ω
√
−ω2m2β√

(m2 + 1)(1 + αβ)
sn(

√
− ω2

m2 + 1
ω(x− 2kt),m)}2.

By using (29), (27) and cases (14) and (15) respectively, we get

ρ8(x, t) =
[2(λ+ k2) + ω2ω2]

√
βγ

24
√

3ω2ω2

cosh2[

√
ω2

2
ω(x− 2kt)] +

√
βγ

4
√

3

−
√

3βγ ω2ω2

2(5ω2ω2 − 2(λ+ k2))
sech2[

√
ω2

2
ω(x− 2kt)], (37)

ρ9(x, t) =
[2(λ+ k2) + ω2ω2]

√
βγ

24
√

3ω2ω2

cos2[

√
−ω2

2
ω(x− 2kt)] +

√
βγ

4
√

3

−
√

3βγ ω2ω2

2(5ω2ω2 − 2(λ+ k2))
sec2[

√
−ω2

2
ω(x− 2kt)]. (38)

Substituting (37)-(38) into (19) and (25) respectively, we have
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u8(x, t) = { [2(λ+ k2) + ω2ω2]
√
βγ

24
√

3ω2ω2

cosh2[

√
ω2

2
ω(x− 2kt)] +

√
βγ

4
√

3

−
√

3βγ ω2ω2

2(5ω2ω2 − 2(λ+ k2))
sech2[

√
ω2

2
ω(x− 2kt)]}ei(kx+λt),

v8(x, t) =
1

1− 4k2
{ [2(λ+ k2) + ω2ω2]

√
βγ

24
√

3ω2ω2

cosh2[

√
ω2

2
ω(x− 2kt)] +

√
βγ

4
√

3

−
√

3βγ ω2ω2

2(5ω2ω2 − 2(λ+ k2))
sech2[

√
ω2

2
ω(x− 2kt)]}2,

u9(x, t) = { [2(λ+ k2) + ω2ω2]
√
βγ

24
√

3ω2ω2

cos2[

√
−ω2

2
ω(x− 2kt)] +

√
βγ

4
√

3

−
√

3βγ ω2ω2

2(5ω2ω2 − 2(λ+ k2))
sec2[

√
−ω2

2
ω(x− 2kt)]}ei(kx+λt),

v9(x, t) =
1

1− 4k2
{ [2(λ+ k2) + ω2ω2]

√
βγ

24
√

3ω2ω2

cos2[

√
−ω2

2
ω(x− 2kt)] +

√
βγ

4
√

3

−
√

3βγ ω2ω2

2(5ω2ω2 − 2(λ+ k2))
sec2[

√
−ω2

2
ω(x− 2kt)]}2.

4 Conclusion

We have applied the extended Fan sub-equation method to solve nonlinear partial dif-
ferential equations. As an application of the proposed method, some exact analytical
solutions of the generalized Zakharov equation are successfully obtained. These solu-
tions include hyperbolic function solutions, trigonometric function solutions and rational
function solutions. Moreover, the proposed method is shown to be a simple, yet powerful
algorithm for handling the systems of PDEs. Mathematica has been used for computa-
tions and programming in this paper.

Acknowledgment

The author would like to acknowledge the financial support of Bozorgmehr University of
Qaenat for this research under contract number 1025.

References

[1] M. Alquran, A. Jarrah and E.V. Krishnan. Solitary wave solutions of the phi-four equation
and the breaking soliton system by means of Jacobi elliptic sine-cosine expansion method.
Nonlinear Dynamics and Systems Theory 18(3) (2018) 233–240.

[2] G.E. Chatzarakis, J. Diblk, G.N. Miliaras and I.P. Stavroulakis. Classification of neutral
difference equations of any order with respect to the asymptotic behavior of their solutions.
Applied Mathematics and Computation 228 (2014) 77–90.

[3] Y. Chen, Q. Wang and B.A. Li. A generalized method and general form solutions to the
Whitham-Broer-Kaup equation. Chaos Solitons and Fractals 22(3) (2004) 675–682.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1-SI) (2019) 151–159 159

[4] R.B. Djob, E. Tala-Tebue, A. Kenfack-Jiotsa and T.C. Kofane. The Jacobi elliptic method
and its applications to the generalized form of the phi-four equation. Nonlinear Dynamics
and Systems Theory 16(3) (2016) 260–267.

[5] E. Fan. Uniformly constructing a series of explicit exact solutions to nonlinear equations in
mathematical physics. Chaos Solitons and Fractals 16(5) (2003) 819–839.

[6] H. Jafari and A. Azad. A computational method for solving a system of Volterra integro-
differential equations. Nonlinear Dynamics and Systems Theory 12(4) (2012) 389–396.

[7] H. Jafari, N. Kadkhoda and C.M. Khalique. Exact solutions of equation using Lie symmetry
approach along with the simplest equation and Exp-function methods. Abstract and Applied
Analysis vol. 2012, Article ID 350287, 7 pages, 2012. https://doi.org/10.1155/2012/350287.

[8] H. Jafari, H. Tajadodi and A. Biswas. Homotopy analysis method for solving a couple
of evolution equations and comparison with Adomian’s decomposition method. Waves in
Random and Complex Media 21(4) (2011) 657–667.

[9] N. Kadkhoda and H. Jafari. Kudryashov method for exact solutions of isothermal magne-
tostatic atmospheres. Iranian Journal of Numerical Analysis and Optimization 6(1) (2016)
43–52.

[10] Y. Khan, N. Faraz and A. Yildirim. New soliton solutions of the generalized Zakharov
equations using He’s variational approach. Applied Mathematics Letters 24(6) (2011) 965–
968.

[11] W.X. Ma and J.H. Lee. A transformed rational function method and exact solutions to the
(3+ 1)-dimensional Jimbo-Miwa equation. Chaos Solitons Fractals 42 (2009) 1356-1363.

[12] M. A. Noor and S. T. Mohyud-Din. Variational iteration method for solving higher-order
nonlinear boundary value problems using Hes polynomials. International Journal of Non-
linear Science and Numerical Simulation 9(2) (2008) 141–156.

[13] I.P. Stavroulakis and S.A. Tersian. Partial Differential Equations: An Introduction With
Mathematica and Maple Second Edition. World Scientific Publishing Company, Singapore,
2004.

[14] A.M. Wazwaz. Two reliable methods for solving variants of the KdV equation with compact
and noncompact structures. Chaos Solitons Fractals 28(2) (2006) 454–462.

[15] A.M. Wazwaz. The sine-cosine method for obtaining solutions with compact and noncom-
pact structures. Applied Mathematics and Computation 159(2) (2004) 559–576.

[16] E. Yomba. The extended Fan Sub-equation method and its application to KdV-MKdV,
BKK and variant Boussinesq equations. Physics Letters A 336(6) (2005) 463–476.

[17] J. Zhang, X. Wei and Y. Lu. A generalized G′

G
-expansion method and its applications.

Physics Letters A 372(20) (2008) 3653–3658.



Nonlinear Dynamics and Systems Theory, 19 (1-SI) (2019) 160–169

Comparison of New Iterative Method and Natural

Homotopy Perturbation Method for Solving Nonlinear

Time-Fractional Wave-Like Equations with Variable

Coefficients

A. Khalouta ∗ and A. Kadem

Laboratory of Fundamental and Numerical Mathematics,
Departement of Mathematics, Faculty of Sciences,

Ferhat Abbas Sétif University 1, 19000 Sétif, Algeria.

Received: June 18, 2018 Revised: January 31, 2019

Abstract: In this paper, we present a comparison between the new iterative method
(NIM) and the natural homotopy perturbation method (NHPM) for solving nonlin-
ear time-fractional wave-like equations with variable coefficients. The two methods
introduced an efficient tool for solving this type of equations. The results show that
the NIM has an advantage over the NHPM because it takes less time and uses only
the inverse operator to solve the nonlinear problems and there is no need to use any
other inverse transform as in the case of NHPM. Numerical examples are presented
to illustrate the efficiency and accuracy of the proposed methods.

Keywords: nonlinear time-fractional wave-like equations, Caputo fractional deriva-
tive, new iterative method, natural homotopy perturbation method.

Mathematics Subject Classification (2010): Primary 35L05, 35R11; Secondary
35A35, 26A33.

∗ Corresponding author: mailto:nadjibkh@yahoo.fr

c© 2019 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua160

mailto: nadjibkh@yahoo.fr
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1-SI) (2019) 160–169 161

1 Introduction

The fractional calculus which deals with derivatives and integrals of arbitrary orders
plays a vital role in many fields of applied science and engineering [4]. Recently, nonlin-
ear fractional partial differential equations are successfully applied to many mathematical
models in mathematical biology, aerodynamics, rheology, diffusion, electrostatics, elec-
trodynamics, control theory, fluid mechanics, analytical chemistry and so on.

Several analytical and numerical methods have been proposed to solve nonlinear
fractional partial differential equations. The most commonly used ones are: the adomian
decomposition method (ADM) [8] variational iteration method (VIM) [10], fractional
difference method (FDM) [4], homotopy perturbation method (HPM) [3].

In this paper, the main objective is to introduce a comparative study of nonlinear
time-fractional wave-like equations with variable coefficients by using the new iterative
method (NIM) which uses only the inverse operator and the natural homotopy pertur-
bation method (NHPM) which is a coupling of the natural transform and the homotopy
perturbation method (HPM) using He’s polynomials.

Consider the following nonlinear time-fractional wave-like equations:

Dα
t v =

n∑
i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi , vxj ) (1)

+

n∑
i=1

G1i(X, t, v)
∂p

∂xpi
G2i(vxi) +H(X, t, v) + S(X, t)

with the initial conditions

v(X, 0) = a0(X), vt(X, 0) = a1(X), (2)

where Dα
t is the Caputo fractional derivative operator of order α, 1 < α ≤ 2.

Here X = (x1, x2, ..., xn), F1ij , G1i are nonlinear functions of X, t and v, F2ij , G2i are
nonlinear functions of derivatives of v with respect to xi and xj , respectively. Also H,S
are nonlinear functions and k,m, p are integers.

In the classical case, these types of equations are of considerable significance in various
fields of applied sciences, mathematical physics, nonlinear hydrodynamics, engineering
physics, biophysics, human movement sciences, astrophysics and plasma physics. These
equations describe the evolution of erratic motions of small particles that are immersed
in fluids, fluctuations of the intensity of laser light, velocity distributions of fluid particles
in turbulent flows [7].

2 Basic Definitions

In this section, we give some basic definitions and important properties of fractional
calculus theory and natural transform, which will be used in this paper.

Definition 2.1 [4] The Riemann-Liouville fractional integral operator of order α ≥ 0
of a function f ∈ Cµ, µ ≥ −1 is defined as follows:

Iαt f(t) =
1

Γ(α)

t∫
0

(t− ξ)α−1f(ξ)dξ, t > 0. (3)
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Definition 2.2 [4] The Caputo fractional derivative operator of order n−1 < α ≤ n,
n ∈ N of a function f ∈ Cn−1 is defined as follows:

Dα
t f(t) = In−αt Dnf(t) =

1

Γ(n− α)

t∫
0

(t− ξ)n−α−1f (n), t > 0. (4)

For the Riemann-Liouville fractional integral and Caputo fractional derivative, we
have the following relation:

Iαt D
α
t f(t) = f(t)−

n−1∑
k=0

f (k)(0)
tk

k!
, t > 0. (5)

Definition 2.3 [1] The natural transform is defined over the set of functions A ={
f(t)/∃M, τ1, τ2 > 0, |f(t)| < Me

|t|
τj , if t ∈ (−1)j × [0,∞)

}
by the following integral:

N+ [f(t)] = R+(s, u) =
1

u

+∞∫
0

e−
st
u f(t)dt, s, u ∈ (0,∞). (6)

Definition 2.4 [6] The natural transform of the Caputo fractional derivative of
order n− 1 < α ≤ n, n ∈ N is defined as follows:

N+ [Dα
t f(t)] = R+

α (s, u) =
sα

uα
R+(s, u)−

n−1∑
k=0

sα−(k+1)

uα−k
f (k)(0+). (7)

3 The New Iterative Method (NIM)

In this section, we introduce the new iterative method for solving equations (1) and (2).
Applying the inverse operator Iαt on both sides of equation (1) and using (5), we get

v(X, t) =

n−1∑
k=0

v(k)(X, 0)
tk

k!
+ Iαt

 n∑
i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi , vxj ) (8)

+

n∑
i=1

G1i(X, t, v)
∂p

∂xpi
G2i(vxi) +H(X, t, v)

)
+ Iαt (S(X, t)) .

Let

g(X, t) =

n−1∑
k=0

v(k)(X, 0)
tk

k!
+ Iαt (S(X, t)) ,

N(v(X, t)) = Iαt

 n∑
i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi , vxj ) (9)

+

n∑
i=1

G1i(X, t, v)
∂p

∂xpi
G2i(vxi) +H(X, t, v)

)
.
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Thus, (8) can be written in the following form:

v(X, t) = g(X, t) +N(v(X, t)), (10)

where g is a known function, N is a nonlinear operator of v.
The nonlinear operator N can be decomposed in the same way as in [2].
So, the solution of equation (10) can be written in the following series form:

v(X, t) =

∞∑
i=0

vi(X, t) = g(X, t) +N

( ∞∑
i=0

vi(X, t)

)
. (11)

4 The Natural Homotopy Perturbation Method (NHPM)

In this section, we describe the application of the natural homotopy perturbation method
(NHPM) for equations (1) and (2). First we define

Nv =

n∑
i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi , vxj ),

Mv =

n∑
i=1

G1i(X, t, v)
∂p

∂xpi
G2i(vxi),Kv = H(X, t, v). (12)

Equation (1) is written in the form

Dα
t v(X, t) = Nv(X, t) +Mv(X, t) +Kv(X, t) + S(X, t), t > 0. (13)

Apply the natural transform on both sides of (13) and use (7), after that, we take
the inverse natural transform, we obtain

v(X, t) = L(X, t) +N−1
(
uα

sα
N+ [Nv(X, t) +Mv(X, t) +Kv(X, t)]

)
, (14)

where L(X, t) is a term arising from the source term and the prescribed initial conditions.
Now we apply the homotopy perturbation method and the nonlinear terms can be

decomposed in the same way as in [9], we get

∞∑
n=0

pnvn(X, t) = L(X, t) + p

[
N−1

(
uα

sα
N+

[ ∞∑
n=0

pnHn(v) +

∞∑
n=0

pnKn(v)

+

∞∑
n=0

pnJn(v)

])]
, (15)

where Hn(v), Kn(v) and Jn(v) are He’s polynomials [5].
By using the coefficient of the like powers of p in equation (15), the following approx-

imations are obtained:

p0 : v0(X, t) = L(X, t),

p1 : v1(X, t) = N−1
(
uα

sα
N+ [H0(v) +K0(v) + J0(v)]

)
, (16)

p2 : v2(X, t) = N−1
(
uα

sα
N+ [H1(v) +K1(v) + J1(v)]

)
...
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Hence, the solution of equations (1) and (2) is given by

v(X, t) =

∞∑
n=0

vn(X, t). (17)

5 Illustrative Examples and Numerical Results

Example 5.1 Consider the 2-dimensional nonlinear time-fractional wave-like equa-
tion with variable coefficients

Dα
t v =

∂2

∂x∂y
(vxxvyy)− ∂2

∂x∂y
(xyvxvy)− v, t > 0, 1 < α ≤ 2, (18)

with the initial conditions

v(x, y, 0) = exy, vt(x, y, 0) = exy, (x, y) ∈ R2. (19)

5.1 Application of the NIM

By applying the steps involved in NIM as presented in Section 3 to equations (18) and
(19), we have

v0 = (1 + t) exy, v1 = −
(

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
exy,

v2 =

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
exy... (20)

So, the solution of equations (18) and (19) is

v(x, y, t) =

(
1 + t− tα

Γ(α+ 1)
− tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
− ...

)
exy. (21)

In the special case, α = 2, the series (21) has the closed form

v(x, y, t) = (cos t+ sin t) exy. (22)

5.2 Application of the NHPM

By applying the steps involved in NHPM as presented in Section 4 to equations (18) and
(19), we have

p0 : v0(x, y, t) = (1 + t)exy, p1 : v1(x, y, t) = −
(

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
exy,

p2 : v2(x, y, t) =

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
exy... (23)

Therefore, the solution of equations (18) and (19) can be expressed by

v(x, y, t) =

(
1 + t− tα

Γ(α+ 1)
− tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
− ...

)
exy. (24)

Taking α = 2 in equation (24), we obtain the exact solution as

v(x, y, t) = (cos t+ sin t) exy. (25)
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Figure 1: (a) The comparison of the 3−term approximate solution by NIM, NHPM and the
exact solution, when α = 2 and x = y = 0.5, (b) The behavior of the exact solution and the
3−term approximate solution by NIM and NHPM for different values of α when x = y = 0.5.

|vexact − vNIM | |vexact − vNHPM | |vexact − vNIM | |vexact − vNHPM |
t/x, y 0.5 0.5 0.7 0.7

0.1 1.8085× 10−9 1.8085× 10−9 2.2991× 10−9 2.2991× 10−9

0.3 1.3536× 10−6 1.3536× 10−6 1.7208× 10−6 1.7208× 10−6

0.5 2.9725× 10−5 2.9725× 10−5 3.7787× 10−5 3.7787× 10−5

0.7 2.2882× 10−4 2.2882× 10−4 2.9089× 10−4 2.9089× 10−4

0.9 1.0547× 10−3 1.0547× 10−3 1.3407× 10−3 1.3407× 10−3

Table 1: The absolute errors for differences between the exact solution and 3−term approximate
solution by NIM and NHPM for Example 5.1, when α = 2.

Example 5.2 Consider the following nonlinear time-fractional wave-like equation
with variable coefficients

Dα
t v = v2

∂2

∂x2
(vxvxxvxxx) + v2x

∂2

∂x2
(v3xx)− 18v5 + v, t > 0, 1 < α ≤ 2, (26)

with the initial conditions

v(x, 0) = ex, vt(x, 0) = ex, x ∈ ]0, 1[ . (27)

5.3 Application of the NIM

By applying the steps involved in NIM as presented in Section 3 to equations (26) and
(27), we have

v0 = (1 + t) ex, v1 =

(
tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
ex,

v2 =

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
ex... (28)
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So, the solution of equations (26) and (27) is

v(x, t) =

(
1 + t+

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
+ ...

)
ex. (29)

In the special case, α = 2, the series (29) has the closed form

v(x, t) = ex+t. (30)

5.4 Application of the NHPM

By applying the steps involved in NHPM as presented in Section 4 to equations (26) and
(27), we have

p0 : v0(x, t) = (1 + t)ex, p1 : v1(x, t) =

(
tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
ex,

p2 : v2(x, t) =

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
ex... (31)

Therefore, the solution of equations (26) and(27) can be expressed by

v(x, t) =

(
1 + t+

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
+ ...

)
ex. (32)

Taking α = 2 in equation (32), we obtain the exact solution as

v(x, t) = ex+t. (33)
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Figure 2: (a) The comparison of the 3−term approximate solution by NIM, NHPM and the
exact solution, when α = 2 and x = 0.5, (b) The behavior of the exact solution and the 3−term
approximate solution by NIM and NHPM for different values of α when x = 0.5.
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|vexact − vNIM | |vexact − vNHPM | |vexact − vNIM | |vexact − vNHPM |
t/x 0.5 0.5 0.7 0.7
0.1 2.323× 10−9 2.323× 10−9 2.8373× 10−9 2.8373× 10−9

0.3 1.7436× 10−6 1.7436× 10−6 2.1297× 10−6 2.1297× 10−6

0.5 3.8504× 10−5 3.8504× 10−5 4.7029× 10−5 4.7029× 10−5

0.7 2.9890× 10−4 2.9890× 10−4 3.6507× 10−4 3.6507× 10−4

0.9 1.3929× 10−3 1.3929× 10−3 1.7013× 10−3 1.7013× 10−3

Table 2: The absolute errors for differences between the exact solution and 3−term approximate
solution by NIM and NHPM for Example 5.2, when α = 2.

Example 5.3 Consider the following one-dimensional nonlinear time-fractional
wave-like equation with variable coefficients

Dα
t v = x2

∂

∂x
(vxvxx)− x2(vxx)2 − v, t > 0, 1 < α ≤ 2, (34)

with the initial conditions

v(x, 0) = 0, vt(x, 0) = x2, x ∈ ]0, 1[ . (35)

5.5 Application of the NIM

By applying the steps involved in NIM as presented in Section 3 to equations (34) and
(35), we have

v0 = tx2, v1 = − tα+1

Γ(α+ 2)
x2, v2 =

t2α+1

Γ(2α+ 2)
x2... (36)

So, the solution of equations (34) and (35) is

v(x, t) = x2
(
t− tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
− ...

)
. (37)

In the special case, α = 2, the series (37) has the closed form

v(x, t) = x2 sin t. (38)

5.6 Application of the NHPM

By applying the steps involved in NHPM as presented in Section 4 to equations (34) and
(35), we have

p0 : v0(x, t) = tx2, p1 : v1(x, t) = − tα+1

Γ(α+ 2)
x2, p2 : v2(x, t) =

t2α+1

Γ(2α+ 2)
x2... (39)

Therefore, the solution of equations (34) and(35) can be expressed by

v(x, t) = x2
(
t− tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
− ...

)
. (40)
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Taking α = 2 in equation (40), we obtain the exact solution as

v(x, t) = x2 sin t. (41)
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Figure 3: (a) The comparison of the 3−term approximate solution by NIM, NHPM and the
exact solution, when α = 2 and x = 0.5, (b) The behavior of the exact solution and the 3−term
approximate solution by NIM and NHPM for different values of α when x = 0.5.

|vexact − vNIM | |vexact − vNHPM | |vexact − vNIM | |vexact − vNHPM |
t/x 0.5 0.5 0.7 0.7
0.1 4.9596× 10−12 4.9596× 10−12 9.7209× 10−12 9.7209× 10−12

0.3 1.0835× 10−8 1.0835× 10−8 2.1236× 10−8 2.1236× 10−8

0.5 3.8618× 10−7 3.8618× 10−7 7.5692× 10−7 7.5692× 10−7

0.7 4.0574× 10−6 4.0574× 10−6 7.9524× 10−6 7.9524× 10−6

0.9 2.346× 10−5 2.346× 10−5 4.5982× 10−5 4.5982× 10−5

Table 3: The absolute errors for differences between the exact solution and 3−term approximate
solution by NIM and NHPM for Example 5.3, when α = 2.

The numerical results (see Figures 1,2 and 3) affirm that when α approaches 2, our
results approach the exact solutions. In Tables 1,2 and 3, the absolute errors obtained
by NIM are the same as the results obtained by NHPM.

Remark 5.1 In general, the results obtained show that the method described by
NIM is a very simple and easy method compared to the other methods and gives the ap-
proximate solution in the form of series, this series in closed form gives the corresponding
exact solution of the given problem.

Remark 5.2 In this paper, we only apply three terms to approximate the solutions,
if we apply more terms of the approximate solutions, the accuracy of the approximate
solutions will be greatly improved.
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6 Conclusion

In this paper, we have compared between the new iterative method (NIM) and the natural
homotopy perturbation method (NHPM) for solving nonlinear time-fractional wave-like
equations with variable coefficients. The two methods are powerful and efficient methods
and both give approximations of higher accuracy and closed form solutions, if any. The
comparison gives similar results and supplies quantitatively reliable results. It is worth
mentioning that the NIM has an advantage over the NHPM because it takes less time
and uses only the inverse operator to solve the nonlinear problems and there is no need to
use any other inverse transform as in the case of NHPM. The two methods are powerful
mathematical tools for solving other nonlinear fractional differential equations.
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Abstract: The goal of this paper is complete analysis of the Kawahara-KdV type
equation using the ordinary symmetry and µ-symmetry methods. In other words,
the Lie symmetry, symmetry reduction, differential invariant and conservation laws
for the Kawahara-KdV type equation are provided. And in the second part the
µ-symmetry, order reduced equations, Lagrangian and µ-conservation laws for the
Kawahara-KdV type equation are presented.
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1 Introduction

The symmetry method is a powerful tool of differential geometry for accurate analysis
of a mathematical model as a description of a system in many areas of applied mathe-
matics and physics. Dispersive wave equations arise in many areas when the third order
derivative in the KdV (Korteweg de Vries) equation approaches zero. It is necessary to
take account of the higher order effect of dispersion in order to balance the nonlinear
effect.

The Kawahara-KdV equation, modified Kawahara-KdV equation and Kawahara-KdV
type equation, respectively, are given as:

ut + uux + uxxx − γ1uxxxxx = 0, ut + 3u2ux + uxxx − γ2uxxxxx = 0,

ut + ux + uux + uxxx − γuxxxxx = 0, (1)
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where γ, γ1, γ2 ∈ R+. When the cubic KdV type equation is weak, a lot of physical
phenomena are described by the Kawahara-KdV type equations [6]. Especially, the
Kawahara-KdV type equation as a specific form of the Benney-Lin equation describes
the one-dimensional evolution problems. The λ-symmetries method is a special method
for order reduction of ODEs. In 2004, Gaeta and Morando developed this method to a
µ-symmetries method for PDEs, where µ = λidx

i is a horizontal one-form on first order
jet space (J (1)M,π,M) and also µ is a compatible. The concepts of variational problem
and conservation law and their relationship with λ-symmetries of ODEs were presented
by Muriel, Romero and Olver (2006). More precisely, they have extended the formulation
of Nother’s theorem for λ-symmetry of ODEs. Continuing this trend, in 2007, Cicogna
and Gaeta generalized the results obtained by Muriel, Romero and Olver in the case of
λ-symmetries for ODEs to the case of µ-symmetries for PDEs.

The outline of this paper is as follows. Section 2 is devoted to the Lie symmetry
analysis, reduction and differential invariant of equations (1). We will find all conserva-
tion laws for equations (1) in Section 3. In Section 4, we compute the µ-symmetry and
order reduction of equations (1). Section 5 deals with the Lagrangian of equations (1)
in potential form. Finally, in the last section, µ-conservation laws of equations (1) are
obtained.

2 Lie Symmetry Analysis, Reduction and Differential Invariant of the
Kawahara-KdV Type Equation

The symmetry group of a system of differential equations is the largest local group of
transformations acting on the independent and dependent variables of the system with
the property that it transforms solutions of the system to other solutions [8].

First of all, we obtain the vector fields of equations (1) as follows: v1 =
∂x(space translation), v2 = −∂t(time translation), v3 = t∂x + ∂u(Galilean boost). The
commutation relations between vector fields is given by Table 2.

[vi,vj ] v1 v2 v3

v1 0 0 0
v2 0 0 −v1

v3 0 v1 0

Table 1: The commutator table of equations (1)

Note that the Lie algebra g is solvable , because g
′′

= [g′, g′] = 0 ⊂ g′ = [g, g] =<
v1 >⊂ g. The one-parameter groups G1 : (x + ε, t, u), G2 : (x, t − ε, u) and G3 :
(εt+ x, t, u+ ε) are generated by v1, v2 and v3, respectively, so that the entries give the
transformed point exp(εvi)(x, t, u) = (x̃, t̃, ũ). Since each group Gi is a symmetry group,
this fact implies that if u = f(x, t) is a solution of equations (1), so are the functions
u1 = f(x− ε, t), u2 = f(x, t+ ε) and u3 = f(x− εt, t) + ε.

For better cognition, we now try to classify the infinite set of solutions of equations
(1). This is, in fact, the categorized orbits of the influence of groups. In general, for each
s−parameter subgroup H of G, there is a family of group-invariant solutions (s ≤ p) and
it is not usually feasible to list all solutions via this method, because there are infinite
number of s−parameter subgroups. Now we classify them according to the conjugacy
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property, and this is an effective method to find an optimal system of subgroup in terms
of conjugacy in equivalent. This matter is equivalent to finding an optimal system of
subalgebras, a list of subalgebras with the property that any other subalgebra is conjugate
to one subalgebra in that list. Table 2 shows adjoint representation to compute.

Ad(exp(εvi)vj) v1 v2 v3

v1 v1 v2 v3

v2 v1 v2 v3 + εv1

v3 v1 v2 − εv1 v3

Table 2: Adjoint representation table of equations (1)

Theorem 2.1 An optimal system of one-dimensional Lie algebras of equations (1)
is provided by a2v2 + v3 and a1v2.

Proof. The adjoint representation was determined in Table 2, and the matrices Mε
i

of F εi , i = 1, 2, 3, with respect to basis {v1,v2,v3} are

Mε
1 =

 1 0 0
0 1 0
0 0 1

 , Mε
2 =

 1 0 −ε
0 1 0
0 0 1

 , Mε
3 =

 1 ε 0
0 1 0
0 0 1

 .

Then we will make coefficients ai as simple as possible, by acting these matrices on a
vector field V alternatively. First, suppose that a3 6= 0, so we can assume that a3 = 1,
and by Mε

1 or Mε
2 , the coefficients of v1 vanish and V reduces to case 1. The second

mode will be the same. 2

Assume G acts projectably on M and ∆ is a system of differential equation defined in
it. By using the Lie-group method the number of independent variables can be reduced
and the reduced system of differential equation is in quotient manifold M/G. If s denotes
the dimension of the orbit of G, then there are precisely (p− s) invariants which depend
on x and play the role of independent variables y = (y1, ..., yp−s)) [7].

Now by integrating the characteristic equation, the invariants will be calculated. All
results are coming in Table 2. In the following, differential invariants are computed. Let

operator y v u reduced equations

v1 t u v(y) vy = 0
αv2 x u v(y) vy + v vy + vy3 − γ vy5 = 0
v3 t x− t u 1

t
(x− v(y)) 1 − vy = 0

αv2 + v3 t2 + 2αx t+ α u 1
α

(v(y) − t) −1 + αvy + v vy + α3vy3 − α5vy5 = 0

Table 3: Reduction of equations (1).

us remind, if G is a symmetry group for a system with functionally differential invariants,
then the system can be rewritten in terms of these invariants. Table 2 shows differential
invariants of the equation (1) up to order 3.
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vector field up to the 3-rd order

v1 t, u, ux, ut, uxx, uxt, utt, uxxx, uxxt, uxtt, uttt
v2 x, u, ux, ut, uxx, uxt, utt, uxxx, uxxt, uxtt, uttt

v3 t, −x
t

+ u, x
t
ux + ut,

x
t
uxx + uxt,

x2

t2
uxx + 2x

t2
(xuxx + tuxt) + utt, uxxx, uxxt, uxtt, uttt

Table 4: Differential invariants of invariant(1).

3 Conservation Laws for the Kawahara-KdV Type Equation

Suppose that the Kawahara-KdV type equation is an isolated system, a particular mea-
surable property of this system is called a conservation law which does not change as
the system evolves over time. Consider Φ = (Φ1(x, u(n)), ...,Φp(x, u(n))) is a p-tuple of
smooth functions on J (n)M . In characteristic form, a local conservation law is

DivΦ = D1Φ1(x, u(n)) + ...+DnΦn(x, u(n)) = Q.∆, Q = (Q1, ..., QL),

where Φis and Q are the fluxes and characteristics of the conservation law. In this section,
the conservation law is calculated by the multiplier method and also remind the Euler
operator with respect to U j is EUj = ∂

∂Uj −Di
∂
∂Uj + · · ·+(−1)sDi1 · · ·Dis

∂

∂Uj
i1···is

+ · · · .
The next theorem shows that the range of Div is a subset of the Euler operator’s

kernel.

Theorem 3.1 The equations EUjF (x, U, ∂U , · · · , ∂sU ) ≡ 0, j = 1, · · · , q hold for ar-
bitrary U(x) if and only if F (x, U, ∂U , · · · , ∂sU ) is in the range of Div [7, 8].

Theorem 3.2 The set of equations EUj (Λν(x, U, ∂U , · · · , ∂rU )∆ν(x, u(n))) ≡ 0, j =
1, · · · q, holds for arbitrary functions U(x), if and only if the set {Λν(x, U, ∂U , · · · , ∂rU )}lν=1

yields a local conservation law for the system [7, 8].

Now, to find all local conservation law multipliers of the form Λ = ξ(x, t, u), we have

EU [ξ(x, t, U)(Ut + Ux + UUx + Uxxx − γUxxxxx)] ≡ 0,

where U(x, t) are arbitrary functions. The solution of the determining system is ξ =
1, U, t+ tU −x. In other words, DtΨ +DxΦ ≡ ξ(Ut+Ux+UUx+Uxxx−γUxxxxx), that
is, (Ψ,Φ) determines a nontrivial local conservation law of the system. Further, (Ψ,Φ)
are calculated by using the homotopy operator and all results are shown in Table 3.

4 µ-Symmetry and Order Reduction for Kawahara-KdV Type Equation

Let Di be a total derivative up to xi, λi : J (1)M −→ R and µ = λidx
i be a horizontal

one-form on first order jet space (J (1)M,π,M) and compatible, i.e. Diλj − Djλi = 0.
Suppose ∆(x, u(k)) = 0 is a scalar PDE, involving p independent variables x = (x1, ..., xp)
and one dependent variable u = u(x1, ..., xp) of order k.

Let X =
∑p
i=1 ξ

i∂xi + ϕ∂u be a vector field on M , Y = X +
∑k
J=1 ΨJ ∂uJ

be the
µ-prolongation of X on jet space JkM if ΨJ,i = (Di+λi)ΨJ−uJ,m(Di+λi)ξ

m, (Ψ0 = ϕ).
Suppose S∆ ⊂ JkM is a solution manifold for ∆ = 0 and Y : S −→ TS, then X is said
to be a µ-symmetry for ∆. Generally, in this thread if µ = 0, ordinary prolongation
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ξ(x, t, u) Ψ Φ
1 Ψ = u+ 1

2u
2 + ux2 − γux4 Φ = u

u Ψ = 1
2u

2 + 1
3u

3 + uux2 − 1
2uxux Φ = 1

2u
2

+γ(−uux4 + uxux3 + 1
2ux2ux3)

t+ tu− x Ψ = tu+ tu2 − xu− x
2u

2 + t
3u

3 + ux Φ = tu+ t
2u

2 − xu
+tux2(1 + u)− xux2 − γux4(tu+ t− x)
+γtuxux3 − γ t2ux2ux2 − γux3 − t

2uxux

Table 5: Conservation laws for equations (1).

and ordinary symmetry is going to happen. Suppose µ = λidx
i is a horizontal 1-form

and compatible on S∆ and X is a vector field on M , then the exponential vector field
V = exp

( ∫
µ
)
X is a general symmetry for ∆ if and only if X is a µ-symmetry for ∆.

Theorem 4.1 Let ∆ be a scalar PDE of order k for u = u(x1, ..., xp), X = ξi( ∂
∂xi )+

ϕ( ∂
∂u ) be a vector field on M , with characteristic Q = ϕ−uiξi and Y be the µ-prolongation

of order k of X. If X is a µ-symmetry for ∆, then Y : SX −→ TSX , where SX ⊂ J (k)M
is the solution manifold for the system ∆X made of ∆ and of EJ := DJQ = 0 for all J
with | J |= 0, 1, ..., k − 1. [4]

The process of calculating µ-symmetries of a given equation ∆ = 0 of order n is similar
to that for the ordinary symmetries. Generally, if X is a generic vector field acting in
M, then its µ-prolongation Y of order n for a generic µ = λidx

i, acting in J (n)M and
applying Y to ∆ and the obtained expression to S∆ ⊂ J (n)M, the result will be ∆∗ up
to ξ, τ, ϕ and λi. If we require λi to be functions on J (k)M , all the dependences on uJ
will be explicit, and one obtains a system of determining equations. This system should
be complemented with the compatibility conditions between the λi. If we determine a
priori the form µ, we are left with a system of linear equation for ξ, τ, ϕ; similarly, if
we fix a vector field X and try to find the µ for which it is a µ-symmetry of the given
equation ∆, we have a system of quasilinear equations for the λi [4].

To continue the µ-symmetry analysis of equations (1), let µ = λ1dx + λ2dt be a
horizontal one-form and with the compatibility condition Dtλ1 = Dxλ2 when ∆ = 0.
Suppose X = ξ∂x+ τ∂t+ϕ∂u is a vector field on M , in order to compute µ-prolongation
of order 5 of X, we have Y = X + Ψx∂ux

+ Ψt∂ut
+ Ψxx∂uxx

+ ... + Ψttttt∂uttttt
, where

coefficients Y are as follows:

Ψx = (Dx + λ1)ϕ− ux(Dx + λ1)ξ − ut(Dx + λ1)τ ,

Ψt = (Dt + λ2)ϕ− ux(Dt + λ2)ξ − ut(Dt + λ2)τ , ....

By applying Y to equations (1) and substituting (1/γ)(ut +ux +uux +uxxx) for uxxxxx,
we obtain the following system:

γτuuuuu = 0, γξuuuuu = 0, 5γτu = 0, ... , 10γ(3τxu + τλ1u + 3τuλ1) = 0. (2)

For any choice of the type λ1 = Dx[f(x, t)]+g(x), λ2 = Dt[f(x, t)]+h(t), where f(x, t),
g(x) and h(t) are arbitrary functions and the functions λ1 and λ2 satisfy the compatibility
condition. For instance, two cases studied to obtain the µ-symmetry and order reduction
of equations (1) are as follows:
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i) When g(x) = 0 and h(t) = 0, then by substituting the functions λ1 = Dxf(x, t)
and λ2 = Dtf(x, t) into the system of (2) and solving that system, we deduce ξ =
(c1t+ c2)F (x, t), τ = F (x, t) and ϕ = c1F (x, t), where f(x, t) = − ln(F (x, t)) and F (x, t)
is an arbitrary positive function and c1 and c2 are arbitrary constants. Then X =(

(c1t+c2)∂x+∂t+c1∂u

)
F (x, t) is a µ-symmetry of equations (1) and corresponds to an

ordinary symmetry V = exp
( ∫

Dxf(x, t)dx + Dtf(x, t)dt
)
X of exponential type and

order reduction of equations (1) is Q = ϕ− ξux − τut =
(
c1 − (c1t+ c2)ux − ut

)
F (x, t).

ii) When g(x) = 0 and h(t) = 1/(t + c1), where c1 is an arbitrary constant, then
by substituting the functions λ1 = Dxf(x, t) and λ2 = Dtf(x, t) + 1/(t + c1) into the
system of (2) and solving them, we deduce ξ = F (x, t), τ = 0, and ϕ = 1/(t+ c1)F (x, t)
where f(x, t) = − ln(F (x, t)) and F (x, t) is an arbitrary positive function. Then X =(
∂x + 1/(t + c1) ∂u

)
F (x, t) is a µ-symmetry of equations (1) and corresponds to an

ordinary symmetry V = exp
( ∫

Dxf(x, t)dx+(Dtf(x, t)+1/(t+c1))dt
)
X of exponential

type. In this case reduction of equations (1) is Q = ϕ− ξux− τut =
(

1
t+c1
− ux

)
F (x, t).

5 Lagrangian of the Kawahara-KdV Type Equation in Potential Form

In this section, we show that equations (1) do not admit a variational problem since they
are of odd order, but equations (1) in potential form admit a variational problem.

Theorem 5.1 Let ∆ = 0 be a system of differential equation. Then ∆ is the Euler-
Lagrange expression for some variational problem L =

∫
Ldx, i.e. ∆ = E(L) if and only

if the Frechet derivative D∆ is self-adjoint: D∗∆ = D∆ [8].

In this case, a Lagrangian for ∆ can be explicitly constructed using the homotopy

formula L[u] =
∫ 1

0
u.∆[λu]dλ and the Frechet derivative of ∆KKu : ut + ux + uux +

uxxx − γuxxxxx = 0 is D∆KKu
= Dt + (1 + u)Dx + D3

x − γD5
x + ux. Obviously, it does

not admit a variational problem since D∗∆KKu
6= D∆KKu

. But the well-known differential
substitution u = vx yields the related transformed Kawahara-KdV type equation as
∆KKv

: vxt+vxx+vxvxx+vxxxx−γvxxxxxx = 0, that is called ”the Kawahara-KdV type
equation in potential form” and its Frechet derivative is D∆KKv

= DxDt + vxxDx + (1 +
vx)D2

x +D4
x − γD6

x, which is self-adjoint, i.e. D∗∆KKv
= D∆KKv

and has a Lagrangian of
the form

L[v] =

∫ 1

0

v.∆KKv
[λv]dλ = −1

2

(
vxvt + v2

x +
1

3
v3
x − v2

xx + γv2
xxx

)
+ DivP.

Hence, the Lagrangian of the Kawahara-KdV type equation in potential form ∆KKv , up
to Div-equivalence is

L∆KKv
[v] = −1

2

(
vxvt + v2

x +
1

3
v3
x − v2

xx + γv2
xxx

)
. (3)

6 µ-Conservation Laws of the Kawahara-KdV Type Equation

A conservation law is a relation Div P :=
∑p
i=1DiP

i = 0, where P = (P 1, · · · , P p) is
a p−dimensional vector. Let µ = λidx

i be a horizontal one-form and Diλj = Djλi .
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A µ-conservation law is a relation as (Di + λi)P
i = 0, where P i is a vector and the

M−vector P i is called a µ-conserved vector.

Theorem 6.1 Consider the n−th order Lagrangian L = L(x, u(n)) and the vector
field X, then X is a µ-symmetry for L, i.e. Y [L] = 0 if and only if there exists a
M−vector P i satisfying the µ-conservation law (Di + λi)P

i = 0.

Suppose L = L(x, t, u, ux, ..., ut) is the first order Lagrangian and the vector field X =
ϕ (∂/∂u) is a µ-symmetry for L, then the M−vector P i := ϕ (∂L/∂ui) is a µ-conserved
vector. Also, suppose L = L(x, t, u, ux, ..., utt) is the second order Lagrangian and the
vector field X = ϕ (∂/∂u) is a µ-symmetry for L, then the M−vector P i := ϕ(∂L/∂ui)+
[(Dj + λj)ϕ](∂L/∂uij) − ϕDj(∂L/∂uij) is a µ-conserved vector. The M−vector P i is
obtained for the third order Lagrangian in the following theorem.

Theorem 6.2 Consider the 3−rd order Lagrangian L = L(x, t, u, ux, ..., uttt) and the
vector field X, then X = ϕ (∂/∂u) is a µ-symmetry for L, i.e. Y [L] = 0 if and only if

the M−vector P i := ϕ ∂L
∂ui

+[(Dj +λj)ϕ] ∂L∂uij
−ϕDj

∂L
∂uij
− (Dk+λk)

(
[(Dj +λj)ϕ] ∂L

∂ujki
−

ϕDj
∂L
∂ujki

)
satisfies the µ-conservation law (Di + λi)P

i = 0.

Proof. Let X = ϕ (∂/∂u) be a µ-symmetry for L, its 3−rd order µ-prolongation is
Y = ϕ ∂

∂u +[(Dx+λ1)ϕ] ∂
∂ux

+[(Dt+λ2)ϕ] ∂
∂ut

+ ...+[(Dt+λ2)3ϕ] ∂
∂uttt

, then by applying
Y on the Lagrangian L, we have

Y [L] = ϕ
∂L
∂u

+ [(Dx + λ1)ϕ]
∂L
∂ux

+ [(Dt + λ2)ϕ]
∂L
∂ut

+ ...+ [(Dt + λ2)3ϕ]
∂L
∂uttt

= ϕ(∂L
∂u
−Dxϕ

∂L
∂ux

−Dtϕ
∂L
∂ut

+D2
xϕ

∂L
∂uxx

+ ...−D3
tϕ

∂L
∂uttt

)
+(Dx + λ1)

[
ϕ
∂L
∂ux

+[(Dj

+λj)ϕ]
∂L
∂uxj

− ϕDj
∂L
∂uxj

− (Dk + λk)
(
[(Dj + λj)ϕ].

∂L
∂ujkx

−ϕDj
∂L
∂ujkx

)]
+(Dt+λ2)

[
ϕ
∂L
∂ut

+[(Dj |+λj)ϕ]
∂L
∂utj

− ϕDj
∂L
∂utj
− (Dk + λk)

(
[(Dj + λj)ϕ]

∂L
∂ujkt

−ϕDj
∂L
∂ujkt

)]
.

We put P i := ϕ ∂L
∂ui

+ [(Dj + λj)ϕ] ∂L∂uij
− ϕDj

∂L
∂uij

− (Dk + λk)
(

[(Dj + λj)ϕ] ∂L
∂ujki

−

ϕDj
∂L
∂ujki

)
. Then Y [L] = ϕE(L)+(Di+λi)P

i, where E is the Euler-Lagrange operator.

The Euler-Lagrange equations E(L) vanishes, hence this reduces to Y [L] = (Di+λi)P
i .

This shows that Y [L] = 0 implies (Di + λi)P
i = 0. 2

We consider the 3−rd order Lagrangian (3) for the Kawahara-KdV type equation in
potential form ∆KKv = vxt + vxx + vxvxx + vxxxx − γvxxxxxx = E(L∆KKv

). Suppose
X = ϕ∂v is a vector field for L∆KKv

[v]. Let µ = λ1dx + λ2dt be a horizontal one-form
with the compatibility condition Dtλ1 = Dxλ2 when ∆KKv

= 0. In order to compute µ-
prolongation of order 3 of X, we have Y = ϕ∂v+Ψx∂vx +Ψt∂vt +Ψxx∂vxx

+...+Ψttt∂vttt ,
where coefficients Y are as follows:

Ψx = (Dx + λ1)ϕ, Ψt = (Dt + λ2)ϕ, Ψxx = (Dx + λ1)Ψx, ...,Ψttt = (Dt + λ2)Ψtt.

Thus, the µ-prolongation Y acts on the L∆KKv
[v], and substituting

(
v2
x + 1

3v
3
x − v2

xx +

γv2
xxx

)
/− vx for vt, we obtain the system as follows:

ϕvv = 0 , (−1/6)ϕv = 0 , ..., γ(ϕλ1v + 3λ1ϕv + 3ϕxv) = 0. (4)
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Supposeϕ=F (x, t), where F (x, t) is an arbitrary positive function satisfying L∆KKv
[v] =

0, then a special solution of the system (4) is given by λ1 = −Fx(x, t)/F (x, t), λ2 =
−Ft(x, t)/F (x, t), where Dtλ1 = Dxλ2. Hence X = F (x, t)∂v is a µ-symmetry for
L∆KKv

[v], then by Theorem 6.1, there exists a M−vector P i satisfying the µ-conservation
law (Di + λi)P

i = 0. Then by Theorem 6.2, the M−vector P i is

P 1 = −1

2
F (x, t)

(
vt + 2vx + v2

x + 2vxxx − 2γvxxxxx
)
, P 2 = −1

2
F (x, t)vx, (5)

and (Dx+λ1)P 1 +(Dt+λ2)P 2 = 0 is a µ-conservation law for the 3-rd order Lagrangian
L∆KKv

[v]. Therefore, the µ-conservation law for equations (1) in potential form ∆KKv =
E(L∆KKv

) is DxP
1 +DtP

2+λ1P
1+λ2P

2 = 0, where P 1 and P 2 are the M−vectors P i

of (5).

Remark 6.1 The µ-conservation law for equations (1) in potential form ∆KKv
, sat-

isfies Noether’s theorem for µ-symmetry, i.e. (Di + λi)P
i = QE(L∆KKv

).

We consider the Kawahara-KdV type equation in potential form ∆KKv
= vxt+vxx+

vxvxx + vxxxx − γvxxxxxx = 0, or equivalently, Dx(vt + vx + 1
2v

2
x + vxxx − γvxxxxx) = 0,

or vt + vx + 1
2v

2
x + vxxx − γvxxxxx = f(t), where f(t) is an arbitrary function. If we

substitute f(t)−vx− 1
2v

2
x−vxxx+γvxxxxx by vt and substitute u by vx in the M−vector

P i of (5), then we obtain the M−vectors

P 1 = −1

2
F (x, t)

(
f(t) + u+

1

2
u2 + uxx − γuxxxx

)
, P 2 = −1

2
F (x, t)u. (6)

Also, the µ-conservation law for equations (1) is DxP
1 +DtP

2 +λ1P
1 +λ2P

2 = 0, where
P 1 and P 2 are the M−vectors P i of (6).

Remark 6.2 Equations (1) satisfy the characteristic form, i.e. (Di +λi)P
i = (Dx +

λ1)P 1 + (Dt + λ2)P 2 = Q∆KKu
.
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Abstract: In this paper, a mathematical model related to a problem of phase-change
process with periodic surface heat flux and space-dependent latent heat is considered.
We have used the homotopy analysis approach to acquire the solution to the problem.
To show the correctness of the calculated result, the comparisons have been discussed
with the existing exact solution in a particular case. The effect of various parameters
on the movement of the interface is also investigated.

Keywords: homotopy analysis method; variable latent heat; periodic boundary con-
dition; phase change problem.

Mathematics Subject Classification (2010): 80A22, 35R37, 35R35, 80A20.

1 Introduction

In recent years, the phase change problem (the Stefan problem) involving diffusion process
and variable latent heat is of great interest from mathematical and physical points of
views. The research related to the diffusion process and its occurence can be found in
many works [1–3]. Physically, a variable latent heat term arises in the Stefan problem
governing the processes of movement of a shoreline in a sedimentary ocean basin due
to changes in various parameters [4]. Some solutions of the Stefan problems including
space-dependent latent heat have been reported in [5–7]. Zhou et al. [8] presented a
phase change model (the Stefan problem) that contains a variable latent heat term and
they discussed the similarity solution to the problem. After that Zhou and Xia [9] used
the Kummer functions to present the similarity solution to a Stefan problem containing a
more general variable latent heat term. Mathematically, the Stefan problem with periodic
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boundary is always interesting due to the difficulty associated with its solution. From the
literature, it is found that the exact solution to the phase change problem with periodic
heat-flux is not known even in its simplest form and a sophisticated scheme is required
to solve these problems [10]. Therefore, various numerical [11–13] and approximate
analytical techniques [7,14] have been used by the researchers to solve the phase change
problem containing the boundary conditions of periodic nature.

In this study, we consider a Stefan problem containing space-dependent latent heat
and a periodic boundary condition. The solution of the problem is obtained by a well-
known approximate technique, the homotopy analysis technique, introduced by Liao [12].
From the literature [16–22], it can be seen that this scheme is used by many researchers
to solve various problems occurring in science and industries. In this paper, Wolfram
Mathematica 8.0.1 has been used for all the computations with the aid of [23]. For
the validity of proposed solution, the comparisons have been made with the analytical
solution in a particular case. Dependence of movement of interface on some parameters
is also analysed.

2 Mathematical Formulation

This section presents a phase change problem involving melting/freezing process in the
half plane, i.e. x > 0. Motivated by the work of Zhou et al. [8] and Zhou and Xia [9],
we have assumed that the latent heat is space-dependent. Moreover, a periodic surface
heat flux is supposed in the problem. The mathematical model describing the process is
given below:

∂T

∂t
= α

∂2T

∂x2
, 0 < x < s(t), t > 0, (1)

T (s(t), t) = 0, t > 0, (2)

k
∂T (0, t)

∂x
= −q(1 + ε sinωt), t > 0, (3)

k
∂T (s(t), t)

∂x
= −γsds

dt
, t > 0, (4)

s(0) = 0, (5)

where T (x, t) is the temperature profile, x represents the space variable, t is the time, α
denotes the thermal diffusivity, s(t) denotes the tracking of moving phase front, k is the
thermal conductivity, ω is the oscillation frequency, ε is the amplitude, q(1 + ε sinωt) is
the periodic heat flux and γs is the latent heat term per unit volume which depends on
space.

3 Solution of the Problem

According to the homotopy analysis method (HAM) [17,18], we assume

N [φ(x, t; p)] =
∂

∂t
φ(x, t; p)− α ∂2

∂x2
φ(x, t; p), (6)

and

L [φ(x, t; p)] =
∂2

∂x2
φ(x, t; p) (7)
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as the non-linear and linear operators, respectively. For equation (1), we first construct
the following homotopy:

(1− p)L [φ(x, t; p)− T0(x, t)] = pµH(x, t)N [φ(x, t; p)] , (8)

where p ∈ [0, 1] denotes the embedding parameter, T0(x, t) represents the initial guess,
µ 6= 0 is the auxiliary parameter, H(x, t) 6= 0 is the auxiliary function.

If we substitute p = 0 and p = 1 in equation (8), then we simply obtain φ(x, t; 0) =
T0(x, t) and φ(x, t; 1) = T (x, t), respectively. This indicates that when p tends to 1 from
0, the initial estimate T0(x, t) shifts towards T (x, t) which satisfies the proposed problem.

For equation (1), we can get the m− th order deformation equation [17,18] as given
below:

L [Tm(x, t)− χmTm−1(x, t)] = µH(x, t)Rm(~Tm−1), (9)

where

Rm(~Tm−1) =
∂Tm−1(x, t)

∂t
− α∂

2Tm−1(x, t)

∂x2

and

χm =

{
0, m < 2,
1, m ≥ 2.

According to Rajeev et al. [3], we consider the following initial approximation of T (x, t):

T0(x, t) =
q

k
((1 + ε sinωt)(s0 − x)) , (10)

where s0 =
(

2q
γ

(
t− ε

ω cosωt+ ε
ω

)) 1
2

.

Using equation (10) in equation (9), we obtain

T1(x, t) =µ

(
q2

kγ
(1 + ε sinωt)2s−1

0

)
x2

2
+ µ

( q
k
ωε cosωts0

) x2
2

− µ
( q
k
ωε cosωt

) x3
6
, (11)

T2(x, t) =T1(x, t)− αµ2q2(1 + ε sinωt)2s−1
0

kγ

x2

2
− αµ2qωε cosωts0

k

x2

2

+
αµ2qωε cosωt

k

x3

6
+
µ2q2

kγ

{
− q
γ

(1 + ε sinωt)3s−3
0

+ 2(1 + ε sinωt)ωεs−1
0 cosωt

}
x4

24
+
µ2q

k

{
ωq

γ
ε cosωt(1 + ε sinωt)s−1

0

− (ω2ε sinωt)s0

}
x4

24
+
µ2qω2ε sinωt

k

x5

120
(12)

and similarly, other components of T (x, t) can be calculated.
Now, the solution T (x, t) to the problem can be given by

T (x, t) = T0(x, t) + T1(x, t) + T2(x, t) + ... (13)
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Now, by choosing the following linear and non-linear operators, we have

L [ψ(t; p)] =
dψ(t; p)

dt
, (14)

and

N [ψ(t; p)] = k
∂T (ψ(t; p), t)

∂x
+ γψ(t; p)

dψ(t; p)

dt
. (15)

We construct the following homotopy for the equation (4):

(1− p) [ψ(t; p)− s0(t)] = p~N [ψ(t; p)] . (16)

From equation (16), we can easily find

ψ(t; 0) = s0, (17)

and

ψ(t; 1) = s(t). (18)

According to [17,18], the m-th order deformation equation in the context of equation (4)
is

L [sm(t)− χmsm−1(t)] = ~N [sm−1(t)] . (19)

By considering the expression of s0 (the initial approximation for the moving interface)
and equations (13), (19) and (17), the various components of s(t), i.e. s1(t), s2(t),..., can
be calculated. Hence, the approximate solution for s(t) is given by

s(t) = s0(t) + s1(t) + .... (20)

4 Comparisons and Discussions

To show the accuracy of the obtained solution, we discuss the comparisons of our results
for the temperature profile T (x, t) and the location of moving phase front s(t) with the
exact solution at ε = 0 in Tables 1 and 2, respectively. In case of ε = 0, the equations
(1)-(5) become a shoreline problem with a fixed line flux and a constant ocean level [4].
In this paper, the comparisons of our calculated results have been made with the exact
solution established by Voller et al. [4]. Table 1 represents relative errors of temperature
distribution between the obtained results and the exact result (given in [4]) at α = 1,
ε = 0, k = 1 and t = 5.5. The absolute errors and relative errors of moving phase front
are depicted in Table 2 at α = 1, ε = 0 and k = 1. From both tables, it is clear that the
obtained computational results agree well with the result of exact solution.
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q x TN (x, t) TE(x, t) Absolute Error Relative Error
0.5 0.1 0.212321 0.211090 1.20 e-03 5.80 e-03

0.2 0.162679 0.160212 2.40 e-03 1.50 e-02
0.3 0.113274 0.109579 3.60 e-03 3.30 e-02
0.4 0.064106 0.059189 4.90 e-03 8.30 e-02
0.5 0.015176 0.009037 6.10 e-03 6.70 e-02

1.0 0.1 0.641957 0.637125 4.80 e-03 7.50 e-03
0.2 0.542968 0.533223 9.70 e-03 1.80 e-02
0.3 0.444652 0.430042 1.40 e-02 3.30 e-02
0.4 0.347007 0.327569 1.90 e-02 5.90 e-02
0.5 0.250031 0.225792 2.40 e-02 1.00 e-01

1.5 0.1 1.213060 1.202430 1.00 e-02 8.80 e-03
0.2 1.064920 1.043280 2.10 e-02 2.00 e-02
0.3 0.918012 0.885505 3.20 e-02 3.60 e-02
0.4 0.772339 0.729075 4.30 e-02 5.90 e-02
0.5 0.627896 0.573966 5.30 e-02 9.30 e-02

Table 1: Comparison between the exact value TE(x, t) and the numerical value TN (x, t) of
temperature distribution at γ = 20.

q t sN (t) sE(t) Absolute Error Relative Error
0.5 1 0.199681 0.198055 1.60 e-03 8.20 e-03

2 0.282205 0.280092 2.10 e-03 7.50 e-03
3 0.345453 0.343041 2.40 e-03 7.00 e-03
4 0.398724 0.396109 2.60 e-03 6.60 e-03
5 0.445619 0.442864 2.70 e-03 6.20 e-03

1.0 1 0.281571 0.277484 4.00 e-03 1.40 e-02
2 0.397457 0.392422 5.00 e-03 1.20 e-02
3 0.486084 0.480616 5.40 e-03 1.10 e-02
4 0.560600 0.554968 5.60 e-03 1.00 e-02
5 0.626098 0.620473 5.60 e-03 0.90 e-02

2.0 1 0.394948 0.385578 9.30 e-03 2.40 e-02
2 0.555582 0.545290 10.20 e-03 1.80 e-02
3 0.677665 0.667841 9.80 e-03 1.40 e-02
4 0.779793 0.771156 8.60 e-03 1.10 e-02
5 0.869169 0.862179 6.90 e-03 0.80 e-02

Table 2: Comparison between the exact value sE(t) and the numerical value sN (t) of moving
interface at γ = 25.

Figures 1 and 2 show the evolution of movement of phase front at the fixed value
of thermal diffusivity (α = 1.0), the oscillation amplitude (ε = 0.5 ) and the oscillation

frequency (ω =
π

2
). In Figure 1 and Figure 2, the effect of periodic heat flux on the

movement of phase front is depicted for different values of γ and q, respectively. From
Figure 1, it can be seen that the phase front propagates periodically and the movement of
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phase front becomes slow when we enhance the parameter γ. However, Figure 2 depicts
that the periodic propagation of moving boundary s(t) becomes fast as the value of q
rises. It is also observed that when we raise the value of q, it makes melting/freezing
process fast.

Figure 1: Plot of s(t) vs. t at α = 1.0, q = 1.0, ε = 0.5, ω = π/2.

Figure 2: Plot of s(t) vs. t at α = 1.0, γ = 20, ε = 0.5, ω = π/2.

5 Conclusion

In this work, we study a complicated phase-change problem with a periodic heat flux
and variable latent heat term. To the best of our knowledge, the exact solution to
the proposed problem is not available in literature yet. Therefore, a homotopy analysis
technique has been used to get an approximate analytical solution to the problem, and we
have seen that our computed results are sufficiently close to the analytical solution when
the surface heat flux is a constant, i.e. the oscillation amplitude is zero. In this paper,
we have seen that the movement of interface/phase front is profoundly affected due to
the change in various parameters like the oscillation amplitude, oscillation frequency, γ
and q. It is also seen that the homotopy analysis technique is a straightforward method.



184 AJAY KUMAR, ABHISHEK KUMAR SINGH AND RAJEEV

Moreover, this technique is sufficiently accurate and efficient to solve different types of
phase-change problems arising in the various industries.
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1 Introduction

In the recent paper [1], the author investigated both the Lie and Noether symmetries of
a Lane-Emden-Klein-Fock system with central symmetry of the form

utt − urr −
n

r
ur +

γvq

rn
= 0,

vtt − vrr −
n

r
vr +

αup

rn
= 0, (1)
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where p, n, γ, α, q are non-zero constants. If the constants n = 2, γ = α = 1, system (1)
reduces to

utt − urr −
2

r
ur +

vq

r2
= 0,

vtt − vrr −
2

r
vr +

up

r2
= 0. (2)

Systems of this type occur in various physical phenomena, see, for example, [1–4] and
references therein. Actually, system (1) can also be viewed as a natural extension of the
well-known two-component generalization of the nonlinear wave equation, namely

utt − urr −
m

r
ur − up = 0, (3)

with the real-valued function u = u(t, r), and p representing the interaction power while
(t, r) denote time and radial coordinates, respectively, in m 6= 0 dimensions [4].

This system has been extensively studied in [2] for its Lie and Noether symmetries
and the associated conservation laws for various values of the parameters p and q. More
recently, hyperbolic versions of these types of system have also been investigated in [3].
Motivated by the recent results in [1–4], we study a generalized coupled Lane-Emden-
Klein-Fock system with central symmetry of the form

utt − urr −
n

r
ur +

Φ(v)

rn
= 0,

vtt − vrr −
n

r
vr +

Ψ(u)

rn
= 0, (4)

where Φ(v) and Ψ(u) are arbitrary functions of v and u respectively.

The plan of this paper is as follows. In Section 2, we derive the equivalent generators
of system (4). The Lie group classification of system (4) is performed in Section 3. In
Section 4, we compute a symmetry reduction for some cases. Concluding remarks are
given in Section 5.

2 Equivalence and Composition Transformations

In this section we employ the formulas derived in [5,6]. Applying the classical approach of
group classification [7], we conclude that the generalized coupled Lane-Emden-Klein-Fock
system (4) admits the following seven equivalence generators spanned by

X1 =
∂

∂t
, X2 =

∂

∂u
, X3 =

∂

∂v
, X4 = u

∂

∂u
+ Φ

∂

∂Φ
, X5 = v

∂

∂v
+ Ψ

∂

∂Ψ
,

X6 = t
∂

∂t
+ r

∂

∂r
+ (n− 2)Φ

∂

∂Φ
+ (n− 2)Ψ

∂

∂Ψ
, X7 =

∂

∂r
+
n

r
Φ
∂

∂Φ
+
n

r
Ψ
∂

∂Ψ
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and the associated equivalence group is

X1 : t̄ = a1 + t, r̄ = r, ū = u, v̄ = v, Φ̄ = Φ, Ψ̄ = Ψ,

X2 : t̄ = t, r̄ = r, ū = u+ a2, v̄ = v, Φ̄ = Φ, Ψ̄ = Ψ,

X3 : t̄ = t, r̄ = r, ū = u, v̄ = v + a3, Φ̄ = Φ, Ψ̄ = Ψ,

X4 : t̄ = t, r̄ = r, ū = uea4 , v̄ = v, Φ̄ = Φea4 , Ψ̄ = Ψ,

X5 : t̄ = t, r̄ = r, ū = u, v̄ = vea5 , Φ̄ = Φ, Ψ̄ = Ψea5 ,

X6 : t̄ = tea6 , r̄ = rea6 , ū = u, v̄ = v, Φ̄ = Φe(n−2)a6 , Ψ̄ = Ψe(n−2)a6 ,

X7 : t̄ = t, r̄ = r + a7, ū = u, v̄ = v, Φ̄ = (r + a7)n
Φ

rn
, Ψ̄ = (r + a7)n

Ψ

rn
.

Thus the corresponding composition of the above transformations is

t̄ = ea6(t+ a1),

r̄ = ea6(r + a7),

ū = ea4(u+ a2),

v̄ = ea5(v + a3),

Φ̄ = ea4+(n−2)a6
[
(r + a7)nr−nΦ

]
,

Ψ̄ = ea5+(n−2)a6
[
(r + a7)nr−nΨ

]
. (5)

3 Group Classification of System (4)

A generalized coupled Lane-Emden-Klein-Fock system with central symmetry (4) is in-
variant under the group with the generator

X = ξ1(t, r, u, v)
∂

∂t
+ ξ2(t, r, u, v)

∂

∂x
+ η1(t, r, u, v)

∂

∂u
+ η2(t, r, u, v)

∂

∂v
(6)

if and only if

X [2]

(
utt − urr −

n

r
ur +

Φ(v)

rn
= 0

)∣∣∣∣
(4)

= 0, X [2]

(
vtt − vrr −

n

r
vr +

Ψ(u)

rn
= 0

)∣∣∣∣
(4)

= 0

(7)

with X [2] being the second extension of the generator (6) [4,6–9]. Expanding system (7)
and solving the resulting determined system of partial differential equations for arbitrary
Φ(v) and Ψ(u) yield the one-dimensional principal Lie algebra spanned by

X1 =
∂

∂t
(8)

and the classifying relations are (δu+ θ)Ψ′(u) + βΨ(u) + α = 0,

(λv + γ)Φ′(v) + ψΦ(v) + ω = 0,
(9)

where α, β, γ, δ, θ, λ and ω are constants. System (9) is invariant under the equivalence
transformations (5) if

δ̄ = δ, β̄ = β, λ̄ = λ, θ̄ = δa2 + θe−a4 , ψ̄ = ψ, γ̄ = λa3 + γe−a5 ,

ω̄ = e(n−2)a6−a4
(

rn

(r + a7)n

)
, ᾱ = e(n−2)a6−a5

(
rn

(r + a7)n

)
.
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A complete analysis of equation (9) yields the following cases for the non-equivalent forms
of the arbitrary element Φ(v), Ψ(u) and n:

Case 1: Φ(v) and Ψ(u) are arbitrary, but not of the form as cases 2-8 given below.
In this case, we obtain only the principal Lie algebra (8).
Case 1.1: n = 2.
The principal Lie algebra is extended by one symmetry, viz,

X2 = t
∂

∂t
+ r

∂

∂r
.

Case 2: Φ(v) = avp and Ψ(u) = buq, where a, b, p and q are non-zero constants.
This case reduces to the system studied in [1].
Case 3: Φ(v) = av−1 and Ψ(u) is arbitrary, with a and n being non-zero constants.
This case extends the principal Lie algebra by one symmetry, namely,

X2 = v(n− 2)
∂

∂v
− t ∂

∂t
− r ∂

∂r
. (10)

Case 4: Φ(v) is arbitrary and Ψ(u) = bu−1, where b and n are non-zero constants.
Again the algebra is two-dimensional and is spanned by (8) and

X2 = u(n− 2)
∂

∂u
− t ∂

∂t
− r ∂

∂r
.

Case 5: Φ(v) = av and Ψ(u) = bu, where a, b and n are constants.
Here the algebra extends by four, with the additional operators,

X2 =
∂

∂u
, X3 = u

∂

∂u
+ v

∂

∂v
, X4 = av

∂

∂u
+ bu

∂

∂v
,

X5 = aH
∂

∂u
+
[
nrn−1Hr + rnHrr − rnHtt

] ∂
∂v
,

where H(t, r) is any solution of partial differential equation

br3(c1 + aH) +
[
4r2nn2 − 2r2nn3 − 2r2nn

]
Hr +

[
3r2n+1n− 5r2n+1n2

]
Hrr

−4r2n+2nHrrr − r2n+3Hrrrr +
[
2r2n+1n2 − r2n+1n

]
Htt + 4r2n+2nHttr

−r2n+3Htttt + 2r2n+3Httrr = 0

and c1 is an arbitrary constant.
Case 5.1: n = 2.
The Lie algebra extends by six additional generators,

X2 =
∂

∂u
, X3 = u

∂

∂u
+ v

∂

∂v
, X4 = av

∂

∂u
+ bu

∂

∂v
,

X5 = t
∂

∂t
+ r

∂

∂r
, X6 = 2tu

∂

∂u
+ 2tv

∂

∂v
− (t2 + r2)

∂

∂t
− 2tr

∂

∂r
,

X7 = aH
∂

∂u
+
[
2rHr + r2Hrr − r2Htt

] ∂
∂v
,

where H(t, r) satisfies the partial differential equation

b(c2 + aH)− 4rHr − 14r2Hrr − 8r3Hrrr − r4Hrrrr + 6r2Htt + 8r3Httr

−r4Htttt + 2r4Httrr = 0
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and c2 is an arbitrary constant.
Case 6: Φ(v) = de−λv and Ψ(u) = ke−au, where a, d, λ, k, n are constants.
Here the principle algebra enlarges by one operator,

X2 = λ(n− 2)
∂

∂u
+ a(n− 2)

∂

∂v
− λat ∂

∂t
− λar ∂

∂r
. (11)

Case 7: Φ(v) = mvp and Ψ(u) = ke−au, where p, a,m, k, n are arbitrary constants.
Again the Lie algebra extends by one generator,

X2 = va(n− 2)
∂

∂v
− (p+ 1)(n− 2)

∂

∂u
+ pat

∂

∂t
+ par

∂

∂r
. (12)

Case 8: Φ(v) = de−λv and Ψ(u) = kuq, where λ, d, k, n are constants.
The principle algebra also enlarges by one generator,

X2 = uλ(n− 2)
∂

∂u
− (q + 1)(n− 2)

∂

∂v
+ λqt

∂

∂t
+ λqr

∂

∂r
.

4 Reduction of System (4)

This section aims to perform reduction of system (4) using some symmetries obtained in
Section 3. To obtain the symmetry reduction of system (4), we begin with the principle
Lie algebra (8) and take Φ(v) and Ψ(u) arbitrary. Solving the invariant surface condition

dt

1
=
dr

0
=
du

0
=
dv

0

yields the following group invariant solution u(t, r) = φ(r), v(t, r) = ψ(r) of system (4)
where φ(r) and ψ(r) satisfy

φ′′ +
n

r
φ′ − Ψ

rn
= 0,

ψ′′ +
n

r
ψ′ − Φ

rn
= 0. (13)

We now choose case 3 with the generator (10). The integration of the invariant surface
condition

dt

−t
=

dr

−r
=
du

0
=

dv

v(n− 2)

gives the following invariant solution of system (4); u(t, r) = φ(z), v(t, r) = r−(n−2)ψ(z)
with the similarity variable z = t

r . Substituting the values of u and v into system (4) we
get

(z2 − 1)φ′′ − (n− 2)φ′ − a

ψ
= 0,

(z2 − 1)ψ′′ + (n− 2)zψ′ − (n− 2)ψ + φ = 0, (14)

where φ(z) and ψ(z) are any solutions of the system of ordinary differential equations
(14).
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We now choose case 6 and the generator (11). After some straightforward but lengthy

computations, we obtain the invariant z = t
r and u(t, r) = φ(z)+ n ln(r)

a − 2 ln(r)
a , v(t, r) =

ψ(z) + n ln(r)
λ − 2 ln(r)

λ as the group invariant solution of system (4), with φ(z) and ψ(z)
being any solutions of the system of ordinary differential equations

(z2 − 1)φ′′ − (n− 2)zφ′ − de−λφ − (n− 2)(n− 1)

a
= 0,

(z2 − 1)ψ′′ − (n− 2)zψ′ − ke−aψ − (n− 2)(n− 1)

λ
= 0. (15)

Another general group invariant solution of system (4) will be derived from case 7
with the operator (12). Considering the invariant surface condition

dt

apt
=

dr

apr
=

du

(2− p)(p+ 1)
=

dv

av(n− 2)

we conclude that the group invariant solution of system (4) is u(t, r) = φ(z) + n ln(r)
a −

2 ln(r)
a + n ln(r)

ap − 2 ln(r)
ap , v(t, r) = r

−(n−2)
p ψ(z) with the invariant z = t

r , where φ(z) and

ψ(z) satisfy the system of ordinary differential equations

(z2 − 1)φ′′ − z(n− 2)φ′ −mψp − (p+ 1)(n− 2)(n− 1)

ap
= 0,

(z2 − 1)ψ′′ − (p+ 2)(n− 2)

p
zψ′ +

(n− 2)

p2
(p(n− 1) + (n− 2))ψ − ke−aφ = 0. (16)

Following the aforementioned procedure, one can obtain more group invariant solutions
for the generalized coupled Lane-Emden-Klein-Fock system with central symmetry sys-
tem (4). It is worthy mentioning that all the cases that do not extend the principle Lie
algebra have been excluded.

5 Conclusion

In this paper we performed a complete Lie symmetry classification of a generalized cou-
pled Lane-Emden-Klein-Fock system with central symmetry (4). Several cases which
resulted in Lie symmetries have been obtained. Moreover, some symmetry reductions for
some cases were derived. In future, we would like to extend the results obtained in this
manuscript by employing the techniques in [10–15].
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Abstract: In this paper, we introduce a recursive solution approach to linear systems
of the form Ax = b, where A is non-singular and its corner minors are all non-
zero. For the first time in the literature, we show how one can exploit (possible)
useful information provided by corner sub-matrices of A towards an efficient solution
approach to the linear system. This is going to initiate a thorough study of solution
methods whose goals are to fully exploit available information within the given linear
system.

Keywords: linear system of equations; corner minors; matrix inversion; recursive
methods.
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1 Introduction

The problem of solving a linear system Ax = b is central to scientific computation [1],
a subject which is used in most parts of modern mathematics. Computational solution
methods of such system are often an important part of numerical linear algebra (see [2,3]),
and play an important role in engineering, physics, chemistry, computer science, and
economics [4]. Even more, systems of non-linear equations are often approximated by
linear ones with the aim of linearization, a helpful technique while making a mathematical
model or computer simulation of a relatively complex system. A reader interested in the
applications of linear systems is referred to [4–7].

Iterative vs. direct solution methods for solving general linear systems have been
gaining popularity in many areas of scientific computing [8, 9]. Until recently, direct
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solution methods were often preferred to iterative methods in real applications because
of their robustness and predictable behavior [9]. However, to the best of our knowledge,
none of the existing methods is capable of exploiting special information provided by the
underlying linear system. This information could appear in an application setting within
which a linear system with known solution is going to be expanded to a larger linear
system. Other than that, simple matrix operations often reveal sub-matrices of A whose
inverse are quickly computable. This paper initiates the study of linear systems when
such information is available. We limit our attention to a special class of non-singular
matrices and build necessary algebraic tools to study linear systems with such coefficient
matrices.

The rest of the paper is organized as follows. In Section 2, we define and elaborate
on the necessary notations and definitions needed in the paper. In Section 3, we build
algebraic tools to derive matrix inverse while fully exploiting available information of
inverse of a sub-matrix. We elaborate on the method by algorithmic restatement and
also by giving an example. In Section 4, we explain how the result obtained in Section
3 can naturally result in a solution method to linear systems. Finally, in Section 5 we
draw some conclusions and outline some possible avenues for further improvement.

2 Terminology

We consider a matrix A = (ai,j)n×m of n rows and m columns. For any 1 ≤ i ≤ n
and any 1 ≤ j ≤ m, the i-th row and the j-th column of A are denoted by Ai and Aj ,
respectively. The index sequence of rows and columns of A are the sequence 〈1, 2, · · · , n〉
and 〈1, 2, · · · ,m〉, respectively. Let us refer to A’s index sequence of rows as A’s r-
sequence and A’s index sequence of columns as A’s c-sequence. Having a sub-sequence
〈r1, r2, · · · , rp〉 of the A’s r-sequence and a sub-sequence 〈c1, c2, · · · , cq〉 of A’s c-sequence,
one can define a sub-matrix S = (si,j)p×q of A as si,j = ari,cj . Conversely, for any
sub-matrix S of A, S’s r-sequence and c-sequence are proper sub-sequences of A’s r-
sequence and A’s c-sequence, respectively. In this setting, crossing off the i-th index
in A’s r-sequence defines a sub-matrix of A denoted by deli(A). Similarly, crossing off
the j-th index in A’s c-sequence defines a sub-matrix denoted by delj(A). If the deletion
operations happen simultaneously, we get the sub-matrix delij(A). We also need to define
a matrix obtained by adding a new row and simultaneously a new column to A. Given
indexes 1 ≤ i ≤ n+1 and 1 ≤ j ≤ m+1, and vectors F1×(n+1), G(m+1)×1 with f1,j = gi,1,
the unique matrix B, defined by

Bi = F, Bj = G, delij(B) = A,

is denoted by addij(A,F,G). The operators del and add will be extensively used in the
following.

3 Computing A−1

Given a non-singular n × n matrix A, suppose that there exists a square sub-matrix of
A, say S, whose inverse is known (or quickly computable). The core question in this
work asks: how can A−1 be computed using the available information on (the inverse of)
the sub-matrix S? In this paper, we build our results on a special class of non-singular
matrices for which every corner minor is non-zero.
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Let us limit our attention and assume every corner minor of A is non-zero. Let
S = delnn(A) and suppose that its inverse, S−1, is known. Note that by the assumption
on A, S−1 does exist. Define

B = addnn(S, In, In) =
(
S 0
0 1

)
whose inverse is simply

B−1 = addnn(S−1, In, In) =
(
S−1 0
0 1

)
and consider the n × n square matrix C given by the equation A = B.C. Then C is
simply given by

C =
( I(n−1)×(n−1) V
an,1···an,n−1 an,n

)
where V = S−1.(a1,n, · · · , an−1,n)T (1)

and I is the identity matrix. Matrix C has the property that its inverse can be easily
computed by means of the following lemma.

Lemma 3.1 Let p = An.
(
V
−1

)
, then p is non-zero and the i−th row of C−1 is given

by

(C−1)i =

{ 1
p (An − (1 + ann)In), i = n

−vi(C−1)n + Ii, i 6= n.
(2)

Proof. Knowing C−1C = I, let us expand the equations obtained by (C−1)nC = In:

c−1
n,1 + c−1

nnan,1 = 0,

c−1
n,2 + c−1

nnan,2 = 0,

...

c−1
n,n−1 + c−1

n,nan,n−1 = 0,

(c−1
n,1, c

−1
n,2, · · · , c

−1
n,n−1) · V + c−1

n,nan,n = 1. (3)

Now, the j-th equation gives c−1
n,j = −c−1

nnan,j for each j = 1, · · · , n − 1. Then we write
the last equation as

1− c−1
n,nan,n = −c−1

n,n(an,1, an,2, · · · , an,n−1).V

and we get

c−1
n,n((an,1an,2 · · · an,n−1) · V − an,n) = −1,

c−1
n,n

(
(an,1, an,2, · · · an,n−1, an,n)

(
V

−1

))
= −1,

c−1
n,n

(
An

(
V

−1

))
= −1. (4)
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This, in turn, implies that c−1
n,n = − 1

p , where p = An
(
V
−1

)
6= 0. As a result

(C−1)n = (c−1
n,1, c

−1
n,2, · · · , c

−1
n,n−1, c

−1
n,n)

= (−c−1
n,nan,1,−c−1

n,nan,2, · · · − cn,n−1an,n−1, c
−1
n,n)

= −c−1
n,n(an,1, an,2, · · · , an,n−1,−1)

= −c−1
n,n(an,1, an,2, · · · , an,n−1,−1− ann + ann)

=
1

p
(An − (1 + an,nI

n)) .

(5)

Now, in order to compute other rows of C−1, let us expand the equations obtained
by (C−1)iC = Ii, i 6= n, as

c−1
i,1 + c−1

i,nan,1 = 0,

c−1
i,2 + c−1

i,nan,2 = 0,

...

c−1
i,i + c−1

i,nan,i = 1,

...

c−1
i,n−1 + c−1

i,nan,n−1 = 0,

(c−1
i,1 c

−1
i,2 · · · c

−1
i,i · · · c

−1
i,n−1) · V + c−1

i,nan,n = 0. (6)

One can write the first n− 1 equations as

(c−1
i,1 , c

−1
i,2 , · · · , c

−1
i,i , · · · , c

−1
i,n−1) = Ii − c−1

i,n(an,1, an,2, · · · , an,i, · · · , an,n−1).

Now, using the last equation in (6), we get

−c−1
i,nan,n = Ii · V − c−1

i,n(an,1, an,2, · · · , an,i, · · · , an,n−1) · V,

c−1
i,n

(
An

(
V

−1

))
= vi.

This, in turn, implies that c−1
i,n = 1

p .vi. As a result

(C−1)i = (c−1
i,1 , c

−1
i,2 , · · · , c

−1
i,i , · · · c

−1
i,n−1, c

−1
i,n)

= −c−1
i,n(an,1, an,2, · · · , an,i, · · · , an,n−1,−1) + Ii

= −c−1
i,n(an,1, an,2, · · · , an,i, · · · , an,n−1,−1 + an,n − an,n) + Ii

= −c−1
i,n(An − (1 + an,n)In) + Ii

= −1

p
· vi(An − (1 + an,n)In) + Ii

= −vi.(C−1)n + Ii.

This completes the proof. 2

Having computed B−1 and C−1, the inverse of A can be computed as A−1 = C−1B−1.
Note how S−1 is used in computing A−1. The equation also suggests a recursive proce-
dure to obtain A−1 via its corner sub-matrices as described in Algorithm 3.1.
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Algorithm 3.1 Computing A−1

1: procedure Inverse(A,n)
2: S ← delnn(A)
3: S−1 ← Inverse(S, n− 1)
4: V ← S−1.(a1,n, · · · , an−1,n)T

5: B−1 ←
(
S−1 0
0 1

)
6: p = An

(
V
−1

)
7: (C−1)i ←

{
1
p (An − (1 + an,n).In) if i = n,

−vi.(C−1)n + Ii if i 6= n.
, ∀ i = 1, 2, · · · , n

8: return C−1B−1

Example 3.1 Let

A =


1 0 0 2
0 1 0 −1
0 0 1 1
1 1 0 3


and set S = del44(A), which is simply I3×3. Then

V = I3×3.(2,−1, 1)T = (2,−1, 1)T ,

p = (1, 1, 0, 3).(2,−1, 1,−1)T = −2,

(C−1)4 = −1

2
{(1, 1, 0, 3)− 4(0, 0, 0, 1)} = (−0.5, 0.5, 0, 0.5),

(C−1)1 = −2.(
−1

2
,
−1

2
, 0,

1

2
) + (1, 0, 0, 0) = (2, 1, 0,−1),

(C−1)2 = +1.(
−1

2
,
−1

2
, 0,

1

2
) + (0, 1, 0, 0) = (

−1

2
,

1

2
, 0,

1

2
),

(C−1)3 = −1.(
−1

2
,
−1

2
, 0,

1

2
) + (0, 0, 1, 0) = (

1

2
,

1

2
, 1,
−1

2
).

Putting all together

C−1 =


2 1 0 −1
−1
2

1
2 0 1

2
1
2

1
2 1 −1

2−1
2

−1
2 0 1

2


we have A−1 = C−1 as computed above. 2

4 Solving Linear System of Equations

Having a procedure to compute A−1, as introduced above, automatically results in a
solution procedure of the linear system A.x = b, where x = (x1, · · · , xn)T and b =
(b1, · · · , bn)T . Algorithm 3.1 will immediately translate to a recursive solution procedure
of the linear system as follows.

Here again, we try to find a connection between the solution of the linear system and
the solution of the subsystem delnn(A).y = deln(b). Recall that S = delnn(A).
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Solution x of the linear system Ax = b simply satisfies

S.deln(x) = deln(b)− xn.del
n(An), (7)

deln(An).deln(x) = bn − an,n.xn. (8)

Having S−1 available, one can rewrite (7) as

deln(x) = S−1.deln(b)− xn.S
−1.deln(An). (9)

Note that the term S−1.deln(b) is the solution to the subsystem S.y = deln(b). Then
the solution to the system Ax = b can be easily computed using equations (8) and (9).
In this way, the solution process of the system Ax = b can carefully make use of the
information (possibly) available through the subsystem S.y = deln(b).

Example 4.1 Let A be the matrix given in Example 1 and b = (1,−2, 1, 4)T . In
order to solve the system Ax = b, set S = del44(A) which is simply I3×3. Computing
del4(x) by equation (9) and putting it in equation (8) give

(1, 1, 0)
(( 1

−2
1

)
− x4

( 2
−1
1

))
= 4− 3x4,

then x4 = 2.5 and equation (9) computes

del4(x) =
( 1
−2
1

)
− x4

( 2
−1
1

)
=
( −4

0.5
−1.5

)
.

So, we have x = (del4(x), x4)T = (−4, 0.5,−1.5, 2.5)T . 2

Note that the way we solved the above linear system has an important capability
with which different solution procedures of a linear system can be combined.

5 Conclusion

In this paper, we studied linear systems of the form Ax = b. When A admits non-zero
corner minors, we showed a solution method could be devised capable of using available
information provided by the corner submatrices of A. This, in turn, asks for a more
detailed study of solution methods whose goals are to fully exploit available information
within the given linear system having a general coefficient matrix.
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Abstract: The aim of this paper was to investigate a fractional model of chemi-
cal kinetics system. The numerical solution of this fractional model is obtained by
Bernstein polynomials. The basic idea is to apply operational matrices of fractional
integration and multiplication of Bernstein polynomials. The important point to note
here is the given problem turns into a set of algebraic equations by expanding the
solution as Bernstein polynomials with unknown coefficients. Then, by solving alge-
braic equations, the numerical solutions are obtained. This result may be explained
by the fact that the suggested technique is computationally efficient.

Keywords: fractional model; chemical kinetics system; Caputo derivative; Bernstein
polynomials.
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1 Introduction

One of the most significant current subjects in pure and applied mathematics is fractional
calculus. Many applications have appeared in different areas of applied sciences such as
physics and engineering [1–3]. A model is a simplified representation of a real world
process. These models are an equation, a differential equation, an integral equation, a
system of integral equations, etc. A chemical kinetics system is represented by a nonlinear
system of ordinary differential equations.
Consider this model of a chemical process consisting of three species, which are denoted
by A, B and C. The three reactions are:

A −→ B, (1)

B + C −→ A+ C, (2)

B +B −→ C. (3)

∗ Corresponding author: mailto:tajadodi@math.usb.ac.ir
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We assume that the concentrations of A, B and C are indicated by ζ, η, and κ, re-
spectively. We suppose that these concentrations are scaled so that the sum of three
concentrations is one and that all of three constituent reactions are added with the con-
centration of some of the species accurately at the rate of the corresponding values of the
reactants. We denote by θ1 the the reaction rate of equation (1) . It indicates that the
rate at which ζ decreases, and the rate at which η increases, because of this reaction, are
equivalent to θ1ζ. In the reaction showed by equation (2), C acts as a catalyst for the
configuration of species A from B. The reaction rate is represented by using the symbol
θ2 which means the increase in the concentration ζ and the decrease in the concentration
κ; this reaction has a rate and is equivalent to the product θ2ηκ. Lastly, the formation
of C from B has a constant rate equivalent to θ3, which means the rate at which the
mentioned reaction is occurring has to be equivalent to the product θ3η

2. We find the
system of differential equations for the variation with time of the three concentrations to
be:

dζ

dt
= −θ1ζ(t) + θ2η(t)κ(t),

dη

dt
= θ1ζ(t)− θ2η(t)κ(t)− θ3η

2(t), (4)

dκ

dt
= θ3η

2(t).

Since various materials and dynamical processes with memory and hereditary effects can
be modeled by fractional order models better than integer-order models, we repleace the
time-derivative in equation (4) by the Caputo fractional derivative:

0D
γ
t ζ(t) = −θ1ζ(t) + θ2η(t)κ(t),

0D
γ
t η(t) = θ1ζ(t)− θ2η(t)κ(t)− θ3η

2(t), (5)

0D
γ
t κ(t) = θ3η

2(t),

with the initial conditions ζ(0) = 1, η(0) = 0, κ(0) = 0.
In 2011, Aminikhah obtained the analytical approximation of chemical kinetics system

using a homotopy perturbation method [4]. Two years later, Khader derived numerical
solutions of this system using the Picard-Padé technique [5]. In 2017, Singh and co-
workers considered the analysis of chemical kinetics system with a fractional derivative
with the Mittag-Leffler type kernel [6] and numerous papers have been published on the
analytical and numerical methods for solving nonlinear fractional differential equations
such as [7–20]. In this paper, we apply Bernstein polynomials (Bps) for solving fractional
chemical kinetics system. Here, we use operational matrices of fractional integration and
multiplication of Bps. In equation (5), Dγζ(t) is indicated to be the Caputo fractional
derivative of order γ which is defined as [1, 3]:

Dγ
t ζ(t) =


1

Γ(n−γ)

∫ t
0

ζ(τ)
(t−τ)1+γ−n dτ, n− 1 < γ < n, n ∈ IN,

dnζ(t)

dtn
, γ = n.

(6)

Note that

(i) 0D
γ
t λ = 0, (λ is a constant),
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(ii) 0D
γ
t t
δ =


0, δ ∈ IN0, δ < γ,

Γ(δ+1)
Γ(1+δ−γ) t

δ−γ , Otherwise,

(7)

(iii) 0I
γ
t 0D

γ
t ζ(t) = ζ(t)−

n−1∑
l=0

ζ(l)(0+)
tl

l!
, n− 1 < γ ≤ n. (8)

In equation (8) the fractional Riemann-Liouville integral Iγt is described as [1, 3]:

0I
γ
t ζ(t) =

1

Γ(γ)

∫ t

0

ζ(τ)

(t− τ)1−γ dτ, γ > 0. (9)

The rest part of the present paper is organized as follows. The second section of this
paper will impart Bernstein polynomials and approximation of function. Section 3 gives
a brief overview of the operational matrix for fractional integration and multiplication
of Bps. The suggested approach is used to approximate the fractional chemical kinetics
system in the next Section 4. In Section 5, we assess the proposed technique with two
examples. In the last section, conclusion is summarised.

2 Bernstein Polynomials and Approximation of Function

2.1 Definition of Bernstein polynomials

The Bernstein polynomials of the n-th degree on [0, 1] are presented as [21]:

Bl,n(t) =

(
n

l

)
tl(1− t)n−l =

n−l∑
j=0

(−1)j
(
n

l

)(
n− l
j

)
tl+j

=

n∑
j=l

(−1)j−l
(
n

l

)(
n− l
j − l

)
tj , l = 0, 1, . . . , n. (10)

We can demonstrate φ(t) = ΛTn(t), where φ(t) = [B0,n(t), B1,n(t), · · · , Bn,n(t)]
T

,

Tn(t) = [1, t, · · · , tn]T and Λ = (λl,j)
n+1
l,j=1 is a matrix of order (n + 1) given in the

form:

λl+1,j+1 =


(−1)j−l

(
n
l

)(
n−l
j−l
)
, l ≤ j,

l, j = 0, 1, · · · , n,
0, l > j.

(11)

2.2 Approximation of function

The set of Bernstein polynomials {B0,n(t), B1,n(t), . . . , Bn,n(t)} in Hilbert space L2[0, 1]
is a complete basis [22]. In consequence, we can indicate any function by BPs:

ζ(t) =

n∑
l=0

zlBl,n(t) = ZTφ(t), (12)

where ZT = [z0, z1, . . . , zn]. Then, we can find ZT as below:

ZT =

(∫ 1

0

ζ(t)φ(t)T dt

)
Q−1. (13)
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In equation (13), Q is called the dual matrix of φ(t) and the Q is derived such that

Q =

∫ 1

0

φ(t)φ(t)T dt. (14)

3 Operational Matrix for Fractional Integration based on BPs

In this subsection, we want to investigate an operational matrix of fractional integration
for Bps. Therefore, by fractional integration of the vector φ(t) as below, we get

0I
γ
t φ(t) ' Iγφ(t), (15)

where Iγ is the (n + 1) × (n + 1) Riemann-Liouville fractional operational matrix of
integration for BPs. Instead of using φ(t) we can substitute ΛTn(t), in consequence we
get to:

0I
γ
t φ(t) = 0I

γ
t ΛTn(t) = Λ 0I

γ
t Tn(t) = Λ [0I

γ
t 1, 0I

γ
t t, . . . , 0I

γ
t t
n]
T

(16)

= Λ

[
0!

Γ(γ + 1)
tγ ,

1!

Γ(γ + 2)
tγ+1, . . . ,

n!

Γ(γ + n+ 1)
tγ+n

]T
= ΛΘTn(t),

where Θ, being an (n+ 1)× (n+ 1) matrix, and Tn(t) are given by

Θi,j =


i!

Γ(γ+i+1) , i = j,

0, i 6= j.

i, j = 0 · · · , n, Tn =
[
tγ , tγ+1, · · · , tγ+n

]T
. (17)

In the same way as in Subsection 2.2, we approximate tl+α as follows:

tγ+l ' wTl φ(t), l = 0, · · · , n. (18)

Therefore we have

wl = Q−1

(∫ 1

0

tγ+lφ(t)dt

)
(19)

= Q−1

[∫ 1

0

tγ+lB0,n(t)dt,

∫ 1

0

tγ+lB1,n(t)dt,. . . ,

∫ 1

0

tγ+lBn,n(t)dt

]T
=Q−1wl,

where wl = [wl,0, wl,1, . . . , wl,n]T and

wl,k =

∫ 1

0

tγ+lBk,n(t)dt =
n!Γ(l + k + γ + 1)

k!Γ(l + n+ γ + 2)
, l, k = 0, 1, . . . , n, (20)

where w = [w0, w1, · · · , wn]T is an (n + 1) × (n + 1) matrix that has vector Q−1wl for
the i-th columns. Therefore, we can write

0I
γ
t φ(t) ' Iγφ(t) = ΛΘwTφ(t), (21)

where Iγ = ΛΘwT is called the fractional integration within the operational matrix.
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4 Convergence Analysis

In the current section, we compute the error bounds of the operational matrices of frac-
tional integrals for obtaining the convergence of the numerical approach introduced in
the previous section.

Theorem 4.1 Suppose that H is a Hilbert space and Y is a closed subspace of H such
that dimY <∞ and {y1, y2, . . . , yn} is any basis for Y . Let x be an arbitrary element in
H and y0 be the unique best approximation to x out of Y . Then

‖x− y0‖2 =
G(x, y1, y2, . . . , yn)

G(y1, y2, . . . , yn)
, (22)

where

G(x, y1, y2, . . . , yn)=

〈x, x〉 〈x, y1〉 . . . 〈x, yn〉
〈y1, x〉 〈y1, y2〉 . . . 〈y1, yn〉

...
...

...
〈yn, x〉 〈yn, y1〉 . . . 〈yn, yn〉

.

Proof. See Kreyszig, 1978 [22].

Theorem 4.2 Suppose that function f ∈ L2[0, 1] and
Y = Span {B0,n(t), B1,n(t), . . . , Bn,n(t)}, if f(t) is approximated by

fn(t) =

n∑
l=0

clBl(t) = CTφ(t), (23)

where fn is the best approximation of f out of Y.

Consider

Ln(f) =

∫ 1

0

[f(t)− fn(t)]2dt,

then we have

lim
n−→∞

Ln(t) = 0.

Proof. For the proof see [19].

Now, by using these theorems, we compute the error upper bound of the operational
matrix of the fractional integration Iγ based on Bernstein polynomials in the interval
[0, 1]. Consider EγI as the error vector of the operational matrix of fractional integration
as

EγI = Iγφ(t)− 0I
γ
t φ(t), (24)

where EγI =
[
EγI,0, E

γ
I,1, · · · , E

γ
I,n

]T
.
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The fractional integral of any Bernstein polynomial Bl,n is given by

0I
γ
t Bl,n =

n∑
j=l

(−1)j−l
(
n

l

)(
n− l
j − l

)
0I
γ
t t
j

=

n∑
j=l

(−1)j−l
(
n

l

)(
n− l
j − l

)
0I
γ
t

tj+γΓ(j + 1)

Γ(j + γ + 1)

=

n∑
j=l

(−1)j−l
n!j!

l!(j − l)!(n− 2l − j)!Γ(j + γ + 1)
tj+γ =

n∑
j=l

bl,jt
j+γ .

(25)

By virtue of (15), (24) and (25), we have

‖ EγI,l ‖2 = ‖ IγBl,n(t)−
n∑
k=0

(

n∑
j=l

bl,jcj,k)Bk,n(t) ‖

≤
n∑
j=l

(−1)j−l
n!j!

l!(j − l)!(n− 2l − j)!Γ(j + γ + 1)
‖ tj+γ −

n∑
k=0

cj,kBk,n(t) ‖

≤
n∑
j=l

bl,n

(
G(tj+γ , B0,n(t), B1,n(t), . . . , Bn,n(t))

G(B0,n(t), B1,n(t), . . . , Bn,n(t))

) 1
2

. (26)

We can conclude by Theorem 2 and equation (26) that by increasing the number of
Bernstein bases, the error vector EγI,l tends to zero.

5 Numerical Results

In this section, we estimate the numerical results for the fractional chemical kinetics
model for various values of γ by using the operational matrix of fractional integration
and multiplication of Bps. For solving equation (5), we expand fractional derivatives by
Bernstein polynomials as, say,

Dγ
t ζ(t) = ZTφ(t), Dγ

t η(t) = NTφ(t), Dγ
t κ(t) = KTφ(t), (27)

where

ZT = [ζ0, ζ1, · · · , ζn]T , NT = [η0, η1, · · · , ηn]T , KT = [κ0, κ1, · · · , κn]T .

Applying the fractional integral operator on the both sides of equation (27) and by
replacing the initial condition in equation (28), then with the aid of equation (12) and
equation (21) we can obtain the following result:

ζ(t) = ZT 0I
γ
t φ(t) + ζ(0) = ZT Iγφ(t) + dTφ(t) = GT1 φ(t),

η(t) = NT
0I
γ
t φ(t) + η(0) = NT Iγφ(t) = GT2 φ(t), (28)

κ(t) = KT
0I
γ
t φ(t) + κ(0) = KT Iγφ(t) = GT3 φ(t).

Inserting equations (27) and (28) in equation (5), we have

ZTφ(t) = −θ1G
T
1 φ(t) + θ2G

T
3 Ĝ2

T
φ(t),

NTφ(t) = θ1G
T
1 φ(t)− θ2G

T
3 Ĝ2

T
φ(t)− θ3G

T
2 Ĝ2

T
φ(t), (29)

KTφ(t) = θ3G
T
2 Ĝ2

T
φ(t),
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where Ĝ2 is an operational matrix of product. For more information about an operational
matrix of product, refer to [11]. Finally, we get the following set of algebraic equations
as:

ZT + θ1G
T
1 − θ2G

T
3 Ĝ2

T
= 0,

NT − θ1G
T
1 + θ2G

T
3 Ĝ2

T
+ θ3G

T
2 Ĝ2

T
= 0, (30)

KT − θ3G
T
2 Ĝ2

T
= 0.

By solving this system for the vectors ζ, η, κ, we can approximate ζ(t), η(t) and κ(t)
from (28). We have taken the values of parameters as θ1 = 0.1, θ2 = 0.02 , and θ3 =
0.009. Comparisons between the exact solution and the numerical results obtained by
this technique for m = 6 and different values of γ for ζ(t), η(t), κ(t) are shown in Fig. 1
respectively. Fig. 2 presents comparison between the exact and approximate solutions
obtained by the help of BPs for ζ(t), η(t), κ(t) when γ = 0.97 and m = 2, 3, 6.
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Figure 1: The exact solution: (red line) and approximation solutions ζ(t), η(t), κ(t) for m = 6
when γ = 0.99 (dotted), γ = 0.97 (dashed), γ = 0.95 (long-dashed).
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Figure 2: The exact solution: (red line) and approximation solutions ζ(t), η(t), κ(t) for γ =
0.97 when m = 6 (dotted), m = 3 (dashed), m = 2 (long-dashed).

6 Concluding Remarks and Discussion

In this work we have presented a numerical solution of the fractional chemical kinetics
model using the operational matrices of fractional integration and multiplication based on
BPs. The main advantage of this method is that the main problem reduces into a system
of nonlinear algebraic equations. The obtained results demonstrate that only a small
number of Bernstein polynomials bases is needed to obtain the accurate approximate
solution via the present method. For the accuracy of the scheme we have given an
example which shows that the results are much better.

The numerical simulations were carried out by Mathematica.
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Abstract: The present paper reports an investigation on dual phase synchroniza-
tion results among chaotic systems with nonlinear observer controller. The dual
phase synchronization is achieved using the nonlinear state observer technique and
the stability theory. The Qi system and the Newton-Leipnik system are considered
during the demonstration of dual phase synchronization. The nonlinear state ob-
server technique is found to be very effective and convenient to achieve dual phase
synchronization of various types of chaotic systems. Numerical simulation and graph-
ical results demonstrate the effectiveness of the control technique during dual phase
synchronization among chaotic systems.

Keywords: dual synchronization, phase synchronization, chaotic systems, nonlinear
state observer technique.
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1 Introduction

Chaos theory is a developing field since 1970 and still the theory has not yet been un-
derstood very well. If a dynamical system is bounded and has infinite recurrences with
dependency on initial conditions, then it is known as chaotic [1]. Several researchers
have studied chaotic dynamical systems in various fields and effect of chaos in nonlinear
dynamics is studied during the last few years. This effect is most common and has been
detected in a number of dynamical systems of various types of physical nature. Chaos
theory is also used to analyze the problems of dynamical and non-linear dynamical sys-
tems related with complex networks which are generally used in biological and social
systems in ecology, medicine and in the field of business strategy. The most important
achievement in the research of chaos is that chaotic systems can be made to synchronize
with each other. The first idea of synchronization of two identical chaotic systems was
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analyzed by Pecora and Carrols [2]. In 2011, Runzi et al. [3] discussed combination syn-
chronization using two master and one slave systems, before that synchronization was
confined to one master and one slave systems. Yadav et al. [4] obtained dual function
projective synchronization of fractional order complex chaotic systems.

In recent years, a lot of methods have been used to analyse synchronizations of the
chaotic systems theoretically and experimentally, viz., the active control method, ob-
server based method, backstepping method, nonlinear control method etc. Also, these
methods are applied to study some new types of synchronizations, viz., combination
synchronization, combination-combination synchronization, compound synchronization,
multi-switching synchronization, compound-combination synchronization etc. ( [5]- [9]).
Juan and Xing-yuan [10] discussed nonlinear observer based phase synchronization of
chaotic systems. Singh et. al. [11] explained dual combination synchronization of the
fractional order complex chaotic systems.

The purpose of this paper is the investigation of dual phase synchronization of chaotic
systems with nonlinear observer controllers. Dual synchronization is a special circum-
stance in synchronization in which two identical/non-identical pairs of chaotic systems
are synchronized. The dual synchronization of systems plays an important role in many
fields including chaotic secure communication. But it has received less attention of the
researchers. There are only a few results available in the literature on dual synchroniza-
tion between chaotic systems ( [12]– [13]). In phase synchronization, the coupled chaotic
systems keep their phase difference bounded by a constant while their amplitudes remain
uncorrelated. The phase synchronization is usually applied upon two waveforms of the
same frequency with identical phase angles with each cycle. However it can be applied if
there is an integer relationship of frequency such that the cyclic signals share a repeating
sequence of phase angles over consecutive cycles. There are few results about the phase
synchronizations for the chaotic systems ( [14]– [17]). Observer design, having vital im-
portance in the area of systems and control theory, arises whenever some components of
the state are not directly measured. After the solution of multivariate problems in the
linear time invariant case by Luenberger [18], many researchers were motivated to extend
the basic ideas of his work to the nonlinear context. Though the applications of linear
observer theory to nonlinear problems had been a success, still the researchers were re-
duced to construct nonlinear observers using tools from nonlinear systems theory. A brief
introduction to some of these nonlinear approaches to the problem of observer design can
be found in the paper of Primbs [19]. In 2012, Beikzadeh and Taghirad [20] presented
a novel nonlinear continuous-time observer based on differential state-dependent Riccati
equation filter with guaranteed exponential stability of the estimation error dynamics
utilising Lyapunov stability analysis which is used to obtain the required conditions for
exponential stability of the estimation error dynamics.

These results have motivated the authors to study the dual phase synchronization be-
tween two identical pairs of different chaotic systems with nonlinear state observer algo-
rithm using stability theory.The numerical example is provided to illustrate the obtained
results. Dual phase synchronization between the systems with time delays ( [21]– [25])
using the similar method will be considered for future study.

2 Problem Formulation

Let us consider the following two chaotic systems:

ẋ = Ax+Bf(x), (1)
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ẏ = Cy +Dg(y), (2)

where x, y ∈ Rn are the state vectors of the systems (1) and (2). A,B ∈ Rn×n,C,D ∈
Rn×m are the constant matrices and f, g : Rn → Rm are the nonlinear functions.
Suppose the dynamical systems (1) and (2) with the output are represented as

s(x) = f(x) +Kjx, (3)

S(y) = g(y) +K ′jy, (4)

where Kj ,K
′
j ∈ Rm×n denote the feedback gain matrices. Let us define the observer as

˙̂x = Ax̂+Bf(x̂) +B[s(x)− s(x̂)], (5)

˙̂y = Cŷ +Dg(ŷ) +D[S(y)− S(ŷ)]. (6)

The synchronization errors among the systems (1), (2) and (5), (6) are defined as

exx̂ = x− x̂, (7)

eyŷ = y − ŷ. (8)

Then the error systems can be obtained as

ėxx̂ = ẋ− ˙̂x = Aexx̂ +Bf(x)−Bf(x̂)−B[s(x)− s(x̂)],

ėyŷ = ẏ − ˙̂y = Ceyŷ +Dg(y)−Dg(ŷ)−D[S(y)− S(ŷ)].

From equations (3) and (4), the error systems reduce in the following form

ėxx̂ = [A−BKj ]exx̂, (9)

ėyŷ = [C −DK ′j ]eyŷ. (10)

In order to make systems (9) and (10) controllable with the controllable matrices
[B,AB, ....An−1B] and [D,CD, ....Cn−1D] of full ranks, the choices of the feedback gain
matrices,Kj ,K

′
j will be in such a way that the characteristic polynomials of the matrices

[A−BKj ] and [C −DK ′j ] must have all the eigenvalues with negative real parts. Then
the error systems will be stabilized and the dual synchronization among the systems
under consideration is achieved. If there is any eigenvalue of the error system equal to
zero, then another type of synchronization phenomenon called the phase synchronization
occurs, in which the difference between various states of synchronized systems may not
necessarily converge to zero, but is less than or equal to a constant.

3 Systems’ Descriptions

3.1 Qi chaotic system

Consider the following Qi system [26]:

ẋ1 = a1(x2 − x1) + x2x3; ẋ2 = a3x1 − x2 − x1x3; ẋ3 = −a2x3 + x1x2, (11)

where x1, x2, x3 are the state variables. The phase portrait of the system (11) for the
parameter values a1 = 35, a2 = 8/3, a3 = 80 and the initial condition (3, 2, 1) is depicted
in Fig. 1(a).
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3.2 Newton-Leipnik system

The Newton-Leipnik system [27] is defined as

ẏ1 = −b1y1 + y2 + 10y2y3; ẏ2 = −y1 − 0.4y2 + 5y1y3; ẏ3 = b2y3 − 5y1y2. (12)

The phase portrait of the Newton-Leipnik system (12) is depicted in Fig. 1(b) for the
values of the parameters b1 = 0.4, b2 = 0.175 and the initial condition (0.394, 0,−0.16).

4 Dual Phase Synchronization of Chaotic Systems

In this section we are taking two systems, viz., Qi and Newton-Leipnik, to perform dual
phase synchronization. The systems (11) and (12) can be rewritten asẋ1ẋ2

ẋ3

 =

−a1 a1 0
a3 −1 0
0 0 −a2

x1x2
x3

 +

1 0 0
0 −1 0
0 0 1

x2x3x1x3
x1x2

 (13)

and ẏ1ẏ2
ẏ3

 =

−b1 1 0
−1 −0.4 0
0 0 b2

y1y2
y3

 +

10 0 0
0 5 0
0 0 −5

y2y3y1y3
y1y2

 . (14)

Comparing equations (13) and (14) with equations (1) and (2), we get

A =

−a1 a1 0
a3 −1 0
0 0 −a2

 , B =

1 0 0
0 −1 0
0 0 1

 , C =

−b1 1 0
−1 −0.4 0
0 0 b2

 , D =

10 0 0
0 5 0
0 0 −5

 .
The observers of the systems (11) and (12) are designed as ˙̂x1

˙̂x2
˙̂x3

 =

−a1 a1 0
a3 −1 0
0 0 −a2

x̂1x̂2
x̂3

 +

1 0 0
0 −1 0
0 0 1

x̂2x̂3x̂1x̂3
x̂1x̂2

 +B[s(x)− s(x̂)], (15)

 ˙̂y1
˙̂y2
˙̂y3

 =

−b1 1 0
−1 −0.4 0
0 0 b2

ŷ1ŷ2
ŷ3

 +

10 0 0
0 5 0
0 0 −5

ŷ2ŷ3ŷ1ŷ3
ŷ1ŷ2

 +D[S(y)− S(ŷ)], (16)

where B[s(x)−s(x̂)], D[S(y)−S(ŷ)] are outputs of the systems. Now by defining the error
function towards dual synchronization as ex1x̂1

= x1−x̂1, ex2x̂2
= x2−x̂2, ex3x̂3

= x3−x̂3,
ey1ŷ1

= y1 − ŷ1, ey2ŷ2
= y2 − ŷ2, ey3ŷ3

= y3 − ŷ3, the error systems can be obtained asėx1x̂1

ėx2x̂2

ėx3x̂3

 =


−a1 a1 0
a3 −1 0
0 0 −a2

−
1 0 0

0 −1 0
0 0 1

K1


ex1x̂1

ex2x̂2

ex3x̂3

 , (17)

ėy1ŷ1

ėy2ŷ2

ėy3ŷ3

 =


−b1 1 0
−1 −0.4 0
0 0 b2

−
10 0 0

0 5 0
0 0 −5

K ′1


ey1ŷ1

ey2ŷ2

ey3ŷ3

 . (18)
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(a) (b)

Figure 1: Phase portraits of chaotic systems: (a) the Qi system; (b) the Newton-Leipnik
system.

The matrices [B,AB,A2B] and [D,CD,C2D] are in full ranks, so the systems (15) and
(16) are the global observers of systems (13) and (14) through proper choices of the
feedback gain matrices towards the synchronization

K1 =

−34 35 0
−80 0 0

0 0 −5/3

 , K ′1 =

−3/50 1/10 0
−1/5 3/25 0

0 0 −0.235

 .
For phase synchronization of the above-mentioned systems, the feedback gain matrices

are taken as

K1 =

−35 35 0
−80 1 0

0 0 −8/3

 , K ′1 =

−2/50 1/10 0
−1/5 −2/25 0

0 0 −0.035

 .
5 Numerical Simulation and Results

During numerical simulation the earlier considered parameters of the chaotic sys-
tems are taken. For the dual phase synchronization the initial conditions of the
master systems I, II and slave systems I, II are taken as (x1(0), x2(0), x3(0)) =
(18, 12, 10), (y1(0), y2(0), y3(0)) = (0.349, 1.5,−0.16) and (x̂1(0), x̂2(0), x̂3(0)) =
(−15, 5, 1), (ŷ1(0), ŷ2(0), ŷ3(0)) = (0.5, 2.5, 0.5), respectively. Hence the initial conditions
of error system for dual phase synchronization will be (33, 7, 9,−0.151,−1,−0.66). Dur-
ing dual synchronization of the systems, the time step size is taken as 0.005. Now, by
choosing λ1 = 0, λ2 = −1, λ3 = −1, λ4 = −1, λ5 = −1, λ6 = −1, the phase synchro-
nization between signals x1(t) and x̂1(t) is achieved. It should be noted that, when
λ1 = 0, λ2 = −1, λ3 = −1, λ4 = −1, λ5 = −1, λ6 = −1, the signals x2(t) and x̂2(t)
and x3(t) and x̂3(t) and y1(t) and ŷ1(t) and y2(t) and ŷ2(t) and y3(t) and ŷ3(t) be-
come synchronized. Similarly, if λ1 = −1, λ2 = 0, λ3 = −1, λ4 = −1, λ5 = −1, λ6 =
−1;λ1 = −1, λ2 = −1, λ3 = 0, λ4 = −1, λ5 = −1, λ6 = −1;λ1 = −1, λ2 = −1, λ3 =
−1, λ4 = 0, λ5 = −1, λ6 = −1;λ1 = −1, λ2 = −1, λ3 = −1, λ4 = −1, λ5 = 0, λ6 = −1
and λ1 = −1, λ2 = −1, λ3 = −1, λ4 = −1, λ5 = −1, λ6 = 0 are taken, phase synchro-
nizations between signals x2(t) and x̂2(t) and x3(t) and x̂3(t) and y1(t) and ŷ1(t) and
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y2(t) and ŷ2(t) and y3(t) and ŷ3(t) are obtained, respectively. State trajectories of the
dual phase synchronization of chaotic systems are depicted in Fig. 2(a)-(f). The plot of
the error function for dual synchronization is depicted in Fig. 2(g), which shows that
error states converge to zero when time becomes large. This implies that the dual phase
synchronization between identical pairs of different chaotic systems consisting of the Qi
and Newton-Leipnik systems occurs with the help of nonlinear observers.

(a) (b)

(c) (d)

(e) (f)
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(g)

Figure 2: Phase synchronization for signals (a) between x1(t) and x̂1(t), (b) between x2(t)
and x̂2(t), (c) between x3(t) and x̂3(t), (d) between y1(t) and ŷ1(t), (e) between y2(t) and ŷ2(t),
(f) between y3(t) and ŷ3(t), (g) The evolution of the error functions of chaotic systems during
synchronization.

6 Conclusion

The present paper has successfully demonstrated the dual phase synchronization between
the Qi and Newton-Leipnik systems using the nonlinear observer based technique. Based
on the stability analysis, the dual phase synchronization of chaotic systems through
nonlinear controller input parameters on the respective systems has been achieved and
the components of the error system tend to zero as time becomes large, which helps to
find the time required for dual phase synchronization between different chaotic systems.
Numerical simulations are given to exhibit the reliability and effectiveness of the proposed
dual combination synchronization scheme towards predicting the accuracy of the theory.
The authors are optimistic that the outcome of this chapter will be utilized by the
researchers involved in the field of chaotic systems.
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