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Abstract: In this paper we have considered the system of six coupled non-linear
ordinary differential equations (ODEs), which arose in the reduction of uniformly
stratified fluid contained in a rotating rectangular box of dimension L×L×H which
is completely integrable if the Rayleigh number Ra = 0. In our investigations, we
have shown that there exits a regular mirror system near movable singularities of these
integrable ODEs. Moreover, we have used the mirror system to prove the convergence
of Laurent series solutions obtained by the Painlevé method.
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Mathematics Subject Classification (2010): 37K10, 34M55.

1 Introduction

In general, we believed that the differential system is integrable due to some sort of un-
derlying linear structure(s). But, when it comes to this concept, it is never clear what
does it mean. On the other hand the integrability of nonlinear system is quite ambigu-
ous. In this connection many mathematicians started to work over the investigation of
integrability of nonlinear system. In 1889, Sophie Kowalevski [12] proved the complete
integrability of the system of ordinary differential equations (ODEs) governing the mo-
tion of a spinning top moving under the influence of gravity. In her study, she was seeking
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analytic solutions whose singularities are movable poles. This was done by substituting
a Frobenius series into the system of ODEs. Then, few years later, that is in 1897,
Paul Painlevé [6] classified first and second order algebraic differential equations whose
solutions exist in the complex domain and are devoid of movable essential singularities
or movable branch points. ODEs possessing this property are said to be of the Painlevé
type. Painlevé test in view of partial differential equations is generally known as WTC
(Weiss-Tabor-Carnevale, [7]) test, which is further modified by S. Kichenassamy and G.
K. Srinivasan [3]. So far various properties are considered as indicator of integrability:
solitons, the Lax pair, the Bäcklund transformations, the underlying Hamiltonian formu-
lations, Hirota’s bilinear representation, etc. The relation between these properties has
yet to be understood.

In 1999–2000, Hu J. and Yan M. [8, 9] introduced the mirror transformation, which
is a new tool used in the singularity analysis of ODEs. With the help of this method
we constructed the mirror system of given PDEs or ODEs successfully; we could focus
commonly at the singularity structure and symplectic structure of the Hamiltonian sys-
tem for each principle balance in the Painlevé test. Further to this study, Hu et al [11]
proved that the mirror transformation is canonical for finite-dimensional Hamiltonian
systems. Furthermore, in 2001 Yee [13] showed that linearization of the mirror systems
near movable poles provides the possibility to construct the associated Backlund trans-
formations. In continuous development of mirror transformations in 2011, Tat-Leung
Yee [14] extended the mirror method with perturbations which was utilized for finer
analysis of certain nonlinear equations possessing negative Fuchsian indices.

In connection with the basin scale dynamics, Maas [5] has considered the flow of
fluid contained in a rectangular basin of dimension L × L × H, which is temperature
stratified with fixed zeroth order moment of mass and heat. The container is assumed
to be steady, uniform rotation of an f-plane. With this assumption Maas [5] reduces
the rotating stratified Boussinesq equation to a beautiful six coupled system of ODEs.
Srinivasan et al. [4] extended this work and gave a detail mathematical analysis of the
reduced system of six coupled ODEs. Furthermore, Desale and Patil [2] tested the system
of six coupled ODEs (5) for complete integrability using the Painlevé test. Also, they
investigated the case of non-integrability for Ra 6= 0 and thereby they have obtained
weak solutions (in the form of logarithmic psi-series) in the different branches of leading
order.

In this paper we have successfully implemented the mirror transformations and con-
structed the mirror system of (5) for Ra = 0 which is regular near movable singularity.
Further, with the help of mirror transformation, we have proved that the Laurent series
obtained by using the Painlevé test are convergent. In the following section we imploy
the mirror transformation to find the mirror system of ideal rotating stratified Boussinesq
equations.

2 Mirror System of Six Coupled Non-Linear ODEs

Consider the rotating stratified Boussinesq equations (see Majda [1], p. 1)

D~v

Dt
+ f(ê3 × ~v) = −∇p+ ν(∆~v)− gρ̃

ρb
ê3,

div ~v = 0,
Dρ̃

Dt
= κ∆ρ̃,

(1)
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where ~v denotes the velocity field, ρ is the density which is the sum of constant reference
density ρb and perturbation density ρ̃, p is the pressure, g is the acceleration due to gravity
that points in −ê3 direction, f is the rotation frequency of earth, ν is the coefficient of
viscosity, κ is the coefficient of heat conduction and D

Dt = ∂
∂t + (~v · ∇) is a convective

derivative. For more about the rotating stratified Boussinesq equations one may see
Majda [1]. Maas [5] reduces the system of equations (1) to the following system of six
coupled ODEs:

Pr−1
d~w

dt
+ f ′ê3 × ~w = ê3 × ~b− (w1, w2, rw3) + T̂ ~T,

d~b

dt
+ ~b× ~w = −(b1, b2, µb3) +Ra~F.

(2)

In these equations, ~b = (b1, b2, b3) is the center of mass, ~w = (w1, w2, w3) is the basin

averaged angular momentum vector, ~T is the differential momentum, ~F are buoyancy
fluxes, f ′ = f/2rh is the earth rotation, r = rv/rh is the friction (rv,h are Rayleigh
damping coefficients), Ra is the Rayleigh number, Pr is the Prandtl number, µ is the
diffusion coefficient and T̂ is the magnitude of the wind stress torque.

Neglecting diffusive and viscous terms, Maas [5] considers the dynamics of an ideal
rotating, uniformly stratified fluid in response to forcing. He assumes this to be due
solely to differential heating in the meridional (y) direction. ~F = (0, 1, 0), the wind

effect is neglected, i.e. ~T = 0. For the Prandtl number Pr, equal to one, the system of
equations (2) reduces to the following ideal rotating, uniformly stratified system of six
coupled ODEs

d~w

dt
= −f ′ê3 × ~w + ê3 × ~b,

d~b

dt
= −~b× ~w +Ra~F.

(3)

The system of ODEs (3) can be written component wise as

ẇ1 = f ′w2 − b2, ẇ2 = −f ′w1 + b1, ẇ3 = 0,

ḃ1 = w2b3 − w3b2, ḃ2 = w3b1 − w1b3 +Ra, ḃ3 = w1b2 − w2b1.
(4)

Since ẇ3 = 0, this gives w3 = constant = k1. Consequently, we have the following system
of ODEs:

ẇ1 = f ′w2 − b2, ẇ2 = −f ′w1 + b1,

ḃ1 = w2b3 − k1b2, ḃ2 = k1b1 − w1b3 +Ra, ḃ3 = w1b2 − w2b1.
(5)

In our earlier study [2], we have shown that the system of ODEs (5) is completely
integrable provided that Ra = 0 and we have determined the solutions in the form of
Laurent series with the help of the Painlevé method. Now our aim is to determine the
mirror system of (5) and its solutions in the following form:

w1(t) = θ−m1 , θ′ = l0 + l1θ + l2θ
2 + l3θ

3 + l4θ
4 + · · ·,

w2(t) = θ−m2

(
w20 + w21θ + w22θ

2 + w23θ
3 + w24θ

4 + · · ·
)
,

b1(t) = θ−m3

(
b10 + b11θ + b12θ

2 + b13θ
3 + b14θ

4 + · · ·
)
,

b2(t) = θ−m4

(
b20 + b21θ + b22θ

2 + b23θ
3 + b24θ

4 + · · ·
)
,

b3(t) = θ−m5

(
b30 + b31θ + b32θ

2 + b33θ
3 + b34θ

4 + · · ·
)
,

(6)
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where θ = t − t0 and t0 is an arbitrary position of singularity. We found that there
were several possible cases of dominant balance of the system (5) similar to those in the
Painlevé test. Among the several possible cases of principle dominant balance we have
obtained the singular solution only in the following case of principle dominant balance:

ẇ1 = −b2, ẇ2 = b1, ḃ1 = w2b3, ḃ2 = −w1b3, ḃ3 = w1b2 − w2b1, (7)

and the exponent with this principle dominant balance are as follows:

m1 = m2 = −1, m3 = m4 = m5 = −2. (8)

Since w1, w2 are of order 1 near the movable singularity, we can introduce the indicial
normalization w1(t) = θ−1 and try to calculate the formal θ− series of (6) with m2 =
−1, m3 = m4 = m5 = −2. Since the system (5) is autonomous, the coefficients appearing
in the series given by (5) are to be constant. Substituting the values of exponents from
(8) into the equations (6) and then substituting these series into the system (5) and hence
equating the like powers of θ on both sides, we obtain the following equations in leading
order coefficients:

l0 = b20, −w20l0 = b10, −2b10l0 = w20b30,

2b20l0 = b30, −2b30l0 = b20 − w20b10.
(9)

Solving equations (9), we find two possible branches of leading order coefficients which
are as follows:

l0 = r′1, w20 = ±
√
−1− 4r′21 , b10 = ∓r′1

√
−1− 4r′21 , b20 = r′1, b30 = 2r′21 , (10)

where r′1 is an arbitrary constant.

Definition 2.1 The leading exponents m1, m2, m3, m4, m5 for system of ODEs (5)
are Fuchsian, if the m∗-weighted degree of the right-hand side of (5) is ≤ mi + 1.

The m∗-weighted degree of polynomial in w1, w2, b1, b2, b3 is found by taking the
degree of w′is, i = 1, 2, b′is, i = 1, 2, 3 to be mi, i = 1, 2, 3, 4, 5. And we verified that the
exponents mi’s, i = 1, 2, 3, 4, 5 are Fuchsian for the system (5).

Remark 2.1 Since all leading order coefficients given by (10) are nonzero, the selec-
tion of leading exponents is natural and these exponents satisfy the Fuchsian condition.

So far in the employment of mirror transformations we have completed the two steps
of algorithm, that is, we have determined leading order coefficients in principle dominant
balance and exponents. Now, in the following section we will implement the third step
of the algorithm and determine the resonances in the following way.

2.1 Resonances

Now we substitute the assumed θ-series (6) with the values of exponents given by (8)
into the system of ODEs (5) and after doing some algebraic calculations we specify the
following recursive relations to determine the coefficients w1j , w2j , b1j , b2j and b3j for
j = 1, 2, 3, . . . which are valid for j ≥ 2:

M(j)


lj
w2j

b1j
b2j
b3j

 =


Aj

Bj

Cj

Dj

Ej

 , (11)
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where

Aj = f ′w2(j−1), Bj = −
j−1∑
k=1

lkw2(j−k),

Cj = −k1b2(j−1) +

j−1∑
k=1

w2kb3(j−k) −
j−1∑
k=1

lkb1(j−k),

Dj = k1b1(j−1) −
j−1∑
k=1

lkb2(j−k),

Ej = −
j−1∑
k=1

w2kb1(j−k) −
j−1∑
k=1

lkb3(j−k) ,

(12)

and matrix M(j) is

M(j) =


−1 0 0 1 0
−w20 (j − 1)l0 −1 0 0
−2b10 −b30 (j − 2)l0 0 −w20

−2b20 0 0 (j − 2)l0 1
−b30 b10 w20 −1 (j − 2)l0

 . (13)

The above recursive relations (11, 12) determine the unknown expansion coefficients
uniquely unless the determinant of matrix M(j) is zero. Those values of j at which
the determinant of matrix M(j) vanishes are called the resonances. Here, we observe
that for both possible branches of leading order coefficients given in equations (10), the
resonances are j = 0, 2, 3, 4. Since j = 0 is the resonance, one of the variable in (10)
appears to be a resonance parameter, say l0 = r′1, and we should replace it by r̄1 (where
r̄1 =

√
−4− k22, the arbitrary constant k2 is the resonance parameter in the Painlevé

test [2]), which satisfies the condition r̄1
−m1 = r′1, that is, r̄1

−1 = r′1. Let us denote by
k2 = r1 the resonance parameter, and hence we have r̄1 =

√
−4− r21. Now, we refresh

the leading order coefficients given by (10) as follows:

l0 = (
√
−4− r21)−1, w20 = ± r1√

−4− r21
, b10 = ∓ r1

(
√
−4− r21)2

,

b20 = (
√
−4− r21)−1, b30 =

2

(
√
−4− r21)2

.
(14)

2.2 Compatibility conditions

Further, we need to check the compatibility conditions for each resonance j = 2, 3, 4.
We will do this for the first branch.
Case I: Consider the leading order coefficients

l0 = (
√
−4− r21)−1, w20 =

r1√
−4− r21

, b10 = − r1

(
√
−4− r21)2

,

b20 = (
√
−4− r21)−1, b30 =

2

(
√
−4− r21)2

.
(15)

• Compatibility condition at j = 1.
As j = 1 is not resonance, we get the unique solution. Since the recursion relations
(11, 12) remain valid when j ≥ 2, we directly substitute the equations (15) into the
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equations (6) and then into (5). After that, equating the like powers of θ on both sides
of the resulting expansion, we obtain the system of linear equations which determine the
coefficients l1, w21, b11, b21 and b31 uniquely as

l1 =
(−f ′ + k1)r1√
−4− r21

, w21 =
2(f ′ − k1)√
−4− r21

,

b11 =
4f ′ + k1r

2
1

r21 + 4
, b21 =

k1r1√
−4− r21

, b31 =
2(f ′ − k1)r1

4 + r21
.

(16)

• Compatibility condition at the resonance j = 2.
Now j = 2 is a resonance so that one of the coefficients in the computation of the system
(11) at this level is independent. Let b32 be independent and let b32 = r2 (the arbitrary
coefficient), where r2 is the second resonance parameter so that the values of coefficients
are given in terms of r2, which are as follows:

l2 =
(r2 − f ′k1)

2

√
−4− r21, w22 = 0,

b12 =
r1
2

(f ′k1 − r2), b22 =
1

2

[
r2

√
−4− r21 +

f ′(4f ′ + k1r
2
1)√

−4− r21

]
, b32 = r2.

(17)

• Compatibility condition at the resonance j = 3.
To check the compatibility condition at j = 3, we substitute the equations (15, 16, 17)
into the system of ODEs (5), then we obtain a system of linear equations. While solving
that linear system, we found the variable b23 to be independent. Now assign the arbitrary
value to b23, say b23 = r3, and solving the corresponding system we obtain the following
solution. At this level of resonance, we have the third resonance parameter r3:

l3 = r3, w23 =
−r3
r1

, b13 = − 1√
−4− r21

(
r1r3 +

2r3
r1

)
,

b23 = r3, b33 =
r3√
−4− r21

.
(18)

• Compatibility condition at the resonance j = 4.
Now j = 4 is the fourth resonance and solving the system (11) for j = 4 involves the
resonance parameter, say r4. Solving the system (11) for this value of j, we obtain the
following solution with b24 as an arbitrary constant with value r4:

l4 = r4 +
f ′r3
r1

, w24 = (k1 − f ′)r3,

b14 =
1√
−4− r21

[−r1r4 + (−2f ′ + k1)r3], b24 = r4,

b34 =
(f ′ − k1)(2 + r21)r3

r1
√
−4− r21

.

(19)
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Substituting all the values of coefficients lj , w2j , b1j , b2j and b3j for j = 0, 1, 2, 3, 4 . . .
into the equations (6), we get

θ′ =
1√
−4− r21

+
(−f ′ + k1)r1√
−4− r21

θ +
1

2

√
−4− r21(r2 − f ′k1)θ2 + r3θ

3

+ (r4 +
f ′r3
r1

)θ4 + · · ·,

w2(t) = θ−1
[ r1√
−4− r21

+
2(f ′ − k1)√
−4− r21

θ − r3
r1
θ3 + (k1 − f ′)r3θ4 + · · ·

]
,

b1(t) = θ−2
[
− r1

(
√
−4− r21)2

+ (
4f ′ + k1r

2
1

r21 + 4
)θ +

r1
2

(f ′k1 − r2)θ2 − 1√
−4− r21(

r1r3 +
2r3
r1

)
θ3 +

1√
−4− r21

(−r1r4 + (−2f ′ + k1)r3) θ4 + · · ·
]
,

b2(t) = θ−2
[ 1√
−4− r21

+ (
k1r1√
−4− r21

)θ +
1

2

(
r2

√
−4− r21 +

f ′(4f ′ + k1r
2
1)√

−4− r21

)
θ2

+ r3θ
3 + r4θ

4 + · · ·
]
,

b3(t) = θ−2
[ 2

(
√
−4− r21)2

− (
2(f ′ − k1)r1

4 + r21
)θ + r2θ

2 +
r3√
−4− r21

θ3

+
(f ′ − k1)(2 + r21)r3

r1
√
−4− r21

θ4 + · · ·
]
.

(20)
We have just finished the primary calculations of the system (11) and we have determined
the resonance parameters, say r1, r2, r3 and r4. In the following subsection we obtain
the mirror transformations and consequently, we determine the mirror system of (5).

2.3 Mirror system

In this subsection we will develop the mirror transformations by which we transform the
system (5) to its mirror system. Thereby, we discuss the regularity of it.

Now the important step towards determining the mirror system is to introduce a
new variable in which we develop the mirror system. Let us introduce the new variables
ξ1, ξ2, ξ3 and ξ4 in the Laurent θ-series of w2, b1, b2 and b3 by successively truncating
the expansion at the free parameters (resonance parameters) r1, r2, r3 and r4. Now we
begin to truncate the θ-series of w2 at the first resonance parameter r1 by introducing
the variable ξ1 as

w2(t) = θ−1ξ1, (21)

where

ξ1 =
r1√
−4− r21

+
2(f ′ − k1)√
−4− r21

θ − r3
r1
θ3 + (k1 − f ′)r3θ4 + · · ·. (22)

We convert this into

r1 = ξ1r̄1 − 2(f ′ − k1)θ +
r3
ξ1
θ3 − r3(f ′ − k1)(

2

ξ21 r̄1
+ r̄1)θ4 + · · ·. (23)
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Upon substituting the value of r1 in b1, we get

b1(t) = −ξ1
r̄1
θ−2 +

(−2f ′ − 2k1
r̄12

− k1ξ12
)
θ−1 +

[1

2
(f ′k1 − r2)ξ1r̄1

+
4k1ξ1(f ′ − k1)

r̄1

]
+
[−3r3
ξ1r̄12

− 4k1(f ′ − k1)2

r̄12
− (f ′k1 − r2)(f ′ − k1)

− ξ1r3

]
θ +

[−2r3(f ′ − k1)

ξ1
2r̄13

− ξ1r4 +
(f ′r3 − 4k1r3)

r̄1

]
θ2.

(24)

Next we proceed to cut the θ-series of b1 at r2 by introducing the second variable, say
ξ2:

b1(t) = −ξ1
r̄1
θ−2 +

(−2f ′ − 2k1
r̄12

− k1ξ12
)
θ−1 + ξ2, (25)

where

ξ2 =
[1

2
(f ′k1 − r2)ξ1r̄1 +

4k1ξ1(f ′ − k1)

r̄1

]
+
[−3r3
ξ1r̄12

− 4k1(f ′ − k1)2

r̄12

− (f ′k1 − r2)(f ′ − k1)− ξ1r3
]
θ +

[−2r3(f ′ − k1)

ξ1
2r̄13

− ξ1r4

+
(f ′r3 − 4k1r3)

r̄1

]
θ2 + · · · .

(26)

From the θ-series of ξ2, we have

r2 = f ′k1 −
2ξ2
ξ1r̄1

+
8k1(f ′ − k1)

r̄12
+

2

ξ1r̄1

[−3r3
ξ1r̄12

+
4k1(f ′ − k1)2

r̄12
− 2ξ2(f ′ − k1)

ξ1r̄1

− ξ1r3

]
θ − 2

ξ1r̄1

[ 8r3
ξ21 r̄1

3
(f ′ − k1)− 8k1(f ′ − k1)3

ξ1r̄13
+

4ξ2(f ′ − k1)2

ξ21 r̄1
2

+
(f ′ + 2k1)r3

r̄1
+ ξ1r4

]
θ2 + · · ·.

(27)
Now, we substitute the value of r2 into θ-series of b2 and consequently, we update it.
And then after cutting this series at the third resonance parameter r3, we obtain the
θ-series of b2 as follows:

b2(t) =
1

r̄1
θ−2 + k1ξ1θ

−1 +
[2k1(f ′ − k1)

r̄1
+

1

2
f ′k1r̄1 +

1

2
f ′k1ξ

2
1 r̄1 +

2f ′2

r̄1

− ξ2
ξ1

]
+ ξ3θ,

(28)

where

ξ3 =
[−3r3
ξ21 r̄1

2
+

4k1(f ′ − k1)2

ξ1r̄12
− 2ξ2(f ′ − k1)

ξ21 r̄1
− 2f ′k1ξ1(f ′ − k1)

]
+
[−8r3(f ′ − k1)

ξ31 r̄1
3

+
8k1(f ′ − k1)3

ξ31 r̄1
3

− 4ξ2(f ′ − k21)

ξ31 r̄1
2

− (f ′ + k1)r3
ξ1r̄1

+
2f ′k1(f ′ − k21)

r̄1

]
θ + · · ·.

(29)
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From the θ-series of ξ3 we have

r3 = −ξ
2
1 r̄1

2ξ3
3

+
4

3
k1(f ′ − k1)2ξ1 −

2

3
ξ2r̄1(f ′ − k1)− 2

3
f ′k1ξ

3
1 r̄1

2(f ′ − k1)

−
[
− 8

9
(f ′ − k1)ξ1ξ3r̄1 +

8k1(f ′ − k1)3

9r̄1
− 4ξ2(f ′ − k1)2

9ξ1
− 22

9
(f ′ − k1)2f ′k1ξ

2
1 r̄1

− 1

9
(f ′ + k1)ξ31ξ3r̄1

3 +
4

9
(f ′ + k1)(f ′ − k1)2k1ξ

2
1 r̄1

− 2

9
(f ′ + k1)(f ′ − k1)ξ1ξ2r̄1

2 − 2

9
f ′k1(f ′ + k1)(f ′ − k1)ξ41 r̄1

3
]
θ + · · ·.

(30)
Similarly, we truncate the θ series of b3 at the resonance parameter r4 and we obtain the
following θ-series:

b3(t) =
2

r̄12
θ−2 − 2(f ′ − k1)ξ1

r̄1
θ−1 +

[4(f ′ − k1)(f ′ + k1)

r̄12
− 2ξ2
ξ1r̄1

+ f ′k1

]
+

[ 2

r̄1
ξ3 +

4f ′k1ξ1(f ′ − k1)

r̄1
+
ξ21ξ3r̄1

3
− 4k1ξ1(f ′ − k1)2

3r̄1
+

2

3
ξ2(f ′ − k1)

+
2

3
f ′k1ξ

3
1 r̄1(f ′ − k1)

]
θ + ξ4θ

2.

(31)
Hence, we have

ξ4 =
2

9
ξ1ξ3(7k1 − 4f ′)− 4k1

9r̄12
(f ′ − k1)2(7f ′ + 8k1) +

4

9ξ1r̄1
(f ′ − k1)

(4k1 − f ′)ξ2 +
4

9
(f ′ − k1)2(−10f + k1)k1ξ

2
1 −

2

9
(2f ′ − k1)ξ31ξ3r̄1

2

− 2

9
(f ′ − k1)(2f ′ − k1)ξ1ξ2r̄1 −

4

9
f ′k1ξ

4
1 r̄1

2(f ′ − k1)(2f ′ − k1)− 2

r̄1
r4

+
4

3
k1ξ

2
1(f ′ − k1)(f ′2 − 2f ′k1 + k21) + · · ·.

(32)

Using (21), (25), (28) and (31) with w1 = θ−1, we get the change of variables
(w1, w2, b1, b2, b3)←→ (θ, ξ1, ξ2, ξ3, ξ4). The following is the conversion of given system
into the mirror system in terms of the new variables θ, ξ1, ξ2, ξ3 and ξ4:

θ′ =
1

r̄1
+ (k1 − f ′)ξ1θ +

[2(k1f
′ − k21 + f ′2)

r̄1
+

1

2
f ′k1r̄1(1 + ξ21)− ξ2

ξ1

]
θ2

+ ξ3θ
3,

ξ1
′ =

[
− (1 + ξ21)f ′ − 2(f ′ + k1)

r̄12

]
+
[2(k1f

′ − k21 + f ′2)

r̄1
+

1

2
f ′k1r̄1ξ1(1 + ξ21)

]
θ

+ ξ1ξ3θ
2,

ξ2
′ =

[ (−1− ξ21)(f ′ + k1)

r̄1
− 4(f ′ + k1)

r̄13

]
θ−2 +

[2ξ1
r̄12

(2f ′2 − 4k21 − 3k1f
′)

− f ′k1ξ1
2

(3 + 5ξ21)− k21ξ1 − (k1 − f ′)k1ξ31
]
θ−1 +

[
− 4k1ξ

2
1(f ′ − k1)2

3r̄1
− f ′k21ξ

4
1 r̄1

6

+
ξ1ξ3 + 5f ′2ξ21k1 − 3f ′k21ξ

2
1 − 3k21f

′ − 3f ′2k1 + 2k31(1− ξ21)

r̄1
− f ′k21 r̄1

2
+
k1ξ2
ξ1

+
1

3
(ξ31ξ3r̄1 + ξ1ξ2(2f ′ + k1) + 2f ′2k1ξ

4
1 r̄1)− 4(f ′ + k1)(k1f

′ − k21 + f ′2)

r̄13

+
2ξ2(f ′ + k1)

ξ1r̄12

]
+
[
ξ1ξ4 + k1ξ3(ξ21 − 1)− 2ξ3(f ′ + k1)

r̄12

]
θ,

(33)
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ξ3
′ =

[ (−1− ξ21)(f ′ + k1)

ξ1r̄1
− 4(f ′ + k1)

ξ1r̄13

]
θ−3 +

[−2k1f
′ − 8k21 + 4f ′2

r̄12
− k21(ξ21 + 1)

− 1

2
f ′k1(ξ21 + 1)

]
θ−2 +

[ξ3 + 3f ′2k1ξ1 + 3f ′k21ξ1
r̄1

+ k1ξ2 +
1

2
f ′k21ξ

3
1 r̄1 − ξ3

+ f ′2k1ξ1r̄1(ξ21 + 1)− 3k21f
′ + 3f ′2k1−2k31(1− ξ21)

ξ1r̄1
− f ′k21 r̄1

2ξ1
+
k1ξ2+(1+ξ21)f ′ξ2

ξ21

− 4(f ′+k1)(k1f
′−k21+f ′2)

ξ1r̄13
+

4ξ2(f ′+k1)

ξ21 r̄1
2

]
θ−1 +

[−2f ′k1ξ
2
1 r̄1(k1f

′−k21+f ′2)

r̄1

− 1

2
f ′2k21 r̄1

2ξ21(1 + ξ21) +
k1ξ3(ξ21 − 1)

ξ1
− 2ξ3(f ′ + k1)

ξ1r̄12
− 2ξ2
ξ1r̄1

(k1f
′ − k21 + f ′2)

− f ′k1r̄1ξ2(1 + ξ21)

2ξ1

]
+
[
− f ′k1ξ21ξ3r̄1 −

ξ2ξ3
r̄1

]
θ,

ξ4
′ =

[ξ21 + 1

r̄1
+

4

r̄13

]
θ−5 +

[
k1ξ1(1 + ξ21) +

4ξ1
r̄12

(−f ′ + 2k1) +
4ξ1
3r̄12

(f ′ + k1)

+
ξ1(ξ21 + 1)(f ′ + k1)

3

]
θ−4 +

[f ′k1r̄1
2

+
2f ′k1ξ

2
1 r̄1

3
− ξ2
ξ1

+
4

r̄13
(f ′2 − k21)

+
1

r̄1
(4f ′k1 − 2k21 + 2k21ξ

2
1 − 2f ′k1ξ

2
1)− 4ξ2

ξ1r̄12
+

1

6
f ′k1ξ

4
1 r̄1 +

8(f ′2 − k21)

3r̄13

+
1

3r̄1
(2k1f

′ξ21 + 6k21ξ
2
1 − 2f ′2ξ21 − 2(k21 − f ′2)) +

ξ21 r̄1k
2
1

3
(ξ21 + 1)

]
θ−3

+
[2

3
f ′k21ξ1(1 + ξ21 r̄1 − 4ξ21)− 1

6
f ′k21ξ1r̄1

2(ξ41 − 1)− 2

3
f ′2k1ξ

3
1(1 + r̄1)

− 1

3
f ′2k1ξ

3
1 r̄1

2(1 + ξ21)− 1

3
f ′ξ2(2 + r̄1) +

1

3
k1ξ2(2− r̄1)− 1

3
ξ21ξ2r̄1(f ′ + k1)

+
1

r̄12
(4ξ3 + 4f ′2k1ξ1 − 12f ′k21ξ1) +

1

r̄1
(2ξ2(f ′ − 2k1)− 4f ′k1ξ1(f ′ − k1))

+
1

3r̄12
(20f ′k1ξ1(f ′ + k1)− 28k31ξ1 − 4ξ1f

′3) +
1

3
(ξ21ξ3 − 4k31ξ1)

+
1

3r̄1
(−2k1ξ2 + 4k1ξ1(f ′ − k1)2)

]
θ−2 +

[
2f ′3ξ21k1r̄1(1 + ξ21)

− f ′2k21ξ
2
1 r̄1(1 +

1

9
ξ21) +

1

r̄1
(−8f ′k31ξ

2
1 + 12f ′3k1ξ

2
1 + 4f ′3k1 − 4f ′2k21)

− 4ξ2(f ′2 − k21)

3ξ1r̄12
− 2(f ′ − k1)k1ξ2

3ξ1
+

8f ′k1(f ′2 − k21)

r̄13
+

1

9
f ′k1ξ

4
1 r̄1(−7k21 + 4f ′2)

+
1

6
f ′2k21ξ

4
1 r̄1

3(1 + ξ21) +
1

3
ξ31ξ3r̄1(f ′ − 1

3
k1) + ξ1ξ3r̄1(2 +

1

3
k1)

+
4

3
k1ξ1ξ2(2f ′ − k1) +

2

3
f ′2ξ1ξ2 +

1

2
f ′k1r̄1

2ξ1(ξ2 + ξ21ξ3) + 2ξ4ξ3r̄1

+ f ′k21 r̄1(f ′ − k1) +
1

3r̄1
(4ξ1ξ3(f ′ + 2k1) + 2f ′3k1(1− 17

3
ξ21) + 2f ′k31(−7 + ξ21)

+ 8f ′2k21(1 + 2ξ21) + 4k41(1− 5

3
ξ21) +

8f ′2(f ′2 − k21)

3r̄13
)
]
θ−1 +

[ 1

r̄12
(2ξ2ξ3

− 8f ′k1ξ1(f ′ − k1)(k1f
′ − k21 + f ′2)) +

1

3r̄12
(8k1(k1f

′ − k21 + f ′2)(f ′ − k1)2ξ1

+ 4ξ3(f ′−k21)) +
1

3
(−f ′k1ξ21ξ3r̄12 + 2k21f

′ξ1(f ′ − k1)2(1 + ξ21)− ξ3(ξ21 − 1)

− 2(f ′ − k1)ξ1ξ4)− ξ2ξ3
ξ1

+ 2ξ21ξ3(f ′k1 + ξ2)− f ′2k21ξ1(f ′ − k1)(1 + ξ21)

(2 + ξ21 r̄1
2)− 4ξ21(k1f

′ − k21 + f ′2)(ξ3 + f ′k1ξ1(f ′ − k1))− 2ξ1ξ4(f ′ − k1)
]

+
[
− 2ξ21ξ3r̄1

3
+

4k1ξ1ξ3(f ′ − k1)(−2f ′ − k1)

3r̄1
− 4ξ4(k1f

′ − k21 + f ′2)

r̄1

− 2f ′k1ξ
3
1ξ3r̄1 − f ′k1ξ4r̄1(1 + ξ21) +

2ξ2ξ4
ξ1

]
θ − 2ξ3ξ4θ

2.

(34)
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By similar calculations, we can find the mirror system for the following branch of leading
order coefficients:

l0 = (
√
−4− r21)−1, w20 = − r1√

−4− r21
,

b10 =
r1

(
√
−4− r21)2

, b20 = (
√
−4− r21)−1, b30 =

2

(
√
−4− r21)2

.
(35)

The mirror system obtained so far for the present case of leading order coefficient is
regular if and only if the following condition are satisfied:

ξ1 =

√
−4− r̄12
r̄1

, ξ2 = −26k21ξ1
9r̄1

, f ′ = k1, ξ3 = 0. (36)

The most prominent thing for the singularity analysis is that the system is regular near
θ = 0, which corresponds to movable singularity of the system of six coupled ODEs (5).

3 Alternative Approach of the Convergence of Laurent Series in Painlevé
Test

The convergence of Laurent series solution obtained by the Painlevé test is guaranteed
by Kichenassamy and Littman [4]. But here we are going to present an alternative
approach of the convergence of these series by making use of the mirror system and the
Cauchy-Kowalevski theorem.

An ideal rotating, uniformly stratified system of six coupled ODEs (5) is completely
integrable for the Rayleigh number Ra = 0. For Ra = 0, the Painlevé test produces the
following formal solution of ODEs (5) for the first case of leading order coefficients:

w1(t) =
√
−4− k22τ−1 +

(f ′ − k1)k2
2

+

√
−4− k22

2
(−k3 + f ′k1)τ

+
[
− k4

2
+
f ′k2

4
(−k3 + f ′k1)

]
τ2

+ {−k5
3

+
f ′
√
−4− k22
12k2

[
f ′k2(k3 − f ′k1) + 2k4

]
}τ3

+

∞∑
j=5

w1jτ
j−1,

w2(t) = k2τ
−1 +

[√−4− k22
2

(
− f ′ + k1

)]
+

(−k3k2 + f ′k2k1)

2
τ

+
√
−4− k22

[ k4
2k2

+
f ′

4

(
k3 − f ′k1

)]
τ2

+
[ −k5k2

3
√
−4− k22

+
f ′

12

(
f ′k2k3 + 2k4 − f ′2k2k1

)]
τ3 +

∞∑
j=5

w1jτ
j−1,

b1(t) = −k2τ−2 + f ′
√
−4− k22τ−1 +

(−k2k3 + f ′2k2)

2
+
k4
√
−4− k22
k2

τ

− k5k2√
−4− k22

τ2 +

∞∑
j=5

b1jτ
j−2,

(37)
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b2(t) =
√
−4− k22τ−2 + f ′k2τ

−1 +
[√−4− k22

2
(k3 − f ′2)

]
+ k4τ + k5τ

2

+

∞∑
j=5

b2jτ
j−2,

b3(t) = 2τ−2 + k3 −
4k5

3
√
−4− k22

τ2

− 1

6k2

(
f ′2k2k3 − 3k2k

2
3 + 2f ′k4 − f ′3k2k1 + 3f ′k2k3k1 − 6k4k1

)
τ2

+

∞∑
j=5

b3jτ
j−2.

(38)

The above Laurent series contains the five arbitrary constant w30 = k1, k2, k3, k4 and
k5. Here τ = t − t0 and t0 is an arbitrary position of singularity in complex domain.
As we see, the above Laurent series has a movable pole type singularity, and using the
Painlevé method we conclude that the above Laurent series (37) and (38) are convergent
for small τ ; and this convergence is guaranteed by Kichenassamy and Littman [4]. But
for an alternative approach, we convert these series into an initial value problem for the
mirror system (33) and (34). For this purpose we substitute the formal Laurent series
(37) and (38) into the mirror transformation w1 = θ−1, (21), (25), (28) and (31). After
simplification, we obtain the following formal power series for θ, ξ1, ξ2, ξ3 and ξ4:

θ = (
√
−4− k22)−1τ − (f ′ − k1)k2

(
√
−4− k22)2

τ2 +
1

4(
√
−4− k22)3

(−8k3 − 2k22k3 + 8f ′k1 + f ′2k22 + k21k
2
2)τ3

+
[ 1

2(
√
−4− k22)2

(
k4 + (−k3 + f ′k1)(

f ′k2
2
− k1k2)

)
− (f ′ − k1)3k32

8(
√
−4− k22)4

]
τ4

+
[ k5

3(
√
−4− k22)2

+
1√

−4− k22
(−f

′2

12
(k3 − f ′k1)− f ′k4

6k2
+

(−k3 + f ′k1)2

4
)

+
1

2(
√
−4− k22)3

(−k4(f ′ − k1)k2 +
(f ′ − k1)k22

4
(−k3 + f ′k1)(3k1 − f ′))

+
(f ′ − k1)4k42

(16
√
−4− k22)5

]
τ5 + . . . ,

ξ1 =
k2√
−4− k22

− 2(f ′ − k1)

4 + k22
τ − k2(f ′ − k1)2

(−4− k22)
3
2

τ2 +
[ 1

(−4− k22)

( k2k4

2
√
−4− k22

− 1

4
(f ′k1 − k3)k1k

2
2 +

1

8
(−f ′ + k1)(8f ′k1 + f ′2k22 + k21k

2
2)
)

+
k4
2k2
− f ′2k1 +

k1k3
4
− (f ′ − k1)3k42

8(−4− k22)2

]
τ3 + . . .,

ξ2 =
k2
2

(f ′2 − 3k3 + 2f ′k1) +
1

(−4− k22)
(f ′ − k1)k2(

1

4
k22(f ′ + k1) + 2(f ′ + 2k1))

+
[ 1√
−4− k22

(
− k2k4

2
+

1

4
(f ′k1 − k3)(4f ′ − k1)k22 + 2f ′2k1 − 3k3(f ′ − k1)

− 1

4
f ′k1k

2
2(f ′ − k1)

)
+
√
−4− k22(

k4
2k2
− f ′2k1 +

k1k3
4

) +
4k1(f ′ − k1)2

(−4− k22)
3
2

]
τ + . . .,

(39)
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ξ3 =
√
−4− k22

(3

2
k4 −

2k4
k2
− k4k2

2
+

5f ′2k1
k2

− k1k3
2

+
1

2
f ′2k1k2 +

1

4
f ′k21k2 −

f ′3

k2

+
2f ′k21
k2

)
+

(f ′ − k1)√
−4− k22

[
− 2f ′k1k2 +

1

2
k2(k21 − f ′2)− 3

8
f ′k1k

3
2 +

1

4
k21k

3
2

− 4f ′

k2
(f ′ − k1)

]
+ {−3

8
k21k

2
2k3 +

1

2
f ′k2k4 −

3

8
f ′2k22k3 +

5

8
f ′3k1k

2
2 −

15

8
k1k2k4

− 1

2
f ′2k21 − 2f ′k31 +

3

2
f ′3k1 +

7

2
f ′k1k3 −

3

2
k21k3 − f ′2k3 −

5

8
f ′2k21k

2
2

+ f ′k1k
2
2k3 − f ′k1(f ′ − k1) +

1

4
k31k

2
2(f ′ − 1

2
k21) +

1

k2

[
2f ′4 − 6f ′k3(f ′ − 2k1)

− 6k21(f ′2 + k3 + 4f ′k31 + f ′k4 +
2f ′3k1
k2

+
6k3(f ′ − k1)2

k2
− k1k4 −

2f ′2k21
k2

)
]

+ (−4− k22)
[
− 5

12
f ′2k3 +

f ′k4
6k2

− 13

12
f ′3k1 −

1

4
f ′k1k3 +

1

2
(k23 + f ′3k1)− k1k4

k2

+ 2f ′2k21 −
k21
2

(4f ′2 − k3)− 1

k32
k4(k1 − 2f ′) +

2f ′2k1
k22

(f ′ − k1) +
k21k3
2k22

]
+

√
−4− k22

[5

3
k5 +

1

k2
(6f ′2k1 + 2k1k3 − 3f ′k3)− k4 +

7

4
f ′2k1k2 −

2k4
k22

− f ′k2k3

]
+

1

(−4− k22)

[
k1(f ′ − k1)3(4− 8

k22
+
k42
8

+
1

2
k22) +

4(f ′ − k1)3

k2

(
1

4
k22(f ′ + k1) + 2(f ′ + 2k1))

]
}τ + . . .,

ξ4 =
5

18
k5

√
−4− k22 +

2

3
(f ′ − k1)2(2f ′ + k1)k1 − 12f ′k1(f ′ − k1)2k22

− 1√
−4− k22

(f ′ − k1)3(f ′ + k1)k22 +
1

3
(f ′ − k1)2

√
−4− k22 +

(f ′ + k1)2k22
3(4 + k22)

[12f ′k1 + f ′k1k
2
2 − 3(f ′ − k1)2k22] +

1

3
k2(f ′ − k1)2(

8

k32
− 2

k2
+

1

2
k2

− 2(4+k22)(f ′k1−k3)

k2(f ′−k1)2
)
[f ′2+2f ′k1−(f ′−k1)(f ′(8+k22)+k1(16+k22))

2(4+k22)
−3k3

]
+ 2(f ′k1 − k3)[3(f ′ − k1)2 − 2(f ′2 − k21)

√
−4− k22] +

7

2
(4 + k22)

(f ′k1 − k3)2 +
1

4
(f ′ − k1)2k22k3 −

5

2
(f ′ − k1)k2(f ′2k1k2 − f ′k2k3 − 2k4)

+
72(f ′ − k1)k2(f ′2k1k2 − f ′k2k3 − 2k4)√

−4− k22
+ 12(f ′ − k1)(−4− k22)

[
− 2f ′2k1

+
1

2
k1k3 +

k4
k2
− k42(f ′ − k1)4

(4 + k22)2
+
k22(−f ′2 − f ′k21 + k31 + k1(f ′2 + 2k3)) + 4k2k4√

−4− k22

]
+ . . . ,

(40)
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Thus, we have the mirror system (33) and (34) with the following initial data

θ(0) = 0, ξ1(0) =
k2√
−4− k22

,

ξ2(0) =
k2
2

(−3k3 + f ′2 + 2f ′k1) +
1

(−4− k22)
(f ′ − k1)k2

[1

4
k22(f ′ + k1)

+ 2(f ′ + 2k1)
]
,

ξ3(0) =
√
−4− k22

(3

2
k4 −

2k4
k2
− k4k2

2
+

5f ′2k1
k2

− k1k3
2

+
1

2
f ′2k1k2 +

1

4
f ′k21k2

− f ′3

k2
+

2f ′k21
k2

)
+

(f ′ − k1)√
−4− k22

[
(−2f ′k1k2 +

1

2
k2(k21 − f ′2)− 3

8
f ′k1k

3
2

+
1

4
k21k

3
2 −

4f ′

k2
(f ′ − k1)

]
,

ξ4(0) =
5

18
k5

√
−4− k22 +

2

3
(f ′ − k1)2(2f ′ + k1)k1 − 12f ′k1(f ′ − k1)2k22 + . . ..

(41)

Now we are ready to show the convergence of (37)and (38) by using the Cauchy
theorem [10, p.150-151]. From the differential equations (33) and (34) and the initial
conditions (41) we see that the coefficients of variable in (33), (34) and initial value
conditions (41) are analytic functions provided that r1 = k2 6= ±2i. Thus, the initial
value problem (33) and (34) with initial conditions (41) has unique analytic solutions
which are convergent in the neighbourhood of θ = 0.

Substituting the series (39) and (40) back into w1 = θ−1, (21), (25), (28) and (31), we
obtain the convergent power series for w1, w2, b1, b2 and b3 which was not just formal.
Furthermore, with some computation we see that these series are exactly (37) and (38).
Therefore, we come to the conclusion that the Laurent series (37) and (38) are convergent.
Thus, we summarise these results in terms of the following theorem.

Theorem 3.1 For the principal Laurent series solution of the ideal rotating, uni-
formly stratified system of six coupled ODEs (3), there is a change of variables of the
form (6) such that the system of ODEs (3) is transformed into a regular system of ODEs
(33) and (34) for the new variables (θ, ξ1, ξ2, ξ3, ξ4). Further, the Laurent series (37)
and (38) in the principle dominant balance are converted into the power series (39) and
(40) with initial data (41) which are the analytic functions in terms of new variables and
thus, the series solutions (39)with (40) are convergent in the neighbourhood of θ = 0.

4 Conclusion

The reduced system of ODEs (3) which arose in the reduction of uniformly stratified
fluid contained in the rotating box of dimension L×L×H is completely integrable if the
Rayleigh number Ra = 0. By taking Ra = 0, we have obtained the mirror system for
both possible branches of leading ordered coefficients of system (3). The main feature in
the singularity analysis is that the mirror system is regular near θ = 0, which corresponds
to the movable singularity of the system (3) provided (36) holds. Also, we have shown
that the formal Laurent series solutions arising from successful application of the Painlevé
test to the system of ODEs (3) are convergent.
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