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Existence of Solutions for a Biological Model Using

Topological Degree Theory

C. H. D. Alliera ∗

Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires.

Received: January 11, 2018; Revised: December 21, 2018

Abstract: Topological degree theory is a useful tool for studying systems of dif-
ferential equations. In this work, a biological model is considered. Specifically, we
prove the existence of positive T -periodic solutions of a system of delay differential
equations for a model with feedback arising on circadian oscillations in the drosophila
period gene protein.

Keywords: differential equations with delay; periodic solutions; models with feed-
back; topological degree; drosophila; circadian cycle.

Mathematics Subject Classification (2010): 34K13, 92B05.

1 Introduction

The study of cellular control has been developed in many papers on mathematical analysis
to determine the existence of stable oscillations in mRNA regulatory processes, see [5]
and to understand circadian cycles and, in particular, of the cellular machinery that
produces them, see [7].

In all cases, search for conditions on the parameters of the proposed systems has been
carried out with the purpose of determining conditions for the existence of stable cycles
and the cycles when the system solution may be even chaotic.

Let us consider a model proposed by Goldbeter [3], who showed the variation on PER:
the period of messenger of Ribo-Nucleic Acid (mRNA) in Drosophila (often called “fruit
flies”) related to circadian rhythms. Our model does not consider temperature variation
as shown in [6]. Here, a nonautonomous version of the model is considered with the
aim of proving the existence of periodic solutions by means of a powerful topological
tool: the Leray-Schauder degree (see [1] and [2]). In the original model, the existence
of a positive steady state can be shown, under appropriate conditions, by the use of the
Brouwer degree. As we shall see, when the parameters are replaced by periodic functions,
essentially the same conditions yield the existence of positive periodic solutions.

∗ Corresponding author: mailto:calliera@dm.uba.ar

c© 2019 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 1



2 C.H.D. ALLIERA

Figure 1: Model for the circadian variation in PER.

2 The Model

The following simplified model was proposed in [3]. Some more complex alternative
models have been studied with light interaction and timeless (TIM) proteins (see [4]).

2.1 General features

1. This negative feedback will be described by an equation of Hill type in which n
denotes the degree of cooperativity, and K(t) is the threshold repression function.

2. To simplify the model, we consider that PN behaves directly as a repressor.

3. The constants Ks,Ki and Vj denote the maximum rate and Michaelis constant of
the kinase(s) and the phosphatase(s) involved in the reversible phosphorylation of
P0 into P1, and of P1 into P2 are not negative.

4. Maximum accumulation rate of cytosol is denoted by Vs.

5. Cytosol is degraded enzymically, in a Michaelian manner, at a maximum rate Vm.

6. Functions of this system are:

(a) Cytosolic concentration is denoted by M .

(b) We consider only three states of the protein: unphosphorylated (P0),
monophosphorylated (P1) and bisphosphorylated (P2).

(c) Fully phosphorylated form of PER (P2) is degraded in a Michaelian man-
ner, at a maximum rate Vd, and also transported into the nucleus, at a rate
characterized by the apparent first-order rate constant k1.
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7. The rate of synthesis of PER, proportional to M , is characterized by an apparent
first-order rate constant Ks.

8. Transport of the nuclear, bisphosphorylated form of PER (PN ) into the cytosol is
characterized by the apparent first-order rate constant k2.

9. The model could be readily extended to include a larger number of phosphorylated
residues.

With this in mind, our non-autonomous version of Goldbeter’s system reads:

dM

dt
=

VS(t)K1(t)n

Kn
1 (t) + PN (t)n

− Vm(t)M(t)

Km1(t) +M(t)
,

dP0

dt
= Ks(t)M(t) +

V2(t)P1(t)

K2(t) + P1(t)
− V1(t)P0(t)

K1(t) + P0(t)
,

dP1

dt
=

V1(t)P0(t)

K1(t) + P0(t)
+

V4(t)P2(t)

K4(t) + P2(t)
− P1(t)

(
V2(t)

K2(t) + P1(t)
+

V3(t)

K3(t) + P1(t)

)
,

dP2

dt
=

V3(t)P1(t)

K3(t) + P1(t)
+ k2(t)PN (t)− P2(t)

(
k1(t) +

V4(t)

K4(t) + P2(t)
+

Vd(t)

Kd(t) + P2(t)

)
,

dPN
dt

= k1(t)P2(t)− k2(t)PN (t),

(1)
where Ki, i = 1, 2, 3, 4, d,m1, s, k1, k2 and Vj , j = 1, 2, 3, 4, S,m, d are strictly positive,
continuous T -periodic functions. We shall prove that, under accurate assumptions to be
specified below, the system admits at least one positive T -periodic solution.

3 Existence of Positive Periodic Solutions

In order to apply the topological degree method to problem (1), let us consider the space
of continuous T -periodic vector functions

CT := {u ∈ C(R,R5) : u(t) = u(t+ T ) for all t},

equipped with the standard uniform norm, and the positive cone

K := {u ∈ CT : uj ≥ 0, j = 1, . . . , 5}.

Thus, the original problem can be written as Lu = Nu, where L : C1 ∩CT → C is given
by Lu := u′ and the nonlinear operator N : K → CT is defined as the right-hand side of
system (1). For convenience, the average of a function u shall be denoted by u, namely

u := 1
T

∫ T
0
u(t) dt. Also, identifying R5 with the subset of constant functions of CT , we

may define the function φ : [0,+∞)5 → R5 given by φ(x) := Nx.
For the reader’s convenience, let us summarize the basic properties of the Leray-

Schauder degree which, roughly speaking, can be regarded as an algebraic count of the
zeros of a mapping F : Ω → E, where E is a Banach space and Ω ⊂ E is open and
bounded. In more precise terms, assume that F = I − K, where K is compact and
F 6= 0 on ∂Ω. The degree degLS(F,Ω, 0) is defined as the Brouwer degree degB of its
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restriction F |V : Ω∩V → V , where V is an accurate finite-dimensional subspace of E. In
particular, if the range of K is finite dimensional, then one may take V as the subspace
spanned by Im(K). If degLS(F,Ω, 0) is different from 0, then F vanishes in Ω; moreover,
the degree is invariant over a continuous homotopy Fλ := I−Kλ with Kλ being compact
and Fλ 6= 0 over ∂Ω. Finally, we recall that if ∆ : Rn → Rn is a diffeomorphism and
0 ∈ ∆(A) for some open bounded A ⊂ Rn, then degB(∆, A, 0) is just the sign of the
Jacobian determinant of ∆ at the (unique) pre-image of 0. The following continuation
theorem is a direct consequence of the standard topological degree methods (see e.g. [1]).

Theorem 3.1 Assume there exists Ω ⊂ K◦ being open and bounded such that:

a) The problem Lu = λNu has no solutions on ∂Ω for 0 < λ < 1.

b) φ(u) 6= 0 for all u ∈ ∂Ω ∩ R5.

c) degB(φ,Ω ∩ R5, 0) 6= 0.

Then (1) has at least one solution in Ω.

3.1 A priori bounds

Firstly, we shall find appropriate bounds for the solution of the problem Lu = λNu with
λ ∈ (0, 1). For convenience, let us fix the following notation for the minima and maxima
of all the functions involved in the model, namely

0 < vi ≤ Vi(t) ≤ Vi, 0 < κj ≤ Kj(t) ≤ Kj , 0 < k̂l ≤ kl(t) ≤ kl, ∀ i, j, l.

Now assume that u ∈ K◦ satisfies Lu = λNu for some 0 < λ < 1. Let us firstly
consider a value t∗ at which M achieves an absolute maximum, then M ′(t∗) = 0 and
hence

VS(t∗)K1(t∗)n

Kn
1 (t∗) + PN (t∗)n

=
Vm(t∗)M(t∗)

Km1
(t∗) +M(t∗)

≥ vmM(t∗)

Km1
+M(t∗)

:= bM (M(t∗)),

where the increasing function

bM (x) :=
vmx

Km1
+ x

has inverse such that

b−1M (y) :=
Km1

y

vm − y
.

If

Hypothesis 3.1
vm > VS ,

then

M(t∗) = b−1M

(
VS(t∗)K1(t∗)n

Kn
1 (t∗) + PN (t∗)n

)
< b−1M (VS(t∗)) ≤ VSKm1

vM − VS
:=M.

Next, suppose that P0 achieves its absolute maximum at some point, denoted again t∗,
then

Ks(t
∗)M(t∗) +

V2(t∗)P1(t∗)

K2(t∗) + P1(t∗)
=

V1(t∗)P0(t∗)

K1(t∗) + P0(t∗)
≥ v1P0(t∗)

K1 + P0(t∗)
:= b0(P0(t∗)).
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Again, we define an increasing and invertible function:

b0(x) :=
v1x

K1 + x
→ b−10 (y) :=

K1y

v1 − y
.

Thus, under the condition

Hypothesis 3.2
KSM+ V2 < v1

we deduce that

P0(t∗) = b−10

(
Ks(t

∗)M(t∗) +
V2(t∗)P1(t∗)

K2(t∗) + P1(t∗)

)
<

KSM+ V2
v1 − (KSM+ V2)

K1 := P0.

Next, an upper bound P1 for P1 is readily obtained in the following way. Let us denote
again by t∗ a value at which P1 achieves its absolute maximum, then

V1(t∗)P0(t∗)

K1(t∗) + P0(t∗)
+

V4(t∗)P2(t∗)

K4(t∗) + P2(t∗)
= P1(t∗)

(
V2(t∗)

K2(t∗) + P1(t∗)
+

V3(t∗)

K3(t∗) + P1(t∗)

)
.

When P1(t∗) � 0, the right-hand side gets close to V2(t∗) + V3(t∗), while the left-hand
side is always less than or equal to V1P0

κ1+P0
+ V4 because P2

K4(t∗)+P4
≤ 1 and x

κ1+x
increase

when x = P0.
Thus, the existence of P1 is guaranteed by the condition

Hypothesis 3.3

V1P0

κ1 + P0
+ V4 < min

t∈R
{V2(t) + V3(t)}.

The remaining upper bounds are obtained as follows. In the first place, define a new
variable Q := PN + P2 which satisfies the equation:

dQ

dt
=

V3(t)P1(t)

K3(t) + P1(t)
− P2(t)

(
V4(t)

K4(t) + P2(t)
+

Vd(t)

Kd(t) + P2(t)

)
.

If Q achieves its absolute maximum at t∗, then

V3P1

κ3 + P1
≥ V3(t∗)P1(t∗)

K3(t∗) + P1(t∗)
− P2(t∗)

(
V4(t∗)

K4(t∗) + P2(t∗)
+

Vd(t
∗)

Kd(t∗) + P2(t∗)

)
.

As before, if the condition

Hypothesis 3.4
V3P1

κ3 + P1
< min

t∈R
(V4(t) + Vd(t))

is assumed, then P2(t∗) ≤ P̃ for some P̃ . Moreover, from the fourth equation of the

system we deduce the existence of a constant C such that
dP2

dt
≥ −CP2(t). Hence we

obtain, for all t, that P2(t) ≤ eCT P̃ := P2. Then Q′(t) is bounded. Besides, there exist
t̂ critical point of PN , in consequence

k1(t̂)P2(t̂) = k2(t̂)PN (t̂),
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then PN (t̂) verifies:

PN (t̂) ≤ k∗1
k2∗
P2,

thus

Q(t̂) = PN (t̂) + P2(t̂) ≤ Q0 :=

(
k∗1
k2∗

+ 1

)
P2.

In this way, knowing that Q′ ≤ Q1, by integrating up to a certain t in the interval
J := [t̂, t̂+ T ] follows:

Q(t) = Q(t̂) +

∫ t

t̂

Q′(t) ≤ Q0 + Q1 (t− t̂)︸ ︷︷ ︸
≤T

, t ∈ J

in this way, there is also a PN of PN (t), then

PN (t) ≤ Q(t) ≤ Q0 + Q1T := PN .

After upper bounds are established, we proceed with the lower bounds as follows.
Assume that M achieves its absolute minimum at some t∗, then we use again the fact
that M ′(t∗) = 0 to obtain:

Vm(t∗)M(t∗)

Km1
(t∗) +M(t∗)

=
VS(t∗)K1(t∗)

n

Kn
1 (t∗) + PN (t∗)n

≥ vSκ
n
1

κn1 + PnN
.

As we did before:
Vm(t∗)M(t∗)

Km1
(t∗) +M(t∗)

≥ vmM(t∗)

κm1
+M(t∗)

lets define the increasing and bijective function

b̂M (x) :=
vmx

κm1
+ x

, b̂−1M (y) :=
κm1

y

vm − y

this inverse is increasing too, thus:

M(t∗) ≥ b̂−1M
(

vSκ
n
1

Kn1 + PnN

)
:= m.

This shows that M1(t) ≥ m for some positive constant m. In the same way, we find a
lower bound p0 for P0 using the fact that

V1(t∗)P0(t∗)

K1(t∗) + P0(t∗)
= Ks(t∗)M(t∗) +

V2(t∗)P1(t∗)

K2(t∗) + P1(t∗)
≥ κsm.

We know that
V1(t∗)P0(t∗)

K1(t∗) + P0(t∗)
≥ v1P0(t∗)

κ1 + P0(t∗)
,

this function is increasing and its inverse is also increasing:

b̂1(x) :=
v1x

κ1 + x
→ b̂−11 (y) :=

κ1y

v1 − y
,

therefore, it is defined p0 := b̂−11 (κsm).
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Next, suppose that P1 achieves its absolute minimum at t∗, then

P1(t∗)

(
V2(t∗)

K2(t∗) + P1(t∗)
+

V3(t∗)

K3(t∗) + P1(t∗)

)
>

V1(t∗)P0(t∗)

K1(t∗) + P0(t∗)
≥ v1p0
K1 + p0

> 0

which yields the existence of a positive lower bound p1 := v1p0

K1+p0
. Finally, positive lower

bounds for P2 and PN are obtained by means of the function Q = P2 + PN . Indeed, if
Q achieves its absolute minimum at some t∗, then

P2(t∗)

(
V4(t∗)

K4(t∗) + P2(t∗)
+

Vd(t∗)

Kd(t∗) + P2(t∗)

)
≥ v3p1
K3 + p1

and we deduce that P2(t∗) cannot be arbitrarily small. As before, using the fact that
P ′2 ≥ −CP2 it is seen that P2(t) ≥ e−CTP2(t∗) and the conclusion follows. This, in turn,
yields a lower bound pN > 0 for PN .

4 Main Theorem

We are already in conditions of defining the open set Ω ⊂ K◦ as

Ω := {(M,P0, P1, P2, PN ) ∈ CT : m < M(t) <M, p0 < P0(t) < P0,

p1 < P1(t) < P1, p2 < P2(t) < P2, pN < PN (t) < PN}.

Theorem 4.1 Assume that the previous conditions (3.1), (3.2), (3.3) and (3.4) hold.
Then problem (1) has at least one positive T−periodic solution.

Proof. In the previous section, the first condition of the continuation theorem was
verified. It remains to prove that b) and c) are fulfilled as well. With this aim, set
Q := Ω∩R5 and recall that the function φ : Q → R5 is defined by φ(x) = Nx. We claim
that each coordinate φj has different signs at the corresponding opposite faces of Q.

Indeed, compute for example φ1(M, P0, P1, P2, PN ) and φ1(m, P0, P1, P2, PN ) for pj ≤
Pj ≤ Pj :

φ1(M, P0, P1, P2, PN ) =
1

T

∫ T

0

(
VS(t)K1(t)n

Kn
1 (t) + PN

− Vm(t)M
Km1

(t) +M

)
dt

< VS −
vmM
Km1 +M

= 0,

φ1(m, P0, P1, P2, PN ) =
1

T

∫ T

0

(
VS(t)K1(t)n

Kn
1 (t) + PN

− Vm(t)m

Km1
(t) + m

)
dt

>
vSκ

n
1

Kn1 + PnN
− Vmm

κm1
+ m

≥ 0

provided that m is small enough. In the same way, making the lower bounds smaller if
necessary, we deduce that

φ2(M,P0, P1, P2, PN ) < 0 < φ2(M, p0, P1, P2, PN ),

φ3(M,P0,P1, P2, PN ) < 0 < φ3(M,p0, p1, P2, PN ),
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φ4(M,P0, P1,P2, PN ) < 0 < φ4(M,p0, p1, p2, PN ),

φ5(M,P0, P1, P2,PN ) < 0 < φ5(M,p0, p1, p2, pN ).

Thus, condition b) of the continuation theorem is verified. Moreover, we may define a
homotopy as follows. Consider the center of Q given by

℘ :=

(
M+ m

2
,
P0 + p0

2
,
P1 + p1

2
,
P2 + p2

2
,
PN + pN

2

)
and the function H : Q× [0; 1]→ R5 given by

H(x, λ) = (1− λ)(℘− x) + λφ.

We need to verify that H does not vanish at ∂Q. To this end, suppose, for example, that
H(M, P0, P1, P2, PN ) = 0 for some λ̂ ∈ [0; 1], then

0 = H1(M, λ̂) = (1− λ̂)

(
M+ m

2
−M

)
︸ ︷︷ ︸

<0

+λ̂ φ1(M, P0, P1, P2, PN )︸ ︷︷ ︸
<0

< 0,

which is a contradiction. All the remaining cases follow in an analogous way. By the
homotopy invariance of the Brouwer degree, it follows that

degB(φ,Q, 0) = degB(℘− I,Q, 0) = (−1)5 6= 0.

This proves the third condition of the continuation theorem and, therefore, the existence
of a T -periodic solution is deduced.

5 Conclusion

Topological degree was used for proving existence of stable equilibrium in a generic model
of circadian cycle. This theory allowed to demonstrate the existence of positive periodic
solutions when parameters are replaced by fixed periodic functions. The relevance of
finding periodic solutions in biological models relies mainly on the fact that periodic
functions represent natural cycles, such as hormonal processes.

We show that topological degree can be successfully applied to find positive periodic
orbits for some of these models in the non-autonomous case. It is worthy mentioning
that, for diverse biological cycles, the behaviour is characterized by models with periodic
parameters; thus, the present paper provides a useful mathematical tool to understand
such models.

For future work, it would be interesting to consider a more general situation, in
which the parameters are not periodic but almost-periodic functions, which attracted the
attention of many researchers in the last decades. Here, the topological degree cannot
be used anymore because of the lack of compactness of the associated operator; thus, a
different approach is required, such as the use of fixed points in cones under monotonicity
conditions that avoid the compactness assumption.

Acknowledgment

This work was partially supported by project UBACyT 20020120100029BA. I am grateful
to Dr. Pablo Amster for his helpful comments.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1) (2019) 1–9 9

References

[1] Amster, P. Topological Methods in the Study of Boundary Value Problems. New York:
Springer, 2014.

[2] Amster, P. and Idels, L. Existence theorems for some abstract nonlinear non-autonomous
systems with delays. Commun. Nonlinear Sci. Numer. Simulat. 19 (2014) 2974–2982.

[3] Goldbeter, A. A model for circadian oscillations in Drosophila Period Protein (PER). Bi-
ological Sciences 261 (1362) (1995) 319–324.

[4] Gonze, D., Leloup, J.C. and Goldbeter, A. Theoretical models for circadian rhythms in
Neurospora and Drosophila. C.R. Acad. Sci. Paris, Sciences de la vie / Life Sciences 323
(2000) 57–67.

[5] Griffith, J. S. Mathematics of Cellular Control Processes I. Negative Feedback to One Gene
J. Theoret. Biol. 20 (1968) 202–208.

[6] Majercak, J., Sidote, D., Hardin, P.E. and Edery, I. How a Circadian Clock Adapts to
Seasonal Decreases in Temperature and Day Length Neuron 24 (1999) 219–230.

[7] Paetkau, V., Edwards, R. and Illner, R. A Model for generating circadian rithm by coupling
ultradian oscillators. Theoretical Biology and Medical Modelling 3 (12) (2006) 1–10.



Nonlinear Dynamics and Systems Theory, 19 (1) (2019) 10–20

Solution of 2D Fractional Order Integral Equations by

Bernstein Polynomials Operational Matrices

M. Asgari 1, R. Ezzati 1,∗ and H. Jafari 2,3

1 Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
2 Department of Mathematical Sciences, University of South Africa, UNISA003, South Africa

3 Department of Mathematics, University of Mazandaran, Babolsar, Iran

Received: October 11, 2017; Revised: December 12, 2018

Abstract: In this paper, we construct a new two-dimensional Bernstein polynomials
operational matrix for solving 2-dimensional fractional order Volterra integral equa-
tions (2DFOVIE). By using this operational matrix, we reduce the original problem
to a linear or nonlinear system of algebraic equations. We present some numerical
examples to show the efficiency of the proposed method.
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1 Introduction

In the last few decades, various engineering and scientific problems involving fractional
calculus were discussed. For example, electrochemical process [1, 2], earthquakes [3],
economics [4], bioengineering [5], orthogonal splin collocation [6] and fractional optimal
control problems [7, 8]. There are several analytical and numerical methods for solving
one-dimensional and two-dimensional differential and integral equations of fractional or-
der such as the Adomian decomposition [9], Variational iteration method [10,11], Trans-
form method [12], Homotopy perturbation method [13], and the methods of Harr and
Chebyshev wavelet [14,15] and Bernstein polynomials [16,17].

The Bernstein polynomials play a conspicuous role in several areas of mathematics.
These polynomials have been commonly used in the solution of differential equations,

∗ Corresponding author: mailto:ezati@kiau.ac.ir

c© 2019 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 10
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integral equations, fractional optimal control problems and approximation theory [7, 8,
17–23]. In this work, we consider the following type of 2DVIEFO

u(x, y)− Iq0up(x, y) = g(x, y), q = (α, β) ∈ (0,∞)× (0,∞), (1)

where g(x, y) is a known function and Iq0u(x, y) is the left-sided mixed Riemann-Liouville
integral of order q which is defined as [24]

(Iq0u)(x, y) =
1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− ξ)α−1(y − τ)β−1u(ξ, τ) dτ dξ. (2)

Note: For α > 0, the Riemann-Liouville integral (Iα) on the Lebesgue space L1[a, b]
is defined as

(Iα0 u)(t) = (Iαu)(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1u(τ) dτ. (3)

In particular, for (2), we have

1. (I0
0u)(x, y) = u(x, y),

2. (Iσ0 u)(x, y) =

∫ x

0

∫ y

0

u(ξ, τ) dτ dξ, (x, y) ∈ J, σ = (1, 1),

3. (Ir0u)(x, 0) = (Ir0u)(0, y) = 0, x ∈ [0, a], y ∈ [0, b],

4. Ir0x
λyω = Γ(1+λ)Γ(1+ω)

Γ(1+λ+α)Γ(1+ω+β)x
λ+αyω+β , (x, y) ∈ J, λ, ω ∈ (−1,∞).

We are looking for u ∈ L1(J), J := [0, a]× [0, b]. The existence and uniqueness of (1) is
investigated in [25].

We want to obtain the numerical solution of (1) by using two-dimensional Bern-
stein polynomials and block pulse functions. The rest of this paper is organized as
follows. First, we briefly review some general concepts concerning one-dimensional and
two-dimensional Bernstein polynomials, block pulse functions and derive the Bernstein
polynomials operational matrix of two-dimensional integration of fractional order. In Sec-
tion 3, the method is applied to solve linear or nonlinear 2DVIEFO. Section 4 exhibits
an error estimation for the presented method. Section 5 illustrates several numerical
examples to show the convergence and accuracy of the proposed method.

2 Bernstein Polynomials and Block Pulse Functions

2.1 One dimensional Bernstein polynomials (1D-BPs)

The nth degree Bernstein polynomials (BPs) on the interval [0, 1] are defined as

Bi,n(τ) =

(
n
i

)
τ i(1− τ)n−i, 0 ≤ i ≤ n. (4)

The BPs on [0, 1] have the following properties [7]:

1. Bi,n(τ) ≥ 0, i = 0, 1, . . . , n, τ ∈ [0, 1],

2.

n∑
i=0

Bi,n(t) = 1,
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3. Bi,n(τ) = (1− τ)Bi,n−1(τ) + τBi−1,n−1(τ), i = 0, 1, . . . , n,

4. Bi,n(τ) =

n−i∑
k=0

(−1)k
(
n
i

)(
n− i
k

)
τ i+k, i = 0, 1, . . . , n.

Theorem 2.1 [26] Suppose that H = L2[0, 1] is a Hilbert space with the inner
product and X = Span {B0,n(t), B1,n(t), . . . , Bn,n(t)} is a closed subspace with finite
dimensions, therefore X is a complete subspace of H. So, if u ∈ H is an arbitrary
element, it has a unique best approximation out of X such as x0, that is

∃ x0 ∈ Y s.t. ∀x ∈ X, ‖ u− x0 ‖2≤‖ u− x ‖2, (5)

where ‖ u ‖2=
√
< u, u > , < u, v >=

∫ 1

0

u(τ)v(τ) dτ .

Thus, there exist unique coefficients c0, c1, . . . , cn such that

u(t) ' x0 =

n∑
i=0

ciBi,n(t) = cTϕ(t), (6)

where cT = [c0, c1, . . . , cn] , ϕ(τ) = [B0,n(τ), B1,n(τ), . . . , Bn,n(τ)]T .

Lemma 2.1 If ϕn(τ) = [B0,n(τ), B1,n(τ), . . . , Bn,n(τ)]
T

is a complete basis, then
ϕn(t) = ATn(t), where A is an (n+ 1)× (n+ 1) upper triangular matrix with

ai+1,j+1 =

 (−1)j−i
(
n
i

)(
n− i
j − i

)
, i 6 j,

0, i > j,
(7)

for i, j = 0, 1, . . . , n and Tn(τ) = [1, τ, τ2, . . . , τn]T .

2.2 BPF and operational matrix

A set of BPF on [0, 1) is defined as follows:

bi(t) =

{
1, i

m ≤ t <
i+1
m , i, j = 0, 1, . . . ,m− 1,

0, otherwise.
(8)

The above functions are orthogonal and disjoint, i.e.

bi(t)bj(t) =

{
bi(t) i = j,
0 i 6= j,

and
∫ 1

0
bi(t)bj(t) dt =

1

m
δij , where δij is the Kronecker

delta.
If Bm(τ) = [b0(τ), b1(τ), . . . , bm−1(τ)]T , the block pulse operational matrix of the

fractional order integration Fα is [27]

IαBm(τ) = FαBm(τ),

where

Fα =
1

mα

1

Γ(α+ 2)



1 ξ1 ξ2 ξ3 . . . ξm−1

0 1 ξ1 ξ2 . . . ξm−2

0 0 1 ξ1 . . . ξm−3

...
...

. . .
. . .

. . .
...

0 0 . . . 0 1 ξ1
0 0 . . . 0 0 1


, (9)

with ξs = (s+ 1)α+1 − 2sα+1 + (s− 1)α+1.
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2.3 Operational matrix for fractional integral equation(1D)

If
ϕ(τ) = ϕn(τ) = [B0,n(τ), B1,n(τ), . . . , Bn,n(τ)]T ,

then for the fractional integral equation (3), we have

Iαϕn(τ) = Pαϕn(τ), (10)

with n = m− 1, the Bernstein polynomial might be expanded into an m-term BPF as

ϕm(τ) = φm×mBm(τ), (11)

now
Iαϕm(τ) = Iαφm×mBm(τ) = φm×mI

αBm(τ) = φm×mF
αBm(τ). (12)

From equations (11) and (12), we have

Iαϕm(τ) = φm×mF
αBm(τ) = φm×mF

αφ−1
m×mϕm(τ). (13)

Therefore,
Pαm×m = φm×mF

αφ−1
m×m. (14)

Pα is called an operational matrix for fractional integration based on the Bernstein
polynomials [28].

2.4 Two-dimensional Bernstein polynomials (2D-BPs)

The Bernstein polynomials of degree mn on the interval [0, 1]× [0, 1] are defined by

B(i,m)(j,n)(µ, ν) =

(
m
i

)(
n
j

)
µi(1− µ)m−iνj(1− ν)n−j (15)

for i = 0, 1, . . . ,m, j = 0, 1, . . . , n.

Similar to the 1D case, we have [19]:
1. B(i,m)(j,n)(µ, ν) ≥ 0,
2. B(i,m)(j,n)(µ, ν) = B(i,m)(µ)B(j,n)(ν),

3. B(i,m)(j,n)(µ, ν) =

m−i∑
k=0

n−j∑
t=0

(−1)r+t
(
m
i

)(
n
j

)(
m− i
k

)(
n− j
t

)
µi+kνj+t,

4. Q =< B(i,m)(j,n)(µ, ν), B(k,m)(t,n)(µ, ν) >

=

∫ 1

0

∫ 1

0

B(i,m)(j,n)(µ, ν)B(k,m)(t,n)(µ, ν) dµdν =

(
m
i

)(
n
j

)(
m
k

)(
n
t

)
(2m+ 1)(2n+ 1)

(
2m
i+ k

)(
2n
j + t

) ,

for i, k = 0, 1, . . . ,m, j, t = 0, 1, . . . , n.
Now, if we define (m+ 1)× (n+ 1)-vector

ϕmn(µ, ν) = [B(0,m)(0,n)(µ, ν), . . . , B(0,m)(n,n)(µ, ν),

. . . , B(m,m)(0,n)(µ, ν), . . . , B(m,m)(n,n)(µ, ν)]T , (16)

where (µ, ν) ∈ [0, 1]× [0, 1], then ϕmn(µ, ν) is a complete basis.
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2.5 Function expansion with 2D-BPs

We expand u(µ, ν) ∈ L2([0, 1]× [0, 1]) by 2D-BPs as

u(µ, ν) =

∞∑
i=0

∞∑
j=0

uijϕij(µ, ν) '
m∑
i=0

n∑
j=0

uijϕij(µ, ν) = UTϕ(µ, ν) = ϕT (µ, ν)U, (17)

where ϕ(µ, ν) and U are (m+ 1)(n+ 1) vectors. Components uij of U are obtained as

uij =< u(µ, ν), ϕ(µ, ν) >=

∫ 1

0

∫ 1

0

u(µ, ν)B(i,m)(j,n)(µ, ν) dµ dν. (18)

Similarly, let k(µ, ν, s, t) be defined on [0, 1] × [0, 1] × [0, 1] × [0, 1]. It can be expanded
with respect to 2D-BPs as

k(µ, ν, s, t) ' ϕT (µ, ν)Kψ(s, t), (19)

where ϕ(µ, ν) and ψ(s, t) are 2D-BPs vectors of dimension (m1 + 1)(n1 + 1) and (m2 +
1)(n2 +1), respectively, and K is the (m1 +1)(n1 +1)× (m2 +1)(n2 +1) two-dimensional
Bernstein polynomials coefficient matrix.

2.6 Operational matrix for fractional integral equation(2D)

Suppose B(i,m)(µ) = A1Tm(µ) and B(j,n)(ν) = A2Tn(ν). Then

ϕmn(µ, ν) = MTmn(µ, ν),

where

Tmn(µ, ν) = [1, ν, ν2, . . . , νn, µ, µν, . . . , µνn, . . . , µm, µmν, . . . , µmνn]
T
,

and M = A1 ⊗A2 and ⊗ denotes the Kronecker product.
Now, we present two-dimensional Bernstein polynomials operational matrices of frac-
tional mode. Let ϕmn(µ, ν) be defined as in (16). The fractional integration of the
ϕmn(µ, ν) can be approximately obtained as

1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− ξ)α−1(y − τ)β−1ϕmn(ξ, τ) dξ dτ ' P rϕmn(µ, ν), (20)

where P r is a (m+ 1)(n+ 1)× (m+ 1)(n+ 1) matrix and is called an operational matrix.
Let operational matrices Pα and P β satisfy (14), i.e.

Iαϕm(µ) = Pαϕm(µ) = φm×mF
αφ−1

m×mϕm(µ),

Iβϕn(ν) = P βϕn(ν) = φn×nF
βφ−1

n×nϕn(ν). (21)

From the disjointness property of two-dimensional Bernstein polynomials, we get

1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− ξ)α−1(y − τ)β−1ϕmn(ξ, τ) dξ dτ =
1

Γ(α)

∫ x

0

(x− ξ)α−1ϕm(ξ) dξ

× 1

Γ(β)

∫ y

0

(y − τ)β−1ϕn(τ) dτ.

By using (21), we have
P r = Pα ⊗ P β . (22)
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2.7 Product operational matrix

In view of (1), we have up(x, y). So, we need to evaluate the product of ϕ(x, y) and
ϕT (x, y), which is called the product matrix.

Lemma 2.2 Suppose that C(m+1)(n+1) is an arbitrary vector. The operational matrix

of product Ĉ(m+1)(n+1)×(m+1)(n+1) using BPs can be given as follows [29] :

ϕ(x, y)ϕT (x, y)C ' ĈTϕ(x, y). (23)

Corollary 2.1 Suppose u(x, y) = UTϕ(x, y) = ϕT (x, y)U and Û is the operational
matrix of product. Then

(u(x, y))k = ϕT (x, y)Uk, (24)

where k ∈ N and Uk = Ûk−1U .

Proof. By using Lemma 2.2, for k = 2, we get

(u(x, y))2 = UTϕ(x, y)ϕT (x, y)U = ϕT (x, y)ÛU = ϕT (x, y)U2.

Also, if k = 3 ,

(u(x, y))3 = UTϕ(x, y)ϕT (x, y)ÛU = ϕT (x, y)Û2U = ϕT (x, y)U3.

So, by induction we have

(u(x, y))k = UTϕ(x, y)ϕT (x, y)Ûk−2U = ϕT (x, y)Ûk−1U = ϕT (x, y)Uk.

3 Solving 2DFOVIE

In this section, two-dimensional Bernstein polynomials are applied to solve equation(1).
Using the procedures mentioned in Section 2, we approximate functions (u(x, y))p,
k(x, y, s, t) and f(x, y) as follows:

(u(x, y))p = ϕT (x, y)Up = U
T

p ϕ(x, y),

f(x, y) = ϕT (x, y)F = FTϕ(x, y), (25)

k(x, y, s, t) = ϕT (x, y)Kϕ(x, y),

where the (m+ 1)(n+ 1)× 1 vectors Up, F and (m+ 1)(n+ 1)× (m+ 1)(n+ 1) matrix
K are 2D-BPs coefficients of (u(x, y))p, f(x, y) and k(x, y, s, t) respectively. Substituting
equations(25) in equation(1), we have:

ϕT(x, y)U− 1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x−s)α−1(y−t)β−1ϕT(x, y)Kϕ(s, t)ϕT(s, t)Up dt ds=ϕT(x, y)F.

By using (23), we get

ϕT (x, y)U −
ϕT (x, y)K Û

T

p

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− s)α−1(y − t)β−1ϕ(s, t) dt ds = ϕT (x, y)F.
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From equation(20) and the above equation, we obtain

ϕT (x, y)U − ϕT (x, y)K Û
T

p P
rϕ(x, y) = ϕT (x, y)F,

or

U −K Û
T

p P
rϕ(x, y) = F. (26)

Now, we collocate equation(26) in (m+ 1)(n+ 1) Newton-Cotes nodes as

xi =
2i− 1

2(m+ 1)
, yj =

2j − 1

2(n+ 1)
, i = 1, 2, . . . ,m+ 1, j = 1, 2, . . . , n+ 1.

So, we have a linear(p = 1) or nonlinear(p ≥ 1) algebraic system

U −Bψ = F, (27)

where B = K Û
T

p P
r, and

ψ = [ϕ(x1, y1), ϕ(x1, y2), . . . , ϕ(x1, yn+1), . . . ϕ(xm+1, y1), . . . , ϕ(xm+1, yn+1)]
T
.

4 Error analysis

Theorem 4.1 Suppose u(x, y) is an exact solution of the equation (1) and û(x, y)
shows its approximate solution by Bernstein polynomials, and

1. | (x− ξ)α−1(y − τ)β−1k(x, y, ξ, τ) |< C,

2. (u(x, y))p is a Lipschitz continuous function, i.e.

|(u(x, y))p − (û(x, y))p| ≤ L|u(x, y)− û(x, y)|,

where L is a Lipschitz constant
3. m1=m2 = m.

Then û(x, y) converges to u(x, y), if 0 <
LC

Γ(α)Γ(β)
< 1.

Proof.
‖ u(x, y)− û(x, y) ‖∞= max

0≤x,y≤1
|u(x, y)− û(x, y)|

= max
0≤x,y≤1

| 1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x−ξ)α−1(y − τ)β−1k(x, y, ξ, τ)((u(ξ, τ))p−(û(ξ, τ))p)dξdτ |

≤ max
0≤x,y≤1

1

Γ(α)Γ(β)

∫ x

0

∫ y

0

|(x−ξ)α−1(y − τ)β−1k(x, y, ξ, τ)||(u(ξ, τ))p−(û(ξ, τ))p|dξdτ

≤ max
0≤x,y≤1

CL

Γ(α)Γ(β)

∫ x

0

∫ y

0

|u(ξ, τ)− û(ξ, τ)| dξdτ

≤ CLxy

Γ(α)Γ(β)
‖ u(ξ, τ)− û(ξ, τ) ‖∞≤

CL

Γ(α)Γ(β)
‖ u(ξ, τ)− û(ξ, τ) ‖∞ .
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Therefore we get

‖ u(x, y)− û(x, y) ‖∞≤
CL

Γ(α)Γ(β)
‖ u(ξ, τ)− û(ξ, τ) ‖∞ . (28)

Equation (28) shows that if 0 < LC
Γ(α)Γ(β) < 1, then ‖ u(ξ, τ)− û(ξ, τ) ‖∞−→ 0.

5 Numerical Examples

To demonstrate the validity and applicability of this scheme, we use the present
method for the following four examples. In view of (2), we rewrite (1) in the following
form of 2DFOVIE:

u(x, y)− 1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− ξ)α−1(y − τ)β−1k(x, y, ξ, τ)up(ξ, τ) dξ dτ = g(x, y) (29)

Now, for different values of α, β, k(x, y, ξ, τ), p and g(x, y), we solve (29).

Example 5.1 Let α = 5
3 , β = 7

3 , k(x, y, ξ, τ) = ξτ
√
xy, p = 1 and g(x, y) = x3(y2 −

y)− x
17
3 y

13
3
√
xy(9y−16)

5000 The exact solution is u(x, y) = x3(y2−y). We applied the proposed
method to solve this example for various values of m and n. Also, we compare the
numerical results with the exact solution. The results are tabulated in Table 1.

x = y m = n =1 m = n =2 m = n =3
0.0 6.292 ×10−6 3.091 ×10−6 7.394 ×10−6

0.1 7.702 ×10−5 3.942 ×10−4 4.401 ×10−5

0.2 1.261 ×10−3 2.814 ×10−3 9.460 ×10−5

0.3 5.645 ×10−3 4.417 ×10−3 1.492 ×10−4

0.4 1.533 ×10−2 3.212 ×10−3 2.022 ×10−4

0.5 3.121 ×10−2 1.926 ×10−4 2.515 ×10−4

0.6 5.180 ×10−2 3.579 ×10−3 2.919 ×10−4

0.7 7.198 ×10−2 4.819 ×10−3 3.020 ×10−4

0.8 8.187 ×10−2 2.975 ×10−3 2.257 ×10−4

0.9 6.556 ×10−2 5.010 ×10−4 5.289 ×10−5

Table 1: The maximum absolute errors in Example 5.1.

Example 5.2 Let α = β = 5
2 , k(x, y, ξ, τ) =

√
xyξ, p = 2 and f(x, y) = x

√
y −

1

420
x

11
2 y4 with the exact solution u(x, y) = x

√
y. The maximum absolute errors are

shown in Table 2.

Example 5.3 Let α = 5
2 , β = 7

2 , k(x, y, ξ, τ) = (y + ξ)e−2τ , p = 2 and

f(x, y) = xey − 1024x
9
2 y

7
2 (6x+ 11y)

1091475π
with the exact solution u(x, y) = xey. The

maximum absolute errors are shown in Table 3.
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x = y m = n =1 m = n =2 m = n =3
0.0 5.603 ×10−5 2.592 ×10−6 1.327 ×10−5

0.1 3.064 ×10−3 1.273 ×10−3 1.611 ×10−3

0.2 4.032 ×10−3 4.748 ×10−3 1.497 ×10−3

0.3 1.220 ×10−2 4.694 ×10−3 1.253 ×10−3

0.4 1.818 ×10−2 1.276 ×10−3 3.797 ×10−3

0.5 2.009 ×10−2 3.948 ×10−3 4.052 ×10−3

0.6 1.666 ×10−2 8.789 ×10−3 1.451 ×10−3

0.7 6.937 ×10−3 1.070 ×10−2 2.806 ×10−3

0.8 9.786 ×10−3 6.921 ×10−3 5.652 ×10−3

0.9 3.410 ×10−2 5.490 ×10−3 2.132 ×10−3

Table 2: The maximum absolute errors in Example 5.2.

x = y m = n =1 m = n =2 m = n =4
0.0 9.890 ×10−5 3.578 ×10−4 7.921 ×10−4

0.1 6.034 ×10−3 6.324 ×10−4 9.468 ×10−4

0.2 1.666 ×10−3 3.307 ×10−4 1.104 ×10−3

0.3 9.537 ×10−3 1.114 ×10−3 1.266 ×10−3

0.4 2.339 ×10−2 8.532 ×10−4 1.424 ×10−3

0.5 3.514 ×10−2 6.995 ×10−4 1.566 ×10−3

0.6 3.935 ×10−2 3.095 ×10−3 1.673 ×10−3

0.7 2.987 ×10−2 5.105 ×10−3 1.675 ×10−3

0.8 3.150 ×10−4 4.622 ×10−3 1.370 ×10−3

0.9 5.916 ×10−2 1.445 ×10−3 2.511 ×10−4

Table 3: The maximum absolute errors in Example 5.3.

Example 5.4 As the last example, let α = 3
2 , β = 5

2 , k(x, y, ξ, τ) =
√
xyτ, p = 2 and

f(x, y) =
√
y( −1

180x
3y

7
2 +

√
x
3 ) The exact solution of this example is u(x, y) =

√
3xy
3 . The

maximum absolute errors are shown in Table 4. Also, the obtained numerical results
are compared with the method of block pulse operational matrix (BPOM) proposed
in [23,30].

6 Conclusion

A new approach to obtain numerical solution of 2DFOVIE based on the operational
matrices of Bernstein polynomials has been presented. With the help of the operational
matrix of fractional integration P r and the collocation method, the given 2DFOVIE is
reduced to a linear or nonlinear system of algebraic equations. Illustrative examples show
that the proposed method can be a suitable method for solving these equations. All of
computations are done by Mathematica 9.
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x = y m = n =1 m = n =2 m = n =3 m1=m2=32
BPOM

0.0 4.091 ×10−2 1.701 ×10−2 9.354 ×10−3 9.386 ×10−3

0.1 1.171 ×10−2 4.572 ×10−3 5.766 ×10−3 1.561 ×10−2

0.2 1.017 ×10−2 1.183 ×10−2 3.740 ×10−3 8.812 ×10−3

0.3 2.472 ×10−2 9.513 ×10−3 2.911 ×10−3 1.630 ×10−2

0.4 3.196 ×10−2 1.934 ×10−3 7.428 ×10−3 8.239 ×10−3

0.5 3.186 ×10−2 7.003 ×10−3 7.270 ×10−3 1.410 ×10−2

0.6 2.444 ×10−2 1.382 ×10−2 2.893 ×10−3 7.665 ×10−3

0.7 9.702 ×10−3 1.545 ×10−2 3.149 ×10−3 1.430 ×10−2

0.8 1.236 ×10−2 9.258 ×10−3 6.781 ×10−3 7.091 ×10−3

0.9 4.176 ×10−2 6.980 ×10−3 2.666 ×10−3 1.260 ×10−2

Table 4: The maximum absolute errors in Example 5.4.
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Abstract: In this paper we have considered the system of six coupled non-linear
ordinary differential equations (ODEs), which arose in the reduction of uniformly
stratified fluid contained in a rotating rectangular box of dimension L×L×H which
is completely integrable if the Rayleigh number Ra = 0. In our investigations, we
have shown that there exits a regular mirror system near movable singularities of these
integrable ODEs. Moreover, we have used the mirror system to prove the convergence
of Laurent series solutions obtained by the Painlevé method.

Keywords: mirror transformation; mirror system; Painlevé test.
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1 Introduction

In general, we believed that the differential system is integrable due to some sort of un-
derlying linear structure(s). But, when it comes to this concept, it is never clear what
does it mean. On the other hand the integrability of nonlinear system is quite ambigu-
ous. In this connection many mathematicians started to work over the investigation of
integrability of nonlinear system. In 1889, Sophie Kowalevski [12] proved the complete
integrability of the system of ordinary differential equations (ODEs) governing the mo-
tion of a spinning top moving under the influence of gravity. In her study, she was seeking
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c© 2019 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 21
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analytic solutions whose singularities are movable poles. This was done by substituting
a Frobenius series into the system of ODEs. Then, few years later, that is in 1897,
Paul Painlevé [6] classified first and second order algebraic differential equations whose
solutions exist in the complex domain and are devoid of movable essential singularities
or movable branch points. ODEs possessing this property are said to be of the Painlevé
type. Painlevé test in view of partial differential equations is generally known as WTC
(Weiss-Tabor-Carnevale, [7]) test, which is further modified by S. Kichenassamy and G.
K. Srinivasan [3]. So far various properties are considered as indicator of integrability:
solitons, the Lax pair, the Bäcklund transformations, the underlying Hamiltonian formu-
lations, Hirota’s bilinear representation, etc. The relation between these properties has
yet to be understood.

In 1999–2000, Hu J. and Yan M. [8, 9] introduced the mirror transformation, which
is a new tool used in the singularity analysis of ODEs. With the help of this method
we constructed the mirror system of given PDEs or ODEs successfully; we could focus
commonly at the singularity structure and symplectic structure of the Hamiltonian sys-
tem for each principle balance in the Painlevé test. Further to this study, Hu et al [11]
proved that the mirror transformation is canonical for finite-dimensional Hamiltonian
systems. Furthermore, in 2001 Yee [13] showed that linearization of the mirror systems
near movable poles provides the possibility to construct the associated Backlund trans-
formations. In continuous development of mirror transformations in 2011, Tat-Leung
Yee [14] extended the mirror method with perturbations which was utilized for finer
analysis of certain nonlinear equations possessing negative Fuchsian indices.

In connection with the basin scale dynamics, Maas [5] has considered the flow of
fluid contained in a rectangular basin of dimension L × L × H, which is temperature
stratified with fixed zeroth order moment of mass and heat. The container is assumed
to be steady, uniform rotation of an f-plane. With this assumption Maas [5] reduces
the rotating stratified Boussinesq equation to a beautiful six coupled system of ODEs.
Srinivasan et al. [4] extended this work and gave a detail mathematical analysis of the
reduced system of six coupled ODEs. Furthermore, Desale and Patil [2] tested the system
of six coupled ODEs (5) for complete integrability using the Painlevé test. Also, they
investigated the case of non-integrability for Ra 6= 0 and thereby they have obtained
weak solutions (in the form of logarithmic psi-series) in the different branches of leading
order.

In this paper we have successfully implemented the mirror transformations and con-
structed the mirror system of (5) for Ra = 0 which is regular near movable singularity.
Further, with the help of mirror transformation, we have proved that the Laurent series
obtained by using the Painlevé test are convergent. In the following section we imploy
the mirror transformation to find the mirror system of ideal rotating stratified Boussinesq
equations.

2 Mirror System of Six Coupled Non-Linear ODEs

Consider the rotating stratified Boussinesq equations (see Majda [1], p. 1)

D~v

Dt
+ f(ê3 × ~v) = −∇p+ ν(∆~v)− gρ̃

ρb
ê3,

div ~v = 0,
Dρ̃

Dt
= κ∆ρ̃,

(1)
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where ~v denotes the velocity field, ρ is the density which is the sum of constant reference
density ρb and perturbation density ρ̃, p is the pressure, g is the acceleration due to gravity
that points in −ê3 direction, f is the rotation frequency of earth, ν is the coefficient of
viscosity, κ is the coefficient of heat conduction and D

Dt = ∂
∂t + (~v · ∇) is a convective

derivative. For more about the rotating stratified Boussinesq equations one may see
Majda [1]. Maas [5] reduces the system of equations (1) to the following system of six
coupled ODEs:

Pr−1
d~w

dt
+ f ′ê3 × ~w = ê3 × ~b− (w1, w2, rw3) + T̂ ~T,

d~b

dt
+ ~b× ~w = −(b1, b2, µb3) +Ra~F.

(2)

In these equations, ~b = (b1, b2, b3) is the center of mass, ~w = (w1, w2, w3) is the basin

averaged angular momentum vector, ~T is the differential momentum, ~F are buoyancy
fluxes, f ′ = f/2rh is the earth rotation, r = rv/rh is the friction (rv,h are Rayleigh
damping coefficients), Ra is the Rayleigh number, Pr is the Prandtl number, µ is the
diffusion coefficient and T̂ is the magnitude of the wind stress torque.

Neglecting diffusive and viscous terms, Maas [5] considers the dynamics of an ideal
rotating, uniformly stratified fluid in response to forcing. He assumes this to be due
solely to differential heating in the meridional (y) direction. ~F = (0, 1, 0), the wind

effect is neglected, i.e. ~T = 0. For the Prandtl number Pr, equal to one, the system of
equations (2) reduces to the following ideal rotating, uniformly stratified system of six
coupled ODEs

d~w

dt
= −f ′ê3 × ~w + ê3 × ~b,

d~b

dt
= −~b× ~w +Ra~F.

(3)

The system of ODEs (3) can be written component wise as

ẇ1 = f ′w2 − b2, ẇ2 = −f ′w1 + b1, ẇ3 = 0,

ḃ1 = w2b3 − w3b2, ḃ2 = w3b1 − w1b3 +Ra, ḃ3 = w1b2 − w2b1.
(4)

Since ẇ3 = 0, this gives w3 = constant = k1. Consequently, we have the following system
of ODEs:

ẇ1 = f ′w2 − b2, ẇ2 = −f ′w1 + b1,

ḃ1 = w2b3 − k1b2, ḃ2 = k1b1 − w1b3 +Ra, ḃ3 = w1b2 − w2b1.
(5)

In our earlier study [2], we have shown that the system of ODEs (5) is completely
integrable provided that Ra = 0 and we have determined the solutions in the form of
Laurent series with the help of the Painlevé method. Now our aim is to determine the
mirror system of (5) and its solutions in the following form:

w1(t) = θ−m1 , θ′ = l0 + l1θ + l2θ
2 + l3θ

3 + l4θ
4 + · · ·,

w2(t) = θ−m2

(
w20 + w21θ + w22θ

2 + w23θ
3 + w24θ

4 + · · ·
)
,

b1(t) = θ−m3

(
b10 + b11θ + b12θ

2 + b13θ
3 + b14θ

4 + · · ·
)
,

b2(t) = θ−m4

(
b20 + b21θ + b22θ

2 + b23θ
3 + b24θ

4 + · · ·
)
,

b3(t) = θ−m5

(
b30 + b31θ + b32θ

2 + b33θ
3 + b34θ

4 + · · ·
)
,

(6)
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where θ = t − t0 and t0 is an arbitrary position of singularity. We found that there
were several possible cases of dominant balance of the system (5) similar to those in the
Painlevé test. Among the several possible cases of principle dominant balance we have
obtained the singular solution only in the following case of principle dominant balance:

ẇ1 = −b2, ẇ2 = b1, ḃ1 = w2b3, ḃ2 = −w1b3, ḃ3 = w1b2 − w2b1, (7)

and the exponent with this principle dominant balance are as follows:

m1 = m2 = −1, m3 = m4 = m5 = −2. (8)

Since w1, w2 are of order 1 near the movable singularity, we can introduce the indicial
normalization w1(t) = θ−1 and try to calculate the formal θ− series of (6) with m2 =
−1, m3 = m4 = m5 = −2. Since the system (5) is autonomous, the coefficients appearing
in the series given by (5) are to be constant. Substituting the values of exponents from
(8) into the equations (6) and then substituting these series into the system (5) and hence
equating the like powers of θ on both sides, we obtain the following equations in leading
order coefficients:

l0 = b20, −w20l0 = b10, −2b10l0 = w20b30,

2b20l0 = b30, −2b30l0 = b20 − w20b10.
(9)

Solving equations (9), we find two possible branches of leading order coefficients which
are as follows:

l0 = r′1, w20 = ±
√
−1− 4r′21 , b10 = ∓r′1

√
−1− 4r′21 , b20 = r′1, b30 = 2r′21 , (10)

where r′1 is an arbitrary constant.

Definition 2.1 The leading exponents m1, m2, m3, m4, m5 for system of ODEs (5)
are Fuchsian, if the m∗-weighted degree of the right-hand side of (5) is ≤ mi + 1.

The m∗-weighted degree of polynomial in w1, w2, b1, b2, b3 is found by taking the
degree of w′is, i = 1, 2, b′is, i = 1, 2, 3 to be mi, i = 1, 2, 3, 4, 5. And we verified that the
exponents mi’s, i = 1, 2, 3, 4, 5 are Fuchsian for the system (5).

Remark 2.1 Since all leading order coefficients given by (10) are nonzero, the selec-
tion of leading exponents is natural and these exponents satisfy the Fuchsian condition.

So far in the employment of mirror transformations we have completed the two steps
of algorithm, that is, we have determined leading order coefficients in principle dominant
balance and exponents. Now, in the following section we will implement the third step
of the algorithm and determine the resonances in the following way.

2.1 Resonances

Now we substitute the assumed θ-series (6) with the values of exponents given by (8)
into the system of ODEs (5) and after doing some algebraic calculations we specify the
following recursive relations to determine the coefficients w1j , w2j , b1j , b2j and b3j for
j = 1, 2, 3, . . . which are valid for j ≥ 2:

M(j)


lj
w2j

b1j
b2j
b3j

 =


Aj

Bj

Cj

Dj

Ej

 , (11)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1) (2019) 21–35 25

where

Aj = f ′w2(j−1), Bj = −
j−1∑
k=1

lkw2(j−k),

Cj = −k1b2(j−1) +

j−1∑
k=1

w2kb3(j−k) −
j−1∑
k=1

lkb1(j−k),

Dj = k1b1(j−1) −
j−1∑
k=1

lkb2(j−k),

Ej = −
j−1∑
k=1

w2kb1(j−k) −
j−1∑
k=1

lkb3(j−k) ,

(12)

and matrix M(j) is

M(j) =


−1 0 0 1 0
−w20 (j − 1)l0 −1 0 0
−2b10 −b30 (j − 2)l0 0 −w20

−2b20 0 0 (j − 2)l0 1
−b30 b10 w20 −1 (j − 2)l0

 . (13)

The above recursive relations (11, 12) determine the unknown expansion coefficients
uniquely unless the determinant of matrix M(j) is zero. Those values of j at which
the determinant of matrix M(j) vanishes are called the resonances. Here, we observe
that for both possible branches of leading order coefficients given in equations (10), the
resonances are j = 0, 2, 3, 4. Since j = 0 is the resonance, one of the variable in (10)
appears to be a resonance parameter, say l0 = r′1, and we should replace it by r̄1 (where
r̄1 =

√
−4− k22, the arbitrary constant k2 is the resonance parameter in the Painlevé

test [2]), which satisfies the condition r̄1
−m1 = r′1, that is, r̄1

−1 = r′1. Let us denote by
k2 = r1 the resonance parameter, and hence we have r̄1 =

√
−4− r21. Now, we refresh

the leading order coefficients given by (10) as follows:

l0 = (
√
−4− r21)−1, w20 = ± r1√

−4− r21
, b10 = ∓ r1

(
√
−4− r21)2

,

b20 = (
√
−4− r21)−1, b30 =

2

(
√
−4− r21)2

.
(14)

2.2 Compatibility conditions

Further, we need to check the compatibility conditions for each resonance j = 2, 3, 4.
We will do this for the first branch.
Case I: Consider the leading order coefficients

l0 = (
√
−4− r21)−1, w20 =

r1√
−4− r21

, b10 = − r1

(
√
−4− r21)2

,

b20 = (
√
−4− r21)−1, b30 =

2

(
√
−4− r21)2

.
(15)

• Compatibility condition at j = 1.
As j = 1 is not resonance, we get the unique solution. Since the recursion relations
(11, 12) remain valid when j ≥ 2, we directly substitute the equations (15) into the
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equations (6) and then into (5). After that, equating the like powers of θ on both sides
of the resulting expansion, we obtain the system of linear equations which determine the
coefficients l1, w21, b11, b21 and b31 uniquely as

l1 =
(−f ′ + k1)r1√
−4− r21

, w21 =
2(f ′ − k1)√
−4− r21

,

b11 =
4f ′ + k1r

2
1

r21 + 4
, b21 =

k1r1√
−4− r21

, b31 =
2(f ′ − k1)r1

4 + r21
.

(16)

• Compatibility condition at the resonance j = 2.
Now j = 2 is a resonance so that one of the coefficients in the computation of the system
(11) at this level is independent. Let b32 be independent and let b32 = r2 (the arbitrary
coefficient), where r2 is the second resonance parameter so that the values of coefficients
are given in terms of r2, which are as follows:

l2 =
(r2 − f ′k1)

2

√
−4− r21, w22 = 0,

b12 =
r1
2

(f ′k1 − r2), b22 =
1

2

[
r2

√
−4− r21 +

f ′(4f ′ + k1r
2
1)√

−4− r21

]
, b32 = r2.

(17)

• Compatibility condition at the resonance j = 3.
To check the compatibility condition at j = 3, we substitute the equations (15, 16, 17)
into the system of ODEs (5), then we obtain a system of linear equations. While solving
that linear system, we found the variable b23 to be independent. Now assign the arbitrary
value to b23, say b23 = r3, and solving the corresponding system we obtain the following
solution. At this level of resonance, we have the third resonance parameter r3:

l3 = r3, w23 =
−r3
r1

, b13 = − 1√
−4− r21

(
r1r3 +

2r3
r1

)
,

b23 = r3, b33 =
r3√
−4− r21

.
(18)

• Compatibility condition at the resonance j = 4.
Now j = 4 is the fourth resonance and solving the system (11) for j = 4 involves the
resonance parameter, say r4. Solving the system (11) for this value of j, we obtain the
following solution with b24 as an arbitrary constant with value r4:

l4 = r4 +
f ′r3
r1

, w24 = (k1 − f ′)r3,

b14 =
1√
−4− r21

[−r1r4 + (−2f ′ + k1)r3], b24 = r4,

b34 =
(f ′ − k1)(2 + r21)r3

r1
√
−4− r21

.

(19)
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Substituting all the values of coefficients lj , w2j , b1j , b2j and b3j for j = 0, 1, 2, 3, 4 . . .
into the equations (6), we get

θ′ =
1√
−4− r21

+
(−f ′ + k1)r1√
−4− r21

θ +
1

2

√
−4− r21(r2 − f ′k1)θ2 + r3θ

3

+ (r4 +
f ′r3
r1

)θ4 + · · ·,

w2(t) = θ−1
[ r1√
−4− r21

+
2(f ′ − k1)√
−4− r21

θ − r3
r1
θ3 + (k1 − f ′)r3θ4 + · · ·

]
,

b1(t) = θ−2
[
− r1

(
√
−4− r21)2

+ (
4f ′ + k1r

2
1

r21 + 4
)θ +

r1
2

(f ′k1 − r2)θ2 − 1√
−4− r21(

r1r3 +
2r3
r1

)
θ3 +

1√
−4− r21

(−r1r4 + (−2f ′ + k1)r3) θ4 + · · ·
]
,

b2(t) = θ−2
[ 1√
−4− r21

+ (
k1r1√
−4− r21

)θ +
1

2

(
r2

√
−4− r21 +

f ′(4f ′ + k1r
2
1)√

−4− r21

)
θ2

+ r3θ
3 + r4θ

4 + · · ·
]
,

b3(t) = θ−2
[ 2

(
√
−4− r21)2

− (
2(f ′ − k1)r1

4 + r21
)θ + r2θ

2 +
r3√
−4− r21

θ3

+
(f ′ − k1)(2 + r21)r3

r1
√
−4− r21

θ4 + · · ·
]
.

(20)
We have just finished the primary calculations of the system (11) and we have determined
the resonance parameters, say r1, r2, r3 and r4. In the following subsection we obtain
the mirror transformations and consequently, we determine the mirror system of (5).

2.3 Mirror system

In this subsection we will develop the mirror transformations by which we transform the
system (5) to its mirror system. Thereby, we discuss the regularity of it.

Now the important step towards determining the mirror system is to introduce a
new variable in which we develop the mirror system. Let us introduce the new variables
ξ1, ξ2, ξ3 and ξ4 in the Laurent θ-series of w2, b1, b2 and b3 by successively truncating
the expansion at the free parameters (resonance parameters) r1, r2, r3 and r4. Now we
begin to truncate the θ-series of w2 at the first resonance parameter r1 by introducing
the variable ξ1 as

w2(t) = θ−1ξ1, (21)

where

ξ1 =
r1√
−4− r21

+
2(f ′ − k1)√
−4− r21

θ − r3
r1
θ3 + (k1 − f ′)r3θ4 + · · ·. (22)

We convert this into

r1 = ξ1r̄1 − 2(f ′ − k1)θ +
r3
ξ1
θ3 − r3(f ′ − k1)(

2

ξ21 r̄1
+ r̄1)θ4 + · · ·. (23)
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Upon substituting the value of r1 in b1, we get

b1(t) = −ξ1
r̄1
θ−2 +

(−2f ′ − 2k1
r̄12

− k1ξ12
)
θ−1 +

[1

2
(f ′k1 − r2)ξ1r̄1

+
4k1ξ1(f ′ − k1)

r̄1

]
+
[−3r3
ξ1r̄12

− 4k1(f ′ − k1)2

r̄12
− (f ′k1 − r2)(f ′ − k1)

− ξ1r3

]
θ +

[−2r3(f ′ − k1)

ξ1
2r̄13

− ξ1r4 +
(f ′r3 − 4k1r3)

r̄1

]
θ2.

(24)

Next we proceed to cut the θ-series of b1 at r2 by introducing the second variable, say
ξ2:

b1(t) = −ξ1
r̄1
θ−2 +

(−2f ′ − 2k1
r̄12

− k1ξ12
)
θ−1 + ξ2, (25)

where

ξ2 =
[1

2
(f ′k1 − r2)ξ1r̄1 +

4k1ξ1(f ′ − k1)

r̄1

]
+
[−3r3
ξ1r̄12

− 4k1(f ′ − k1)2

r̄12

− (f ′k1 − r2)(f ′ − k1)− ξ1r3
]
θ +

[−2r3(f ′ − k1)

ξ1
2r̄13

− ξ1r4

+
(f ′r3 − 4k1r3)

r̄1

]
θ2 + · · · .

(26)

From the θ-series of ξ2, we have

r2 = f ′k1 −
2ξ2
ξ1r̄1

+
8k1(f ′ − k1)

r̄12
+

2

ξ1r̄1

[−3r3
ξ1r̄12

+
4k1(f ′ − k1)2

r̄12
− 2ξ2(f ′ − k1)

ξ1r̄1

− ξ1r3

]
θ − 2

ξ1r̄1

[ 8r3
ξ21 r̄1

3
(f ′ − k1)− 8k1(f ′ − k1)3

ξ1r̄13
+

4ξ2(f ′ − k1)2

ξ21 r̄1
2

+
(f ′ + 2k1)r3

r̄1
+ ξ1r4

]
θ2 + · · ·.

(27)
Now, we substitute the value of r2 into θ-series of b2 and consequently, we update it.
And then after cutting this series at the third resonance parameter r3, we obtain the
θ-series of b2 as follows:

b2(t) =
1

r̄1
θ−2 + k1ξ1θ

−1 +
[2k1(f ′ − k1)

r̄1
+

1

2
f ′k1r̄1 +

1

2
f ′k1ξ

2
1 r̄1 +

2f ′2

r̄1

− ξ2
ξ1

]
+ ξ3θ,

(28)

where

ξ3 =
[−3r3
ξ21 r̄1

2
+

4k1(f ′ − k1)2

ξ1r̄12
− 2ξ2(f ′ − k1)

ξ21 r̄1
− 2f ′k1ξ1(f ′ − k1)

]
+
[−8r3(f ′ − k1)

ξ31 r̄1
3

+
8k1(f ′ − k1)3

ξ31 r̄1
3

− 4ξ2(f ′ − k21)

ξ31 r̄1
2

− (f ′ + k1)r3
ξ1r̄1

+
2f ′k1(f ′ − k21)

r̄1

]
θ + · · ·.

(29)
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From the θ-series of ξ3 we have

r3 = −ξ
2
1 r̄1

2ξ3
3

+
4

3
k1(f ′ − k1)2ξ1 −

2

3
ξ2r̄1(f ′ − k1)− 2

3
f ′k1ξ

3
1 r̄1

2(f ′ − k1)

−
[
− 8

9
(f ′ − k1)ξ1ξ3r̄1 +

8k1(f ′ − k1)3

9r̄1
− 4ξ2(f ′ − k1)2

9ξ1
− 22

9
(f ′ − k1)2f ′k1ξ

2
1 r̄1

− 1

9
(f ′ + k1)ξ31ξ3r̄1

3 +
4

9
(f ′ + k1)(f ′ − k1)2k1ξ

2
1 r̄1

− 2

9
(f ′ + k1)(f ′ − k1)ξ1ξ2r̄1

2 − 2

9
f ′k1(f ′ + k1)(f ′ − k1)ξ41 r̄1

3
]
θ + · · ·.

(30)
Similarly, we truncate the θ series of b3 at the resonance parameter r4 and we obtain the
following θ-series:

b3(t) =
2

r̄12
θ−2 − 2(f ′ − k1)ξ1

r̄1
θ−1 +

[4(f ′ − k1)(f ′ + k1)

r̄12
− 2ξ2
ξ1r̄1

+ f ′k1

]
+

[ 2

r̄1
ξ3 +

4f ′k1ξ1(f ′ − k1)

r̄1
+
ξ21ξ3r̄1

3
− 4k1ξ1(f ′ − k1)2

3r̄1
+

2

3
ξ2(f ′ − k1)

+
2

3
f ′k1ξ

3
1 r̄1(f ′ − k1)

]
θ + ξ4θ

2.

(31)
Hence, we have

ξ4 =
2

9
ξ1ξ3(7k1 − 4f ′)− 4k1

9r̄12
(f ′ − k1)2(7f ′ + 8k1) +

4

9ξ1r̄1
(f ′ − k1)

(4k1 − f ′)ξ2 +
4

9
(f ′ − k1)2(−10f + k1)k1ξ

2
1 −

2

9
(2f ′ − k1)ξ31ξ3r̄1

2

− 2

9
(f ′ − k1)(2f ′ − k1)ξ1ξ2r̄1 −

4

9
f ′k1ξ

4
1 r̄1

2(f ′ − k1)(2f ′ − k1)− 2

r̄1
r4

+
4

3
k1ξ

2
1(f ′ − k1)(f ′2 − 2f ′k1 + k21) + · · ·.

(32)

Using (21), (25), (28) and (31) with w1 = θ−1, we get the change of variables
(w1, w2, b1, b2, b3)←→ (θ, ξ1, ξ2, ξ3, ξ4). The following is the conversion of given system
into the mirror system in terms of the new variables θ, ξ1, ξ2, ξ3 and ξ4:

θ′ =
1

r̄1
+ (k1 − f ′)ξ1θ +

[2(k1f
′ − k21 + f ′2)

r̄1
+

1

2
f ′k1r̄1(1 + ξ21)− ξ2

ξ1

]
θ2

+ ξ3θ
3,

ξ1
′ =

[
− (1 + ξ21)f ′ − 2(f ′ + k1)

r̄12

]
+
[2(k1f

′ − k21 + f ′2)

r̄1
+

1

2
f ′k1r̄1ξ1(1 + ξ21)

]
θ

+ ξ1ξ3θ
2,

ξ2
′ =

[ (−1− ξ21)(f ′ + k1)

r̄1
− 4(f ′ + k1)

r̄13

]
θ−2 +

[2ξ1
r̄12

(2f ′2 − 4k21 − 3k1f
′)

− f ′k1ξ1
2

(3 + 5ξ21)− k21ξ1 − (k1 − f ′)k1ξ31
]
θ−1 +

[
− 4k1ξ

2
1(f ′ − k1)2

3r̄1
− f ′k21ξ

4
1 r̄1

6

+
ξ1ξ3 + 5f ′2ξ21k1 − 3f ′k21ξ

2
1 − 3k21f

′ − 3f ′2k1 + 2k31(1− ξ21)

r̄1
− f ′k21 r̄1

2
+
k1ξ2
ξ1

+
1

3
(ξ31ξ3r̄1 + ξ1ξ2(2f ′ + k1) + 2f ′2k1ξ

4
1 r̄1)− 4(f ′ + k1)(k1f

′ − k21 + f ′2)

r̄13

+
2ξ2(f ′ + k1)

ξ1r̄12

]
+
[
ξ1ξ4 + k1ξ3(ξ21 − 1)− 2ξ3(f ′ + k1)

r̄12

]
θ,

(33)
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ξ3
′ =

[ (−1− ξ21)(f ′ + k1)

ξ1r̄1
− 4(f ′ + k1)

ξ1r̄13

]
θ−3 +

[−2k1f
′ − 8k21 + 4f ′2

r̄12
− k21(ξ21 + 1)

− 1

2
f ′k1(ξ21 + 1)

]
θ−2 +

[ξ3 + 3f ′2k1ξ1 + 3f ′k21ξ1
r̄1

+ k1ξ2 +
1

2
f ′k21ξ

3
1 r̄1 − ξ3

+ f ′2k1ξ1r̄1(ξ21 + 1)− 3k21f
′ + 3f ′2k1−2k31(1− ξ21)

ξ1r̄1
− f ′k21 r̄1

2ξ1
+
k1ξ2+(1+ξ21)f ′ξ2

ξ21

− 4(f ′+k1)(k1f
′−k21+f ′2)

ξ1r̄13
+

4ξ2(f ′+k1)

ξ21 r̄1
2

]
θ−1 +

[−2f ′k1ξ
2
1 r̄1(k1f

′−k21+f ′2)

r̄1

− 1

2
f ′2k21 r̄1

2ξ21(1 + ξ21) +
k1ξ3(ξ21 − 1)

ξ1
− 2ξ3(f ′ + k1)

ξ1r̄12
− 2ξ2
ξ1r̄1

(k1f
′ − k21 + f ′2)

− f ′k1r̄1ξ2(1 + ξ21)

2ξ1

]
+
[
− f ′k1ξ21ξ3r̄1 −

ξ2ξ3
r̄1

]
θ,

ξ4
′ =

[ξ21 + 1

r̄1
+

4

r̄13

]
θ−5 +

[
k1ξ1(1 + ξ21) +

4ξ1
r̄12

(−f ′ + 2k1) +
4ξ1
3r̄12

(f ′ + k1)

+
ξ1(ξ21 + 1)(f ′ + k1)

3

]
θ−4 +

[f ′k1r̄1
2

+
2f ′k1ξ

2
1 r̄1

3
− ξ2
ξ1

+
4

r̄13
(f ′2 − k21)

+
1

r̄1
(4f ′k1 − 2k21 + 2k21ξ

2
1 − 2f ′k1ξ

2
1)− 4ξ2

ξ1r̄12
+

1

6
f ′k1ξ

4
1 r̄1 +

8(f ′2 − k21)

3r̄13

+
1

3r̄1
(2k1f

′ξ21 + 6k21ξ
2
1 − 2f ′2ξ21 − 2(k21 − f ′2)) +

ξ21 r̄1k
2
1

3
(ξ21 + 1)

]
θ−3

+
[2

3
f ′k21ξ1(1 + ξ21 r̄1 − 4ξ21)− 1

6
f ′k21ξ1r̄1

2(ξ41 − 1)− 2

3
f ′2k1ξ

3
1(1 + r̄1)

− 1

3
f ′2k1ξ

3
1 r̄1

2(1 + ξ21)− 1

3
f ′ξ2(2 + r̄1) +

1

3
k1ξ2(2− r̄1)− 1

3
ξ21ξ2r̄1(f ′ + k1)

+
1

r̄12
(4ξ3 + 4f ′2k1ξ1 − 12f ′k21ξ1) +

1

r̄1
(2ξ2(f ′ − 2k1)− 4f ′k1ξ1(f ′ − k1))

+
1

3r̄12
(20f ′k1ξ1(f ′ + k1)− 28k31ξ1 − 4ξ1f

′3) +
1

3
(ξ21ξ3 − 4k31ξ1)

+
1

3r̄1
(−2k1ξ2 + 4k1ξ1(f ′ − k1)2)

]
θ−2 +

[
2f ′3ξ21k1r̄1(1 + ξ21)

− f ′2k21ξ
2
1 r̄1(1 +

1

9
ξ21) +

1

r̄1
(−8f ′k31ξ

2
1 + 12f ′3k1ξ

2
1 + 4f ′3k1 − 4f ′2k21)

− 4ξ2(f ′2 − k21)

3ξ1r̄12
− 2(f ′ − k1)k1ξ2

3ξ1
+

8f ′k1(f ′2 − k21)

r̄13
+

1

9
f ′k1ξ

4
1 r̄1(−7k21 + 4f ′2)

+
1

6
f ′2k21ξ

4
1 r̄1

3(1 + ξ21) +
1

3
ξ31ξ3r̄1(f ′ − 1

3
k1) + ξ1ξ3r̄1(2 +

1

3
k1)

+
4

3
k1ξ1ξ2(2f ′ − k1) +

2

3
f ′2ξ1ξ2 +

1

2
f ′k1r̄1

2ξ1(ξ2 + ξ21ξ3) + 2ξ4ξ3r̄1

+ f ′k21 r̄1(f ′ − k1) +
1

3r̄1
(4ξ1ξ3(f ′ + 2k1) + 2f ′3k1(1− 17

3
ξ21) + 2f ′k31(−7 + ξ21)

+ 8f ′2k21(1 + 2ξ21) + 4k41(1− 5

3
ξ21) +

8f ′2(f ′2 − k21)

3r̄13
)
]
θ−1 +

[ 1

r̄12
(2ξ2ξ3

− 8f ′k1ξ1(f ′ − k1)(k1f
′ − k21 + f ′2)) +

1

3r̄12
(8k1(k1f

′ − k21 + f ′2)(f ′ − k1)2ξ1

+ 4ξ3(f ′−k21)) +
1

3
(−f ′k1ξ21ξ3r̄12 + 2k21f

′ξ1(f ′ − k1)2(1 + ξ21)− ξ3(ξ21 − 1)

− 2(f ′ − k1)ξ1ξ4)− ξ2ξ3
ξ1

+ 2ξ21ξ3(f ′k1 + ξ2)− f ′2k21ξ1(f ′ − k1)(1 + ξ21)

(2 + ξ21 r̄1
2)− 4ξ21(k1f

′ − k21 + f ′2)(ξ3 + f ′k1ξ1(f ′ − k1))− 2ξ1ξ4(f ′ − k1)
]

+
[
− 2ξ21ξ3r̄1

3
+

4k1ξ1ξ3(f ′ − k1)(−2f ′ − k1)

3r̄1
− 4ξ4(k1f

′ − k21 + f ′2)

r̄1

− 2f ′k1ξ
3
1ξ3r̄1 − f ′k1ξ4r̄1(1 + ξ21) +

2ξ2ξ4
ξ1

]
θ − 2ξ3ξ4θ

2.

(34)
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By similar calculations, we can find the mirror system for the following branch of leading
order coefficients:

l0 = (
√
−4− r21)−1, w20 = − r1√

−4− r21
,

b10 =
r1

(
√
−4− r21)2

, b20 = (
√
−4− r21)−1, b30 =

2

(
√
−4− r21)2

.
(35)

The mirror system obtained so far for the present case of leading order coefficient is
regular if and only if the following condition are satisfied:

ξ1 =

√
−4− r̄12
r̄1

, ξ2 = −26k21ξ1
9r̄1

, f ′ = k1, ξ3 = 0. (36)

The most prominent thing for the singularity analysis is that the system is regular near
θ = 0, which corresponds to movable singularity of the system of six coupled ODEs (5).

3 Alternative Approach of the Convergence of Laurent Series in Painlevé
Test

The convergence of Laurent series solution obtained by the Painlevé test is guaranteed
by Kichenassamy and Littman [4]. But here we are going to present an alternative
approach of the convergence of these series by making use of the mirror system and the
Cauchy-Kowalevski theorem.

An ideal rotating, uniformly stratified system of six coupled ODEs (5) is completely
integrable for the Rayleigh number Ra = 0. For Ra = 0, the Painlevé test produces the
following formal solution of ODEs (5) for the first case of leading order coefficients:

w1(t) =
√
−4− k22τ−1 +

(f ′ − k1)k2
2

+

√
−4− k22

2
(−k3 + f ′k1)τ

+
[
− k4

2
+
f ′k2

4
(−k3 + f ′k1)

]
τ2

+ {−k5
3

+
f ′
√
−4− k22
12k2

[
f ′k2(k3 − f ′k1) + 2k4

]
}τ3

+

∞∑
j=5

w1jτ
j−1,

w2(t) = k2τ
−1 +

[√−4− k22
2

(
− f ′ + k1

)]
+

(−k3k2 + f ′k2k1)

2
τ

+
√
−4− k22

[ k4
2k2

+
f ′

4

(
k3 − f ′k1

)]
τ2

+
[ −k5k2

3
√
−4− k22

+
f ′

12

(
f ′k2k3 + 2k4 − f ′2k2k1

)]
τ3 +

∞∑
j=5

w1jτ
j−1,

b1(t) = −k2τ−2 + f ′
√
−4− k22τ−1 +

(−k2k3 + f ′2k2)

2
+
k4
√
−4− k22
k2

τ

− k5k2√
−4− k22

τ2 +

∞∑
j=5

b1jτ
j−2,

(37)
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b2(t) =
√
−4− k22τ−2 + f ′k2τ

−1 +
[√−4− k22

2
(k3 − f ′2)

]
+ k4τ + k5τ

2

+

∞∑
j=5

b2jτ
j−2,

b3(t) = 2τ−2 + k3 −
4k5

3
√
−4− k22

τ2

− 1

6k2

(
f ′2k2k3 − 3k2k

2
3 + 2f ′k4 − f ′3k2k1 + 3f ′k2k3k1 − 6k4k1

)
τ2

+

∞∑
j=5

b3jτ
j−2.

(38)

The above Laurent series contains the five arbitrary constant w30 = k1, k2, k3, k4 and
k5. Here τ = t − t0 and t0 is an arbitrary position of singularity in complex domain.
As we see, the above Laurent series has a movable pole type singularity, and using the
Painlevé method we conclude that the above Laurent series (37) and (38) are convergent
for small τ ; and this convergence is guaranteed by Kichenassamy and Littman [4]. But
for an alternative approach, we convert these series into an initial value problem for the
mirror system (33) and (34). For this purpose we substitute the formal Laurent series
(37) and (38) into the mirror transformation w1 = θ−1, (21), (25), (28) and (31). After
simplification, we obtain the following formal power series for θ, ξ1, ξ2, ξ3 and ξ4:

θ = (
√
−4− k22)−1τ − (f ′ − k1)k2

(
√
−4− k22)2

τ2 +
1

4(
√
−4− k22)3

(−8k3 − 2k22k3 + 8f ′k1 + f ′2k22 + k21k
2
2)τ3

+
[ 1

2(
√
−4− k22)2

(
k4 + (−k3 + f ′k1)(

f ′k2
2
− k1k2)

)
− (f ′ − k1)3k32

8(
√
−4− k22)4

]
τ4

+
[ k5

3(
√
−4− k22)2

+
1√

−4− k22
(−f

′2

12
(k3 − f ′k1)− f ′k4

6k2
+

(−k3 + f ′k1)2

4
)

+
1

2(
√
−4− k22)3

(−k4(f ′ − k1)k2 +
(f ′ − k1)k22

4
(−k3 + f ′k1)(3k1 − f ′))

+
(f ′ − k1)4k42

(16
√
−4− k22)5

]
τ5 + . . . ,

ξ1 =
k2√
−4− k22

− 2(f ′ − k1)

4 + k22
τ − k2(f ′ − k1)2

(−4− k22)
3
2

τ2 +
[ 1

(−4− k22)

( k2k4

2
√
−4− k22

− 1

4
(f ′k1 − k3)k1k

2
2 +

1

8
(−f ′ + k1)(8f ′k1 + f ′2k22 + k21k

2
2)
)

+
k4
2k2
− f ′2k1 +

k1k3
4
− (f ′ − k1)3k42

8(−4− k22)2

]
τ3 + . . .,

ξ2 =
k2
2

(f ′2 − 3k3 + 2f ′k1) +
1

(−4− k22)
(f ′ − k1)k2(

1

4
k22(f ′ + k1) + 2(f ′ + 2k1))

+
[ 1√
−4− k22

(
− k2k4

2
+

1

4
(f ′k1 − k3)(4f ′ − k1)k22 + 2f ′2k1 − 3k3(f ′ − k1)

− 1

4
f ′k1k

2
2(f ′ − k1)

)
+
√
−4− k22(

k4
2k2
− f ′2k1 +

k1k3
4

) +
4k1(f ′ − k1)2

(−4− k22)
3
2

]
τ + . . .,

(39)
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ξ3 =
√
−4− k22

(3

2
k4 −

2k4
k2
− k4k2

2
+

5f ′2k1
k2

− k1k3
2

+
1

2
f ′2k1k2 +

1

4
f ′k21k2 −

f ′3

k2

+
2f ′k21
k2

)
+

(f ′ − k1)√
−4− k22

[
− 2f ′k1k2 +

1

2
k2(k21 − f ′2)− 3

8
f ′k1k

3
2 +

1

4
k21k

3
2

− 4f ′

k2
(f ′ − k1)

]
+ {−3

8
k21k

2
2k3 +

1

2
f ′k2k4 −

3

8
f ′2k22k3 +

5

8
f ′3k1k

2
2 −

15

8
k1k2k4

− 1

2
f ′2k21 − 2f ′k31 +

3

2
f ′3k1 +

7

2
f ′k1k3 −

3

2
k21k3 − f ′2k3 −

5

8
f ′2k21k

2
2

+ f ′k1k
2
2k3 − f ′k1(f ′ − k1) +

1

4
k31k

2
2(f ′ − 1

2
k21) +

1

k2

[
2f ′4 − 6f ′k3(f ′ − 2k1)

− 6k21(f ′2 + k3 + 4f ′k31 + f ′k4 +
2f ′3k1
k2

+
6k3(f ′ − k1)2

k2
− k1k4 −

2f ′2k21
k2

)
]

+ (−4− k22)
[
− 5

12
f ′2k3 +

f ′k4
6k2

− 13

12
f ′3k1 −

1

4
f ′k1k3 +

1

2
(k23 + f ′3k1)− k1k4

k2

+ 2f ′2k21 −
k21
2

(4f ′2 − k3)− 1

k32
k4(k1 − 2f ′) +

2f ′2k1
k22

(f ′ − k1) +
k21k3
2k22

]
+

√
−4− k22

[5

3
k5 +

1

k2
(6f ′2k1 + 2k1k3 − 3f ′k3)− k4 +

7

4
f ′2k1k2 −

2k4
k22

− f ′k2k3

]
+

1

(−4− k22)

[
k1(f ′ − k1)3(4− 8

k22
+
k42
8

+
1

2
k22) +

4(f ′ − k1)3

k2

(
1

4
k22(f ′ + k1) + 2(f ′ + 2k1))

]
}τ + . . .,

ξ4 =
5

18
k5

√
−4− k22 +

2

3
(f ′ − k1)2(2f ′ + k1)k1 − 12f ′k1(f ′ − k1)2k22

− 1√
−4− k22

(f ′ − k1)3(f ′ + k1)k22 +
1

3
(f ′ − k1)2

√
−4− k22 +

(f ′ + k1)2k22
3(4 + k22)

[12f ′k1 + f ′k1k
2
2 − 3(f ′ − k1)2k22] +

1

3
k2(f ′ − k1)2(

8

k32
− 2

k2
+

1

2
k2

− 2(4+k22)(f ′k1−k3)

k2(f ′−k1)2
)
[f ′2+2f ′k1−(f ′−k1)(f ′(8+k22)+k1(16+k22))

2(4+k22)
−3k3

]
+ 2(f ′k1 − k3)[3(f ′ − k1)2 − 2(f ′2 − k21)

√
−4− k22] +

7

2
(4 + k22)

(f ′k1 − k3)2 +
1

4
(f ′ − k1)2k22k3 −

5

2
(f ′ − k1)k2(f ′2k1k2 − f ′k2k3 − 2k4)

+
72(f ′ − k1)k2(f ′2k1k2 − f ′k2k3 − 2k4)√

−4− k22
+ 12(f ′ − k1)(−4− k22)

[
− 2f ′2k1

+
1

2
k1k3 +

k4
k2
− k42(f ′ − k1)4

(4 + k22)2
+
k22(−f ′2 − f ′k21 + k31 + k1(f ′2 + 2k3)) + 4k2k4√

−4− k22

]
+ . . . ,

(40)
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Thus, we have the mirror system (33) and (34) with the following initial data

θ(0) = 0, ξ1(0) =
k2√
−4− k22

,

ξ2(0) =
k2
2

(−3k3 + f ′2 + 2f ′k1) +
1

(−4− k22)
(f ′ − k1)k2

[1

4
k22(f ′ + k1)

+ 2(f ′ + 2k1)
]
,

ξ3(0) =
√
−4− k22

(3

2
k4 −

2k4
k2
− k4k2

2
+

5f ′2k1
k2

− k1k3
2

+
1

2
f ′2k1k2 +

1

4
f ′k21k2

− f ′3

k2
+

2f ′k21
k2

)
+

(f ′ − k1)√
−4− k22

[
(−2f ′k1k2 +

1

2
k2(k21 − f ′2)− 3

8
f ′k1k

3
2

+
1

4
k21k

3
2 −

4f ′

k2
(f ′ − k1)

]
,

ξ4(0) =
5

18
k5

√
−4− k22 +

2

3
(f ′ − k1)2(2f ′ + k1)k1 − 12f ′k1(f ′ − k1)2k22 + . . ..

(41)

Now we are ready to show the convergence of (37)and (38) by using the Cauchy
theorem [10, p.150-151]. From the differential equations (33) and (34) and the initial
conditions (41) we see that the coefficients of variable in (33), (34) and initial value
conditions (41) are analytic functions provided that r1 = k2 6= ±2i. Thus, the initial
value problem (33) and (34) with initial conditions (41) has unique analytic solutions
which are convergent in the neighbourhood of θ = 0.

Substituting the series (39) and (40) back into w1 = θ−1, (21), (25), (28) and (31), we
obtain the convergent power series for w1, w2, b1, b2 and b3 which was not just formal.
Furthermore, with some computation we see that these series are exactly (37) and (38).
Therefore, we come to the conclusion that the Laurent series (37) and (38) are convergent.
Thus, we summarise these results in terms of the following theorem.

Theorem 3.1 For the principal Laurent series solution of the ideal rotating, uni-
formly stratified system of six coupled ODEs (3), there is a change of variables of the
form (6) such that the system of ODEs (3) is transformed into a regular system of ODEs
(33) and (34) for the new variables (θ, ξ1, ξ2, ξ3, ξ4). Further, the Laurent series (37)
and (38) in the principle dominant balance are converted into the power series (39) and
(40) with initial data (41) which are the analytic functions in terms of new variables and
thus, the series solutions (39)with (40) are convergent in the neighbourhood of θ = 0.

4 Conclusion

The reduced system of ODEs (3) which arose in the reduction of uniformly stratified
fluid contained in the rotating box of dimension L×L×H is completely integrable if the
Rayleigh number Ra = 0. By taking Ra = 0, we have obtained the mirror system for
both possible branches of leading ordered coefficients of system (3). The main feature in
the singularity analysis is that the mirror system is regular near θ = 0, which corresponds
to the movable singularity of the system (3) provided (36) holds. Also, we have shown
that the formal Laurent series solutions arising from successful application of the Painlevé
test to the system of ODEs (3) are convergent.
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Abstract: This paper deals with stationary and independent increments processes
in real time initiated in [14] embellishing it to a two-dimensional signed random mea-
sure with position dependent marking. The real-valued component of the associated
marked point process is non-monotone presenting an analytical challenge. We man-
age to investigate various characteristics of that component, including the nth drop
or a sharp surge that find applications to finance (like option trading) and risk theory.
The need for time sensitive feature of our study (i.e., an analytical association with
real time parameter t) allows stochastic control implementation in sharp contrast
with time insensitive analysis in the present literature. We proceed with the classical
approach of fluctuation analysis of a particle running through a random grid of a
convex set that the particle is trying to escape. We find the distribution of the first
passage time and its location in space.

Keywords: random walk; independent and stationary increments processes; fluctua-
tions of stochastic processes; marked point processes; first passage time; signed marked
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1 Introduction

In many scientific, financial, and game theoretic processes, timing is of at most impor-
tance and a main strategic issue. Several studies have been done on the first passage time
in fluctuation theory and their applications to queuing, stochastic games, seismology, and
finance (cf. [1,2,8-10,11,12,13,15,16,19,22-24,27,30]). Fluctuation theory pertains to the
behavior of an underlying process around a critical threshold and more generally, when a
process escapes from a fixed manifold. The time when that passage takes place is referred
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to as the first passage time. Another critical value of that situation is the new location
of the process upon its escape. Besides the original topics mentioned above, fluctua-
tion theory has become a stand-alone subject in numerous articles appeared through the
decades of intense research, cf. [3-7,17,20,21,29,31].

In our most recent paper [15], we worked with time sensitive functionals of the same
entities but under real time observation of a monotone process. We dealt with non-
negative random measures and increment processes. In this paper we study a class of
signed marked random measures (A, Π, T ) =

∑∞
n=0 (Xn, πn) εtn with position dependent

marking, on a filtered probability space (Ω,F ,Ft, P ). Marks Xn’s are non-negative, while
marks πn’s are real-valued, with the support counting random measure

∑∞
n=0 εtn . This

is a significant upgrade from [15], because not only is yet another component added, but
it is non-monotone. Studies of non-monotone components are very few in the literature
on fluctuations. Most prominent of them was by Lajos Takács [30]. However, the results
in [30] were not tractable.

As in the theory of fluctuations, we focus on the behavior of (A, Π, T ) around a
fixed threshold M > 0 with respect to its first component A, referred to as an active
component. With

An = X0 +X1 + . . .+Xn (1.1)

we have {An} monotone non-decreasing, whereas

Pn = π0 + π1 + . . .+ πn (1.2)

is non-monotone, as πk’s are real-valued marks. Our interest is in an extreme behavior
of the marginal process (Π, T ) =

∑∞
n=0 πnεtn that is difficult to analyze due to the

non-monotone nature of its marks. For that reason we introduce active mark Xn being
nonnegative and integer-valued that is to oversee πn. For instance, we might be curious
when the process (Π, T ) changes its monotonicity or when it experiences its first extreme
drop or a surge. For example, we set X0 = X1 = . . . = Xn−1 = 0, Xn = 1, if π0 >
a, π1 > a, . . . , πn−1 > a, and πn ≤ a. In the general case, the increments Xi’s need not
be constant, but they can be random variables with particular marginal distributions.
For a fixed positive integer M, we define the exit index as

ν := inf {n = 0, 1, . . . : An ≥M} . (1.3)

Then, tν is called the first passage time of process (A, Π, T ). It is the first epoch when
the crossing of M occurs. Obviously, tν is a stopping time relative to filtration Ft. The
respective excess values of Aν and Pν representing active and passive components, A
and Π, respectively, are also of interest. We further assume that A1 the increments
{Xn, πn,∆n = tn − tn−1} for n = 0, 1, 2, . . ., t−1 = 0, of the process (A, Π, T ) are
independent (position dependent marking), that is, Xn and πn are dependent only on
∆n. A2 for n = 1, 2, . . . , {Xn, πn,∆n} are identically distributed.

Associated with (A, Π, T ) is the “time sensitive counting” process

(Nt, Πt) = (A, Π) [0, t] =

∞∑
n=0

(Xn, πn) εtn [0, t] , t ≥ 0. (1.4)

We will be interested in the value of (Nt, Πt) of some t enclosed between tν−1 and tν
providing us with the information about (A, Π, T ) between two key reference points as
well as (Nt, Πt) for t ∈ [0, τν) (that we will discuss later on, in Section 5).
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So we target the joint Laplace- and Fourier-Stieltjes transform of the above r.v.’s:

Φν (t) = EzNte−iηΠte−iϕPν−1uAν−1e−iφPνvAνe−ϑ0tν−1−ϑtν1[tν−1,tν) (t) ,

‖z‖ ≤ 1, ‖u‖ ≤ 1, ‖v‖ ≤ 1, Reϑ0 ≥ 0, Reϑ ≥ 0, η ∈ R, ϕ ∈ R, φ ∈ R.
(1.5)

Note that because we manage to observe the process in real time, i.e., upon
t0, t1, t2, . . . (meaning that there are no changes between those epochs), it raises a ques-
tion about a need in the continuous time interpolation. Indeed, in some past work (cf.
Dshalalow and White [17]) when a process was observed over arbitrary time epochs (i.e.,
unrelated to t0, t1, t2, . . .), its continuous revival made perfect sense. In our case, how-
ever, it is more about associating the point process t0, t1, t2, . . ., especially the reference
points tν−1, tν , with time t, than anything else. Its very obvious benefit is to know about
the process over time related intervals like [0, t] which was impossible with time insen-
sitive versions. From a practical stand point, observing the process over arbitrary time
epochs is more realistic than in real time. However, whenever it is possible to render, its
second benefit lies in far more tractable results compared to delayed observations that
additionally require the named point process to be Poisson or alike. Furthermore, we also
obtain explicit characteristics of the continuous time parameter process in interval [0, tν)
giving us a broad spectrum of information about process Nt. The associated functional
will read

EzNte−iηΠte−iφPνvAνe−ϑtν1[0,tν) (t) , ‖z‖ ≤ 1, ‖v‖ ≤ 1, Reϑ ≥ 0, η ∈ R, φ ∈ R. (1.6)

Back to the random measure (A, Π, T ) , we recall that the passive component Π is real-
valued making this random measure signed. Studies related to signed random measures
have previously been done in various topological and stochastic analysis contexts. In
[19] Hellmund extended the idea of completely random measures to completely random
signed measure and gave a characterization of this class of signed random measures. He
demonstrated that the classes of Lévy random measures (utilized in Lévy adaptive regres-
sion kernel models) and Lévy bases (utilized in spatio-temporal modeling) are natural
extensions of completely random signed measures and that independence is a fundamen-
tal concept in defining Lévy random measures and Lévy bases. Other concepts related
to signed random measures are in the work by Smorodina and Faddeev [29] who studied
symmetric stable signed measures and showed that they are limit measures of sums of
independent random variables.

Various applications of fluctuation theory that we explore can also be found in stochas-
tic signals such as time continuous readings for automated seizure detection and quan-
tification using EEGs, heart attack activity monitoring through detection by EKGs, real
time blood pressure monitoring, and the stock market. In this paper, we illustrate the
applicability of our study by expounding on the case of stock prices. We are able to
predict the time of the first drop of a stock (or first increase if we short it) at tν and
thus, the highest price at tν−1 at which we can sell it at that point in time.

Our model also applies to the classical risk problem originally posed by Filip Lundberg
(see [27]). Assume that an insurance company starts at zero with the initial capital u
and let the premium be a linear function with a constant premium rate c, so that the
premium income of the company at time t is u + ct. Assume that the aggregate claims
form a marked point process Y =

∑∞
k=0 Ykεtk , with tk being the time of the kth claim

and Yk - the amount of claim. Now Lundberg postulated that Y was a marked Poisson
process with position independent marking. We relax either condition by assuming that



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1) (2018) 36–54 39

neither is Y Poisson, nor is it with position independent marking. If ∆k = tk − tk−1,we
have c∆k premiums’ increase from tk−1 to tk. The mark πk = c∆k − Yk is the change of
company’s asset from tk−1 to tk. Now,

Π =

∞∑
k=0

πkεtk

is a purely signed marked random measure and

Pt = Π [0, t]

is the process describing the asset changes of the insurance company on interval [0, t].
Notice that Pt does not give us the true value of the company’s asset at time t, because
Pt is a piecewise constant interpolation of the true asset value process

Rt = u+ ct−
∞∑
k=0

Ykεtk [0, t]

known as the risk process. They coincide upon times t0, t1, t2, . . . which is exactly what
we need. Our process (A, Π, T ) is defined through the active component

Xk =

{
0, πk > 0,
1, πk ≤ 0.

So we are interested in the moment when Pk becomes negative or zero for the first time
(which would trigger Xk = 1). Thus, π0, π1, . . . , πν−1 are positive, while πν is negative
or zero. {tνn} is the embedded sequence of consecutive drops of Pt. Then obviously, the
risk process Rt will become negative or zero only upon one of the epochs {tνn} , known
as the ruin time of Rt.

Let Ft be the natural filtration with respect to the risk process Rt. Then, {tνn} is a
sequence of stopping times relative Ft that are also locally strong Markov points, that is
either Rt and Pt have a locally strong Markov property at each point tνn . Therefore, Rt
and Pt conditionally regenerate upon these epochs. We can slightly modify Pt to make
it semi-regenerative with respect to {tνn}.

While a further discussion on the risk process and its study as a semi-regenerative
process is beyond the scope of this paper, the time of the first or the second or the nth
drop of the risk process is of interest for statistics purposes and it is often raised by
insurance companies.

We continue this paper in Section 2 through a further formalism of our model and
introduce basics of discrete operational calculus earlier developed by Dshalalow [6,7] and
Dshalalow and Iwezulu [13]. In Section 3, we use the method of stochastic decomposition
previously developed in Dshalalow and Nandyose [15] and Dshalalow and White [17,18],
only now embellished for non-monotone components. We establish a key formula for the
functional Φν (t) of (1.5) that we claim is analytically tractable. This claim is justified
throughout Section 4 in a number of examples and special cases. We conclude our paper
in Section 5 with time sensitive analysis where time t runs interval [0, τν) and find the
joint transform of Nt, Pt, Nν ,and the first passage time tν in a fully closed form.
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2 Formalism and Notation

We now return to the functional Φν . Note that we do not know the distribution of the
random vector (Aν −Aν−1, tν − tν−1) nor is the latter independent of (Aν−1, tν−1). The
remedy for this predicament is the use of stochastic expansion that will include several
steps. In the first step, we introduce the auxiliary sequence {ν (p)} of exit indices relative
to the sequence {0, 1, . . .} of thresholds to be crossed by An, of which ν = ν (M − 1) was
introduced in (1.3). Namely, let

ν (p) = inf {n = 0, 1, . . . : An > p} , p = 0, 1, . . . (2.1)

With p fixed, we have the sequence of functionals

Φν(p)(t)=EzNte−iηΠte−iϕPν(p)−1uAν(p)−1e−iφPν(p)vAν(p)e−ϑ0tν(p)−1−ϑtν(p)1[tν(p)−1,tν(p)) (t) .
(2.2)

In our second step, we apply to Φν(p) of (2.2) the transformation Dp defined as

Dp{f(p)} (x) :=

∞∑
p=0

xpf(p)(1− x), ||x|| < 1, (2.3)

where f is a real-valued function with the domain N0 = {0, 1, . . .}. The inverse of Dp is
the so-called D-operator previously introduced in Dshalalow [6,7]:

Dkxϕ(x, y) =

{
limx→0

1
k!

∂k

∂xk

[
1

1−xϕ(x, y)
]
, k ≥ 0

0, k < 0.
(2.4)

From Φν(p) (t) =
∑∞
n=0 Φν(p) (t) 1{v(p)=n}, we have

Φ (t, x) := Dp

[
Φν(p) (t)

]
(x) =

∞∑
n=0

Φν(p) (t)Dp1{ν(p)=n} (x)

=

∞∑
n=0

Φν(p)=n (t)Dp1{ν(p)=n} (x) ,

with

Φν(p)=n (t) = EzNtuAn−1e−iηΠte−iϕPn−1vAne−iφPne−ϑ0tn−1−ϑtn1{tn−1≤t<tn} = Fn (t) .
(2.5)

From 1{v(p)=n} = 1{An−1≤p}1{An>p},

Dp1{v(p)=n} (x) = (1− x)

∞∑
p=0

xp1{An−1≤p}1{An>p}

= (1− x)

An−1∑
p=An−1

xp

= (1− x)

An−1∑
p=0

xp −
An−1−1∑
p=0

xp

 = (1− x)

(
1− xAn

1− x
− 1− xAn−1

1− x

)
= xAn−1 − xAn
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that yields

Φ (t, x) =

∞∑
n=0

Fn (t)
(
xAn−1 − xAn

)
=

∞∑
n=0

[Fn (ux, v, z, ϑ0, ϑ, t)− Fn (u, vx, z, ϑ0, ϑ, t)] , whereA−1 = 0. (2.6)

Finally, applying the Laplace transform to Φ (t, x) of (2.6) we have

Φ∗ (θ, x) =

∫ ∞
t=0

e−θtΦ (t, x) dt =

∞∑
n=0

[F ∗n (ux, v, z, ϑ0, ϑ, t)− F ∗n (u, vx, z, ϑ0, ϑ, t)] . (2.7)

Now functionals Fn and their transforms F ∗n are subject to our scrutiny in Section 3.

3 Analysis of Fn

With n = 1, 2, . . . , we work on

Fn (t) = EzNtuAn−1e−iηΠte−iϕPn−1vAne−iφPne−ϑ0tn−1−ϑtn1{tn−1≤t<tn}, (3.1)

(defined in (2.5)). (3.1) can be brought to the expression

Fn (t) = E[(zuv)An−1e−i(η+ϕ+φ)Pn−1e−(ϑ0+ϑ)tn−1vAn−An−1

×e−iφ(Pn−Pn−1)e−ϑ(tn−tn−1)1{tn−1≤t<tn}]

= E(zuv)An−1e−i(η+ϕ+φ)Pn−1e−(ϑ0+ϑ)tn−1vXne−iφπne−ϑ∆n1{tn−1≤t<tn}, n = 1, 2 . . .
(3.2)

The Laplace transform of Fn with the expectation unfolded reads

F ∗n (θ) =

∫ ∞
t=0

e−θtFn (t) dt

=

∞∑
k=0

(zuv)k
∞∑
j=0

vj
∫ ∞
p=−∞

e−i(η+ϕ+φ)p

∫
s≥0

e−(ϑ0+ϑ)se−θs

×
∫ ∞
q=−∞

e−iφq
∫
δ≥0

e−ϑδ
∫ δ

t−s=0

e−θ(t−s)dt

×PAn−1⊗Pn−1⊗tn−1⊗Xn⊗πn⊗∆n
(k, j, dp, ds, dq, dδ)

=
1

θ

∞∑
k=0

(zuv)k
∞∑
j=0

vj
∫ ∞
p=−∞

e−i(η+ϕ+φ)p

∫
s≥0

e−(ϑ0+ϑ+θ)s

∫ ∞
q=−∞

e−iφq
∫
δ≥0

e−ϑδ

×PAn−1⊗Pn−1⊗tn−1⊗Xn⊗πn⊗∆n (k, j, dp, ds, dq, dδ)

−1

θ

∞∑
k=0

(zuv)k
∞∑
j=0

vj
∫ ∞
p=−∞

e−i(η+ϕ+φ)p

∫
s≥0

e−(ϑ0+ϑ+θ)s

∫ ∞
q=−∞

e−iφq
∫
δ≥0

e−(ϑ+θ)δ

×PAn−1⊗Pn−1⊗tn−1⊗Xn⊗πn⊗∆n
(k, j, dp, ds, dq, dδ)

due to independence of An−1 ⊗ Pn−1 ⊗ tn−1 and Xn ⊗ πn ⊗∆n

=
1

θ
E[(zuv)

An−1 e−i(η+ϕ+φ)Pn−1e−(ϑ0+ϑ+θ)tn−1 ]
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×
[
EvXne−iφπne−ϑ∆n − EvXne−iφπne−(ϑ+θ)∆n

]
=

1

θ
Γn−1 (zuv, η + ϕ+ φ, ϑ0 + ϑ+ θ) [γ (v, φ, ϑ)− γ (v, φ, ϑ+ θ)] , (3.3)

where
Γn−1(zuv, η + ϕ+ φ, ϑ0 + ϑ+ θ)

= γ0 (zuv, η + ϕ+ φ, ϑ0 + ϑ+ θ) γn−1 (zuv, η + ϕ+ φ, ϑ0 + ϑ+ θ) for n ≥ 1 (3.4)

and

γ0 (u, ϕ, ϑ) = EuX0e−iϕπ0e−ϑt0 , γ (u, ϕ, ϑ) = EuXke−iϕπke−ϑ∆k , k = 1, 2, . . . . (3.5)

Summing up Fn for all n = 1, 2, . . . , with (3.3-3.4) in mind, we formally arrive at the
expression

∞∑
n=1

F ∗n (θ) =
1

θ
γ0 (zuv, η + ϕ+ φ, ϑ0 + ϑ+ θ)

× [γ (v, φ, ϑ)− γ (v, φ, ϑ+ θ)]
1

1− γ (zuv, η + ϕ+ φ, ϑ0 + ϑ+ θ)
. (3.6)

To warrant the convergence of the geometric series
∑∞
n=1 F

∗
n (θ), in the proposition below,

we show that the norm ‖γ (zuv, η + ϕ+ φ, ϑ0 + ϑ+ θ)‖ < 1.

Proposition 3.1 The series

∞∑
n=1

F ∗ (θ) =

∞∑
n=1

∫ ∞
t=0

e−θtE[(zuv)An−1e−i(η+ϕ+φ)Pn−1

×e−(ϑ0+ϑ)tn−1vXne−iφπne−ϑ∆n1{tn−1≤t<tn}]dt

converges to
∞∑
n=1

F ∗n (θ) =
1

θ
γ0 (zuv, η + ϕ+ φ, ϑ0 + ϑ+ θ)

× [γ (v, φ, ϑ)− γ (v, φ, ϑ+ θ)]
1

1− γ (zuv, η + ϕ+ φ, ϑ0 + ϑ+ θ)
,

with
‖γ(zuv, η + ϕ+ φ, ϑ0 + ϑ+ θ)‖ < 1,

provided one of the following conditions is met:

Reϑ0 > 0, orReϑ > 0, orRe θ > 0or ‖u‖ < 1, or ‖v‖ < 1, or ‖z‖ < 1.

Proof. The first part of the proposition is due to the above steps that formally ended
in formula (3.6). Inequality (3.7) holds due to the following arguments:∥∥γ(uvz, η + ϕ+ φ, ϑ0 + ϑ+ θ)

∥∥ ≤ E ∥∥∥(uvz)
X1 e−i(η+ϕ+φ)πne−(ϑ0+ϑ+θ)∆1

∥∥∥
=

∞∑
k=0

∥∥uvz∥∥k ∫ ∞
t=0

e−Re(ϑ0+ϑ+θ)tPX1⊗∆1
(k, dt)

=

∫ ∞
t=0

e−Re(ϑ0+ϑ+θ)tPX1⊗∆1
(0, dt) +

∞∑
k=1

∥∥uvz∥∥k ∫ ∞
t=0

e−Re(ϑ0+ϑ+θ)tPX1⊗∆1
(k, dt)
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=

∫ 1

t=0

e−Re(ϑ0+ϑ+θ)tPX1⊗∆1
(0, dt) +

∫ ∞
t=1

e−Re(ϑ0+ϑ+θ)tPX1⊗∆1
(0, dt)

+

∞∑
k=1

∥∥uvz∥∥k ∫ 1

t=0

e−Re(ϑ0+ϑ+θ)tPX1⊗∆1
(k, dt)

+

∞∑
k=1

∥∥uvz∥∥k ∫ ∞
t=1

e−Re(ϑ0+ϑ+θ)tPX1⊗∆1
(k, dt)

≤
∫ 1

t=0

PX1⊗∆1
(0, dt) + e−Re(ϑ0+ϑ+θ)

∫ ∞
t=1

PX1⊗∆1
(0, dt)

+
∥∥uvz∥∥ ∞∑

k=1

∫ 1

t=0

PX1⊗∆1
(k, dt) +

∥∥uvz∥∥ ∞∑
k=1

e−Re(ϑ0+ϑ+θ)

∫ ∞
t=1

PX1⊗∆1
(k, dt) ,

since
∥∥uvz∥∥ ≥ ∥∥uvz∥∥k for

∥∥uvz∥∥ ≤ 1 and k > 1. Let

a :=

∫ 1

t=0

PXi⊗∆i
(0, dt) , b :=

∫ ∞
t=1

PXi⊗∆i
(0, dt)

c :=

∞∑
k=1

∫ 1

t=0

PXi⊗∆i
(k, dt) , d :=

∞∑
k=1

∫ ∞
t=1

PXi⊗∆i
(k, dt) .

Then clearly, a+ b+ c+ d = 1 and thus,

a+ e−Re(ϑ0+ϑ+θ)b+
∥∥uvz∥∥c+

∥∥uvz∥∥e−Re(ϑ0+ϑ+θ)d < 1

whenever
∥∥uvz∥∥ < 1 or Re(ϑ0 + ϑ+ θ) > 0 and we are done with the proof. �

We continue with Fn for n = 0. F0 is the functional of the underlying process on
interval [0, t0). With Nt = Πt = A−1 = P−1 = t−1 = 0 we have

F0 (t) = EzNtuAn−1e−iηΠte−iϕPn−1vAne−iφPne−ϑ0tn−1−ϑtn1{0≤t<t0}

= EvA0e−iφP0e−ϑt01[0,t0) (t) .

The following is easy to prove.

Proposition 3.2 Let F0 (t) = EvA0e−iφP0e−ϑt01[0,t0) (t). Then

F ∗0 (θ) =
1

θ
[γ0 (v, φ, ϑ)− γ0 (v, φ, ϑ+ θ)] . (3.7)

With Proposition 3.2, we can augment the series
∑∞
n=1 F

∗
n of formula (3.6) to include

F ∗0 :

∞∑
n=0

F ∗n (θ) =
1

θ
[γ0 (v, φ, ϑ)− γ0 (v, φ, ϑ+ θ)] +

1

θ
γ0 (zuv, η + ϕ+ φ, ϑ0 + ϑ+ θ)

× [γ (v, φ, ϑ)− γ (v, φ, ϑ+ θ)]
1

1− γ (zuv, η + ϕ+ φ, ϑ0 + ϑ+ θ)
. (3.8)
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From (2.7) and (3.8) we arrive at

Φ∗ (θ, x) =

∞∑
n=0

[F ∗n (ux, v, z, ϑ0, ϑ, t)− F ∗n (u, vx, z, ϑ0, ϑ, t)]

=
1

θ
[γ0 (v, φ, ϑ)− γ0 (v, φ, ϑ+ θ)]− 1

θ
[γ0 (vx, φ, ϑ)− γ0 (vx, φ, ϑ+ θ)]

+
1

θ
γ0 (zuvx, η + ϕ+ φ, ϑ0 + ϑ+ θ)

1

1− γ (zuvx, η + ϕ+ φ, ϑ0 + ϑ+ θ)

× [γ (v, φ, ϑ)− γ (vx, φ, ϑ) + γ (vx, φ, ϑ+ θ)− γ (v, φ, ϑ+ θ)] . (3.9)

The Laplace transform Φ∗ν (θ) =
∫∞
t=0

e−θtΦν (t) dt of the functional

Φν (t) = EzNte−iηΠte−iϕPν−1uAν−1e−iφPνvAνe−ϑ0tν−1−ϑtν1[tν−1,tν) (t)

can be extracted from Φ∗ (θ, x) of (4.9) using the D-operator.

The entire effort in this section can be reduced to the following.

Theorem 3.1 Let Φν (θ) denote the Laplace transform of the functional

Φν (t) = EzNte−iηΠte−iϕPν−1uAν−1e−iφPνvAνe−ϑ0tν−1−ϑtν1[tν−1,tν) (t) (3.10)

‖z‖ ≤ 1, ‖u‖ ≤ 1, ‖v‖ ≤ 1, Reϑ0 ≥ 0, Reϑ ≥ 0, η, ϕ, φ ∈ R,

Then,with ‖u‖ < 1, or ‖v‖ < 1, or ‖z‖ < 1, or Reϑ0 > 0, or Reϑ > 0, or Re θ > 0,
(3.11)

Φ∗ν (θ)

= DM−1
x

{
1

θ
[γ0 (v, φ, ϑ)− γ0 (v, φ, ϑ+ θ)]− 1

θ
[γ0 (vx, φ, ϑ)− γ0 (vx, φ, ϑ+ θ)]

+
1

θ
γ0 (zuvx, η + ϕ+ φ, ϑ0 + ϑ+ θ)

1

1− γ (zuvx, η + ϕ+ φ, ϑ0 + ϑ+ θ)

× [γ (v, φ, ϑ)− γ (vx, φ, ϑ) + γ (vx, φ, ϑ+ θ)− γ (v, φ, ϑ+ θ)]

}
. (3.12)

4 Applications to Option Trading

For an illustration, consider the following special case. Suppose that we observe a con-
stantly fluctuating stock price of some company over the times t0 = 0, t1, t2, . . . that
starts off at time zero with a price π0.
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Case 1. Observation of process Pi upon the first drop.

1a. Suppose we are interested in the characteristics of the process around the period
when the stock price drops for the first time. Because the stock prices cannot be modeled
by a monotone process, we have the observed prices upon t’s as the passive component,
and introduce the active component

Xn =

{
0, πn ≥ 0,
1, πn < 0.

(4.1)

Suppose π0 is a nonnegative r.v. with some specified distribution and let X0 = τ0 = 0.
So, γ0 (z, φ, θ) = Ee−iφπ0 (innotation) = γ0 (φ) .
Next, with M = 1 according to our assumption about the first drop, formula (3.12)

further reduces to

θΦ∗ν (θ) = γ0 (η + ϕ+ φ)
1

1− γ (0, η + ϕ+ φ, ϑ0 + ϑ+ θ)

× [γ (v, φ, ϑ)− γ (0, φ, ϑ) + γ (0, φ, ϑ+ θ)− γ (v, φ, ϑ+ θ)] . (4.2)

Because the active component is merely auxiliary, we are less interested in any information
about Nt, Aν−1, Aν , as well as Pν−1, tν−1, so we set z = u = v = 1 and ϕ = ϑ0 = 0
restricting the Laplace transform of Φν to the marginal transform∫ ∞

t=0

e−θtEe−iηΠte−iφPνe−ϑtν1[tν−1,tν) (t) dt

=
1

θ
γ0 (η + φ)

1

1− γ (0, η + φ, ϑ+ θ)

× [γ (1, φ, ϑ)− γ (0, φ, ϑ) + γ (0, φ, ϑ+ θ)− γ (1, φ, ϑ+ θ)] , (4.3)

where

γ(z, φ, θ) = EzX1e−iφπ1e−∆1θ andγ(0, φ, θ) = EzX1e−iφπ1e−∆1θ
∣∣
z=0

.

From

EzX1
∣∣
z=0

= P {X1 = 0}+ zP {X1 = 1}
∣∣
z=0

= P {X1 = 0} = E1{X1=0} = E1{π1≥0}

we have
γ (0, φ, θ) = E1{π1≥0}e

−iφπ1e−∆1θ.

Suppose now that ∆’s and π’s are independent, that is, the observation epochs and
stock price changes are independent. This may not always apply, but it would simplify
establishing of γ. Then

γ (0, φ, θ) = E1{π1≥0}e
−iφπ1Ee−∆1θ = E1{π1≥0}e

−iφπ1
γ

γ + θ
,

if the observation epochs occur according to a Poisson point process of intensity γ. Our
next assumption is that the marginal distribution of π1 is Laplace with parameter µ and
zero shift. That being said, the PDF of π1 is

fπ1
(x) =

1

2
µe−µ|x|, x ∈ R. (4.4)
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Then

γ (0, φ, 0) = E1{π1≥0}e
−iφπ1 =

∫ ∞
x=0

e−iφx
1

2
µe−µxdx =

1

2

µ

µ+ iφ
.

Because Ee−iφπ1 = Ee−iφπ1
(
1{π1≥0} + 1{π1<0}

)
,we have

Ee−iφπ1 =
1

2

µ

µ+ iφ
+

∫ 0

x=−∞
e−iφx

1

2
µeµxdx

=
1

2

µ

µ+ iφ
+

1

2

µ

µ− iφ
=

1

2
µ

2µ

µ2 + φ2
=

µ2

µ2 + φ2
.

Thus,

γ(1, φ, θ) = Ee−iφπ1Ee−∆1θ = Ee−iφπ1
γ

γ + θ
=

µ2

µ2 + φ2

γ

γ + θ
.

Next the following two further marginals are of interest.
(i) With η = φ = 0 in (4.3),the functional∫ ∞

t=0

e−θtEe−ϑtν1[tν−1,tν) (t) dt

=
1

θ

1

1− γ (0, 0, ϑ+ θ)
[γ (1, 0, ϑ)− γ (0, 0, ϑ) + γ (0, 0, ϑ+ θ)− γ (1, 0, ϑ+ θ)] (4.5)

represents the Laplace transform of the first passage time tν ’s marginal functional at the
first drop with the time t falling between the pre-first passage time tν−1 and tν . Here

γ (1, 0, ϑ+ θ) =
γ

γ + ϑ+ θ

γ (0, φ, θ) = E1{π1≥0}e
−iφπ1Ee−∆1θ =

1

2

µ

µ+ iφ

γ

γ + θ

γ (0, 0, ϑ) =
1

2

γ

γ + ϑ
.

Therefore, ∫ ∞
t=0

e−θtEe−ϑtν1[tν−1,tν) (t) dt

=

(
1 +

γ

γ + 2(ϑ+ θ)

)
γ

2

1

(γ + ϑ) (γ + ϑ+ θ)
(4.6)

implying that the inverse of the Laplace transform is

Ee−ϑtν1[tν−1,tν) (t) = L−1
θ

{∫ ∞
t=0

e−θtEe−ϑtν1[tν−1,tν) (t) dt

}
=

γ

2 (γ + ϑ)
e−

t
2 (γ+2ϑ).

(4.7)
(ii) With η = ϑ = 0 in (4.3), we have the Laplace transform of the Pν ’s marginal
functional upon the first passage time tν jointly with the time t running between tν−1

and tν . ∫ ∞
t=0

e−θtEe−iφPν1[tν−1,tν) (t) dt

=
1

θ
γ0 (φ)

1

1− γ (0, φ, θ)
[γ (1, φ, 0)− γ (0, φ, 0) + γ (0, φ, θ)− γ (1, φ, θ)] . (4.8)
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Because
γ0 (φ) = e−iφp0

(assuming the initial price π0 = p0 a.s. where p0 is a constant)
and

γ (1, φ, θ) =
µ2

µ2 + φ2

γ

γ + θ
,

γ (0, φ, θ) = E1{π1≥0}e
−iφπ1Ee−∆1θ =

1

2

µ

µ+ iφ

γ

γ + θ
,

1− γ (0, φ, θ) =
2 (µ+ iφ) (γ + θ)− µγ

2 (µ+ iφ) (γ + θ)
,

and
1

1− γ (0, 0, ϑ+ θ)
= 1 +

µγ

2 (µ+ iφ) (γ + θ)− µγ
,

we have that ∫ ∞
t=0

e−θtEe−iφPν1[tν−1,tν) (t) dt

=
1

θ
e−iφp0

(
1 +

µγ

2 (µ+ iφ) (γ + θ)− µγ

)
×
[

µ2

µ2 + φ2
− 1

2

µ

µ+ iφ
+

1

2

µ

µ+ iφ

γ

γ + θ
− µ2

µ2 + φ2

γ

γ + θ

]
= e−iφp0

[
µ2

µ2 + φ2
− 1

2

µ

µ+ iφ

](
1 +

µγ

2 (µ+ iφ) (γ + θ)− µγ

)
1

γ + θ
. (4.9)

Thus,

Ee−iφPν1[tν−1,tν) (t) = L−1
θ

{∫ ∞
t=0

e−θtEe−iφPν1[tν−1,tν) (t)

}
=

[
µ2

µ2 + φ2
− 1

2

µ

µ+ iφ

]
e−( γt2 (µ+2iφ

µ+iφ )+iφp0) (4.10)

and

EPν1[tν−1,tν) (t) = i lim
φ→0

∂

∂φ
Ee−iφPν1[tν−1,tν) (t) =

1

2µ

(
γt

2
+ µp0 − 1

)
e−

γt
2 (4.11)

EP 2
ν 1[tν−1,tν) (t) = − lim

φ→0

∂2

∂φ2
Ee−iφPν1[tν−1,tν) (t)

=
1

2µ2

(
2 +

(
γt

2

)2

+ (µp0)
2

+ 2µp0
γt

2
− 2µp0

)
e−

γt
2 . (4.12)

So

E1[tν−1,tν) (t) = P {tν−1 ≤ t < tν} = L−1
θ

{∫ ∞
t=0

e−θtE1[tν−1,tν) (t) dt

}
=
e−

γ
2 t

2
. (4.13)

1b. One could be interested in when the passive component drops lower than R, for
some R < 0. Thus the active component reads now

Xn =

{
0, πn ≥ R,
1, πn < R.

(4.14)
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With M = 1 assumed and because

EzX1
∣∣
z=0

= P {X1 = 0}+ zP {X1 = 1}
∣∣
z=0

= P {X1 = 0} = E1{X1=0} = E1{π1≥R},

we have

γ (0, φ, θ) = E1{π1≥R}e
−iφπ1e−∆1θ = E1{π1≥R}e

−iφπ1
γ

γ + θ
,

γ (0, φ, 0) = E1{π1≥R}e
−iφπ1 =

∫ 0

x=R

e−iφx
1

2
µeµxdx+

∫ ∞
x=0

e−iφx
1

2
µe−µxdx

=
1

2

µ

µ− iφ

[
1− e(µ−iφ)R

]
+

1

2

µ

µ+ iφ
.

Since

Ee−iφπ1 = Ee−iφπ1
(
1{π1≥R} + 1{π1<R}

)
,

we have

Ee−iφπ1 =
1

2

µ

µ− iφ

[
1− e(µ−iφ)R

]
+

1

2

µ

µ+ iφ
+

∫ R

x=−∞
e−iφx

1

2
µeµxdx =

µ2

µ2 + φ2
.

Thus,

γ(1, φ, θ) = Ee−iφπ1Ee−∆1θ = Ee−iφπ1
γ

γ + θ
=

µ2

µ2 + φ2

γ

γ + θ

and with η = φ = 0 = ϑ in (4.3), the functional∫ ∞
t=0

e−θtE1[tν−1,tν) (t) dt

=
1

θ

1

1− γ (0, 0, θ)
[γ (1, 0, 0)− γ (0, 0, 0) + γ (0, 0, θ)− γ (1, 0, θ)] = e

µR 1

2θ + γeµR

and

E1[tν−1,tν) (t) = P {tν−1 ≤ t < tν}

= L−1
θ

{∫ ∞
t=0

e−θtE1[tν−1,tν) (t) dt

}
=

1

2
e
−
(
γte

µR

2 −µR
)

(4.15)

which reduces to (4.13) when R = 0.

Case 2. Observation of process Pi upon general Mth drop.

2a. For the general threshold level M (when the stock price drops Mth times), since the
active process increments Xn are Bernoulli with p = 0.5 due to the symmetric Laplace
PDF of πn defined in (4.4) above with zero shift and with

E1(tν−1,tν ] (t) = Φν (t)
∣∣
z,v,u,ϑ=1,η,ϕ,φ,ϑ0,ϑ=0

,

Φ∗ν (θ) =

∫ ∞
t=0

e−θtE1[tν−1,tν) (t) dt

= DM−1
x

1

θ
γ0 (0)

1

1− γ (x, 0, θ)
× [γ (1, 0, 0)− γ (x, 0, 0) + γ (x, 0, θ)− γ (1, 0, θ)] , (4.16)
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where

γ (1, 0, θ) =
γ

γ + θ
, γ (x, 0, 0) =

1 + x

2
, γ (x, 0, θ) = (

1 + x

2
)

γ

γ + θ
.

Therefore,

Φ∗ν (θ) = DM−1
x

1

θ

2 (γ + θ)

γ + 2θ − γx

[
1− 1 + x

2
+

1 + x

2

γ

γ + θ
− γ

γ + θ

]

= DM−1
x

1

θ

2 (γ + θ)

γ + 2θ − γx

[
1− x

2

θ

γ + θ

]

= DM−1
x

{
1

γ + 2θ − γx

}
−DM−2

x

{
1

γ + 2θ − γx

}
=

1

(γ + 2θ)

(
γ

γ + 2θ

)M−1

=
γM−1

(γ + 2θ)
M
.

So

E1(tν−1,tν ] (t) = P {tν−1 ≤ t < tν} = L−1
θ {Φν (θ)} =

1

2

(
γt
2

)M−1

(M − 1)!
e−

γ
2 t . (4.17)

2b. Next we obtain the result for E1(tν−1,tν ] (t) for general M and general shift parameter
a in our model such that

fπ1
(x) =

1

2
µe−µ|x−a|, x ∈ R.

After some algebra we have

γ (0, φ, 0) = E1{π1≥0}e
−iφπ1 =

∫ a

x=0

e−iφx
1

2
µeµ(x−a)dx+

∫ ∞
x=a

e−iφx
1

2
µe−µ(x−a)dx

=
1

2
µ

2µe−iφa − e−µa (µ+ iφ)

µ2 + φ2
,

γ(0, φ, θ) =
1

2
µ

2µe−iφa − e−µa (µ+ iφ)

µ2 + φ2

γ

γ + θ

and

γ(0, φ, 0) =
1

2
µ

2µe−iφa − e−µa (µ+ iφ)

µ2 + φ2
,

Ee−iφπ1 =
2µ2e−iφa

µ2 + φ2
− 1

2

µ

µ2 + φ2

[
(µ+ iφ) e−µa + (µ− iφ) eµa

]
γ(1, φ, θ) =

[
2µ2e−iφa

µ2 + φ2
− 1

2

µ

µ2 + φ2

[
(µ+ iφ) e−µa + (µ− iφ) eµa

]] γ

γ + θ

γ(x, φ, θ) = (p+ qx)

[
2µ2e−iφa

µ2 + φ2
− 1

2

µ

µ2 + φ2

[
(µ+ iφ) e−µa + (µ− iφ) eµa

]] γ

γ + θ
.

Hence

Φ∗ν (θ) =

∫ ∞
t=0

e−θtE1(tν−1,tν ] (t) dt

= DM−1
x

1

θ
γ0 (0)

1

1− γ (x, 0, θ)
× [γ (1, 0, 0)− γ (x, 0, 0) + γ (x, 0, θ)− γ (1, 0, θ)]

= DM−1
x

{
1

θ

(γ + θ)

γ + θ − pγ (2− cosh(µa))− qγ (2− cosh(µa))x
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×
[
(2− cosh(µa))− (p+ qx) (2− coshµa)) + (p+ qx) (2− cosh(µa))

γ

γ + θ

− (2− cosh(µa))
γ

γ + θ

]}
=

γM−1(q (2− cosh(µa)))M

(γ + θ − pγ (2− cosh(µa)))
M

(4.18)

by the D-operator inversion formulas from [12].

E1[tν−1,tν) (t) = P {tν−1 ≤ t < tν} = L−1
θ {Φ

∗
ν (θ)}

= γM−1(q (2− cosh(µa)))M
tM−1

(M − 1)!
e−(γ−pγ(2−cosh(µa)))t

= q (2− cosh(µa))
(γq (2− cosh(µa)) t)

M−1

(M − 1)!
e−(γ−pγ(2−cosh(µa)))t. (4.19)

Notice that when a = 0 (in the symmetric case), (4.19) reduces to (4.17) and the
value of µ is irrelevant given it is finite.

5 Continuous Time Parameter Process on Interval [0, tν)

Now consider the functional of passive process P being observed over the period [0, tν),
jointly with the active process Aν , the first passage time tν , and the counting processes
Nt and Πt. The functional satisfies the formula:

∧
Φν (t) = EzNte−iηΠte−iφPνvAνe−ϑtν1[0,tν)(t)

=

∞∑
k=0

EzNte−iηΠte−iφPνvAνe−ϑtν1[0,tν)(t)1{ν=k}.

Since
∑ν
j=0E1[tν−j−1,tν−j)(t) = E1[0,tν)(t),

∧
Φν (t) =

∞∑
k=0

k∑
j=0

E[zAk−j−1vAk−j−1v
∑k
i=k−j Xie−iηΠk−j−1−iφPk−j−1

×e−iφ
∑k
i=k−j πie−ϑtk−j−1e−ϑ

∑k
i=k−j ∆i1[tk−j−1,tk−j)(t)],

and applying the transformation Dp to
∧
Φν (t) we have:

Dp

[
∧
Φν (t)

]
(x) =

∞∑
k=0

k∑
j=0

Fjk (t)xXk−j+1+···+Xk−1

×E (vx)
Xk−j+1+···+Xk−1 e−iφ(πk−j+1+···+πk−1)e−ϑ(∆k−j+1+···+∆k−1)

×E
(
1− xXk

)
e−iφπke−ϑ∆kvXk ,

where
Fjk (t) =

E (zvx)
Ak−j−1 e−i(η+φ)Pk−j−1e−ϑtk−j−11[tk−j−1,tk−j)(t) (vx)

Xk−j e−iφ(πk−j)e−ϑ(∆k−j),



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1) (2018) 36–54 51

∼
F (t) = EzAe−iηP e−ϑT1[T,T+∆) (t) vXe−iφπe−ϑ∆

under the assumptions that random vectors A⊗P ⊗ T and X ⊗ π⊗∆ are independent.
Then

∼
F ∗ (θ) =

∑
r

zr
∑
m

vm
∫
p

e−iηp
∫
w

e−iφw
∫
s≥0

e−ϑse−θs.

×1

θ

∫
δ

(
e−ϑδ − e−(ϑ+θ)δ

)
PA⊗P⊗T⊗X⊗π⊗∆ (r,m, dp, ds, dw, dδ)

and because A⊗ P ⊗ T and X ⊗ π ⊗∆ are independent,

=
1

θ
E
[
zAe−iηP e−(ϑ+θ)T

]
[γ (v, φ, ϑ)− γ (v, φ, ϑ+ θ)] .

Thus

F ∗jk (θ) =
1

θ
γ0δ

1j−1 [
δ − δ1

]
γk−j−1

[
δ1 − δ13

]
, (5.1)

(i)
∑
k>0

k−1∑
j=1

F ∗jk (θ) =
1

θ
γ0Ψδ

∑
k>0

γk−2
k−1∑
j=1

(
δ1

γ

)j−1

=
1

θ
γ0

Ψδ

(1− γ) (1− δ1)
, (5.2)

with notation γ := γ (zvx, η + φ, ϑ) and γ0 := γ0 (zvx, η + φ, ϑ), and further

δ1 = γ (vx, φ, ϑ) , δ1
0 = γ0 (vx, φ, ϑ) , δ = γ (v, φ, ϑ) ,

δ3 = γ (v, φ, ϑ+ θ) , δ13 = γ (vx, φ, ϑ+ θ) , δ0 = γ0 (v, φ, ϑ) , δ13
0 = γ0 (vx, φ, ϑ+ θ) ,

Γ δ = δ − δ3 − δ1 + δ13, Λδ =
Ψδ

1− δ1
+ Γδ, Ψδ =

(
δ − δ1

) (
δ1 − δ13

)
.

(ii) Consider j = k = 0. A−1 = t−1 = P−1 = 0 for t ∈ [0, t0) andNt = A−1 = Πt = 0.

F00 (t) = E1[0,t0)(t)e
−ϑt0vA0e−iφP0

(
1− xA0

)
.

F ∗00 (θ) =
∑
r

vr
∫
p

e−iφp
∫
s

e−ϑs
∫ s

t=0

e−θtdtPA0⊗P0⊗t0 (r, dp, ds)

=
∑
r

vr
∫
p

e−iφp
∫
s

e−ϑs
1

θ

[
e−ϑs − e−(ϑ+θ)s

]
PA0⊗P0⊗t0 (r, dp, ds) =

1

θ
Γδ0. (5.3)

(iii) Consider j = 0, k > 0.

F0k (t) = EzNtvAke−iηPk−1e−iφPke−ϑtk1[tk−1,tk) (t)
(
xAk−1 − xAk

)
= E (zvx)

A
k−1 e−i(η+φ)Pk−1e−ϑtk−11[tk−1,tk) (t) vXk

(
1− xXk

)
e−iφπke−ϑ∆k .

F ∗0k (θ) =

∫
t

e−θt
∑
r

(zvx)
r
∫
p

e−i(η+φ)p
∑
m

vm
∫
q

e−iφq
∫
s

e−ϑs

×
∫
δ

e−ϑδ1[s,s+δ) (t) dtPAk−1⊗Pk−1⊗Tk−1⊗Xk⊗πk⊗∆k
(r, dp, ds,m, dq, dδ)

=
∑
r

(zvx)
r
∫
p

e−i(η+φ)p
∑
m

vm
∫
q

e−iφq
∫
s

e−ϑse−θs
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×
∫ δ

t−s=0

e−θ(t−s)dtPAk−1⊗Pk−1⊗Tk−1⊗Xk⊗πk⊗∆k
(r, dp, ds,m, dq, dδ)

=
∑
r

(zvx)
r
∫
p

e−i(η+φ)p
∑
m

vm
∫
q

e−iφq
∫
δ

[
e−ϑδ − e−(ϑ+θ)δ

]
×PAk−1⊗Pk−1⊗Xk⊗πk⊗∆k

(r, dp,m, dq, dδ)

=
1

θ
γk−1 (zvx, η + φ, ϑ) γ0 (zvx, η + φ, ϑ)

× [γ (v, φ, ϑ)− γ (v, φ, ϑ+ θ)− γ (vx, φ, ϑ) + γ (vx, φ, ϑ+ θ)]

and ∑
k>0

F ∗0k (θ) =
1

θ
γ0 (zvx, η + φ, ϑ)

1

1− γ (zvx, η + φ, ϑ)

× [γ (v, φ, ϑ)− γ (v, φ, ϑ+ θ)− γ (vx, φ, ϑ) + γ (vx, φ, ϑ+ θ)] =
1

θ

γ0

1− γ
Γδ. (5.4)

(iv) Consider j = k > 0. Fkk(t) = E1[0,t0) (t) e−ϑtkvAke−iφPk
(
xAk−1 − xAk

)
= E1[0,t0) (t) e−ϑtk (vx)

A0 e−iφP0e−ϑt0 (vx)
X1+···+Xk−1 e−iφ(π1+···+πk−1)e−ϑ(∆1+···+∆k−1)

×
[
vXk − (vx)

Xk
]
e−iφπke−ϑ∆k

= E1[0,t0) (t) e−ϑtk (vx)
A0 e−iφP0e−ϑt0γk−1 (vx, φ, ϑ) [γ (v, φ, ϑ)− γ (vx, φ, ϑ)] .

So, ∑
k>0

F ∗kk (θ) =
1

θ

Ψδ0
1− δ1

. (5.5)

Altogether, from (i) through (iv) we have

∧
Φ∗ν (θ) =

∫ ∞
t=0

e−θtΦν (t) dt = DM−1
x

{∑
k>0

k−1∑
j=1

F ∗jk (θ) + F ∗00 (t) +
∑
k>0

F ∗0k (θ) +
∑
k>0

F ∗kk (θ)
}

= DM−1
x

{1

θ

(
Λδ0 +

γ0

1− γ
Λδ
)}

(5.6)

where Λα = Γα + Ψα
1−δ1 and α = δ or δ0. The Laplace inverse of (5.6) will permit the

recovery of
∧
Φν (t).

6 Conclusion

In this paper we study a class of signed marked random measures (A, Π, T ) =∑∞
n=0 (Xn, πn) εtn with position dependent marking, on a filtered probability space

(Ω,F ,Ft, P ). We target the critical behavior of the underlying stochastic process about
a fixed threshold in the context of time sensitivity. The latter means that all related
characteristics, such as first passage time and the location of the process upon crossing
the threshold relate to deterministic time t ≥ 0. The major benefit of this study is to
utilize stochastic control over the process that must traditionally be considered on time
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interval [0, t] , t ≥ 0. Using and further embellishing fluctuation theory, we find explicitly
the functionals

Φν (t) = EzNte−iηΠte−iϕPν−1uAν−1e−iφPνvAνe−ϑ0tν−1−ϑtν1[tν−1,tν) (t)

and
∧
Φν (t) = EzNte−iηΠte−iφPνvAνe−ϑtν1[0,tν)(t)

with respect to time t ∈ [τν−1, τν) and t ∈ [0, τν), respectively. These functionals describe
the status of underlying processes Nt =

∑∞
n=0Xnεtn [0, t] and Πt =

∑∞
n=0 πnεtn [0, t] ,

along with other characteristics like the values of these processes upon the crossing as
well as just prior to crossing the threshold.

We discuss various applications to the finance (stock option trading) and risk theory.
A number of special cases and examples demonstrate analytic tractability of the results
obtained.
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Abstract: This paper presents a new approach to assure the decentralized opti-
mal control of interconnected nonlinear systems based on the decentralized state-
dependent riccati equation (SDRE). To remedy the problem of persistent stability
in other works, we based our approach on the foundations of the Lyapunov theory.
It allows developing a new sufficient condition to guarantee the global asymptotic
stability of the systems under study. We conducted a simulation of this new control
method on a numerical example. It demonstrated its efficiency and the sufficiency of
the new stability conditions.
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1 Introduction

In recent years, the modern dynamical systems are getting more complex, highly intercon-
nected, and mutually interdependent. This change is caused either by physical attributes,
and/or a multitude of information and communication network constraints [1–3]. The
important dimension and complexity of these large-scale systems often require a hierar-
chical decentralized architecture to analyze and control these systems [4–10]. Since these
complex dynamic systems can be characterized by an interconnection between many sub-
systems, possible control strategies are generally based on a decentralized approach. The
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advantage of such method is to reduce the complexity and therefore make the implemen-
tation of the control law more feasible.

In fact, the decentralized control refers to a control design with local decisions. These
decisions are based only on local information of the subsystems. This method is given
considerable interest because it brings up significant solutions for the traditional con-
trol approach limitations such as the implementation constraints, cost and reliability
considerations especially for large-scale systems.

Optimal control of nonlinear systems is one of the most challenging subjects in control
theory. Indeed, the classical problems of optimal control are based on the solution of
the Hamilton-Jacobi equation (HJE) [11, 12]. The solution to the HJE is a function of
the state of the nonlinear system which makes it possible to characterize the quadratic
optimal law of control sought under some hypotheses. However, in most cases it is
impossible to solve it analytically, and despite recent progress, unsolved problems still
exist and researchers often complain about the very limited applicability of contemporary
theories because of conditions imposed on the system. This has led to numerous methods
proposed in the literature for obtaining a suboptimal state feedback control law for the
general case of nonlinear dynamic systems [13,14].

The SDRE approach is one of the methods applied in the determination of a sub-
optimal quadratic control based on the solution of a state-dependent Riccati equation.
This strategy provides an efficient algorithm for nonlinear state feedback control syn-
thesis while retaining the nonlinearities of the complex dynamic system, thanks to the
flexibility of the state-dependent weighting matrices [15, 16]. This approach, proposed
by Pearson [17] and later extended by Wernli and Cook [18], was studied independently
by Mracek and Cloutier [19]. It should be pointed out that, although it is a relatively
simplified and practical technique for controlling nonlinear systems, the SDRE approach
involves problems that deserve to be treated with great attention, in particular the sta-
bility problem of the system controller [20,21]. Elloumi and Benhadj Braiek [22,23] have
developed a sufficient condition for the stability of nonlinear system with optimal control
based on SDRE approach. In this paper, we extend this work to the case of large scale
interconnected systems. In this direction we carried out the synthesis of decentralized
optimal control law based on the SDRE technique. This approach aims to minimize a
performance criterion in order to compute decentralized optimal control gains when some
sufficient conditions developed using the Lyapunov theory are verified.

The rest of the paper is organized as follows: the second section is devoted to the
description of the systems under study and the formulation of the problem. In the third
section, we present the decentralized optimal control law based on the SDRE approach.
The fourth section treats the stability of the system in question using the quadratic
Lyapunov function. The simulation results are set out in the fifth section to illustrate
the applicability of the developed approach. Finally, conclusions are drawn and future
scope of study is outlined.

2 Description of the System Under Study and Problem Formulation

A nonlinear system can be described by the interconnection of subsystems as follows:{
ẋi = fi ((xi, xj) , ui (t) , t) , i 6= j,

yi = hi (xi) , i = 1, ..., n, j = 1, ..., n,
(1)
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where xi (t) ∈ Rni , ui ∈ Rmi and yi ∈ Rpi are, respectively, the state, the control and
the output of the ith subsystem.

fi (xi, xj) and hi (xi) are nonlinear functions of the state. Through the state-
dependent coefficient (SDC) factorization, system designers can represent the nonlinear
equations of the system under consideration as linear structures with state-dependent
coefficients. Thus, the following procedure is similar to the optimal linear control (LQR)
method, except that all matrices may depend on the states. Based on this concept, the
state space equation for the nonlinear interconnected subsystem can be expressed as a
linear-like state-space equation using direct SDC factorization as: ẋi (t) = Ai (xi)xi (t) +Bi (xi)ui (t) +

n∑
j=1,j 6=i

Hij (xi, xj)xj (t) ,

yi (t) = Ci (xi)xi (t) , i = 1, . . . , n,
(2)

where Ai (xi) is the characteristic matrix that depends on the state of the ith subsystem,
Bi (xi) is the control vector of the ith subsystem, Ci (xi) is the state-dependent observa-
tion matrix of the ith subsystem and Hij (xi, xj) is the state -dependent interconnection
matrix between the ith and the jth subsystem.

The global interconnected system can be defined by the following compact form:{
ẋ = A (x)x+B (x)u+H (x)x,

y = C (x)x,
(3)

with

xT =
[
xT1 , x

T
2 , ... , x

T
n

]
being the state vector of the overall system; x ∈ Rn, n =

n∑
i=1

ni;

uT =
[
uT1 , u

T
2 , ... , u

T
n

]
being the control vector of the overall system ,

A (x) = diag [Ai (xi)] , B (x) = diag [Bi (xi)] and C (x) = diag [Ci (xi)].
H (x) is the global interconnection matrix given as follows:

H (x) =


0 H12 (x) · · · H1n (x)

H21 (x) 0 · · · H2n (x)
...

...
. . .

...
Hn1 (x) · · · · · · 0

 . (4)

Our contribution consists in the application of a decentralized optimal control via the
SDRE approach to nonlinear interconnected systems. We based on solving the decentral-
ized state-dependent Riccati equations to obtain the local control gains. The synthesis
of a decentralized control for the system in question is detailed in the following section.

3 Decentralized State-Dependent Riccati Regulation Theory

The decentralized state-dependent Riccati equation technique is a nonlinear control de-
sign method for the direct construction of nonlinear sub-optimal feedback controllers.
The determination of such decentralized control is based on considering the decoupled
subsystem, expressed as follows:{

ẋi = Ai (xi)xi +Bi (xi)ui , i = 1, . . . , n

yi = Ci (xi)xi.
(5)
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Note that Ai (xi) is not a unique matrix because there could be many possible choices in
the direct (SDC) factorization. For this subsystem, the SDRE technique finds an input
ui (t) that approximately minimizes the following performance criterion:

Ji =
1

2

∞∫
0

(
xTi Qi (xi)xi + uTi Ri (xi)ui

)
dt, (6)

where Qi (xi) ∈ R(ni×ni) and Ri (xi) ∈ R(mi×mi) are symmetric, positive definite matri-
ces. xTi Qi (xi)xi is a measure of the control accuracy and uTi Ri (xi)ui is a measure of
the control effort.

3.1 Existence of a control solution

The SDRE feedback control provides a similar approach as the algebraic Riccati equation
(ARE) for LQR problems to the nonlinear regulation problem for the decoupled nonlinear
subsystem (5) with cost functional (6). Indeed, once a SDC form has been found, the
SDRE approach is reduced to solving a LQR problem at each sampling instant.

To guarantee the existence of such controller, the conditions in the following defini-
tions must be satisfied [19].

• Definition 3.1: Ai (xi) is a controllable (stabilizable) parametrization of the non-
linear subsystem for a given region if [Ai (xi) , Bi (xi)] are pointwise controllable
(stabilizable) in the linear sense for all xi in that region.

• Definition 3.2: Ai (xi) is an observable (detectable) parametrization of the non-
linear subsystem for a given region if [Ci (xi) , Ai (xi)] are pointwise observable
(detectable) in the linear sense for all xi in that region.

Given these standing assumption, the state feedback decentralized controller is obtained
in the following form:

ui (xi) = −Ki (xi)xi (7)

and the state feedback decentralized gain for minimizing (6) is

Ki (xi) = R−1i (xi)B
T
i (xi)Pi (xi) , (8)

where Pi (xi) is the unique symmetric positive-definite solution of the decentralized state
dependent Riccati equation (SDRE)

AT
i (xi)Pi (xi) + Pi (xi)Ai (xi)

−Pi (xi)Bi (xi)R
−1
i (xi)B

T
i (xi)Pi (xi) + CT

i (xi)Qi (xi)Ci (xi) = 0.
(9)

Remark 3.1: It is important to note that the existence of the decentralized
optimal control for a particular parametrization of the subsystem is not guaranteed.
Furthermore, there may be an infinite number of parametrizations of the subsystem,
therefore the choice of parametrization is very important. The other factor which may
determine the existence of a solution is the Qi (xi) and Ri (xi) weighting matrices in the
state dependent Riccati equation (9).
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Remark 3.2. The greatest advantage of the state-dependent Riccati equation ap-
proach is that physical intuition is always present and the designer can directly control
the performance by tuning the weighting matrices Qi (xi) and Ri (xi). In other words,
via the SDRE, the design flexibility of LQR formulation is directly translated to control
the nonlinear interconnected systems. Moreover, Qi (xi) and Ri (xi) are not only allowed
to be constant, but can also vary as functions of states. In this way, different modes of
behavior can be imposed in different regions of the state-space [21].

3.2 Optimality of the SDRE regulation

As xi → 0, Ai (xi) → ∂fi (0)/∂xi which implies that Pi (xi) approaches the linear ARE
at the origin. Furthermore, the SDRE control solution asymptotically approaches the
optimal control as xi → 0 and away from the origin the SDRE control is arbitrarily close
to the optimal feedback. Hence the SDRE approach yields an asymptotically optimal
feedback solution.

Let the Hamiltonian be defined by the following expression:

Hi (xi, ui, λi) = 1
2

[
xTi Qi (xi)xi + uTi Ri (xi)ui

]
+ λTi [Ai (xi)xi +Bi (xi)ui] . (10)

Mracek and Cloutier developed the necessary conditions for the optimality of a general
nonlinear regulator, that is the regulator governed by (5) and (6), and then extend these
results to determine the optimality of the SDRE approach [19].

Theorem 1. For the general multivariable nonlinear SDRE control case (i.e., n > 1),
the SDRE nonlinear feedback solution and its associated state satisfy the first neces-
sary condition for optimality ∂Hi/∂ui = 0 of the nonlinear optimal regulator prob-
lem defined by (5) and (6). Additionally, the second necessary condition for optimality

λ̇i = −∂Hi

/
∂xi is asymptotically satisfied at a quadratic rate.

Proof. Pontryagin’S maximum principle states that necessary conditions for opti-
mality are

∂Hi

∂ui
= 0, λ̇i = −∂Hi

∂xi
, ẋi =

∂Hi

∂λi
, (11)

where Hi is the Hamiltonian. Using (7) yields

∂Hi

∂ui
= BT

i (xi) [λi − Pi (xi)xi] (12)

and λi, the adjoint vector for the system, satisfies

λi = Pi (xi)xi, (13)

and the first optimality condition (12) is satisfied identically for the nonlinear regulator
problem. With the Hamiltonian defined in (10), the second necessary condition becomes

λ̇i = −xTi
(
∂Ai (xi)

∂xi

)T

λi − uTi
(
∂Bi (xi)

∂xi

)T

λi −Qi (xi)xi

−1

2
xTi

∂Qi (xi)

∂xi
xi −

1

2
uTi

∂Ri (xi)

∂xi
ui.

(14)
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Taking the time derivative of (13) yields

λ̇i = Ṗi (xi)xi + Pi (xi) ẋi. (15)

Substituting this result, along with (5), (7) and (14) into (9) leads to the SDRE necessary
condition for optimality

Ṗi (xi)xi +
1

2
xTi Pi (xi)Bi (xi)R

−1
i (xi)

∂Ri (xi)

∂xi
R−1i (xi)B

T
i (xi)Pi (xi)xi

+ xTi

(
∂Ai(xi)

∂xi

)T
Pi (xi)xi +

1

2
xTi

∂Qi (xi)

∂xi
xi

− xTi Pi (xi)Bi (xi)R
−1
i (xi)

(
∂Bi (xi)

∂xi

)T

Pi (xi)xi = 0.

(16)

Hence, whenever (16) is satisfied, the closed-loop SDRE solution satisfies all the first-
order necessary conditions for an extremum of the cost functional.

4 Stability Study

In this section, we study the asymptotic stability of interconnected system based on the
Lyapunov theory [10]. We begin with the stability study of each subsystem, thereafter
we deal with the development of a sufficient condition to assure the asymptotic stability
of the overall interconnected nonlinear system.

4.1 Stability of a decoupled nonlinear subsystem

Stability of SDRE systems is still an open problem. Local stability results are presented
by Cloutier, D’souza and Mracek in the case when the closed-loop coefficient matrix is
assumed to have a special structure.

The authors in [22,23] presented the optimal control solution for nonlinear subsystem
using the SDRE method. The asymptotic stability of decoupled subsystem (5) with
SDRE feedback control is guaranteed provided that

Mi (xi) = −CT
i (xi)Qi (xi)Ci (xi) − Pi (xi)Bi (xi)R

−1
i (xi)B

T
i (xi)Pi (xi)

−
(
In ⊗ xT

i Pi (xi)Bi (xi)R
−1
i (xi)B

T
i (xi)

) ∂Pi (xi)

∂xi
+

(
In ⊗ (xT

i A
T
i (xi)

) ∂Pi (xi)

∂xi

(17)

is negative definite for all xi ∈ Rni .
Now, to guarantee the asymptotic stability of the overall interconnected system (3),

we carry out a stability study of interconnected system (2) with the decentralized control
(7) as depicted in the following subsection.

4.2 Stability of a global interconnected system

In this paragraph, we present our contribution which consists in developing a sufficient
condition to assure the asymptotic stability of the overall interconnected nonlinear system
(3) with the decentralized control law (7). This study is based on the quadratic Lyapunov
function

V (x) = xTP (x)x, (18)
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where P (x) = diag [Pi (xi)].
The global asymptotic stability of the equilibrium state (x = 0) of system (3) is

ensured when the time derivative V̇ (x) of V (x) is negative define for all x ∈ Rn,

V̇ (x) = ẋTP (x)x+ xT
dP (x)

dt
x+ xTP (x) ẋ. (19)

The use of expression (19) and the following equality:

dP (x)

dt
=
(
In ⊗ ẋT

) ∂P (x)

∂x
(20)

yields

V̇ (x) = xT
[
AT (x)P (x) + P (x)A (x)

]
x+ xT

[
HT (x)P (x) + P (x)H (x)

]
x

−2xT
[
P (x)B (x)R−1 (x)BT (x)P (x)

]
x+ xT

(
In ⊗ ẋT

) ∂P (x)

∂x
x,

(21)

then

V̇ (x) = xT
[
AT (x)P (x) +HT (x)P (x)

+P (x)A (x) + P (x)H (x) −2P (x)B (x)R−1 (x)BT (x)P (x)
]
x

+xT
[(
In ⊗

(
xTAT (x) + xTHT (x)− xTP (x)B (x)R−1 (x)BT (x)

)) ∂P (x)

∂x

]
,

(22)

where ⊗ is the Kronecker product notation whose definition and properties are detailed
in the appendix. Using the state-dependent Riccati equation (9), expression (22) can be
simplified as follows:

V̇ (x) = xT
[
−CT (x)Q (x)C (x) − P (x)L (x)P (x)

]
x

+xT
[
HT (x)P (x) + P (x)H (x)

]
x + xT

[(
In ⊗

(
xTAT (x) + xTHT (x)

)) ∂P (x)

∂x

]
x

−xT

[(
In ⊗

(
xTP (x)B (x)R−1 (x)BT (x)

)) ∂P (x)

∂x

]
x,

(23)

where L (x) = B (x)R−1 (x)BT (x) ,∀ x ∈ Rn.
To ensure the asymptotic stability of the overall systems (3) with the decentralized

optimal control law (7), V̇ (x) should be negative definite, which is equivalent to M (x)
being negative definite, with

M (x) = −CT (x)Q (x)C (x)− P (x)B (x)R−1 (x)BT (x)P (x)

−
(
In ⊗ xTP (x)B (x)R−1 (x)BT (x)

) ∂P (x)

∂x

+
(
In ⊗ xTAT (x) + xTHT (x)

) ∂P (x)

∂x
+ P (x)H (x) +HT (x)P (x) .

(24)
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We need to simplify the manipulation of matrix M (x) by expressing ∂P (x)/∂x in terms
of P (x) > 0, ∀ x ∈ Rn. When deriving the SDRE (9) with respect to the state vector
x ∈ Rn, we get the following expression:

∂P (x)

∂x
A (x) + (In ⊗ P (x))

∂A (x)

∂x
+

∂AT (x)

∂x
P (x) +

(
In ⊗AT (x)

) ∂P (x)

∂x
+

∂Φ (x)

∂x

−∂P (x)

∂x
L (x)P (x) − (In ⊗ P (x)L (x))

∂P (x)

∂x
− (In ⊗ P (x))

∂L (x)

∂x
P (x) = 0

(25)

with Φ (x) = CT (x)Q (x)C (x), which gives[
In ⊗AT (x) − In ⊗ (P (x)L (x))

] ∂P (x)

∂x
+

∂P (x)

∂x
[A (x) − L (x)P (x)] = W (x) (26)

with

W (x) = (In ⊗ P (x))
∂L (x)

∂x
P (x) − (In ⊗ P (x))

∂A (x)

∂x
− ∂AT (x)

∂x
P (x) − ∂Φ (x)

∂x
. (27)

To simplify the partial derivative expression ∂P (x)/∂x we use the functions V ec and
mat and their properties defined in this paper appendix; so (26) becomes

V ec

(
∂P (x)

∂x

)
=
[
In⊗

(
In ⊗AT (x)+In ⊗ P (x)L (x)

)
+ (A (x)− L (x)P (x))⊗ In]

−1
V ec (W (x))

(28)

which leads to

∂P (x)

∂x
=mat(n2,n)

[(
In ⊗

[
In⊗A(x) + In⊗AT (x)

−2 (In ⊗ L (x)P (x))])
−1
V ec (W (x))

]
.

(29)

Therefore, we can state the following result.

Theorem 2. The overall system (3) is globally asymptotically stabilizable by the
optimal decentralized control law (7), with the cost function (6) if the matrix M (x)
defined by (24) is negative definite for all x ∈ Rn.

5 Simulation Results

In this section we will illustrate the performance of the decentralized SDRE approach,
discussed in the previous paragraph, by a numerical example. We consider a nonlinear
interconnected system defined by the following two subsystems of state equations:

∑
1:

 ẋ11 =−2x11 + x11x12,
ẋ12 = x13 + x12x11 + x222x21,
ẋ13 = u1+x213

(
x12x11 + x211

)
+x22x21,

∑
2:


ẋ21 =−x21 + x222,
ẋ22 = x6 +

(
x212x11 + x222x21

)
,

ẋ23 = u2+x223
(
x12x

2
11+x22x

2
21

)
+x223x

2
21,

(30)

with
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� x1 = [x11 x12 x13]
T
, x2 = [x21 x22 x23]

T
being the state vectors of subsystems

∑
1

and
∑

2,

� u =
[
u1 u2

]T
being the inputs of the interconnected nonlinear system.

We solve equation (9) with

Q1 (x1) = Q2 (x2) =

 1 0 0
0 1 0
0 0 1

 , (31)

R1 (x1) = R2 (x2) = 0.1. (32)

For interconnected nonlinear systems (30), we choose the following (SDC) parametriza-
tion:

A1 (x1) =

 −2 x11 0
x12 0 1

x213x12 0 x13x
2
11

 , A2 (x2) =

 −1 x22 0
0 x22x21 1

x223x22x21 + x223x
2
21 0 0

 .

The control matrices are given as follows:

B1 (x1) = B2 (x2) =

 0
0
1

 .

The interconnection matrices between subsystem 1 and subsystem 2 are expressed as
follows:

H12 (x2) =

 0 0 0
x222 0 0
x22 0 0

 , H21 (x1, x2) =

 0 0 0
x212 0 0

x223x12 0 0

 .

The controllability matrices, respectively, for subsystem 1 and subsystem 2 are given as
follows:

ζ1 (x1) =
[
B1(x1) A1(x1)B1(x1) A2

1(x1)B1(x1)
]

=

 0 0 x11
0 1 x13x

2
11

1 x13x
2
11 x213x

4
11

 ,
(33)

ζ2 (x2) =
[
B2(x2) A2(x2)B2(x2) A2

2 (x2)B2 (x2)
]

=

 0 0 x22
0 1 x22x21
1 0 0

 .
(34)

ζ1 (x1) , ζ2 (x2) have a full order rank for all xi, which can justify the good choice of
(SDC) parametrization. Now, we referring to equation (9), we can write the following
decentralized state-dependent Riccati equations:

P1 (x1)A1 (x1) +AT
1 (x1)P1 (x1) +Q1 (x1)

−P1 (x1)B1 (x1)R−11 (x1)BT
1 (x1)P1 (x1) = 0,

P2 (x2)A2 (x2) +AT
2 (x2)P2 (x2) +Q2 (x2)

−P2 (x2)B2 (x2)R−12 (x2)BT
2 (x2)P2 (x2) = 0.

(35)
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The decentralized optimal control are expressed as follows:

u1 (x1) = −0.1
(

0 0 1
)
P1 (x1)

 x11
x12
x13

 (36)

and

u2 (x2) = −0.1
(

0 0 1
)
P2 (x2)

 x21
x22
x23

 . (37)

• Numerical simulation:

Figure 1 (respectively Figure 2) shows the behavior of the first states vari-
ables x11, x12 and x13, (respectively, the second states variables x21, x21
and x23 of interconnected system (30) controlled by the decentralized con-
trol laws illustrated in Figure 3. Initial conditions were taken as follows:
x11 (0) = x13 (0) = x21 (0) = x22 (0) = 0.1, x12 (0) = x23 (0) = 0.
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Figure 3: Decentralized control signals evolution.

We can note a satisfactory stabilization of state variables which converge into the
origin point confirming the asymptotic stability of the controlled interconnected system
using the decentralized SDRE approach.

6 Conclusion

In this paper, we have considered the method for feedback control of nonlinear intercon-
nected systems using the decentralized state-dependent Riccati equation. This decen-
tralized optimal approach is based on the solution of algebraic Riccati equation. Our
first result was to determine and prove sufficient conditions that guarantee the global
asymptotic stability of the overall interconnected system. We have then run some nu-
merical simulations on a third order system. As expected, these simulations have shown
the aptitude of the SDRE approach to be implemented easily and to give satisfactory
result in terms of performance for a wide class of nonlinear interconnected systems. One
of the possible perspectives that we can consider as a continuity of this research would be
to investigate an optimal control for interconnected nonlinear systems via approximate
methods.

Appendix

We recall hereafter the useful mathematical notations and properties concerning the
Kronecker tensor product used in this paper.

A.1. Kronecker product:

The Kronecker product of A (p× q) and B (r × s) denoted by A ⊗ B is the (pr × qs)
matrix defined by [24,25]

A⊗B =

 a11B . . . a1qB
...

. . .
...

ap1B · · · apqB

 . (38)

A.2. Vec-function:
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Vec-function is a linear algebra tool which is important in the multidimensional
regression matrix representation. This operator is defined as follows [24,25] :

A = (A1 A2 . . . An) ; V ec (A) =


A1

A2

...
An

, (39)

where ∀ i ∈ {1, . . . , n} , Ai is a vector of Rm.
We recall the following useful rule of this function, given as follows:

V ec(E.A.C) = (CT ⊗ E)V ec(A). (40)

A.3. Mat function :

An important matrix-valued linear function of a vector, denoted by mat(n,m) ( . ),
was defined in [24, 25] as follows: if V is a vector of dimension p = n.m, then
M = mat(n,m) (V ) is the (n×m) matrix verifying V = V ec (M).
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[15] Primbs, J.A., Nevistić, V. and Doyle, J.C. Nonlinear optimal control: A control Lyapunov
function and receding horizon perspective. Asian Journal of Control 1 (1) (1999) 14–24.

[16] Kamocki, R. Necessary and sufficient optimality conditions for fractional nonhomogeneous
Roesser model. Optimal Control Applications and Methods 37 (4) (2016) 574–589.

[17] Pearson, J.D. Approximation methods in optimal control. Journal of Electronics and Con-
trol 13 (1962) 453-469.

[18] Wernli, A. and Cook, G. Suboptimal control for the nonlinear quadratic regulator problem.
Automatica 11(1) (1975) 75–84.

[19] Mracek, C.P. and Cloutier, J.R. Control designs for the nonlinear benchmark problem
via the state-dependent Riccati equation method. International Journal of Robust and
Nonlinear Control 8 (4-5) (1998) 401–433.

[20] Cimen, T. State-dependent Riccati equation (SDRE) control: A survey. IFAC Proceedings
41(2) (2008) 3761–3775.

[21] Banks, H.T., Kwon, H.D., Toivanen, J.A. and Tran, H.T. A state-dependent Riccati
equation-based estimator approach for HIV feedback control. Optimal Control Applications
and Methods 27 (2006) 93-121.

[22] Elloumi, S. and Benhadj Braiek, N. On Feedback Control Techniques of Nonlinear Analytic
Systems. Journal of Applied Research and Technology 12(2014) 500-513.

[23] Elloumi, S., Sansa, I. and Benhadj Braiek, N. On the stability of optimal controlled systems
with SDRE approach. In: 9th International Multi-Conference on Systems, Signals and
Devices (SSD), Chemnitz, Germany (2012) 1–5.

[24] Bouafoura, M.K., Moussi, O. and Benhadj Braiek, N. A fractional state space realization
method with block pulse basis. Signal Processing 91(3) (2011) 492–497.

[25] Brewer, J.W. Kroneker products and matrix calculus in system theory. IEEE Transaction
on Circuits and Systems (CAS) 25 (1978) 772–781.



Nonlinear Dynamics and Systems Theory, 19 (1) (2019) 68–78

Analysis and Adaptive Control Synchronization of a

Novel 3-D Chaotic System

F. Hannachi ∗

Department of Management Sciences, University of Tebessa, (12002), Algeria

Received: August 28, 2018; Revised: December 8, 2018

Abstract: In this paper, a new 3D chaotic system is introduced. Basic dynamical
characteristics and properties of this new chaotic system are studied, namely the
equilibrium points and their stability, the Lyapunov exponent, Lyapunov exponent
spectrum and the Kaplan-Yorke dimension. Also, we derive new control results via
the adaptive control method based on Lyapunov stability theory and the adaptive
control theory of this new chaotic system with unknown parameters. The results are
validated by numerical simulation using Matlab.
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1 Introduction

In mathematics and physics, chaos theory deals with the behavior of certain nonlinear
dynamical systems that under certain conditions exhibit a phenomenon known as chaos,
which is characterised by a sensitivity to initial conditions [1]. Chaos as an important
nonlinear phenomenon has been studied in mathematics, engineering and many other
disciplines. Since Lorenz discovered a three-dimensional autonomous chaotic system [2],
many other systems have been introduced and analysed, we mention the Chen, Rössler
and Lü systems [3,4,5]. After that hyperchaotic systems were constructed using many
different methods. The synchronization of two chaotic systems was introduced in the
work of Pecora and Carroll [6], then many different methodologies have been developed
for synchronization of chaotic systems such as the OGY method [7], active contol method
[8], sliding mode control [9], backstepping control [10], function projective method [11],
adaptive control [12-14], etc.

In this work, a new chaotic system is introduced and we derive new control results
via the adaptive control method based on Lyapunov stability theory and the adaptive
control theory for this new chaotic system with unknown parameters. The results are
validated by numerical simulation using Matlab.
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1.1 Description of the novel chaotic system

In this research work, we propose a new 3D chaotic system with two quadratic nonlin-
earities, which is given in the system form as

dx1

dt = a(x2 − x1),
dx2

dt = cx1 + x1x3,
dx3

dt = −x1x2 + b(x1 − x3),

(1)

where a, b, c are positive reals parameters. In the first part of this paper, we shall show
that the system (1) is chaotic when the system parameters a, b and c take the values:

a = 13, b = 2.5, c = 50. (2)

1.2 Basic properties

In this section, some basic properties of system (1) are given. We start with the equili-
brum points of the system and check their stability at the initial values of the parameters
a, b, c.

1.3 Equilibrum points

Putting equations of system (1) equal to zero, i.e.

a(x2 − x1) = 0, cx1 + x1x3 = 0, −x1x2 + b(x1 − x3) = 0, (3)

gives the three equilibrium points

p0 = (0, 0, 0) , p1,2 =

(
1

2
b∓ 1

2

√
4bc+ b2,

1

2
b∓ 1

2

√
4bc+ b2,−c

)
. (4)

1.4 Stability

In order to check the stability of the equilibrum points we derive the Jacobian matrix at
a point p (x, y, z) of the system (1)

J(p) =

 −a a 0
c+ z 0 x
b− y −x −b

 . (5)

For p0, we obtain J(p0) =

 −a a 0
c 0 0
b 0 −b

, with the characteristic polynomial equation

λ3 + (a+ b)λ2 + (ab− ac)λ− abc = 0, which has three eigenvalues

λ1 = 19. 811, λ2 = −2.5, λ3 = −32.811. (6)

Since all the eigenvalues are real, the Hartma-Grobman theorem implies that p0 is a
saddle point which is unstable according to the Lyapunov theorem of stability.

By the same method, the eigenvalues of the Jacobian at p1 are:

λ1 = 0.993 85− 12. 895i, λ2 = 0.993 85 + 12. 895i, λ3 = −17.488. (7)
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The eigenvalues of the Jacobian at p2 are:

λ1 = 0.763 22− 14. 634i, λ2 = 0.763 22 + 14. 634i, λ3 = −17. 026. (8)

Then p1 and p2 are two unstable saddle-foci because none of the eigenvalues have zero
real part and λ1, λ2 are complex.

1.5 Dissipativity

A dissipative dynamical system satisfies the condition

∇.V =
∂

.
x

∂x
+
∂

.
y

∂y
+
∂

.
z

∂z
< 0. (9)

In the case of the system (1), we have

∇.V = −(a+ b). (10)

For a = 13, b = 2.5, c = 50 we obtain ∇.V = −15. 5 < 0, and threfore dissipativity
condition holds for this system. Also,

dV

dt
= e−(a+b) = 1. 855 4× 10−7. (11)

Then the volume of the attractor decreases by a factor of 0.00000018554.

2 Lyapunov Exponents and Kaplan-Yorke Dimension

Lyapunov exponents are used to measure the exponential rates of divergence and con-
vergence of nearby trajectoiries, which is an important characterstic to judge whether
the system is chaotic or not. The existence of at least one positive Lyapunov exponent
implies that the system is chaotic.

For the chosen parameter values (2), the Lyapunov exponents of the novel chaotic
system (1) are obtained using Matlab as:

L1 = 1.4375, L2 = −0.000166417, L3 = −16.9373. (12)

The Lyapunov exponents spectrum is shown in Fig. 1.
Since the spectrum of Lyapunov exponents (13) has a positive term L1, it follows

that the novel 3-D chaotic system (1) is chaotic. The Kaplan-Yorke dimension of system
(1) is calculated as

DKL = 2 +
L1 + L2

|L3|
= 2.0849. (13)

3 Adaptive Control of the Novel 3-D Chaotic System

This section describes an adaptive design of a globally stabilizing feedback controller for
the chaotic system (1) with unknown parameters. The design is carried out using the
adaptive control theory and Lyapunov stability theory.
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Figure 2: Projection of the strange attractor of the system (1) into the (z; x)-plane.

A controlled chaotic system of (1) is given by
dx1

dt = a(x2 − x1) + u1,
dx2

dt = cx1 + x1x3 + u2,
dx3

dt = −x1x2 + b(x1 − x3) + u3,

(14)

where a, b, c are unknown constant parameters, and u1, u2, u3 are adaptive controllers
to be found using the states x1, x2, x3 and estimates a1 (t) , b1 (t) , c1 (t) of the unknown
parameters a, b, c, respectively.

We take the adaptive control law defined by u
1

= −a1 (t) (x2 − x1)− k1x1,
u

2
= −c1 (t)x1 − x1x3 − k1x2,

u
3

= x1x2 − b1 (t) (x1 − x3)− k3x3,
(15)
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where k1, k2, k3 are positive gain constants.
Substituting (15) into (14), we obtain the closed-loop control system as

dx1

dt = (a− a1 (t)) (x2 − x1)− k1x1,
dx2

dt = (c− c1 (t))x1 − k2x2,
dx3

dt = (b− b1 (t)) (x1 − x3)− k3x3.
(16)

We define the parameter estimation errors as

ea (t) = a− a1 (t) , ec (t) = c− c1 (t) , eb (t) = b− b1 (t) . (17)

By using (17), we rewrite the closed-loop system (16) as
dx1

dt = ea (t) (x2 − x1)− k1x1,
dx2

dt = ec (t)x1 − k2x2,
dx3

dt = eb (t) (x1 − x3)− k3x3.
(18)

Differentiating (17) with respect to t, we obtain
dea(t)

dt = −da1(t)
dt ,

dec(t)
dt = −dc1(t)

dt ,
deb(t)
dt = −db1(t)

dt .

(19)

To find an update law for the parameter estimates, we shall use the Lyapunov stability
theory. We consider the quadratic Lyapunov function given by

V (x1, x2, x3, ea, eb, ec) =
1

2

(
x21 + x22 + x23 + e2a + e2b + e2c

)
. (20)

which is a positive definite function on R6.
Differentiating V along the trajectories of the systems (18) and (19), we obtain the

following:

V̇ = −
3∑

i=1

kix
2
i +ea

(
x1x2−x21−

da1 (t)

dt

)
+eb

(
x1x3−x23−

db1 (t)

dt

)
+ec

(
x1x2−

dc1 (t)

dt

)
.

(21)
In view of (21), we take the parameter update law as follows

da1(t)
dt = x1x2 − x21,

db1(t)
dt = x1x3 − x23,

dc1(t)
dt = x1x2.

(22)

Theorem 3.1 The 3-D novel chaotic system (14) with unknown parameters is glob-
ally and exponentially stabilized by the adaptive feedback control law (15) and the param-
eter update law (22), where k1, k2, k3 are positive constants 3.1.

Proof. Substituting the parameter update law (21) into (20), we obtain the time
derivative of V as:

V̇ = −k1x21 − k2x22 − k3x23, (23)

which is a negative definite function on R6. By the direct method of Lyapunov [15], it
follows that x1, x2, x3, ea, eb, ec are globally exponentially stable. 2
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3.1 Numerical simulations

We used the classical fourth-order Runge-Kutta method with the step size h = 10−8 to
solve the system of differential equations (14) and (22), when the adaptive control law
(15) is applied.

The parameter values of the novel 3-D chaotic system (14) are chosen as in the chaotic
case (2). The positive gain constants are taken as ki = 3, for i = 1, 2, 3.

The initial conditions of the novel chaotic system (14) are chosen as x1(0) =
6.4, x2(0) = −4.7, x3(0) = 2.5. Furthermore, as initial conditions of the parameter esti-
mates of the unknown parameters, we have chosen: a1(0) = 2.5, b1(0) = 5.3, c1(0) = 4.8.

In Figs. 3-4, the exponential convergence of the controlled states x1(t), x2(t), x3(t)
and the time-history of the parameter estimates a1(t); b1(t); c1(t) are depicted, when the
adaptive control law (15) and parameter update law (22) are implemented.
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Figure 3: Exponential convergence of the controlled states x1(t);x2(t);x3(t).

4 Adaptive Synchronization of the Identical Novel 3-D Chaotic Systems

In this section, we derive an adaptive control law for globally and exponentially synchro-
nizing the identical novel 3-D chaotic systems with unknown system parameters. Thus,
the master system is given by the novel chaotic system dynamics

dx1

dt = a(x2 − x1),
dx2

dt = cx1 + x1x3,
dx3

dt = −x1x2 + b(x1 − x3).

(24)

Also, the slave system is given by the novel chaotic system dynamics
dy1

dt = a(y2 − y1) + u1,
dy2

dt = cy1 + y1y3 + u2,
dy3

dt = −y1y2 + b(y1 − y3) + u3.

(25)
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Figure 4: Time-history of the parameter estimates a1(t); b1(t); c1(t).

In (24) and (25), the system parameters a, b, c are unknown and the design goal is
to find an adaptive feedback controls u1, u2, u3 using the states x1, x2, x3 and estimates
a1 (t) , b1 (t) , c1 (t) of the unknown parameters a, b, c, respectively. The synchronization
error between the novel chaotic systems (24) and (25) is defined as

e1 = y1 − x1, e2 = y2 − x2, e3 = y3 − x3. (26)

Then (26) implies  ė1 = ẏ1 − ẋ1,
ė2 = ẏ2 − ẋ2,
ė3 = ẏ3 − ẋ3.

(27)

Thus, the synchronization error dynamics is obtained as ė1 = a(e2 − e1) + u1,
ė2 = ce1 + y1y3 − x1x3 + u2,
ė3 = b(e1 − e3)− y1y2 + x1x2 + u3.

(28)

We take the adaptive control law defined by u1 = −a1(e2 − e1)− k1e1,
u2 = −c1e1 − y1y3 + x1x3 − k2e2,
u3 = −b1(e1 − e3) + y1y2 − x1x2 − k3e3.

(29)

where k1, k2, k3 are positive gain constants.
Substituting (29) into (28), we obtain the closed-loop error dynamics as ė1 = (a− a1)(e2 − e1)− k1e1,

ė2 = (c− c1)e1 − k2e2,
ė3 = (b− b1)(e1 − e3)− k3e3.

(30)
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The parameter estimation errors are defined as

ea (t) = a− a1 (t) , ec (t) = c− c1 (t) , eb (t) = b− b1 (t) . (31)

Differentiating (31) with respect to t, we obtain
dea(t)

dt = −da1(t)
dt ,

dec(t)
dt = −dc1(t)

dt ,
deb(t)
dt = −db1(t)

dt .

(32)

By using (31), we rewrite the closed-loop system (30) as ė1 = ea(e2 − e1)− k1e1,
ė2 = ece1 − k2e2,
ė3 = eb(e1 − e3)− k3e3.

(33)

We consider the quadratic Lyapunov function given by

V (x1, x2, x3, ea, eb, ec) =
1

2

(
x21 + x22 + x23 + e2a + e2b + e2c

)
. (34)

which is a positive definite function on R6.

Differentiating V along the trajectories of the systems (33) and (32), we obtain the
following:

V̇ = −
3∑

i=1

kie
2
i +ea

(
e1e2 − e21−

da1 (t)

dt

)
+eb

(
e1e3−e23−

db1 (t)

dt

)
+ec

(
e1e2−

dc1 (t)

dt

)
.

(35)

In view of (35), we take the parameter update law as follows:
da1(t)

dt = e1e2 − e21,
db1(t)
dt = e1e3 − e23,

dc1(t)
dt = e1e2.

(36)

Substituting (36) into (35), we get

V̇ = −
3∑

i=1

kie
2
i , (37)

which is a negative definite function on R3. Hence, by the Lyapunov stability theory [15],
it follows that ei(t) −→ 0 as t −→∞ for i = 1, 2, 3. Hence, we have proved the following
theorem.

Theorem 4.1 The novel 3-D chaotic systems (24) and (25) with unknown parame-
ters are globally and exponentially synchronized for all initial conditions by the adaptive
feedback control law (29) and the parameter update law (36), where k1, k2, k3 are positive
constants 4.1.
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Figure 5: Synchronization of the states x1(t) and y1(t).
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Figure 6: Synchronization of the states x2(t) and y2(t).

4.1 Numerical simulations

We used the classical fourth-order Runge-Kutta method with the step size h = 10−8 to
solve the system of differential equations (24), (25) and (36), when the adaptive control
law (29) is applied.

The parameter values of the novel 3-D chaotic system (24) are chosen as in the chaotic
case (2). The positive gain constants are taken as ki = 4, for i = 1, 2, 3.

The initial conditions for the master system (24) are chosen as x1(0) = 5, x2(0) =
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Figure 7: Synchronization of the states x3(t) and y3(t).
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Figure 8: Time-history of the synchronization errors e1(t), e2(t), e3(t).

−3, x3(0) = −10 and those for the slave system (25) are chosen as y1(0) = 14, y2(0) =
10, y3(0) = 5. Furthermore, as initial conditions of the parameter estimates of the un-
known parameters, we have chosen a1(0) = 10, b1(0) = 15, c1(0) = 20. In Figs. 5-7, the
synchronization of the states of the master system (24) and slave system (25) is depicted,
when the adaptive control law (29) and parameter update law (36) are implemented. In
Fig. 8, the time-history of the synchronization errors e1(t), e2(t), e3(t) is depicted.
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5 Conclusion

In this paper, a new chaotic system is introduced. Basic properties of this system are
studied, namely, the equilibrum points and their stability, the Lyapunov exponent and
the Kaplan-Yorke dimension. Moreover, adaptive control schemes have been proposed
to stabilize and synchronize such two new chaotic systems. Numerical simulations using
MATLAB have been made to illustrate our results for the new chaotic system with
unknown parameters.
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Abstract: This study focuses on two passive controls. Passive control is the addition
of a small object to an object to reduce the drag force of the object. In this case, two
passive controls are placed in front of and in the rear of the main object. The distance
between the main object and the two passive controls varies and the Reynolds number
used is 5000. The main object is a circular cylinder, and its passive control in front
is a cylinder of type-I at the distance S / D = 0.6, 1.2 ; 1.8; 2.4; 3.0 and in the rear
is an elliptical or circular cylinder at the distance T / D = 0,6; 0,9; 1,2; 1,5; 1,8 and
2,1. In this study, we want to find an effective distance of the main object to two
passive controls so that the drag coefficient of the main object is minimal compared
to that with non-passive control or with one passive control in front. In addition,
a mathematical model of the drag coefficient of circular cylinders with two passive
controls at Re = 5000 will be obtained.
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1 Introduction

Today, so many people are racing to create new technologies. Technological advancement
is growing rapidly. Technology is actually a way and effort to improve the quality of
human life [1]. New technologies can be created by conducting ongoing research, where
the new technology is expected to change the behavior of users of these new technologies.
Research related to fluid flow can be done by experiment or simulation. Study of the
flow of fluids through objects with the aim of reducing the drag force of most objects is
a paramount concern of the researchers.

Some researchers used one passive control placed in front of various shapes, such as
cylindrical cylinders, type-I cylinders, type-D cylinders etc. Circular cylinders, elliptical
cylinders or other shapes are commonly used objects for designing industrial chimneys,
offshore and flyover structures and others. In this case, the design process should allow
for the geometrical shape of the object because it affects the value of the drag coeffcient,
so that for different geometric shapes the drag coeffcient values are also different. At the
interaction between the fluid flow and the object the resulting fluid flow across a single
object or multiple grouped objects will produce different flow characteristics.

In this study, we consider a boundary layer because it is seen that the liquid that flows
through the surface of the object comes with the flow of particles around it. Basically,
the boundary layer is an increase in shear stress which will affect the flow velocity in
each layer [14]. The surface of the object will move slowly due to the friction force, so
that the particle flow velocity around the object will be zero. While the other particles
will interact,the velocity of the flow away from the object will be faster. This is due to
increased shear stress.

There are some studies that use boundary layer concept, and the concept of the
boundary layer can help to find the answer to the effect of shear stress having a very
important role in flow characteristics around the object [2]. The research, among others,
has been conducted on the flow of fluids through an object, such as a single cylindrical
circular object [3], or a modified cylinder such as a cylinder of type-I or a cylinder of type-
D [4,5] and a study has been conducted on a fluid stream through more than one object,
i.e. fluid flow through more than one cylinder of various sizes and configurations, fluid
flow through a circular cylinder with tandem configuration [6–9] and eliptical cylinders
with their side configurations [10,11].

The existence of a drag force occurs when an object is bypassed by a fluid. In this case,
the drag force is influenced by several parameters, one of which is the drag coefficient.
One way to reduce the drag force on the objects bypassed is to add a smaller object in
front of the main object called the passive control. The addition of passive control is
carried out to reduce the coefficient by 48% [6], also one can find a mathematical model
for a circular cylinder with two passive controls with the Reynolds number 5000. The
cylinder of type-I is a circular cylinder obtained by cutting the left and right ends at a
certain angle, so that the cylinder is shaped like I. The best cutting edge is 53o, this is
because the wake occured is wider than that at the other angle, forming also a wider and
more annoying strong flow on the object wall.

In this study, we will get a mathematical model for a circular cylinder with two
passive controls with the Reynolds number when these two passive controls effectively
decrease the drag coefficient. The Reynolds number used is Re = 5000. Two passive
controls will be used, the passive control in front is the cylinder of type-I and the passive
control of type-I is placed perpendicular to the flow, while the passive control in the rear
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is landscape. The distance between the passive control in front and the circular cylinder
is varying, as well as the distance between the passive control in the rear and the circular
cylinder.

2 Numerical Method

The previously described problem can be solved by using the unstable incompressible
fluid equation and the Navier-Stokes equation:

∂v

∂t
+∇ · vv = −∇P +

1

Re
∇2v, (1)

∇ · v = 0, (2)

where Re is the Reynolds number, v is the velocity, and P is the pressure. The Navier-
Stokes equation can be solved by using SIMPLE algorithms and numerical methods. The
first thing to do is to give the initial value for each variable. By ignoring the pressure
components, we will find the velocity component of the momentum equation, so equation
(1) becomes

∂v

∂t
= −∇ · vv +

1

Re
∇2v (3)

by using the finite difference method, we have

(fx)i =
2fi+1 + 3fi − 6fi−1 + fi−2

6 dx
and (fy)j =

2fj+1 + 3fj − 6fj−1 + fj−2

6 dx
,

(fxx)i =
fi+1 − 2fi + fi−1

dx2 and (fyy)j =
fj+1 − 2fj + fj−1

dx2 ,

and afterwards
∂v

∂t
=

v∗∗ − v∗

∆t
= −∇P (4)

because of equation (2), then equation (4) becomes

∇ · v∗

∆t
= −∆P (5)

by using SOR (Successive Over Relaxation)

(Pn)i,j = (1− ε)(Pn−1)i,j + ε(Pn)i,j . (6)
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Figure 1: Design of the research system.

Figure 2: Schematic of two passive controls and a circular cylinder.

3 Main Result

Our research system is 10D 20D, where D is the diameter of the circular cylinder, placed
at the distance of 4D from the front of the system and in the center of the system, as
shown in Figure 1.

In this study, we used two passive controls. The first passive control is a cylinder of
type-I placed in front of a circular cylinder at varying distance, i.e. S / D = 0.6,1,2,1,8,2,4
and 3.0. The second passive control are circular cylindrical and elliptical cylinders. The
second passive control is placed in the rear of the circular cylinder at varying distance,
i.e. T / D = 0.6,0,9,1,2,1,5,1,8 and 2.1 as shown in Figure 2.

3.1 Drag coefficient

The drag coeffcient of a single circular cylinder has been obtained by using the simula-
tion program, the results are compared with experimental results and other simulation
programs. We calculated that the drag coefficient of a single cylinder with Re = 100 is
1.356, while other researchers, with the same Reynolds number, have obtained: Zulhi-
dayat has 1.4 and Five has 1.39 [12]. In this paper we will simulate a circular cylinder
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with two passive controls, and the Reynolds number used is 5000. The drag coefficient
for a circular cylinder with Re = 5000 is 1.51.

S/D 0.6 1.2 1.8 2.4 3.0
CD 5000 1.455 1.273 1.221 1.224 1.216

Table 1: Cd of a circular cylinder for Re=5000 with difference S/D.

Table 1 presents data on the drag coeffcient of a circular cylinder with a passive
control, the cylinder of type-I, located at the front at varying distance. From the table it
is clear that for the Reynold number Re = 5000, the best distance to get the minimum
drag coeffcient is S/D = 1.8 or S/D = 3.0 with a drag coeffcient of 1.221 or 1.216.
The value of the drag coeffcient is still smaller than the drag coeffcient without passive
control.

CDO S/D
T/D 0.6 1.2 1.8 2.4 3.0
0.6 1.116 1.012 0.973 0.992 0.987
0.9 1.205 1.043 1.015 1.007 1.008
1.2 1.169 1.014 0.977 0.990 0.986
1.5 1.412 1.277 0.916 1.265 1.245
1.8 1.557 1.284 1.225 1.222 1.195
2.1 1.401 1.384 1.220 1.209 1.191

Table 2: CD of a circular cylinder for Re=5000 with difference S/D.

The drag coefficient of a circular cylinder with two passive controls at the front and
in the rear. Passive control in front of the circular cylinder is the cylinder of type-I, while
the passive control behind the circular cylinder is a small circular cylinder. The data on
the drag coefficient with the Reynolds number Re = 5000 and the configuration as above,
can be seen in Table 2. It appears that the passive control behind has a significant effect
on the drag coeffcient, since the drag coeffcient is still smaller than that without passive
control. The minimum drag coefficient of the configuration is 0.916, this occurs at S/D
= 1.8 and T/D = 1.5.
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3.2 Mathematical Model

In this case, the simulation result of the drag coefficient with two passive controls is inter-
polated to obtain the mathematical model. By using the bilinear interpolation approach
one can make a mathematical model of the drag coefficient. Bilinear interpolation is the
development of linear interpolation of two variables [13]. In this study we use the 2nd
order bilinear interpolation. In this case, the variables used are (x, y) = (T / D, S /
D). By taking the nine points of drag data that have been obtained from the simulation
results in Table 2 we can get the interpolation formulation. Therefore, nine polynomial
equations and nine unknown coefficients can be obtained. The polynomial interpolation
function can be written as follows:

f(x, y) = a00 + a01y + a02y
2 + a10x+ a11xy + a12xy

2 + a20x
2 + a21x

2y + a22x
2y2. (7)

Taking data from Table 3 and substituting (x, y)=(T/D, S/D) into f(x,y) we find the
unknown coefficients. Therefore, we can obtain the mathematical model of the drag
coefficient as follows:

E(x, y) = 0.0275x2y2 − 0.0240x2y + 0.0590x2 − 0.1713xy2 + 0.1792xy − 0.2958x

+5.5913y2 − 0.848y + 1.5542. (8)

f(T/D, S/D) S/D
T/D 0.6 1.8 3.0
0.6 1.116 0.973 0.987
1.2 1.169 0.977 0.986
1.8 1.557 1.225 1.195

Table 3: Nine drag data results for a circular cylinder

The error in the above mathematical model is calculated using an absolute error as
follows:

e(x, y) = |E(x, y)− f(x, y)|. (9)
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Figure 3: Graphic plot of Table 2 in Matlab.

Figure 4: Comparison of the graphic plot of Table 2 and the graphic plot of Table 3.

If we simulate the original data in Table 2 as shown in Figure 3 and compare it with
the simulation result by using bilinear interpolation shown in Figure 4 then it appears
that the smallest absolute error is S / D = 0.6,1.8,3.0 , T / D = 0.6,1.2,1.8 with the
value of Cd = 1.116, 1.169, 1.557, 0.973, 0.977, 1.225, 0.987, 0.986, 1.195 and also the
obtained largest absolute error is in S / D =2.4 , T / D = 1.5 , with the value of Cd =
1.265. In other words, the error will not exceed the point of 0.2282.

3.3 Wake

In this study, the velocity data at the distance 6D, 8.5D and 11D from the center of the
circular cylinder or at the distance 10D, 12.5D and 15D from the front of the system,
are shown in Figure 1 . In both passive controls with Re = 5000 there is a wake. Also,
it can be seen for the drag coefficient of the main circular cylinder that there is a
significant decrease. In this case there is a decrease in the drag coefficient which affects
the magnitude of the average velocity behind the circular cylinder.

It appears that Table 4 shows that a decrease in flow velocity behind the circular
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cylinder correspons to the decrease in the drag coefficient. In addition, the flow velocity
near the circular cylinder (i.e., 6D from the center of the circular cylinder) will increase
as the distance moves farther away from the center of the circular cylinder and will return
equally to the speed without passive control.

Re Single 1 PC % 2 PC %
5000 1.51 1.216 19.47 0.916 39.34

Table 4: CD for Re = 5000.

4 Conclusion

By using the bilinear interpolation approach one can make a mathematical model of the
drag coefficient. Bilinear interpolation is the development of linear interpolation of two
variables. In this study we use the 2nd order bilinear interpolation. Thus, a mathematical
model can be formed for Cd of a circular cylinder using two passive controls at Re =
5000. The mathematical model can be written as follows:

E(x, y) = 0.0275x2y2 − 0.0240x2y + 0.0590x2 − 0.1713xy2 + 0.1792xy − 0.2958x

+5.5913y2 − 0.848y + 1.5542. (10)

In addition, a reduction of the drag coefficient in a circular cylinder can be done by
adding passive control. Passive control can be placed in front and/or behind. The drag
coefficient can be reduced by up to 40% if using passive control in the form of the cylinder
of type-I and an ellipse-shaped cylindrical back control rather than a passive control drag
coefficient. This is reinforced by the decreasing flow velocity behind the circular cylinder.
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Abstract: In this paper, we studied the nonlinear two-mode modified Korteweg-de
Vries (TMmKdV) equation. We derived multiple singular soliton solutions to this
new version of KdV equation by using the simplified form of Hirota’s direct method.
Also, kink and periodic solutions are extracted by using the tanh-expansion and the
sine-cosine function methods. Finally, graphical analysis is conducted to show some
physical features regarding TMmKdV equation.
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1 Introduction

Sergei V. Korsunsky [1] was the first who established the nonlinear two-mode Korteweg-
de Vries (TMKdV) equation which reads

wtt + (a1 + a2)wxt + a1a2wxx + ((λ1 + λ2)
∂

∂t
+ (λ1a2 + λ2a1)

∂

∂x
)wwx (1)

+ ((µ1 + µ2)
∂

∂t
+ (µ1a2 + µ2a1)

∂

∂x
)wxxx,

where w(x, t) is a field function representing the height of the free water surface above a
flat bottom, a1 and a2 are the phase velocities, µ1 and µ2 are the dispersion parameters,
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λ1 and λ2 are the parameters of nonlinearity.

The modified Korteweg-de Vries (mKdV) equation for the one-dimensional propa-
gation of solitary waves in a fluid is given by

wt + αwxxx + βw2wx = 0, (2)

which is a generalized model in ocean dynamics, nonlinear lattice and plasma physics. In
this paper we reconstruct and study the two-mode modified Korteweg-de Vries equation
which describes the propagation of two wave modes of the same orientation. Now, the
two-mode modified Korteweg-de Vries (TMmKdV) equation in a scaled-form reads

wtt + (a1 + a2)wxt + a1a2wxx + (β(λ1 + λ2)
∂

∂t
+ β(λ1a2 + λ2a1)

∂

∂x
)w2wx (3)

+ (α(µ1 + µ2)
∂

∂t
+ α(µ1a2 + µ2a1)

∂

∂x
)wxxx,

where a1, a2, λ1, λ2, µ1, µ2 are some real numbers, w(x, t) is a field function, a1 and a2
are the phase velocities, µ1 and µ2 are the dispersion parameters, λ1 and λ2 are
the parameters of nonlinearity. Note that a1, a2 are considered to be distinct and x, t
∈ (−∞,∞). Now we suggest the changes of variable by using the transformations [1–5]:

T = (µ1 + µ2)
−1
2 t,

X = (µ1 + µ2)
−1
2 (x− a0t),

a0 =
a1 + a2

2
,

W = (λ1 + λ2)
1
2w.

Therefore, equation (3) reduces to TMmKdV equation in a scaled form as

WTT − a2WXX + (β
∂

∂T
− βλa ∂

∂X
)W 2Wx + (α

∂

∂T
− αµa ∂

∂X
)WXXX , (4)

where

a =
a1 − a2

2
,

λ =
λ2 − λ1
λ2 + λ1

, |λ| ≤ 1,

µ =
µ2 − µ1

µ2 + µ1
, |µ| ≤ 1,

where |λ| ≤ 1, |µ| ≤ 1 and a is defined above. Note that when a = 0, by integrating with
respect to t, the two-mode modified Korteweg-de Vries equation (4) is reduced to the
standard modified Korteweg-de Vries equation (2).

Finally, for more details about generating two-mode equations and physical features
such models possess, we recommend for the readers the following references [6–14].

2 Multiple Soliton Solutions

In this section, we apply the simplified bilinear method [15–20], to find single soliton
solutions and multiple soliton solutions for TMmKdV equation. First, we substitute

W (X,T ) = eεi , εi(X,T ) = hiX − ωiT
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into the linear terms of (4) and solve the resulting equation to obtain the dispersion
relation

ωi =
αh3i ± hi

√
α2h4i + 4αµah2i + 4a2

2
. (5)

As a result εi becomes

εi(X,T ) = hiX −
αh3i ± hi

√
α2h4i + 4αµah2i + 4a2

2
T, i = 1, 2, . . . . (6)

Second, we propose the solutions of (4) in the form

W (X,T ) = R

(
arctan

(
h(X,T )

k(X,T )

))
X

= R
hXk − kXh
h2 + k2

. (7)

The auxiliary functions h(X,T ) and k(X,T ) for single-soliton solution are given by{
h(X,T ) = eε1(X,T ) = eh1X−

αh31±h1
√
α2h41+4αµah21+4a2

2 T ,
k(X,T ) = 1.

(8)

Substituting (7) and (8) into (4) and solving for R, we get

R = ±2

√
6α

β
. (9)

Under the constraint condition λ = µ, the single soliton solution is given by

W (X,T ) = 2h1

√
6α

β

eh1X−
αh31±h1

√
α2h41+4αµah21+4a2

2 T

1 + e2h1X−(αh3
1±h1

√
α2h4

1+4αµah2
1+4a2)T

= h1

√
6α

β
sech (ε1(X,T )) , (10)

where

ε1(X,T ) = h1X −
αh31 ± h1

√
α2h41 + 4αµah21 + 4a2

2
T.

To find the two-soliton solution, we assume

h(X,T ) = eε1 + eε2

= eh1X−
αh31±h1

√
α2h41+4αµah21+4a2

2 T + eh2X−
αh32±h2

√
α2h42+4αµah22+4a2

2 T ,

k(X,T ) = 1− c12eh1X−
αh31±h1

√
α2h41+4αµah21+4a2

2 T+h2X−
αh32±h2

√
α2h42+4αµah22+4a2

2 T .

(11)

Substituting (7) and (11) into (4) and solving for c12, we see that the constraint condition
of two soliton solutions exists only if λ = µ = ±1 and the phase shift c12 is obtained by

c12 =
(h1 − h2)

2

(h1 + h2)
2 (12)
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and this can be generalized as

cij =
(hi − hj)2

(hi + hj)
2 , 1 ≤ i < j ≤ 3. (13)

To get the two-soliton solutions for (4), we substitute (11) and (12) into (7) and use
λ = µ = 1. As a result, we get

U(X,T ) =
h1e

h1X−r1T
(

1 + (h1−h2)
2

(h1+h2)
2 e2h2X−(αh3

2±(αh
3
2+2a))T

)√
6α
β

( (h1−h2)
2

(h1+h2)
2 eh1X−r1T+h2X−r2T − 1)2 + (eh1X−r1T + eh2X−r2T )2

+
h2e

h2X−r2T
(

1 + (h1−h2)
2

(h1+h2)
2 e2h1X−(αh3

1±(αh
3
1+2a))T

)√
6α
β

( (h1−h2)
2

(h1+h2)
2 eh1X−r1T+h2X−r2T − 1)2 + (eh1X−r1T + eh2X−r2T )2

,

(14)

where

r1 =
αh31 ± (αh31 + 2a)

2
,

r2 =
αh32 ± (αh32 + 2a)

2
.

For the three-soliton solutions, we use{
h(X,T ) = eε1 + eε2 + eε3 + c123e

ε1+ε2+ε3 ,

k(X,T ) = 1− c12eε1+ε2 − c13eε1+ε3 − c23eε2+ε3 ,
(15)

where cij are given in (13). Substituting (7) and (15) into (4) and solving for c123 under
the constraint condition λ = µ = ±1, we find

c123 = c12c13c23.

Finally, we reach to the fact that TMmKdV equation given in (4) has N -soliton solutions
under the constraint condition λ = µ = ±1 which can be obtained for finite N , where
N ≥ 3.

3 Singular Soliton Solutions

In this section we construct a multiple singular-soliton solution for (4) where the solution
is assumed to be of the form

W (X,T ) = R ln

(
h(X,T )

k(X,T )

)
X

= R
khX − hkX

kh
. (16)

The dispersion relation as in the previous section is given by

ωi =
αh3i ± hi

√
α2h4i + 4αµah2i + 4a2

2
,

and hence εi(X,T ) = hiX −
αh3i ± hi

√
α2h4i + 4αµah2i + 4a2

2
T , i = 1, 2, . . ..
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For the singular one-soliton solution, we consider

h(X,T ) = 1 + eε1(X,T ), k(X,T ) = 1− eε1(X,T ). (17)

Substituting (17) and (16) into (4) and solving for R, we get

R = ±
√
−6α/β. (18)

Under the constraint condition λ = µ, the single-soliton solution is given by

W (X,T ) = −2h1

√
−6α

β

eh1X−
αh31±h1

√
α2h41+4αµah21+4a2

2 T

e2h1X−(αh3
1±h1

√
α2h4

1+4αµah2
1+4a2)T − 1

= −h1
√
−6α

β
csch (ε1(X,T )) . (19)

To obtain singular two-soliton solution, we set{
h(X,T ) = 1 + eε1(X,T ) + eε2(X,T ) + c12e

ε1(X,T )+ε2(X,T ),

k(x, t) = 1− eε1(X,T ) − eε2(X,T ) + c12e
ε1(X,T )+ε2(X,T ).

(20)

Substituting (18), (20) and (16) into (4) and solving for c12 lead to the two soliton
solutions only if λ = µ = ±1 and the same phase shift c12 obtained in (12) and hence cij
given by (13).

To construct the singular three-soliton solution, we set

h(X,T ) = 1 + eε1(X,T ) + eε2(X,T ) + eε3(X,T ) + c12e
ε1(X,T )+ε1(X,T ) + c23e

ε2(X,T )+ε3(X,T )

+ c13e
ε1(X,T )+ε3(X,T ) + c123e

ε1(X,T )+ε2(X,T )+ε3(X,T ),

k(X,T ) = 1− eε1(X,T ) − eε2(X,T ) − eε3(X,T ) + c12e
ε1(X,T )+ε1(X,T ) + c23e

ε2(X,T )+ε3(X,T )

+ c13e
ε1(X,T )+ε3(X,T ) − c123eε1(X,T )+ε2(X,T )+ε3(X,T ). (21)

Repeating the same previous steps, we reach to the same fact that the three single-soliton
solutions exists only under the constraint condition λ = µ = ±1.

4 Solitary Ansatze Methods

In this part, we introduce in brief two methods, the tanh-technique and the sine-cosine
function method to solve the problem (4).

4.1 The tanh method

The tanh technique [21–26] suggests the following solution

W (ζ) = S(Y ) =

M∑
i=0

biY
i, (22)

where Y = tanh(δζ). The index M can be determined by a balance procedure. Once
we have M , we collect all coefficients of powers of Y in the resulting equation and set
them to zero. Finally, we solve the obtained algebraic system to retrieve the values of
the required coefficients bi.
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Now, we consider a new variable ζ = X − γT to reduce (4) into the following differ-
ential equation

(γ2 − a2)W − β

3
(γ + λa)W 3 − α(γ + µa)W ′′ = 0, (23)

where W = W (ζ) and the prime denotes the ordinary derivative. By a blanching
procedure for equation (23), the value of the parameter M is equal to 1 and thus
W (ζ) = A + B tanh(δζ). Substituting this proposed solution in (23) yields the fol-
lowing algebraic system:

0 = −Aa2 − 1

3
λA3aβ − 1

3
A3βγ +Aγ2,

0 = −Ba2 − λA2Baβ −A2Bβγ +Bγ2 + 2µBaαδ2 + 2Bαγδ2,

0 = −λAB2aβ −AB2βγ,

0 = −1

3
λB3aβ − 1

3
B3βγ − 2µBaαδ2 − 2Bαγδ2. (24)

Solving the above system produces the following two-wave solution

W (X,T ) = ±
√
−6αδ2 ((−1 + λµ)a+ (λ− µ)γ)√
β ((−1 + λ2)a+ 2(−λ+ µ)αδ2)

tanh (δ (X − γT )) , (25)

with γ = (−αδ2 ±
√
a2 − 2µaαδ2 + α2δ4). If the tanh-function is replaced by coth-

function in (25), a new solution will be obtained.

4.2 The sine-cosine method

The sine-cosine technique [24,25,27–31] assumes the solution of (23) in the form of

W (ζ) = A sinB(δζ), (26)

or
W (ζ) = A cosB(δζ), (27)

To determine the values of A, B, γ and δ, we substitute (26) in (23) to get

0 =
(
AµBaαδ2 −AµB2aαδ2 +ABαγδ2 −AB2αγδ2

)
sinB−2(δz) (28)

−
(
Aa2 +Aγ2 +AµB2aαδ2 +AB2αγδ2

)
sinB(δz)−

(
1

3
λA3aβ − 1

3
A3βγ

)
sin3B(δz).

Now, equating the exponents B − 2 and 3B in (28) and setting the coefficients of same
power to zero, produce the following two-wave solution

W (X,T ) =

√
−6αδ2 ((−1 + λµ)a+ (λ− µ)γ)√
β ((−1 + λ2)a+ (−λ+ µ)αδ2)

csc (δ (X − γT )) , (29)

with γ = 1
2 (−αδ2 ±

√
4a2 − 4µaαδ2 + α2δ4).

Finally, by using the cosine-function method (27), another two-wave solution will be
obtained being the same as given in (29) but with csc replaced by sec.
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5 Numerical Example

In this section, we study some physical features of the solution of TMmKdV equation
given in (25). In Figure 1, increasing the phase velocity a leads to a gradual increase in
the space between the two-waves of TMmKdV equation. In Figure 2, decreasing of the
nonlinearity parameter λ leads to interaction of the two-waves of the TMmKdV equation.
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Figure 1: Behaviors of two-waves in (25) at the increasing phase velocity: a = 1, 3, 5 respec-
tively. The assigned values for the other parameters are δ = γ = 1, λ = 1
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Figure 2: Behaviors of two-waves in (25) at the decreasing nonlinearity parameter: λ =
− 1

2
, 0, 1

2
respectively. The assigned values for the other parameters are δ = γ = 1, s = 1,

µ = 1
4
, α = −1, β = 1.

6 Conclusion

In this paper we studied the solutions of the scaled TMmKdV equation which reads

WTT − a2WXX + (β
∂

∂T
− βλa ∂

∂X
)W 2Wx + (α

∂

∂T
− αµa ∂

∂X
)WXXX .

We used three different methods, the simplified bilinear method, the tanh-technique and
the sine-cosine function method. The following findings are observed in this work.
•When λ = µ = ±1, TMmKdV equation admits multiple-soliton solutions by means

of the simplified bilinear method.
• For arbitrary λ and µ, periodic solutions are obtained for TMmKdV equation by

using the sine-cosine method.
• For arbitrary λ and µ, kink solutions are obtained for TMmKdV equation by using

the tanh-expansion method.
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1 Introduction

We consider the following nonlinear parabolic problem:

(P)


∂u
∂t − div

(
a(x, t, u,∇u) + Φ(u)

)
+ g(x, t, u,∇u) = f in Q,

u = 0 on ∂Q = ∂Ω× [0, T ],

u(x, 0) = u0 on Ω,

where A(u) = −div(a(x, t, u,∇u)) is an operator of Leray-Lions type, the lower order
term Φ ∈ C0(R,RN ), g is a nonlinearity term which satisfies the growth and the sign
condition and the data f belong to L1(Q). Under these assumptions the term div(Φ(u))
may not exist in the distributions sense, since the function Φ(u) does not belong to
(L1

loc(Q))N .
In the setting of classical Sobolev spaces, the existence of a weak solution for the

problem (P) has been proved in [10] in the case of Φ ≡ g ≡ 0. It is well known that this
weak solution is not unique in general (see [16] for a counter-example in the stationary
case).
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In order to obtain well-posedness for this type of problems the notion of renormalized
solution has been introduced by Lions and DiPerna [12] for the study of Boltzmann
equation (see also Lions [13] for a few applications to fluid mechanics models). This
notion was then adapted to the elliptic version by Boccardo et al. [11]. At the same
time, the equivalent notion of entropy solutions has been developed independently by
Bénilan et al. [5] for the study of nonlinear elliptic problems.

The existence and uniqueness of a renormalized solution has been proved by D. Blan-
chard and F. Murat [8] in the case where a(x, t, s, ξ) is independent of s, with Φ ≡ 0 and
g ≡ 0, by D. Blanchard, F. Murat and H. Redwane [9] with the large monotonicity on
a. For measure data, u = b(x, u) and Φ ≡ 0, the existence of renormalized solution for
the problem (P) has been proved by Y. Akdim et al.[3] in the framework of weighted
Sobolev space, by L. Aharouch, J. Bennouna and A. Touzani [1], and by A. Benkirane
and J. Bennouna [6] in the Orlicz spaces and degenerated spaces.

In the Musielak framework, the existence of a weak solution for the problem (P) has
been proved by M.L. Ahmed Oubeid, A. Benkirane and M. Sidi El Vally in [2] where
Φ ≡ 0, the existence of entropy solutions for the problem (P) has been studied by A.
Talha, A. Benkirane and M.S.B. Elemine Vall in [19].

As an example of equations to which the present result can be applied, we give

∂u

∂t
− div

(m(x, |∇u|)
|∇u|

.∇u+ u|u|σ
)

+
sign(u)

1 + u2
ϕ(x, |∇u|) = f ∈ L1(Q),

where m is the derivative of ϕ with respect to t.

2 Preliminaries

2.1 Musielak-Orlicz-Sobolev spaces.

Let Ω be an open set in RN and let ϕ be a real-valued function defined in Ω× R+, and
satisfying the following conditions:
a) ϕ(x, ·) is an N-function,
b) ϕ(·, t) is a measurable function.

The function ϕ is called a Musielak–Orlicz function. For a Musielak-orlicz function
ϕ we put ϕx(t) = ϕ(x, t) and we associate its nonnegative reciprocal function ϕ−1

x , with
respect to t that is ϕ−1

x (ϕ(x, t)) = ϕ(x, ϕ−1
x (t)) = t. The Musielak-orlicz function ϕ is

said to satisfy the ∆2-condition if for some k > 0 and a non negative function h integrable
in Ω, we have

ϕ(x, 2t) ≤ kϕ(x, t) + h(x) for all x ∈ Ω and t ≥ 0. (1)

When (1) holds only for t ≥ t0 > 0; then ϕ is said to satisfy the ∆2-condition near
infinity.

Let ϕ and γ be two Musielak-orlicz functions. We say that γ grows essentially less
rapidly than ϕ at 0 (resp. near infinity), and we write γ ≺≺ ϕ, if for every positive
constant c we have

lim
t−→0

(
sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0, (resp. lim

t−→∞

(
sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0).

We define the functional ρϕ,Ω(u) =

∫
Ω

ϕ(x, |u(x)|)dx, where u : Ω −→ R is a Lebesgue

measurable function.
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We define the Musielak-Orlicz space (the generalized Orlicz spaces) by

Lϕ(Ω) =
{
u : Ω −→ R measurable

/
ρϕ,Ω

( |u(x)|
λ

)
< +∞, for some λ > 0

}
.

For a Musielak-Orlicz function we put: ψ(x, s) = supt≥0 {st− ϕ(x, t)}. ψ is called the
Musielak-Orlicz function complementary to ϕ in the sense of Young with respect to the
variable s. In the space Lϕ(Ω) we define the following two norms:

‖u‖ϕ,Ω = inf
{
λ > 0/

∫
Ω

ϕ
(
x,
|u(x)|
λ

)
dx ≤ 1

}
,

which is called the Luxemburg norm and the so-called Orlicz norm by

‖|u|‖ϕ,Ω = sup
‖v‖ψ≤1

∫
Ω

|u(x)v(x)|dx,

where ψ is the Musielak-Orlicz function complementary to ϕ. These two norms are
equivalent [14]. The closure in Lϕ(Ω) of the bounded measurable functions with compact
support in Ω is denoted by Eϕ(Ω).

We say that a sequence of functions un ∈ Lϕ(Ω) is modular convergent to u ∈ Lϕ(Ω)

if there exists a constant k > 0 such that limn→∞ ρϕ,Ω

(
un−u
k

)
= 0.

For any fixed nonnegative integer m we define

WmLϕ(Ω) =
{
u ∈ Lϕ(Ω) : ∀|α| ≤ m, Dαu ∈ Lϕ(Ω)

}
and

WmEϕ(Ω) =

{
u ∈ Eϕ(Ω) : ∀|α| ≤ m, Dαu ∈ Eϕ(Ω)

}
,

where α = (α1, ..., αn) with nonnegative integers αi, |α| = |α1|+...+|αn| and Dαu denote
the distributional derivatives. The space WmLϕ(Ω) is called the Musielak-Orlicz-Sobolev
space. Let

ρϕ,Ω(u) =
∑
|α|≤m ρϕ,Ω

(
Dαu

)
and ‖u‖mϕ,Ω = inf

{
λ > 0 : ρϕ,Ω

(
u
λ

)
≤ 1
}
.

For u ∈ WmLϕ(Ω) these functionals are a convex modular and a norm on WmLϕ(Ω),

respectively, and the pair
(
WmLϕ(Ω), ‖‖mϕ,Ω

)
is a Banach space if ϕ satisfies the following

condition [14] :

there exists a constant c > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c. (2)

The space WmLϕ(Ω) will always be identified with a subspace of the product∏
|α|≤m Lϕ(Ω) = ΠLϕ, this subspace is σ(ΠLϕ,ΠEψ) closed. We denote by D(Ω) the

space of infinitely smooth functions with compact support in Ω and by D(Ω)) the restric-
tion of D(RN ) on Ω. Let Wm

0 Lϕ(Ω) be the σ(ΠLϕ,ΠEψ) closure of D(Ω) in WmLϕ(Ω).
Let WmEϕ(Ω) be the space of functions u such that u and its distribution derivatives
up to order m lie in Eϕ(Ω), and Wm

0 Eϕ(Ω) is the (norm) closure of D(Ω) in WmLϕ(Ω).
The following spaces of distributions will also be used:

W−mLψ(Ω) =
{
f ∈ D′(Ω); f =

∑
|α|≤m(−1)|α|Dαfα with fα ∈ Lψ(Ω)

}
and
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W−mEψ(Ω) =
{
f ∈ D′(Ω); f =

∑
|α|≤m(−1)|α|Dαfα with fα ∈ Eψ(Ω)

}
.

We say that a sequence of functions un ∈ WmLϕ(Ω) is modular convergent to u ∈
WmLϕ(Ω) if there exists a constant k > 0 such that limn→∞ ρϕ,Ω

(
un−u
k

)
= 0.

The inhomogeneous Musielak-Orlicz-Sobolev spaces of order 1 are defined as follows:

W 1,xLϕ(Q) =
{
u ∈ Lϕ(Q) : ∀|α| ≤ 1 Dα

xu ∈ Lϕ(Q)
}

and
W 1,xEϕ(Q) =

{
u ∈ Eϕ(Q) : ∀|α| ≤ 1 Dα

xu ∈ Eϕ(Q)
}
.

The last space is a subspace of the first one, and both are Banach spaces under the
norm ‖u‖ =

∑
|α|≤m ‖Dα

xu‖ϕ,Q. We have the following complementary system(
W 1,x

0 Lϕ(Q) F

W 1,x
0 Eϕ(Q) F0

)
,

F being the dual space of W 1,x
0 Eϕ(Q). It is also, except for an isomorphism, the quotient

of ΠLψ by the polar set W 1,x
0 Eϕ(Q)⊥, and will be denoted by F = W−1,xLψ(Q) and it

is shown that
W−1,xLψ(Q) =

{
f =

∑
|α|≤1D

α
xfα : fα ∈ Lψ(Q)

}
.

This space will be equipped with the usual quotient norm ‖f‖ = inf
∑
|α|≤1 ‖fα‖ψ,Q,

where the inf is taken on all possible decompositions f =
∑
|α|≤1D

α
xfα, fα ∈ Lψ(Q).

The space F0 is then given by

F0 =
{
f =

∑
|α|≤1D

α
xfα : fα ∈ Eψ(Q)

}
= W−1,xEψ(Q).

Let us give the following lemma which will be needed later.

Lemma 2.1 [7]. Let Ω be a bounded Lipschitz domain in RN and let ϕ and ψ be two
complementary Musielak-Orlicz functions which satisfy the following conditions:
i) There exists a constant c > 0 such that infx∈Ω ϕ(x, 1) ≥ c,
ii) There exists a constant A > 0 such that for all x, y ∈ Ω with |x− y| ≤ 1

2 we have

ϕ(x, t)

ϕ(y, t)
≤ t

( A

log( 1
|x−y|

)
, ∀t ≥ 1. (3)

iii)

If D ⊂ Ω is a bounded measurable set, then

∫
D

ϕ(x, 1)dx <∞. (4)

iv) There exists a constant C > 0 such that ψ(x, 1) ≤ C a.e in Ω.
Under these assumptions, D(Ω) is dense in Lϕ(Ω) with respect to the modular topology,
D(Ω) is dense in W 1

0Lϕ(Ω) for the modular convergence and D(Ω) is dense in W 1Lϕ(Ω)
for the modular convergence.

Consequently, the action of a distribution S in W−1Lψ(Ω) on an element u of
W 1

0Lϕ(Ω) is well defined. It will be denoted by < S, u >.

Lemma 2.2 (Poincaré inequality) [18] Let ϕ be a Musielak-Orlicz function which
satisfies the assumptions of Lemma 2.1, suppose that ϕ(x, t) decreases with respect to one
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of coordinates of x. Then, there exists a constant c > 0 depending only on Ω such that∫
Ω

ϕ(x, |u(x)|) dx ≤
∫

Ω

ϕ(x, c|∇u(x)|) dx, ∀u ∈W 1
0Lϕ(Ω). (5)

3 Assumptions and Main Result

Let Ω be a bounded open set on RN satisfying the segment property and T > 0, we denote
Q = Ω× [0, T ], and let ϕ and γ be two Musielak-Orlicz functions such that γ ≺≺ ϕ and
ϕ satisfies the conditions of Lemma 2.2. Let A : D(A) ⊂ W 1,x

0 Lϕ(Q) −→ W−1,xLψ(Q)
be a mapping given by A(u) = −div(a(x, t, u,∇u)), where a : a(x, t, s, ξ) : Ω× [0, t]×R×
RN −→ RN is a Carathéodory function satisfying, for a.e (x, t) ∈ Q and for all s ∈ R
and all ξ, ξ′ ∈ RN , ξ 6= ξ′,

|a(x, t, s, ξ)| ≤ β
(
c(x, t) + ψ−1

x ϕ(x, ν|ξ|)
)
, (6)(

a(x, t, s, ξ)− a(x, t, s, ξ′)

)
(ξ − ξ′) > 0, (7)

a(x, t, s, ξ).ξ ≥ αϕ(x, |ξ|), (8)

where c(x, t) is a positive function, c(x, t) ∈ Eψ(Q) and β, ν, α ∈ R∗+ .
Let g : Ω × [0, t] × R × RN −→ RN be a Caratheodory function satisfying for a.e.
(x, t) ∈ Ω× [0, t] and ∀s ∈ R, ξ ∈ RN ,

|g(x, t, s, ξ)| ≤ b(|s|)(c2(x, t) + ϕ(x, |ξ|)), (9)

g(x, t, s, ξ)s ≥ 0, (10)

where c2(x, t) ∈ L1(Q) and b : R+ −→ R+ is a continuous and nondecreasing function.
Furthermore, let

Φ ∈ C0(R,RN ), (11)

f ∈ L1(Q) and u0 is an element of L1(Q). (12)

For ` > 0 we define the truncation at height `: T` : R −→ R by

T`(s) =

{
s if |s| ≤ `,
` s|s| if |s| > `.

(13)

The definition of a renormalized solution for problem (P) can be stated as follows.

Definition 3.1 A measurable function u defined on Q is a renormalized solution of
Problem (P) if

T`(u) ∈W 1,x
0 Lϕ(Q), (14)∫

{(x,t)∈Q;m≤|u(x,t)|≤m+1}
a(x, t, u,∇u) · ∇u dxdt −→ 0 as m −→∞, (15)

and if, for every function S in W 2,∞(R) which is piecewise C1 and such that S′ has a
compact support, we have

∂S(u)

∂t
− div (a(x, t, u,∇u)S′(u)) + S′′(u)a(x, t, u,∇u) · ∇u

− div (Φ(u)S′(u)) + S′′(u)Φ(u) · ∇u+ g(x, t, u,∇u)S′(u) = fS′(u) in D′(Q),

S(u)(t = 0) = S(u0) in Ω. (16)
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We will prove the following existence theorem.

Theorem 3.1 Assume that (6) to (11) hold true. Then, there exists a renormalized
solution u of problem (P) in the sense of Definition 3.1.

Proof. The proof of Theorem 3.1 is divided into five steps.
Step 1: Approximate problem. Let consider us the following approximate problem

(Pn)


∂un
∂t − div

(
a(x, t, un,∇un) + Φn(un)

)
+ gn(x, t, un,∇un) = fn in D′(Q),

un = 0 on ∂Ω× (0, T ),

un(t = 0) = u0n on Ω,

where (fn) ∈ L1(Q) is a sequence of smooth functions such that fnfn →
f in L1(Q)f in L1(Q), Φn(s) = Φ(Tn(s)) and gn(x, t, s, ξ) = Tn(g(x, t, s, ξ)). Note
that gn(x, t, s, ξ)s ≥ 0, |gn(x, t, s, ξ)| ≤ |g(x, t, s, ξ)| and |gn(x, t, s, ξ)| ≤ n. Since Φ is
continuous, we have Φ(Tn(s)) ≤ cn, then the problem (Pn) has at least one solution
un ∈W 1,x

0 Lϕ(Q) (see e.g. [2]).
Step 2: A priori estimates. We take T`(un)χ(0,τ) as a test function in (Pn), we

get for every τ ∈ (0, T )∫
Ω

T̂`(un(τ)) dx+

∫
Qτ

a(x, t, T`(un),∇T`(un)) · ∇T`(un) dxdt+

∫
Qτ

Φn(un) · ∇T`(un)dxdt

=

∫
Qτ

fnT`(un) dxdt−
∫
Qτ

gn(x, t, un,∇un)T`(un) dxdt+

∫
Ω

T̂`(u0n) dx, (17)

where

T̂`(s) =

∫ s

0

T`(σ)dσ =

{
s2

2 , if |s| ≤ `,
`|s| − s2

2 , if |s| > `.
(18)

The Lipshitz character of Φn and the Stokes formula together with the boundary condi-
tion un = 0 on (0, T )× ∂Ω make it possible to obtain∫

Qτ

Φn(un) · ∇T`(un) dxdt = 0. (19)

Due to the definition of T̂` and (12) we have

0 ≤
∫

Ω

T̂`(u0n) dx ≤ `
∫

Ω

|u0n| dx ≤ `||u0||L1(Ω). (20)

Using the same argument as in [15], we can see that∫
Q

gn(x, t, un,∇un) dxdt ≤ Cg. (21)

Here and below Ci denotes positive constants not depending on n and `. By using (12),
(19), (20), (21) we can deduce from (17) that∫

Ω

T̂`(un(τ)) dx+

∫
Qτ

a(x, t, T`(un),∇T`(un)) · ∇T`(un) dxdt ≤ `C0. (22)
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By using (22), (7) and the fact that T̂`(un) ≥ 0, we deduce that∫
Qτ

ϕ(x, |∇T`(un)|) dxdt ≤ 1

α

∫
Qτ

a(x, t, T`(un),∇T`(un)) · ∇T`(un) dxdt ≤ `C1, (23)

we deduce from the above inequality (22) that∫
Ω

T̂`(un(τ)) dx ≤ `C0, for almost any τ in (0, T ). (24)

On the other hand, thanks to Lemma 2.2, there exists a constant λ > 0 depending only
on Ω such that∫

Qτ

ϕ(x, |v|) dxdt ≤
∫
Qτ

ϕ(x, λ|∇v|) dxdt, ∀v ∈W 1
0Lϕ(Ω). (25)

Taking v = T`(un)
λ in (25) and using (23), one has∫

Qτ

ϕ(x,
|T`(un)|

λ
) dxdt ≤ `C1. (26)

Then we deduce by using (26), that

meas{|un| > `} ≤ 1

inf
x∈Ω

ϕ(x, `λ )

∫
Qτ

ϕ(x,
1

λ
|T`(un)|) dxdt

≤ C1`

inf
x∈Ω

ϕ(x, `λ )
∀n, ∀` ≥ 0.

(27)

By using the definition of ϕ, we can deduce

lim
`−→∞

(meas{(x, t) ∈ Qτ : |un| > `}) = 0 (28)

uniformly with respect to n. Moreover, we have from (26) that T`(un) is bounded in
W 1,x

0 Lϕ(Q) for every ` > 0. Consider now in C2(R) a nondecreasing function ζ`(s) = s
for |s| ≤ `

2 and ζ`(s) = ` sign (s). Multiplying the approximating equation by ζ ′`(un), we
obtain

∂(ζ`(un))

∂t
= div

(
a(x, t, un,∇un)ζ ′`(un)

)
− ζ ′′` (un)a(x, t, un,∇un) · ∇un

+ div (Φn(un)ζ ′`(un)
)
− ζ ′′` (un)Φn(un) · ∇un − gn(x, t, un,∇un)ζ ′`(un) + fnζ

′
`(un)

in the sense of distributions. Thanks to (26) and the fact that ζ ′` has a compact sup-

port, ζ ′`(un) is bounded in W 1,x
0 Lϕ(Q) while its time derivative ∂(ζ`(un))

∂t is bounded in

W−1,x
0 Lϕ(Q) + L1(Q), hence Corollary 4.5 of [2] allows us to conclude that ζ`(un) is

compact in L1(Q). Due to the choice of ζ`, we conclude that for each `, the sequence
T`(un) converges almost everywhere in Q. Therefore, following [8,9,15], we can see that
there exists a measurable function u ∈ L∞(0, T ;L1(Ω)) such that for every ` > 0 and a
subsequence, not relabeled,

un → u a. e. in Q, (29)
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and
T`(un) ⇀ T`(u) weakly in W 1,x

0 Lϕ(Q) for σ(ΠLϕ,ΠEψ), (30)

strongly in L1(Q) and a. e. in Q.

Now we shall to prove the boundness of (a(x, t, T`(un),∇T`(un)))n in (Lψ(Q))N .
Let φ ∈ (Eϕ(Q))N with ||φ||ϕ,Q = 1. In view of the monotonicity of a one easily has,∫

Q

[
a(x, t, T`(un),∇T`(un))− a(x, t, T`(un), φ)

][
∇T`(un)− φ

]
dxdt ≥ 0, (31)

which gives∫
Q

a(x, t, T`(un),∇T`(un)) · φ dxdt ≤
∫
Q

a(x, t, T`(un),∇T`(un)) · ∇T`(un) dxdt

+

∫
Q

a(x, t, T`(un), φ) ·
[
∇T`(un)− φ

]
dxdt.

(32)

Using (6) and (23), we easily see that∫
Q

a(x, t, T`(un),∇T`(un)) · φ dxdt ≤ C3. (33)

And so, we conclude that (a(x, t, T`(un),∇T`(un)))n is a bounded sequence in (Lψ(Q))N .
Now, we prove that

lim
m−→∞

lim
n−→∞

∫{
m≤|un|≤m+1

} a(x, t, un,∇un) · ∇un dxdt = 0. (34)

Using in (Pn) the test function v = T1(un − Tm(un)), we obtain

〈∂un
∂t

, v〉+

∫
{m≤un≤m+1}

a(x, t, un,∇un) · ∇un dxdt+

∫
Q

gn(x, t, un,∇un)v dxdt

+

∫
Q

div

[ ∫ un

0

Φn(r)T ′1(un − Tm(un))dr

]
dxdt =

∫
Q

fnv dxdt.

(35)

By using
∫ un

0
Φn(r)T ′1(un − Tm(un))dr ∈W 1,x

0 Lϕ(Q) and the Stokes formula, we get∫
Ω

Umn (un(T )) dx+

∫
{m≤un≤m+1}

a(x, t, un,∇un) · ∇un dxdt

≤
∫
Q

(|fn + gn(x, t, un,∇un)|)|T1(un − Tm(un))| dxdt+

∫
Ω

Umn (x, u0n) dx,

(36)

where Umn (r) =
∫ un

0
∂un
∂t T1(s− Tm(s))ds. In order to pass to the limit as n tends to +∞

in (36), we use Umn (un(T )) ≥ 0, (12) and (21), we obtain that

lim
n−→∞

∫
{m≤un≤m+1}

a(x, t, un,∇un) · ∇un dxdt

≤
∫
{|un|>m}

(|f |+ Cg) dxdt+

∫
{|u0|>m}

|u0| dx.
(37)
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Finally, by(12) and (37) we obtain (34).
Step 3: Almost everywhere convergence of the gradients. Fix ` > 0 and let

φ(s) = s exp(δs2), δ > 0. It is well known that when δ ≥ ( b(`)2α )2 one has

φ′(s)− b(`)

α
|φ(s)| ≥ 1

2
for all s ∈ R. (38)

Let vj ∈ D(Q) be a sequence which converges to u for the modular convergence in

W 1,x
0 Lϕ(Q) and let ωi ∈ D(Q) be a sequence which converges strongly to u0 in L2(Ω).

Set ωµi,j = T`(vj)µ + exp(−µt)T`(wi), where T`(vj)µ is the mollification with respect to
time of T`(vj). Note that ωµi,j is a smooth function having the following properties:

∂

∂t
(ωµi,j) = µ(T`(vj)− ωµi,j), ω

µ
i,j(0) = T`(ωi), |ωµi,j | ≤ `, (39)

ωµi,j → T`(u)µ + exp(−µt)T`(wi) in W 1,x
0 Lϕ(Q) (40)

for the modular convergence as j →∞,

T`(u)µ + exp(−µt)T`(wi)→ T`(u) in W 1,x
0 Lϕ(Q) (41)

for the modular convergence as µ → ∞. Let now the function ρm on R with m ≥ ` be
defined by

ρm(s) =

 1, if |s| ≤ m,
m+ 1− |s|, if m ≤ |s| ≤ m+ 1,

0, if |s| ≥ m+ 1.
(42)

We set θµ,ni,j = T`(un) − ωµi,j . Using the admissible test function Zµ,mi,j,n = φ(θµ,ni,j )ρm(un)
as test function in (Pn) and since gn(x, t, un,∇un)φ(θµ,ni,j )ρm(un) ≥ 0 on {|un| > `}, we
arrive at

〈∂un
∂t

, Zµ,mi,j,n〉+

∫
Q

a(x, t, un,∇un) · (∇T`(un)−∇ωµi,j)φ
′(θµ,ni,j )ρm(un) dxdt

+

∫
{m≤|un|≤m+1}

a(x, t, un,∇un) · ∇unφ(θµ,ni,j )ρ′m(un) dxdt

+

∫
{m≤|un|≤m+1}

Φn(un) · ∇unφ(θµ,ni,j )ρ′m(un) dxdt

+

∫
Q

Φn(un) · (∇T`(un)−∇ωµi,j)φ
′(θµ,ni,j )ρm(un) dxdt

+

∫
{|un|≤`}

gn(x, t, un,∇un)φ(θµ,ni,j )ρm(un) dxdt ≤
∫
Q

fnZ
µ,m
i,j,n dxdt.

(43)

Denote by ε(n, j, µ, i) any quantity such that lim
i→∞

lim
µ→∞

lim
j→∞

lim
n→∞

ε(n, j, µ, i) = 0.

The very definition of the sequence ωµi,j makes it possible to establish the following lemma.

Lemma 3.1 (cf.[2]) Let Zµ,mi,j,n = φ(θµ,ni,j )ρm(un), we have for any ` ≥ 0

〈∂un
∂t

, Zµ,mi,j,n〉 ≥ ε(n, j, i). (44)
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Concerning the right-hand of (43), by the almost everywhere convergence of un, we have
φ(T`(un)−ωµi,j)ρm(un) ⇀ φ(T`(u)−ωµi,j)ρm(u) weakly-* in L∞(Q) as n→∞, and then∫

Q

fnφ(T`(un)− ωµi,j)ρm(un) dxdt→
∫
Q

fφ(T`(u)− ωµi,j)ρm(n) dxdt,

so that φ(T`(u)− ωµi,j)ρm(u) ⇀ φ(T`(u)− T`(u)µ − exp(−µt)T`(wi))ρm(u)
weakly star in L∞(Q) as j →∞, and finally,

φ(T`(u)− T`(u)µ − exp(−µt)T`(wi))ρm(u) ⇀ 0 weakly star as µ→∞.

Then, we deduce that

〈fn, φ(T`(un)− ωµi,j)ρm(un)〉 = ε(n, j, µ). (45)

Similarly, Lebesgue’s convergence theorem shows that

Φn(un)ρm(un)→ Φ(u)ρm(u) strongly in (Eψ(Q)N ) as n→∞,

and

Φn(un)χ{m≤|un|≤m+1}φ
′(T`(un)− ωµi,j)→ Φ(u)χ{m≤u≤m+1}φ

′(T`(u)− ωµi,j)

strongly in (Eψ(Q)N ). Then by virtue of ∇T`(un) ⇀ ∇T`(u) weakly star in (Lϕ(Q)N ),
and ∇unχ{m≤|un|≤m+1} = ∇Tm+1(un)χ{m≤|un|≤m+1} a. e. in Q, one has∫

Q

Φn(un) · (∇T`(un)−∇ωµi,j)φ
′(T`(un)− ωµi,j)ρm(un) dxdt

→
∫
Q

Φ(u)∇(∇T`(u)−∇ωµi,j)φ
′(T`(u)− ωµi,j)ρm(u) dxdt

as n→∞, and ∫
{m≤|un|≤m+1}

Φn(un)φ(T`(un)− ωµi,j)∇unρ
′
m(un) dxdt

→
∫
{m≤|un|≤m+1}

Φ(u)φ(T`(un)− ωµi,j)∇uρ
′
m(u) dxdt

as n → +∞. Thus, by using the modular convergence of ωµi,j as j → +∞ and letting µ
tend to infinity, we get∫

Q

Φn(un) · (∇T`(un)−∇ωµi,j)φ
′(θµ,ni,j )ρm(un) dxdt = ε(n, j, µ) (46)

and ∫
{m≤|un|≤m+1}

Φn(un) · ∇unφ(θµ,ni,j )ρ′m(un) dxdt = ε(n, j, µ). (47)

Concerning the third term of the right-hand side of (43) we obtain that

|
∫
{m≤|un|≤m+1}

a(x, t, un,∇un) · ∇unφ(θµ,in,j)ρ
′
m(un) dxdt |

≤ φ(2k)

∫
{m≤|un|≤m+1}

a(x, t, un,∇un) · ∇un dxdt.
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Then by (34) we deduce that

|
∫
Q

a(x, t, un,∇un) · ∇unφ(θµ,in,j)ρ
′
m(un) dxdt| ≤ ε(n, µ,m). (48)

Using the same technics as in the proof of Proposition 5.6 in [4], we obtain∫
Q

(
a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u)χs)

)
×
(
∇Tk(un)−∇Tk(u)χs

)
dxdt≤ ε(n, j, µ, i, s,m).

(49)

To pass to the limit in (49) as n j, m, s tend to infinity, we obtain

lim
s→∞

lim
n→∞

∫
Q

(
a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u)χs)

)
×
(
∇Tk(un)−∇Tk(u)χs

)
dxdt = 0.

(50)

And thus, as in the elliptic case (see [18]), there exists a subsequence also denoted by un
such that

∇un → ∇u a.e. in Q. (51)

Then, for all k > 0, one has

a(x, t, Tk(un),∇Tk(un)) ⇀ a(x, t, Tk(u),∇Tk(u))

weakly star in (Lψ(Q))N for σ(ΠLψ,ΠEϕ). (52)

Step 4: In this step we prove that u satisfies (15). According to (50), one can
pass to the limit as n tends to +∞ for fixed m ≥ 0 to obtain

lim
n−→∞

∫{
m≤|un|≤m+1

} a(x, t, un,∇un)∇un dxdt

=

∫
Q

a(x, t, Tm+1(u),∇Tm+1(u))∇Tm+1(u) dxdt

−
∫
Q

a(x, t, Tm(u),∇Tm(u))∇Tm(u) dxdt

=

∫{
m≤|u|≤m+1

} a(x, t, u,∇u) · ∇u dxdt. (53)

Taking the limit as m→ +∞ in (53) and using the estimate (34) show that u satisfies
(15). Following the same technique as that used in [2], and by using (29), (50) and Vitali’s
theorem, we have

gn(x, t, un,∇un)→ g(x, t, u,∇u) strongly in L1(Q). (54)
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Step 5 : Passing to the limit. Let S be a function in W 2,∞(R) such that S′ has
a compact support. Let K be a positive real number such that supp(S′) ⊂ [−K,K].
Pointwise multiplication of the approximate equation (Pn) by S′(un) leads to

∂S(un)

∂t
− div

(
a(x, t, un,∇un)S′(un)

)
+ S′′(un)a(x, t, un,∇un) · ∇un

− div
(
S′(un)Φ(un)

)
+ S′′(un)Φ(un) · ∇un

+ gn(x, t, un,∇un)S′(un)

= fnS
′(un). (55)

In what follows we pass to the limit as n tends to +∞ in each term of (55).
• Since S is bounded and continuous, then the fact that un −→ u a.e. in Q, implies that
S(un) converges to S(u) a.e. in Q and L∞ weakly-∗. Consequently,

∂S(un)

∂t
−→ ∂S(u)

∂t
in D′(Q) as n tends to +∞.

• Since supp(S′) ⊂ [−K,K], we have for n ≥ K,

a(x, t, un,∇un)S′(un) = a(x, t, TK(un),∇TK(un))S′(un) a.e. in Q.

The pointwise convergence of un to u and (52) as n tends to∞ and the bounded character
of S′ permit us to conclude that

a(x, t, TK(un),∇TK(un))S′(un)−→a(x, t, TK(u),∇TK(u))S′(u) weakly star in (Lψ(Q))N

(56)
as n tends to infinity.
• Regarding the ’energy’ term, we have for n ≥ K

S′′(un)a(x, t, un,∇un) · ∇un = S′′(un)a(x, t, TK(un),∇TK(un)) · ∇TK(un) a.e. in Q.

The pointwise convergence of S′(un) −→ S′(u) and (52) as n tends to +∞ and the
bounded character of S′′ permit us to conclude that

S′′(un)a(x, t, un,∇un)·∇un ⇀ S′′(u)a(x, t, TK(u),∇TK(u))·∇TK(u) weakly star in L1(Q).
(57)

Recall that S′′(u)a(x, t, TK(u),∇TK(u)) ·∇TK(u) = S′′(u)a(x, t, u,∇u) ·∇u a.e. in Q.
• Since supp(S′) ⊂ [−K,K], we have

S′(un)Φn(un) = S′(un)Φn(TK(un)) a.e. in Q. (58)

As a consequence of (11) and (29), it follows that

S′(un)Φn(un)→ S′(u)Φ(TK(u)) a.e. in (Eϕ(Q))N , (59)

we have ∇S′′(un) converges to ∇S′′(u) weakly in (Lϕ(Q))N as n tends to +∞, while
Φn(TK(un)) is uniformly bounded with respect to n and converges a. e. in Q to Φ(TK(u))
as n tends to +∞. Therefore

S′′(un)Φn(un)∇un ⇀ S′′(u)Φ(u)∇u weakly in Lϕ(Q), (60)
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• Since suppS′ ⊂ [−K,K] and from (54), we have

S′(un)gn(x, t, un,∇un) −→ g(x, t, u,∇u)S′(u) strongly in L1(Q). (61)

• Due to fn −→ f in L1(Q) and the fact that un −→ u a.e. in Q, we have

S′(un)fn −→ S′(u)f strongly in L1(Q). (62)

As a consequence of the above convergence results, we are in a position to pass to the
limit as n tends to +∞ in equation (55) and to conclude that

∂S(u)

∂t
− div

(
a(x, t, u,∇u)S′(u)

)
+ S′′(u)a(x, t, u,∇u) · ∇u

− div
(
S′(u)Φ(u)

)
+ S′′(u)Φ(u) · ∇u

+ g(x, t, u,∇u)S′(u)

= fS′(u). (63)

It remains to show that S(u) satisfies the initial condition.
To this end, firstly note that, S being bounded, S(un) is bounded in L∞(Q). Secondly,

(55) and the above considerations on the behavior of the terms of this equation show

that ∂S(un)
∂t is bounded in L1(Q) + V ∗. As a consequence, an Aubin’s type lemma (see,

e.g, [17]) implies that S(un) lies in a compact set of C0([0, T ], L1(Ω)). It follows that, on
the one hand, S(un)(t = 0) = S(u0n) converges to S(u)(t = 0) strongly in L1(Ω).

On the other hand, the smoothness of S implies that

S(u)(t = 0) = S(u0) in Ω.

As a conclusion of step 1 to step 6, the proof of Theorem 3.1 is complete.

Example 3.1 Let Ω be a bounded Lipschitz domain of RN and T > 0, we denote by
Q = Ω × [0, T ], and let ϕ and ψ be two complementary Musielak functions. Moreover,
we assume that ϕ(x, t) decreases with respect to one of coordinates of x (for example,

ϕ(x, t) = |t|p(x)log(1 + t3), p(x) = e(−x2
1+x2

2+···+x2
N ). We set

a(x, t, s, ζ) = (3 + cos2(ϕ(x, s)))ψ−1
x (ϕ(x, |ζ|)) ζ

|ζ|
,

g(x, t, s, ζ) = ϕ(x,|ζ|)
1+s2 , Φ(s) = (|s|r1−1s, ..., |s|rN−1s), 1 ≤ r1, ..., RN <∞.

It is easy to show that a(x, t, s, ζ) is the Caratheodory function satisfying the growth
condition (6), the coercivity (8) and the monotonicity condition, while the Caratheodory
function g(x, t, s, ζ) satisfies the condition (9) and (10), Finally, the hypotheses of The-
orem 3.1 are satisfied. Therefore, the following problem

lim
m−→∞

∫
{(x,t)∈Q;m≤|u(x,t)|≤m+1}

a(x, t, u,∇u) · ∇u dxdt = 0,

∂S(u)
∂t − div

(
a(x, t, u,∇u)S′(u)

)
+ S′′(u)a(x, t, u,∇u) · ∇u

−div
(
S′(u)Φ(u)

)
+ S′′(u)Φ(u) · ∇u+ g(x, t, u,∇u)S′(u) = fS′(u),

S(u)(t = 0) = S(u0) in Ω,

for every function S in W 2,∞(R) and such that S′ has a compact support in R
(64)

has at least one renormalised solution for any f ∈ L1(Q).
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