
Nonlinear Dynamics and Systems Theory, 19 (3) (2019) 348–361

Sumudu Decomposition Method for Solving

Higher-Order Nonlinear Volterra-Fredholm Fractional

Integro-Differential Equations

K. Al-Khaled ∗ and M.H. Yousef

Department of Mathematics and Statistics, Jordan University of Science and Technology,
P.O. Box (3030), Irbid (22110), Jordan

Received: February 26, 2019; Revised: June 15, 2019

Abstract: In this paper, the Sumudu decomposition method is developed to solve
the general form of the fractional nonlinear Volterra-Fredholm integro-differential
equation. The fractional derivative is described in the Caputo sense. The proposed
method is based on the application of the Sumudu transform to the fractional nonlin-
ear Volterra-Fredholm integro-differential equation. The nonlinear term can easily be
handled with the help of Adomian polynomials. Illustrative examples are given, and
numerical results are provided to demonstrate the efficiency of the proposed method.
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1 Introduction

Many problems in mathematical physics, theory of elasticity, visco-dynamics fluid and
mixed problems of mechanics of continuous media can be reduced to the integral equation
(Volterra or Fredholm) of the first or second kind. In [1,2], the Adomian decomposition
method was used to solve a higher-order nonlinear Volterra-Fredholm integro-differential
equation of the form

m∑
k=0

pk(x)u(k)(x) = f(x) + λ1

∫ x

a

r∑
i=0

Ai(x, t)Fi(u(t))dt+ λ2

∫ b

a

s∑
j=0

Bj(x, t)Gj(u(t))dt

(1)
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subject to the initial conditions

u(`)(0) = α`, ` = 0, 1, 2, ..., k − 1, (2)

where pk(x) (k = 0, 1, ...,m), Ai(x, t) (i = 0, 1, ..., r), Bj(x, t) (j = 0, 1, ..., s) and f(x)
all are given functions. u(k) indicates the k−th derivative of u(x), F (u(x)) are non-
linear functions. It is to be pointed out that u(x), f(x) are assumed to be real, and
λ1, λ2, α`, ` = 0, 1, ..., k − 1 are all real finite constants.

It has turned out that many phenomena in engineering, physics and other sciences
can be described very successfully by models using mathematical tools from fractional
calculus. Integro-differential equations model many situations from science and engineer-
ing, for example, in circuit analysis. The activity of interacting inhibitory and excitatory
neurons can be described by a system of integro-differential equations. For a better un-
derstanding of the phenomena, fractional derivatives provide more accurate models of real
world problems than integer order derivatives do. Because of their many applications in
scientific fields, fractional integro-differential equations are found to be an effective tool
to describe certain physical phenomena. The most important advantage of using the
fractional derivatives in mathematical modeling is due to the non-local property. It is
well known that the integer-order differential operator possesses a local operator whereas
the fractional order differential operator is non-local. This means that the next state
of a system depends not only upon its current state but also upon all of its historical
states [3]. In recent times, the fractional calculus is used in different physical and bio-
logical problems, see [4–6] and the references therein. Oldham and Spanier [4], Miller
and Ross [7], Momani [8] and Podlubny [9] provide the history and a comprehensive
treatment of this subject. To solve integro-differential equations, approximate solution
and numerical solution methods are being used.

In this paper, we apply the Sumudu transform to solve the general form of the non-
linear Volterra-Fredholm integro-differential equation

u(α)(x) = −1
pm(x)

m−1∑
k=0

pk(x)u(k)(x) + f(x) + λ1

∫ x
a

r∑
i=0

Ai(x, t)Fi(u(t))dt

+λ2

∫ b
a

s∑
j=0

Bj(x, t)Gj(u(t))dt, m− 1 < α ≤ m.

(3)

The Sumudu transform was first proposed by Watugala [10, 11]. In [12, 13] some funda-
mental properties of the Sumudu transform were established in light of which the authors
developed efficient and straightforward methodologies for treating differential equations.
The Sumudu transform method is one of the most important transform methods, it is
a powerful tool for solving many kinds of PDEs in various fields of science and engi-
neering [12]. In [14], the authors start from the definition of the Sumudu transform
on a general time scales to define the discrete Sumudu transform, and present its basic
properties.

In [15], we used a reliable strategy, based on using the Adomian decomposition method
(ADM), for solving the same system as in (3). Saadatmandi and Dehghan [17] applied
the Legendre collocation method to find numerical solutions of a nonlinear fractional
integro-differential equation of only Volterra type. For this current work, we implement
the Adomian-Sumudu decomposition method (ASDM) for solving higher-order non-linear
fractional Volterra-Fredholm integro-differential equations. The ASDM is an elegant
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combination of the Sumudu transform method and the ADM. This technique is more
powerful because we can combine the Sumudu method and the ADM to obtain the
ASDM and it will provide exact and approximate analytical solutions for fractional non-
linear equations. We would like to mention that the ASDM can provide high accuracy
of numerical results, reduce the computational time and volume of the work. We would
also like to point out that for obtaining the solution by using other methods, we need
to solve the equation at other values of the parameter α, and we shall have to compute
again for new α. In our method there is no need to perform such repetitive calculation.
Against this backdrop, we would like to extend the previous results [1, 18], and also to
generalize the results obtained in [15, 16] and to solve the fractional Volterra-Fredholm
integro-differential equations (3).

The fractional differential operator u(α)(x) describes the fractional derivatives of order
α of equation (3). When α ∈ N, the equation (3) reduces to a linear integro-differential
equation, while if λ1 = λ2 = 0, the equation reduces to linear fractional differential
equations. Such kind of integro-differential equations is considered for generalizations of
the work in [19]. The main objective of this paper is to study the behavior of the solution
for equation (1) using the Sumudu decomposition method.

The layout of the paper is as follows. In Section 2, we briefly review some general
concepts of the fractional theory and the Sumudu transform required for our subsequent
development. In Section 3, we extend the application of the Sumudu-Adomian decompo-
sition to construct our analytical approximate solutions for the general integro-differential
equation (3). Finally, numerical experiments are presented and some comparisons are
made in Section 4. The paper ends with some concluding remarks.

2 Basics of Fractional Calculus

This section is devoted to the description of the operational properties with the purpose
of acquainting with sufficient fractional calculus theory. Many definitions and studies
of fractional calculus have been proposed in the last two centuries. These definitions
include the Riemman-Liouville, Weyl, Reize, Campos, Caputa, and Nishimoto fractional
operators. Mainly, in this paper, we will re-introduce Section 2 of [20]. The Riemann-
Liouville definition of fractional derivative operator Jαa is stated as follows.

Definition 2.1 Let α ∈ R+. The operator Jα, defined on the usual Lebesgue space
L1[a, b] by

Jαa f(x) = 1
Γ(α)

∫ x
a

(x− t)α−1f(t)dt, J0
af(x) = f(x)

for a ≤ x ≤ b, is called the Riemann-Liouville fractional integral operator of order α.

Properties of the operator Jα can be found in [9], we mention the following: For f ∈
L1[a, b], α, β ≥ 0 and γ > −1:

1. Jαa f(x) exists for almost every x ∈ [a, b].

2. Jαa J
β
a f(x) = Jα+β

a f(x).

3. Jαa J
β
a f(x) = Jβa J

α
a f(x).

4. Jαa x
γ = Γ(γ+1)

Γ(α+γ+1) (x− a)α+γ .
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As mentioned in [8], the Riemann-Liouville derivative has certain disadvantages when
trying to model real-world phenomena with fractional differential equations. Therefore,
we shall introduce now a modified fractional differentiation operator Dα proposed by
Caputo in his work on the theory of visco-elasticity [21].

Definition 2.2 The fractional derivative of f(x) in the Caputo sense is defined as

Dαf(x) = Jm−αDmf(x) =
1

Γ(m− α)

∫ x

0

(x− t)m−α−1f (m)(t)dt, (4)

m− 1 < α ≤ m,m ∈ N, x > 0.

Also, we need here two of its basic properties.

Lemma 2.1 If m− 1 < α ≤ m, and f ∈ L1[a, b], then Dα
aJ

α
a f(x) = f(x), and

JαaD
α
a f(x) = f(x)−

m−1∑
k=0

f (k)(0)
(x− a)k

k!
, x > 0.

The Caputo fractional derivative is considered in the Caputo sense. The reason for
adopting the Caputo definition is as follows. To solve differential equations, we need to
specify additional conditions in order to produce a unique solution. For the case of Ca-
puto fractional differential equations, these additional conditions are just the traditional
conditions, which are taken to the classical differential equations, and are therefore famil-
iar to us. In contrast, for the Riemann-Liouville fractional differential equations, these
additional conditions constitute certain fractional derivatives of the unknown solution at
the initial point x = 0, which are functions of x. The initial conditions are not physical;
furthermore, it is not clear how many quantities are to be measured from experiment,
say, so that they can be appropriately assigned in an analysis. For more details on the
geometric and physical interpretation for fractional derivatives of both Riemann-Liouville
and Caputo types, see [8, 21].

Definition 2.3 For m to be the smallest integer that exceeds α, the Caputo frac-
tional derivatives of order α > 0 are defined as

Dαu(x, t) =
∂αu(x, t)

∂tα
=


1

Γ(m−α)

∫ t
0
(t− τ)m−α−1 ∂

mu(x,τ)
∂τm dτ, m− 1 < α < m,

∂mu(x,t)
∂tm , α = m ∈ N.

For mathematical properties of fractional derivatives and integrals one can consult
the mentioned references.

In the early 90s, Watugala [10, 11] introduced a new integral transform, named the
Sumudu transform and applied it to the solution of ordinary differential equation in
control engineering problems.

Definition 2.4 The Sumudu transform over the following set of functions

A =

{
f(t) | ∃M, τ1, τ2 > 0, |f(t)| < Me

|t|
tj , if t ∈ (−1)j × [0,∞)

}
(5)

is defined for u ∈ (τ1, τ2) as

S[f(t)] = F (u) =

∫ ∞
0

f(ut)e−tdt =

∫ ∞
0

1

u
f(t)e−t/udt, (6)
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where u is a parameter and it may be real or complex, that is, independent of t. The
inversion formula for the Sumudu transform is given by

S[G(s)] =
1

2πi

∫ γ+i∞

γ−i∞
estG(

1

s
)
ds

s
.

In Belgacem et al. [22], the Sumudu transform was shown to be the theoretical dual of
the Laplace transform. Hence, one should be able to rival it to a great extent in problem
solving. Given an initial f(t), its Laplace transform F (s) can be transformed into the
Sumudu transform Fs(u) of f by means of

S(u) =
F ( 1

u )

u
.

And its inverse is

F (s) =
S( 1

s )

s
.

Every proven property of the Laplace transform may routinely be turned into a corre-
sponding property of the Sumudu transform. Many of special properties of the Sumudu
transform are mentioned and tabulated in [13,22]. Some special properties of the Sumudu
transform are as follows:

1. S[1] = 1.

2. S
[

tn

Γ(n+1)

]
= un, n > 0.

3. S[f(x)∓ g(x)] = S[f(x)]∓ S[g(x)].

Theorem 2.1 [22] Let G(u) be the Sumudu transform of f(t) such that

1. G(1/s)/s is a meromorphic function, with singularities having Re(s) < γ, and

2. there exists a circular region Γ with radius R and positive constants M and k with∣∣∣G(1/s)

s

∣∣∣ < MR−k,

then the function f(t) is given by

f(t) = S−1[G(t)] =
1

2πi

∫ γ+∞

γ−i∞
estG(

1

s
)
ds

s
=
∑

residuse
[
est

G(1/s)

s

]
.

To solve fractional differential equations, the following lemma of the Sumudu trans-
form will be needed.

Lemma 2.2 [22] The Sumudu transform S[f(t)] of the fractional derivative intro-
duced by Caputo is given by

S[Dα
t f(t)] =

G(u)

uα
−
n−1∑
k=0

f (k)(0)

uα−k
, where G(u) = S[f(t)]. (7)
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3 Implementation of Sumudu Decomposition Method

In the analysis of the numerical method that follows, we will assume that problem (1)-(2)
has a unique and sufficiently smooth solution. We apply the Sumudu-Adomian decom-
position to find an approximate solution for the fractional integro-differential equations
(3). We assume that u(x) is sufficiently differentiable and that a unique solution of (3)
exists. Take the Sumudu transform of both sides of equation (3)

S[u(α)(x)] = S
[ −1

pm(x)

m−1∑
k=0

pku
(k)(x)

]
+ S[f(x)] + S

[
λ1

∫ x

a

r∑
i=0

Ai(x, t)Fi(u(t))dt
]

+ S
[
λ2

∫ b

a

s∑
j=0

Bj(x, t)Gj(u(t))dt
]
, m− 1 < α ≤ m.

Using the result of equation (7) on the left-hand side of the above equation we arrive at

u−αS[u(t)]−
n−1∑
k=0

u−(α−k)u(k)(0) = S
[ −1

pm(x)

m−1∑
k=0

pku
(k)(x)

]
+ S[f(x)]

+ S
[
λ1

∫ x

a

r∑
i=0

Ai(x, t)Fi(u(t))dt
]
+S
[
λ2

∫ b

a

s∑
j=0

Bj(x, t)Gj(u(t))dt
]
,m− 1 < α ≤ m.

Solving for S[u(t)], we get

S[u(t)] = uα
n−1∑
k=0

sα−k−1u(k)(0) + uαS
[ −1

pm(x)

m−1∑
k=0

pk(x)u(k)(x)
]

+ uαS[f(x)]

+uαS
[
λ1

∫ x

a

r∑
i=0

Ai(x, t)Fi(u(t))dt
]
+uαS

[
λ2

∫ b

a

s∑
j=0

Bj(x, t)Gj(u(t))dt
]
,m−1 < α ≤ m.

Now, following [23, 24], the Sumudu decomposition method introduces the following
expressions:

u(x) =

∞∑
n=0

un(x) (8)

for the solution of our problem, where the components S[un(t)] will be determined re-
currently according to a recursive relation. Moreover, the method defines the nonlinear
functions Fi(u(x)), (i = 0, 1, ..., r), Gj(u(x)), (j = 0, 1, ..., s) by the infinite series of
polynomials

Fi(u(x)) =

∞∑
n=0

(Ci)n, Gj(u(x)) =

∞∑
n=0

(Di)n and u(k)(x) =

∞∑
n=0

Ei, (9)

where the (Ci)n, (Dj)n, En are the Adomian polynomials which are generated according
to specific algorithms set by Adomian [23,24], or by Wazwaz [25]. Substituting equations
(8)-(9), yields

S[

∞∑
n=0

un(x)] = uα
n−1∑
k=0

u−(α−k)u(k)(0) + uαS
[ −1

pm(x)

m−1∑
k=0

pk(x)

∞∑
n=0

En

]
+ uαS[f(x)]
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+uαS
[
λ1

∫ x

a

r∑
i=0

Ai(x, t)

∞∑
n=0

(Ci)ndt
]
+uαS

[
λ2

∫ b

a

s∑
j=0

Bj(x, t)

∞∑
n=0

(Di)ndt
]
,m−1 < α ≤ m.

It is useful to note that the recursive relation is constructed on the basis that the zeroth
component S[u0] is defined by all terms that arise from the initial conditions and from
the source term f(x), i.e.,

S[u0(x)] = uα
n−1∑
k=0

u−(α−k)u(k)(0) + uαS[f(x)]. (10)

The remaining components of S[u(x)] can be completely determined so that each term
is computed by using the previous terms as

S[uk+1(x)] = uαS
[ −1

pm(x)

m−1∑
k=0

pk(x)

∞∑
k=0

Ek

]

+ uαS
[
λ1

∫ x

a

r∑
i=0

Ai(x, t)

∞∑
n=0

(Ci)kdt
]

+ uαS
[
λ2

∫ b

a

s∑
j=0

Bj(x, t)

∞∑
n=0

(Di)kdt
]
, k ≥ 1.

As a result, the components u0, u1, u2, ... are identified by applying the inverse Sumudu
transform of the above equations to obtain

u0(x) = S−1
[
uα

n−1∑
k=0

u−(α−k)u(k)(0)
]

+ S−1
[
uαS[f(x)]

]
(11)

and

uk+1(x) = S−1
(
uαS

[ −1

pm(x)

m−1∑
k=0

pk(x)

∞∑
k=0

Ek

])

+ S−1
(
uαS

[
λ1

∫ x

a

r∑
i=0

Ai(x, t)

∞∑
n=0

(Ci)kdt
])

+ S−1
(
uαS

[
λ2

∫ b

a

s∑
j=0

Bj(x, t)

∞∑
n=0

(Di)kdt
])
, k ≥ 1.

Thus, the series solutions are entirely determined. However in many cases (when
α is an integer) the exact solution in a closed form may be obtained [1]. The n − th
term approximation Φn =

∑n−1
k=0 uk can be used to approximate the solution. The

choice of (11) as the initial solution always leads to noise oscillation during the iteration
procedure [19]. Also, the choice of S[u0(x)] to contain minimal number of terms is giving
more flexibility to solve complicated non-linear equations, especially in calculation of
inverse Sumudu transform. A reliable modified form of the decomposition method has
been introduced by Wazwaz [25]. The construction of the zeroth component of the
decomposition series can be defined in a slightly different way. Wazwaz [25] assumed
that if the zeroth component S[u0(x)] depicted in (10) can be divided into two parts,
then one part will be assigned to S[u0(x)], while the second part of S[u0(x)] can be
included in the component of S[u1(x)] among other terms.
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4 Numerical Examples

In order to assess the advantages of the proposed method (the Sumudu-Adomian method)
over the Adomian decomposition method [15] in terms of accuracy and efficiency for solv-
ing fractional integro-differential equations, we have applied the method to two different
examples with known exact solutions at some values of α. The computations associated
with the examples were performed using mathematica.

Example 4.1 Consider the following nonlinear fractional integro-differential equa-
tion [15]

Dαu(t) =
1

Γ(1/2)

(8

3
t3/2 − 2t1/2

)
− t

1260
+

∫ 1

0

xtu4(x)dx, 0 ≤ t ≤ 1, (12)

where u(0) = 0, and α ∈ (0, 1].

Apply the Sumudu transform to both sides of equation (12). For the left-hand side
Dαu(t) we use the initial condition together with equation (7), while for the first three
terms on the right-hand side we use the fact that

S
(
ta−1

Γ(a)

)
= ua−1, a > 0.

Upon passing simple calculations, we arrive at

S[u(t)] = 2uα+ 3
2 − 2uα+ 1

2 − 1

1260
uα+1 + uαS

[ ∫ 1

0

xtu4(x)dx
]
.

Substituting the decomposition series (8) for u(t), and the series
∑∞
n=0An(t) for the

nonlinear term u4(t), we have

S[
∞∑
n=0

un(t)] = 2uα+ 3
2 − 2uα+ 1

2 − 1

1260
uα+1 + uαS

[ ∫ 1

0

xt
∞∑
n=0

An−1(t)dx
]
,

where the first few Adomian polynomials are given by A0(t) = u4
0(t), A1(t) =

4u3
0(t)u1(t), A2(t) = 6u2

0(t)u2
1(t) + 4u3

0(t)u2(t). The modified decomposition technique
introduces the use of the recursive relation

S[u0(x)] = 2uα+ 3
2 − 2uα+ 1

2 , (13)

S[u1(t)] = − 1

1260
uα+1 + uαS

[ ∫ 1

0

xtA0(t)dx
]

(14)

and

S[u2(t)] = uαS
[ ∫ 1

0

xtA1(t)dx
]
. (15)

In general, we take the n-th term to be

S[un(t)] = uαS
[ ∫ 1

0

xtAn−1(t)dx
]
, n ≥ 3. (16)
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Taking the inverse Sumudu transform of both sides of S[u0(t)] yields

u0(t) =
2

Γ[α+ 3
2 ]

[ tα+ 3
2

α+ 3
2

− tα+ 1
2

]
.

So, we can simplify S[u1(t)] appeared in equation (14) as

S[u1(t)] = − 1

1260
uα+1 + uαS

[ ∫ 1

0

xtA0(t)dx
]

= − 1

1260
uα+1 + uαS

[ t3+4α(3− 2t+ 2α)4

2(Γ[α+ 5
2 ])4

]
or

u1(t, α) =
8α4Γ(4α+ 4)t5α+3

Γ
(
α+ 5

2

)4
Γ(5α+ 4)

+
48α3Γ(4α+ 4)t5α+3

Γ
(
α+ 5

2

)4
Γ(5α+ 4)

− 64α3Γ(4α+ 5)t5α+4

Γ
(
α+ 5

2

)4
Γ(5α+ 5)

+
108α2Γ(4α+ 4)t5α+3

Γ
(
α+ 5

2

)4
Γ(5α+ 4)

− 288α2Γ(4α+ 5)t5α+4

Γ
(
α+ 5

2

)4
Γ(5α+ 5)

+
192α2Γ(4α+ 6)t5α+5

Γ
(
α+ 5

2

)4
Γ(5α+ 6)

− tα+1

1260Γ(α+ 2)
+

108αΓ(4α+ 4)t5α+3

Γ
(
α+ 5

2

)4
Γ(5α+ 4)

+
81Γ(4α+ 4)t5α+3

2Γ
(
α+ 5

2

)4
Γ(5α+ 4)

− 216Γ(4α+ 5)t5α+4

Γ
(
α+ 5

2

)4
Γ(5α+ 5)

+
576αΓ(4α+ 6)t5α+5

Γ
(
α+ 5

2

)4
Γ(5α+ 6)

+
432Γ(4α+ 6)t5α+5

Γ
(
α+ 5

2

)4
Γ(5α+ 6)

− 256αΓ(4α+ 7)t5α+6

Γ
(
α+ 5

2

)4
Γ(5α+ 7)

− 384Γ(4α+ 7)t5α+6

Γ
(
α+ 5

2

)4
Γ(5α+ 7)

+
128Γ(4α+ 8)t5α+7

Γ
(
α+ 5

2

)4
Γ(5α+ 8)

− 432αΓ(4α+ 5)t5α+4

Γ
(
α+ 5

2

)4
Γ(5α+ 5)

.

To obtain the inverse Sumudu transform of S[u2(t)] from (15), we use mathematica to
avoid lengthy calculations. The approximate solution is given by ua(t) = u0(t) + u1(t) +
u2(t). When α = 0.5, then ua(t) = t2 − t which is the exact solution. The value of
α = 0.5 is the only case for which we know the exact solution, and our approximate
solution is in excellent agreement with the exact values as shown in Figure 2.

Example 4.2 Consider the following nonlinear fourth-order fractional integro-
differential equation [8, 17]

Dαu(x) = 1 +

∫ x

0

e−tu2(t))dt, 0 ≤ x ≤ 1, 3 < α ≤ 4, (17)

subject to the boundary conditions u(0) = u′(0) = 1, u(1) = u′(1) = e. Since 3 < α ≤ 4,
in equation (7), we take n = 4. Applying the Sumudu transform to both sides of equation
(17), we get

S[Dαu(x)] = S[1] + S
[ ∫ x

0

e−tu2(t))dt
]
.
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Figure 1: The approximate solution when 0 < t < 1, for Example 4.1 for different values of α.

u_exact [t, ]

u_approx [t, ]

-0.1 0.1 0.2 0.3 0.4 0.5
time

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.05

u(t,

Figure 2: Comparison between the approximate solution when α = 0.5 and the exact solution
when 0 < t < 0.5, for Example 4.1.

Use the initial conditions together with equation (7) to obtain

S[u(x)]

uα
− 1

uα
− 1

uα−1
− A

uα−2
− B

uα−3
= 1 + S

[ ∫ x

0

e−tu2(t)]dt
]
, (18)

where the constants A = u′′(0) and B = u′′′(0) are to be determined by imposing the
other two boundary conditions u(1) = u′(1) = e on the obtained approximate solution.
Simplify equation (18), we get

S[u(x)] = 1 + u+Au2 +Bu3 + uα + uαS
[ ∫ x

0

e−tu2(t)]dt
]
. (19)

Substituting the decomposition series (8) for u(x), and the series
∑∞
n=0An(t) for the

nonlinear term u2(t), we have

S[

∞∑
n=0

un(x)] = 1 + u+Au2 +Bu3 + uα + uαS
[ ∫ x

0

e−t
∞∑
n=0

An(t))dt
]
, (20)

where the first two Adomian polynomials are given by A0(t) = u2
0(t), A1(t) =

2u0(t)u1(t). The modified decomposition technique introduces the use of the recursive
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Sumudu-Adomian decomposition algorithm as

S[u0(x)] = 1 + u+ uα, (21)

and

S[u1(x)] = Au2 +Bu3 + uαS
[ ∫ x

0

e−tA0(t)dt
]
. (22)

The 2−term approximation is given by

φ2(x,A;B) = u0(x) + u1(x), (23)

where the constants A and B can be determined using the remaining boundary condi-
tions. Table 1 shows some numerical values for different values of α. The exact solution
of the problem in equation (17) is u(x) = ex, and the values in Table 1 corresponding
to α = 4 are in an excellent agreement with the exact values. Table 2 shows some nu-
merical values for different values of α. In the theory of fractional calculus, it is obvious
that when the fractional derivative α (m − 1 < α ≤ m) tends to positive integer m,
then the approximate solution continuously tends to the exact solution of the problem
with derivative m. A closer look at the values obtained by our method in Table 1 do
have this characteristic. In Table 2, we compare the approximate solution for problem
(17) obtained by the proposed method for different values of α with those obtained by
the Adomian method [8], and the Legendre collocation method [17]. In Table 2, our
results for α = 4, which is the only case where we know the exact solution, are in better
agreement than those obtained by the methods described in [8] and [17].

Y_approx

Y_exact

0.5 1.0 1.5 2.0 2.5
time

2

4

6

8

10

12

14

Y

Figure 3: The approximate solution for 0 < t < 2.5, when α = 4, compared to the exact
solution for Example 4.2.

5 Conclusion

The fundamental goal of this paper is to propose an efficient algorithm for the solution
of fractional integro-differential equations. This goal has been achieved by using the
Sumudu-Adomian decomposition method. The validity and accuracy of our approach is
examined by solving two examples found in [15,17]. In order to illustrate the technique,
plots of the behavior of the approximate solutions are provided which ensure that the
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α 3.10 3.90 3.99 4.00 Exact
(A,B) (1.005, 0.163) (1.0055, 0.9351) (0.9974, 1.0056) (0.996, 1.01) ex

x = 0.1 1.10517 1.10519 1.10516 1.10516 1.10517
x = 0.2 1.22137 1.22145 1.22136 1.22135 1.22140
x = 0.3 1.34974 1.34993 1.34978 1.34976 1.34986
x = 0.4 1.49161 1.49189 1.49170 1.49168 1.49182
x = 0.5 1.64842 1.64877 1.64857 1.64855 1.64872
x = 0.6 1.82177 1.82214 1.82197 1.82195 1.82212
x = 0.7 2.01344 2.01375 2.01362 2.01361 2.01375
x = 0.8 2.22533 2.22552 2.22546 2.22545 2.22554
x = 0.9 2.45957 2.45959 2.45957 2.45957 2.45960
x = 1.0 2.71828 2.71828 2.71828 2.71828 2.71828

Table 1: Numerical values for Example 4.2 with different values of the order α.

α = 3.25 α = 3.5

xi Results [15] Results [17] Our Method Results [15] Results [17] Our Method

0.1 1.10101 1.10655 1.10517 1.10675 1.10679 1.10516

0.2 1.21402 1.22393 1.22137 1.22432 1.22441 1.22136

0.3 1.34119 1.35320 1.34974 1.35375 1.35388 1.34978

0.4 1.48170 1.49560 1.49161 1.49627 1.49642 1.49170

0.5 1.63876 1.65255 1.64842 1.65327 1.65343 1.64857

0.6 1.81365 1.82565 1.82177 1.82635 1.82651 1.82197

0.7 2.00662 2.01668 2.01344 2.01729 2.01744 2.01362

0.8 2.22023 2.22763 2.22533 2.22808 2.22819 2.22546

0.9 2.45691 2.46069 2.45953 2.46093 2.46099 2.45957

1.0 2.71828 2.71828 2.71828 2.71828 2.71828 2.71828

Table 2: Comparison of the methods for solving equation (17) for α = 3.25, 3.5.

Sumudu decomposition method is a very helpful and efficient method to produce the
approximate solutions. Finally, we would like to claim that the method presented in this
work for solving nonlinear fractional integro-differential equation is an excellent one in
terms of its simplicity, implementation and high accuracy. Also, we conclude that it can
be applied to several sophisticated linear and nonlinear equations.

As future work, we aim to apply alternative methods based on different versions of
the fractional power series technique [26–31] to solve different types of fractional integro-
differential problems and other fractional problems arising in engineering and science
applications.
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