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Abstract: This paper focuses on global stochastic (asymptotic) stability for a kind
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1 Introduction

Recently, some interesting studies in the literature have been reported, such as stability
of dynamical systems, especially stability of neural networks with Markovian switching
and time delay [1–3,6, 11,18].

Thanks to the advantages given by neural networks (NNs) they have attracted much
attention in these few recent years, and we have noted that the number of studies in that
field has rised. NNs systems have witnessed successful applications in many areas such
as securing communication systems, pattern recognition, signal processing, population
dynamics systems, chemical process control and especially, in processing static images
and combinatorial optimization [4]. All these applications are mainly related to the
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dynamical behaviors of the considered systems and their NNs equilibrium points [5,6,12,
14].

Since time-delay assignment in neural networks can cause oscillation and instability
behavior, so many researchers have been interested in the study of delay neural networks
[15–17].

It is worth noting that NNs are often perturbed by various kinds of environmental
noises, under which some properties of NNs may change. As mentioned in [12], envi-
ronmental noises can turn a given stable system into an unstable, that is why, one can
find many works that deal with stability of NNs disturbed by white noise. For example,
in [25], the authors have discussed the exponential stability of a kind of NNs with white
noise. They have set the sufficient conditions to guarantee stability of the considered
system. Also, in [27], the authors have studied a stochastic NNs system with infinite
delay, by means of Lyapunov method and It’s formula. They have derived some suffi-
cient conditions to ensure three types of stability. They have also shown that stochastic
stability of the considered system with small noise is maintained if the NNs with infinite
delay, is stable under some conditions. Recently, NNs with Markovian switching have
been considered, because NNs with Markovian switching comprise general NNs as a spe-
cial case [20–24]. For example, in [20], the authors have studied stability of a class of
delayed NNs with Markovian switching in which the jumping parameters are determined
by a continuous-time, and under some conditions, the pth moment exponential stability
is ensured. They have provided a numerical example to validate the theoretical results.
On the other hand, the work in [22] has dealt with stability of delayed stochastic NNs
with Markovian switching. The authors have shown stability of the considered system
and they have verified the founded results on three numerical examples.

To our best of knowledge, stability of stochastic Markovian switched NNs with infinite
delay in a fading memory phase space is not fully investigated in the literature, which is
the subject of our article.

Stimulated by the discussion of the studies mentioned above, our aim in this paper
is to study a kind of stochastic Markovian switched NNs system with infinite delay in
a fading memory phase space, considering white noise, infinite delay, and Markovian
switching in such model. Firstly, the existence and uniqueness of solutions are shown.
Secondly, by defining a Lyapunov Krasovskii functional, and using stochastic analysis
technique and M-matrix theory, we give sufficient conditions to ensure three easily verified
kinds of stochastic stability. These conditions are in terms of the coefficients of the
system. Finally, two numerical examples are provided to test the proposed conditions
and results.

This paper is organized as follows: we start by this introduction, then, in Section 2,
we give the used notations in this paper and we define the model to study. After that,
we introduce the definitions of three types of stochastic stability. In Section 3, existence
and uniqueness of solutions for the studied system are established. Then, the three types
of stochastic stability are discussed after styding existence and uniqueness. In Section 4,
two numerical examples are given.

2 Preliminaries

For the sake of simplicity, we give the following notations of this paper. Write R for
the set of real numbers and Rn for n dimensional Euclidean space. Denote a ∧ b (a ∨ b)
be the minimum (maximum) for (a, b) ∈ R2. For matrix A, its trace norm is defined
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by |A| =
(
Trace(ATA)

) 1
2 , with AT its transpose. Let Cµ =

{
φ ∈ C((−∞, 0];Rn) :

lim
θ→−∞

eµθφ(θ) exists in Rn
}

, with µ > 0, denote the family of continuous functions φ

defined on (−∞, 0] with norm |φ|µ = sup
θ≤0

eµθ|φ(θ)|.

The process xt : (−∞, 0] −→ Rn; θ 7−→ xt(θ) = x(t + θ);−∞ < θ ≤ 0 can be
regarded as a Cµ-value stochastic process, where xt(θ) = (x1t (θ), x

2
t (θ), ..., x

n
t (θ))T . The

initial data of the stochastic process is defined on (−∞, 0]. That is, the initial value is
x0(θ) = ξ(θ) for −∞ < θ ≤ 0.

We define Cµα , {φ ∈ Cµ; |φ|µ < α}. Let G be a vector or matrix. By G ≥ 0 we mean
each element of G is non-negative. By G > 0 we mean G ≥ 0 and at least one element
of G is positive. By G� 0 we mean all elements of G are positive.

Let (Ω,F ,F, P ) be a complete probability space with a filtration F = {Ft}t≥0 satis-
fying the usual conditions, and W (.) be a Brownian motion defined on the space. The
mathematical expectation with respect to the given probability measure P is denoted by
E(.). Let r(t) be a right-continuous Markov chain on the probability space taking values
in a finite state space M = {1, 2, ..., N} with the generator Γ = (γk`)N×N given by

P (r(t+ ∆t) = `/r(t) = k) =

{
γk`∆t+ o(∆t), k 6= `

1 + γkk∆t+ o(∆t), otherwise,

where ∆t > 0 and γk` > 0 is the transition rate from k to `. If k = `, it follows

γkk = −
N∑

`=1, 6̀=k
γk`. We also assume that Markov chain r(t) is independent of Brownian

motion W (t), and it is irreducible in the sense that the system of equations{
πΓ = 0,

π1 = 1,
(1)

has a unique positive solution, where 1 is a column vector with all component being 1.
The positive solution is termed a stationary distribution.

For any M > 0, define two random variables τyM and τMy as follows:

τyM = inf{t ≥ t0 : |y(t)| ≥M, |ξ|µ < M, a.s.},

τMy = inf{t ≥ t0 : |y(t)| ≤M, |ξ|µ > M, a.s.},

where y : [0,+∞) × Ω −→ R is a continuous stochastic process. The general NNs with
infinite delay can be described as Volterra integro-differential equations as follows:

u̇(t) = −Du(t) +Ag(u(t)) +

∫ t

−∞
CKT (t− s)g(u(s))ds+ J, (2)

u̇i(t) = −diui(t)+

n∑
j=1

aijgj(uj(t))+

n∑
j=1

cij

∫ t

−∞
Kij(t−s)gj(uj(s))ds+Ji, i = 1, 2, ..., n,

(3)
where u(t) = (u1(t), u2(t), ..., un(t))T ∈ Rn is the state vector associated with the neu-
rons, D = diag(d1, d2, ..., dn) � 0 is the firing rate of the neurons, A = (aij)n×n and
C = (cij)n×n are connection weight matrices J = (J1, J2, ..., Jn)T is the constant external
input vector, g(u) = (g1(u1), g2(u2), ..., gn(un)T is the neuron activation function vector,
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and Kij : [0,+∞) −→ [0,+∞) (i, j = 1, 2, ..., n) are piecewise continuous on [0,+∞)
satisfying ∫ +∞

0

Kij(s)e
µsds = K̄. i, j = 1, 2, ..., n. (4)

where K̄ is a positive constant depending on µ.
As mentioned in Section 1, it is assumed that system (2) has an equilibrium point

u∗ = (u∗1, u
∗
2, ..., u

∗
n). The conditions, which guarantee that system (2) has a unique

equilibrium point, can be found in [26]. By making a transformation x(t) = u(t) − u∗,
system (2) can be rewritten as

ẋ(t) = −Dx(t) +AF (x(t)) +

∫ t

−∞
CKT (t− s)F (x(s))ds, (5)

where F (x(t)) =
(
g1(x1(t) + u∗1), g2(x2(t) + u∗2), ..., gn(xn(t) + u∗n)

)T
,(

f1(x1(t)), f2(x2(t)), ..., fn(xn(t))
)t
. The main purpose of this paper is to study

system (5) disturbed by white noise and Markovian switching, which, naturally, could be
generalized into stochastic NNs with infinite delay and Markovian switching as follows:

dx(t) =
[
−Dx(t) +A(r(t))F (x(t)) +

∫ t

−∞
C(r(t))KT (t− s)F (x(s))ds

]
dt

+B(r(t))Q(x(t))dW (t),

(6)

where A(r(t)) =
(
aij(r(t))

)
n×n, C(r(t)) =

(
cij(r(t))

)
n×n, B(r(t)) =

(
bij(r(t))

)
n×n and

Q(x) =
(
q1(x1(t)), q2(x2(t)), ..., qn(xn(t))

)T
represents the disturbance intensity of white

noise satisfying Q(0) = 0.
For any k ∈ M, system (6) can be regarded as the result of the n stochastic NNs

with infinite delay

dx(t) =
[
−Dx(t)+A(k)F (x(t))+

∫ t

−∞
C(k)KT (t−s)F (x(s))ds

]
dt+B(k)Q(x(t))dW (t),

(7)
switching from one to the others according to the movement of the Markov chain.

For any (φ, k) ∈ Cµ ×M, we denote{
E
(
φ, k

)
= −Dφ(0) +A(k)F (φ(0)) +

∫ t
−∞ C(k)KT (t− s)F (φ(s− t))ds,

H
(
φ, k

)
= B(k)Q(φ(0)).

Let C2,1
(
Rn ×R+ ×M;R+

)
denote the family of all nonnegative functions V (x, t, k)

on Rn ×R+ ×M which are continuously twice differentiable in x and one differentiable
in t. If V ∈ C2,1

(
Rn×R+×M;R+

)
, define an operator LV from Rn×R+×M to R by

LV (x, t, k) = Vt(x, t, k) + Vx(x, t, k)E(xt, k) +
1

2
Trace

[
HT (xt, k)Vxx(x, t, k)H(xt, k)

]
+

N∑
`=1

γk`V (x, t, `),

where

Vt(x, t, k) =
∂V (x, t, k)

∂t
, Vx(x, t, k) =

(∂V (x, t, k)

∂x1
, ...,

∂V (x, t, k)

∂xn

)
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and

Vxx(x, t, k) =
(∂2V (x, t, k)

∂xi∂xj

)
n×n

.

In the sequel, we introduce the following concepts of stochastic stability.

Definition 2.1 [24]. The trivial solution of system (6) with initial data xt0 = ξ
is said to be stochastically stable if for every pair ε ∈ (0, 1) and α > 0, there exists a
δ = δ(ε, α) > 0 such that

P
{
|x(t, t0, ξ)| < α, t ≥ t0

}
≥ 1− ε,

whenever (ξ, k) ∈ Cµδ ×M.

Definition 2.2 [24]. The trivial solution of system (6) with initial data xt0 = ξ is
said to be stochastically asymptotically stable if it is stochastically stable and, moreover,
for every ε ∈ (0, 1), there exist δ0 = δ0(ε) > 0 such that

P
{

lim
t→∞

x(t, t0, ξ) = 0
}
≥ 1− ε,

whenever (ξ, k) ∈ Cµδ0 ×M.

Definition 2.3 [24]. The trivial solution of system (6) with initial data xt0 = ξ is
said to be globally stochastically asymptotically stable if it is stochastically stable and,
moreover, for any (ξ, k) ∈ Cµ ×M,

P
{

lim
t→∞

x(t, t0, ξ) = 0
}

= 1.

3 Main Results

In this section, we derive the criteria which are concerned with the three kinds of stochas-
tic stability defined in Section 2 for the solution to system (6). The proof is based on the
Lyapunov method, generalized It’s formula, some inequalities, and M-matrix technique.
Let us introduce first the following assumption.

Assumption 3.1 For each j ∈ {1, 2, ..., n}, functions gj : R −→ R and qj : R −→ R
satisfy global Lipschitz conditions

|gj(x)− gj(y)| ∨ |qj(x)− qj(y)| ≤ Lj |x− y|, for x, y ∈ R, (8)

that is,
|F (x)| ∨ |Q(x)| ≤ L|x|, (9)

where L = max{L1, L2, ..., Ln}. In addition, the initial data xt0 = ξ satisfies |ξ| :=
sup
θ≤0
|ξ(θ)| <∞.

Let us denote

βk := −d+ L|A(k)|+ 1

2
L2|B(k)|2 + n2K̄L|C(k)|, k ∈M,

and A := −diag(2β1, 2β2, ..., 2βn)− Γ, where d = min{d1, d2, ..., dn}.
Now, we introduce an existence and uniqueness result for the solution of system (6).

The steps of proof for this result are similar to the proof of Theorem 1 in [13].
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Theorem 3.1 Suppose that Assumption 3.1 holds. Then system (6) has a unique
global solution on (−∞,∞) with initial data ξ ∈ Cµ and r(t0) = r0.

Proof. By definition of the right continuous Markov jump r(.), there is a sequence
{τk}k≥0 of stoping times such that r(.) is a random constant on every interval [τk, τk+1),
that is r(t) = r(τk) on τk ≤ t < τk+1, for any k ≥ 0. We proceed by induction. We
consider first system (6) for t ∈ [τ0, τ1)

dx(t) =
[
−Dx(t) +A(r0)F (x(t)) +

∫ t

−∞
C(r0)KT (t− s)F (x(s))ds

]
dt

+B(r0)Q(x(t))dW (t)

=
[
−Dxt(0) +A(r0)F (xt(0)) +

∫ t

−∞
C(r0)KT (t− s)F (xt(s− t))ds

]
dt

+B(r0)Q(xt(0))dW (t).

(10)

By change of variable v = t− s, we get

dx(t) =
[
−Dxt(0) +A(r0)F (xt(0)) +

∫ +∞

0

C(r0)KT (v)F (xt(−v))dv
]
dt

+B(r0)Q(xt(0))dW (t).

For any ξ ∈ Cµ, let{
E(ξ, r0) = −Dξ(0) +A(r0)F (ξ(0)) +

∫ +∞
0

C(r0)KT (v)F (ξ(−v))dv,

H(ξ, r0) = B(r0)Q(ξ(0)),
(11)

then system (10) for t ∈ [τ0, τ1) can be rewrite as

dx(t) = E(xt, r0)dt+ H(xt, r0)dW (t). (12)

From (4), (9) and (11), we have

|E(ξ, r0)− E(ζ, r0)| ≤ |D||ξ(0)− ζ(0)|+ |A(r0)||F (ξ(0))− F (ζ(0))|

+

∫ +∞

0

|C(r0)KT (v)||F (ξ(−v))− F (ζ(−v))|dv

≤ |D||ξ(0)− ζ(0)|+ L|A(r0)||ξ(0)− ζ(0)|

+ L

∫ +∞

0

|C(r0)||KT (v)||ξ(−v)− ζ(−v)|dv

≤ |D||ξ(0)− ζ(0)|+ L|A(r0)||ξ(0)− ζ(0)|

+ L

∫ +∞

0

|C(r0)||KT (v)|eµve−µv|ξ(−v)− ζ(−v)|dv

≤
(
|D|+ L|A(r0)|+ n2L|C(r0)|K̄

)
|ξ − ζ|µ

and
|H(ξ, r0)−H(ζ, r0)| ≤ L|B(r0)||ξ − ζ|µ.

By the main theorem in [7], system (10) with initial condition ξ ∈ Cµ and r(t0) = r0 has
a unique solution on [τ0, τ1).
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If we consider system (10) for t ∈ [τ1, τ2), then, (12) becomes

dx(t) = E(xt, r1)dt+ H(xt, r1)dW (t). (13)

By the same argument of existence and uniqueness as the first step above, system (6)
with initial condition xτ1 ∈ Cµ and r(τ1) = r1 has a unique solution on [τ1, τ2).

By induction, system (6) with initial condition ξ ∈ Cµ and r(0) = r0 has a unique so-
lution on (−∞,∞). Next, to show stochastic stability, we need to following assumption.

Assumption 3.2 There is a λ = (λ1, λ2, ..., λN )T ≥ 0 in RN such that P = Aλ ≥ 0.

Theorem 3.2 Suppose that Assumptions 3.1 and 3.2 hold. Then the trivial solution
to system (6) is stochastically stable.

Proof. For any ε ∈ (0, 1) and α > 0, we choose a sufficiently small δ = δ(ε, α) < α,
such that for any ξ ∈ Cµδ(ε,α),

λk|ξ|2µ + 2n2K̄L|ξ|µ < λkεα
2 for any k ∈M.

The choice of δ above is guaranteed by taking

λkδ
2 + 2n2K̄Lδ < λkεα

2 for any k ∈M.

Fix any ξ ∈ Cµδ and write x(t) , x(t, t0, ξ). For t ≥ t0, k = 1, 2, ..., N, let

V (x, t, k) =
1

2
λk|x|2 +

∫ +∞

t

n∑
i=1

n∑
j=1

Kij(s− t)|fj(xj(2t− s))|ds. (14)

From Assumptions 3.1 and 3.2, we infer

LV (x(t), t, k) , Vx(x, t, k)
[
−Dx(t) +A(k)F (x(t)) +

∫ t

−∞
C(k)KT (t− s)F (x(s))ds

]
+ Vt(x, t, k) +

1

2
Trace

[(
B(k)Q(x(t))

)T
Vxx(x, t, k)

(
B(k)Q(x(t))

)]
+

N∑
`=1

γk`V (x(t), t, `)

= λkx
T (t)

[
−Dx(t) +A(k)F (x(t)) +

∫ t

−∞
C(k)KT (t− s)F (x(s))ds

]
−

n∑
i=1

n∑
j=1

Kij(0)
∣∣fj(xj(t))∣∣+

λk
2
Trace

[(
B(k)Q(x(t))

)T (
B(k)Q(x(t))

)]

+

N∑
`=1

γk`

[λ`
2
|x(t)|2 +

∫ +∞

t

n∑
i=1

n∑
j=1

Kij(s− t)
∣∣fj(xj(2t− s))∣∣ds]

= −λk
n∑
i=1

dix
2
i (t) + λk

n∑
i=1

xi(t)

n∑
j=1

aij(k)fj(xj(t))
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+ λk

∫ t

−∞

n∑
i=1

xi(t)

n∑
j=1

n∑
`=1

ci`(k)K`j(t− s)fj(xj(s))ds

−
n∑
i=1

n∑
j=1

Kij(0)
∣∣fj(xj(t))∣∣+

λk
2

n∑
i=1

( n∑
j=1

bij(k)qj(xj(t))
)2

+

N∑
`=1

γk`
λ`
2
|x(t)|2

≤ −λk
n∑
i=1

dix
2
i (t) + λk

n∑
i=1

|xi(t)|
n∑
j=1

Lj |aij(k)||xj(t)|

+
λk
2

( n∑
i=1

n∑
j=1

b2ij(k)
) n∑
j=1

q2j (xj(t))

+ λk

∫ t

−∞

n∑
i=1

|xi(t)|
n∑
j=1

n∑
`=1

LjKij(t− s)|ci`(k)||xj(s)|ds+

N∑
`=1

γk`
λ`
2
|x(t)|2.

By using the fact that x(t) = x(t+ 0) = xt(0) and the transformation v = t− s, one has

LV (x(t), t, k) ≤ −λk
n∑
i=1

dix
2
i (t) + λkL

( n∑
i=1

n∑
j=1

a2ij(k)
) 1

2
n∑
i=1

x2i (t)

+
λk
2
L2
( n∑
i=1

n∑
j=1

b2ij(k)
) n∑
i=1

x2i (t)

+ λk

∫ +∞

0

n∑
i=1

|xit(0)|
n∑
j=1

n∑
`=1

LjKij(v)|ci`(k)||xjt (−v)|dv +

N∑
`=1

γk`
λ`
2
|x(t)|2

≤ λk
[
−

n∑
i=1

di|xit(0)|2 + L
( n∑
i=1

n∑
j=1

a2ij(k)
) 1

2
n∑
i=1

|xit(0)|2

+
L2

2

( n∑
i=1

n∑
j=1

b2ij(k)
) n∑
i=1

|xit(0)|2

+ |xt|µ|C(k)|L
∫ +∞

0

n∑
i=1

n∑
j=1

Kij(v)eµve−µv|xjt (−v)|dv
]

+

N∑
`=1

γk`
λ`
2
|xt(0)|2

≤ λk
[
− d+ L|A(k)|+ 1

2
L2|B(k)|2 + n2K̄L|C(k)|

]
|xt|2µ +

N∑
`=1

γk`
λ`
2
|xt|2µ

≤ 1

2

(
2λkβk +

N∑
`=1

γk`λ`

)
|xt|2µ

≤ −1

2
pk|xt|2µ.

Thus, by use of It’s generalized formula, for any t ≥ t0,

EV (x(t ∧ ταx ), t ∧ ταx , k) = EV (x(t0), t0, k) + E

∫ t∧ταx

t0

LV (x(s), s, r(s))ds
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= EV (ξ(0), t0, k) + E

∫ t∧ταx

t0

LV (x(s), s, r(s))ds

≤ EV (ξ(0), t0, k).

Besides, by use of Assumption 3.1 and Eq. (4) we obtain

EV (x(t0), t0, k) = E
(λk

2

n∑
i=1

x2i (t0)
)

+ E
( ∫ +∞

t0

n∑
i=1

n∑
j=1

Kij(s− t0)|fj(xj(2t0 − s))|ds
)

≤ λk
2
E|ξ|2µ + E

∫ +∞

0

n∑
i=1

n∑
j=1

Kij(v)|fj(xt0j(−v))|dv

≤ λk
2
E|ξ|2µ + n2K̄LE|ξ|µ.

We also have

V (x(t ∧ ταx ), t ∧ ταx , k) ≥ λk
2
|x(t ∧ ταx )|2

E
[
1{ταx <t}V (x(t ∧ ταx ), t ∧ ταx , k)

]
≥ E

[
1{ταx <t}V (x(ταx ), ταx , k)

]
≥ λk

2
E
[
1{ταx <t}|x(ταx )|2

]
≥ λk

2
α2E

[
1{ταx <t}

]
=
λk
2
α2P (ταx < t).

Consequently,

λkα
2

2
P{ταx < t} ≤ E

(
1{ταx <t}V (x(ταx ), ταx , k)

)
≤ EV (x(t ∧ ταx ), t ∧ ταx , k)

≤ λk
2
|ξ|2µ + n2K̄L|ξ|µ

<
λk
2
εα2,

gives
P{ταx < t} < ε.

Letting t −→∞ we have P{ταx <∞} < ε, which is equivalent to

P{|x(t, t0, ξ)| ≤ α, t ≥ t0} ≥ 1− ε. (15)

This completes the proof.
For stochastic asymptotic stability and global stochastic asymptotic stability, we add

the following assumption.

Assumption 3.3 If A is a nonsingular M-matrix, there is a λ = (λ1, λ2, ..., λN )T �
0 in RN such that P = Aλ� 0.

For further properties on M-matrices, we refer the readers to Chapter 2 of [24].

Theorem 3.3 Suppose that Assumptions 3.1 and 3.3 hold. Then the trivial solution
of system (6) is stochastically asymptotically stable.
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Idea of proof:
The proof is similar to the one in [13]. The only differences are

• Inequality (17) in [13] becomes: For δ1 and any ε1 ∈ (0, 1), there exists a H(ε1, δ)
sufficiently large such that

P{|x(t, θ∗, ξθ∗)| ≤ H, t ≥ θ∗} ≥ 1− ε1
4
, and P{|xθ∗ |µ < H, θ∗ ≤ t} = 1.

• Inequality before (20) in [13] becomes

K̄ <
(λkα)2

2n2LH
.

• In a slightly different way as in [13], we define the Lyapunov function by

V (x, t, k) =
λk
2

n∑
i=1

x2i +

∫ +∞

t

n∑
i=1

n∑
j=1

Kij(s− t)|fj(xj(2t− s))|ds.

Theorem 3.4 Suppose that Assumptions 3.1 and 3.3 hold. Then the trivial solution
of system (6) is globally stochastically asymptotically stable.

We omit this proof because it is very similar to the equivalent one in [13].

4 Applications

Two examples are given. In the first example, we consider system (6) on R3 and the
Markov process r(t) is switching between two subsystems. In the second example, we
define system (6) on R2 and the Markov process r(t) switches between tree subsystems.

Example 4.1 Let r(t) be a right-continuous Markovian chain taking values inM =
{1, 2} with generator

Γ = (γij)2×2 =

(
−1 1
3 −3

)
.

Consider a three dimensional system of type (6) with the following specifications

D =

12 0 0
0 12 0
0 0 12

 , A(1) =

1.5 0.5 0.5
0.5 0.5 0.25
0.5 0.5 0.5

 ,

B(1) =

1 0 0
0 1 0
0 0 1

 , C(1) =

0.25 0 0
0 0.3 0
0 0 0.2

 ,

A(2) =

 0.5 0.5 0.5
0.8 0.5 0.5
0.25 0.25 0.5

 , B(2) =

1 0 0
0 1 0
0 0 1

 , C(2) =

0.2 0 0
0 0.2 0
0 0 0.4

 .
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We rewrite System (6) in the following detailed form

dx(t) =
[
− 12x(t) + a11(r(t))f(x(t)) + a12(r(t))f(y(t)) + a13(r(t))f(z(t))

+
∫ t
−∞ c11(r(t))es−t(f(x(s))+f(y(s))+f(z(s)))ds

]
dt+b11(r(t)) sinx(t)dW (t),

dy(t) =big[−12y(t) + a21(r(t))f(x(t)) + a22(r(t))f(y(t)) + a23(r(t))f(z(t))

+
∫ t
−∞ c22(r(t))es−2t(f(x(s))+f(y(s))+f(z(s)))ds

]
dt+b22(r(t)) sin y(t)dW (t),

dz(t) =
[
− 12z(t) + a31(r(t))f(x(t)) + a32(r(t))f(y(t)) + a33(r(t))f(z(t))

+
∫ t
−∞ c33(r(t))es−t(f(x(s))+f(y(s))+f(z(s)))ds

]
dt+b33(r(t)) sin z(t)dW (t),

(16)
where f(x) satisfies a global Lipschitz condition with a Lipschitz constant L = 1. We
choose f(x) = x.

In order to get the conditions of Theorem 3.4

a) We take qj(x) = sinx, j = 1, 2, 3. Then Assumption 3.1 holds.

b) We choose K(t− s) = es−t. Then, K̄ = 1
1−µ for 0 < µ < 1.

c) For µ = 0.5, we can see that β1 = −0.5870 and β2 = −0.1768, so A =(
2.1739 −1.000
−3.000 3.3537

)
,

which implies immediately that Assumption 3.3 is satisfied. By Theorem 3.4, the trivial
solution to System (16) is globally stochastically asymptotically stable.

Figure 1 shows the way of randomly switching between the two subsystems with initial
condition r(0) = 1. Figure 2 shows trajectory of the stochastic approximate solution for
system (16) with initial condition x(t) = sin2(t), y(t) = 0.5 cos2(t), z(t) = 0.
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Figure 1: Jump process r(t) with initial
condition r(0)=1.

0 1 2 3 4 5 6 7 8
−2

−1

0

1

2

3

4

Time t 

 

 
x(t)
y(t)
z(t)

Figure 2: Approximate solution of system
(16).

Example 4.2 Let r(t) be a right-continuous Markovian chain taking values inM =
{1, 2, 3} with generator

Γ = (γij)3×3 =

−2 1 1
2 −4 2
3 2 −5

 .

Consider a two-dimensional System (6) with the following specification

D =

(
15 0
0 15

)
, A(1) =

(
2 1
1 1.5

)
, B(1) =

(
1 0
0 1

)
C(1) =

(
0.5 0

0
√

2,

)
,
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A(2) =

(
2 0.5

0.3 0.8

)
B(2) =

(√
0.2 0

0
√

0.2

)
, C(2) =

(
1 0

0
√

2
√

2

)
.

A(3) =

(
2 0.25

0.25 0.5

)
, B(3) =

(
1 0
0 1

)
, C(3) =

(
0.3 0
0 0.5,

)
.

We rewrite system (6) in the following detailed form
dx(t) =

[
− 15x(t) + a11(r(t))h(x(t)) + a12(r(t))y(t)

+
∫ t
−∞ c11(r(t))es−t(h(x(s)) + h(y(s)))ds

]
dt+ b11(r(t))q1(x(t))dW (t),

dy(t) =
[
− 15x(t) + a21(r(t))h(x(t)) + a22(r(t))y(t)

+
∫ t
−∞ c22(r(t))es−t(h(x(s)) + h(y(s)))ds

]
dt+ b22(r(t))q2(x(t))dW (t),

(17)

where q1(x) = q2(x) = sinx satisfy a global Lipschitz condition with Lipschitz constant
L = 1, h(x) = sinx. This means that Assumption 3.1 is verified. To assure Assumption
3.3, let µ = 0.4. Then, we can see that β1 = −1.1277, β2 = −1.0214 and β3 = −8.0210.
So

A =

+4.2554 −1.000 −1.0000
−2.0000 +6.0428 −2.0000
−3.0000 −2.0000 21.0421

 .

Hence, it is guaranteed that A is a nonsingular M-matrix. By Theorem 3.4, System (17)
is globally asymptotically stochastic stable.

Figure 3 shows a way of random switching between the three subsystems with initial
condition r(0) = 1. Figure 4 depicts the stochastic approximate solution for System (17)
with initial condition x(t) = sin2(t), y(t) = 0.6.
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Figure 3: Jump process r(t) with initial
condition r(0)=1.
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Figure 4: Approximate solution of System
(17).

5 Conclusion

We have provided the existence and uniqueness of solutions for a kind of NNs with Marko-
vian switching. Basing on the Lyapunov method and stochastic analysis and M -matrix
theory, we have given the new conditions that ensure stochastic stability, stochastic
asymptotic stability and global stochastic asymptotic stability of neural networks with
Markovian switching and infinite time delay in a phase space. Two simulated numerical
examples under Matlab have been presented to validate the proposed conditions.
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We notice that the stability of the system depends also on the positive number µ asso-
ciated to the phase space. Also the theoretical outcome in this paper can be applied to
many complex systems and other NNs, such as the processing of motion related phenom-
ena.
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