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1 Introduction

It is well known that the following two fixed points are very important.

Theorem 1.1 (Schauder’s fixed point theorem) Let Ω be a nonempty, bounded,
closed, and convex subset of a Banach space E. Then each continuous and compact map
T : Ω→ Ω has at least one fixed point in Ω.

The Schauder fixed point theorem plays an important role in nonlinear analysis. In
1955, Darbo [9] proved a fixed point property for set-contraction on a closed, bounded
and convex subset of Banach spaces in terms of the measure of noncompactness, which
was first defined by Kuratowski [17].
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Theorem 1.2 (Darbo’s fixed point theorem) Let Ω 6= ∅ be a bounded, closed,
and convex subset of a Banach space E and let T : Ω → Ω be a continuous mapping.
Assume that there exists a constant k ∈ [0, 1) such that

α(TX) ≤ kα(X) (1)

for any nonempty subset X ⊂ Ω, where α is a measure of noncompactness defined in E.
Then T has a fixed point in Ω.

Darbo’s fixed point theorem is a significant extension of the Schauder fixed point
theorem, and it also plays a key role in nonlinear analysis, especially in proving the
existence of solutions for many classes of nonlinear equations. Since then, some general-
izations of Darbo’s fixed point theorem have appeared. For example, we refer the reader
to [1–3,6, 13,23] and the references therein.

Recently, the authors of [21] established the following new fixed point theorem, which
is a generalization of Darbo’s fixed point theorem.

Theorem 1.3 (See [21, Lemma 2.4]) Let F be a closed and convex subset of a
real Banach space E, A : F → F be a continuous operator, and A(F ) be bounded. For
any bounded subset B ⊂ F , put

Ã1(B) = A(B) and Ãn+1(B) = A(co(Ãn(B))), n ∈ N.

If there exist a constant 0 ≤ k < 1 and n0 ∈ N such that for any bounded subset B ⊂ F ,

α(Ãn0(B)) ≤ kα(B), (2)

then A has a fixed point in F .

As an application of their result, the authors in [21] investigated the existence of
global solutions of the Volterra type integral equation

u(t) = h(t) +

∫ t

0

G(t, s)f(s, u(s), (Tu)(s), (Su)(s))ds, t ∈ J, (3)

where J = [0, a], a > 0, f ∈ C(J × E × E × E,E),

(Tu)(t) =

∫ t

0

k(t, s)u(s)ds, (Su)(t) =

∫ a

0

h(t, s)u(s)ds, t ∈ J,

k ∈ C(D,R), h ∈ C(D0,R),

D = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ a}, D0 = {(t, s) ∈ R2 : 0 ≤ t, s ≤ a},

and R denotes the set of real numbers. The main results of [21] extend and improve re-
lated results in [11,12,20–22]. For other results concerning integro-differential equations,
we refer to [4, 5, 7, 8, 10,14–16].

Motivated by the above works, in this paper, we first establish a new fixed point
theorem (Theorem 2.1), which is an extension of Schauder’s fixed point theorem. Then,
by using this extended Schauder fixed point theorem, we get a new extension of Darbo’s
fixed point theorem (Theorem 2.2). As an application of the new extended Darbo fixed
point theorem, we obtain the existence of global solutions of (3). The existence result
(Theorem 3.1) includes and extends and improves related results in [11,12,20–22].

This paper is organized as follows. In Section 2, we present our main results, the
extensions of Schauder’s and Darbo’s fixed point theorems. In Section 3, in order to
demonstrate the applicability of our main results, we obtain the existence of global
solutions of (3).
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2 Main Results

Throughout this paper, let C(J,E) denote the Banach space of all continuous mappings
u : J → E with norm ‖u‖c = maxt∈J ‖u(t)‖, while C1(J,E) denotes the Banach space of
all u ∈ C(J,E) such that u′ is continuous on J with norm ‖u‖c1 = max{‖u‖c , ‖u′‖c}. Let
α denote the Kuratowski measure of noncompactness in E and C(J,E). Please, see [18]
for more details on the Kuratowski measure of noncompactness. For any B ∈ C(J,E),
t ∈ J , let

B(t) = {u(t) : u ∈ B} ⊂ E,

(TB)(t) =

{∫ t

0

k(t, s)u(s)ds : u ∈ B
}
,

(SB)(t) =

{∫ a

0

h(t, s)u(s)ds : u ∈ B
}
.

For any R > 0, let

TR = {x ∈ E : ‖x‖ ≤ R} and BR = {u ∈ C(J,E) : ‖u‖c ≤ R}.

Lemma 2.1 (See [12]) If B ⊂ C(J,E) is bounded and equicontinuous, then
co(B) ⊂ C(J,E) is also bounded and equicontinuous.

Lemma 2.2 (See [12]) If B ⊂ C(J,E) is bounded and equicontinuous, then α(B(t))
is continuous on J and

α

(∫
J

B(s)ds

)
≤
∫
J

α(B(s))ds.

Lemma 2.3 (See [19]) If f is bounded and uniformly continuous on J × TR ×
TR × TR for all R > 0 and B ⊂ C(J,E) is bounded and equicontinuous, then
{f(t, u(t), (Tu)(t), (Su)(t)) : u ∈ B} is bounded and equicontinuous in C(J,E).

First, we give the extension of Schauder’s fixed point theorem.

Theorem 2.1 Let D be a closed and convex subset of a real Banach space E. Suppose
that the operator A : D → D is continuous. If there exists n0 ∈ N such that Ãn0−1(D)

is bounded and α(Ãn0(D)) = 0, where

Ã0(D) = D and Ãn(D) = co(A(Ãn−1(D))), n ∈ N,

then A has a fixed point in D.

Proof. Since A(D) ⊂ D and D is a closed convex subset, we have

Ã1(D) = co(A(D)) ⊂ co(D) = D = Ã0(D).

Hence,
Ã2(D) = co(A(Ã1(D))) ⊂ co(A(D)) = Ã1(D).

By the method of mathematical induction, we can deduce that

Ãn(D) ⊂ Ãn−1(D), n ∈ N.
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Thus,
A(Ãn0−1(D)) ⊂ co(A(Ãn0−1(D))) = Ãn0(D) ⊂ Ãn0−1(D).

Consequently, A : Ãn0−1(D) → Ãn0−1(D) is continuous. Moreover, for any bounded

subset S ⊂ Ãn0−1(D), we get

A(S) ⊂ A(Ãn0−1(D)) ⊂ Ãn0(D),

and hence,
α(A(S)) ≤ α(Ãn0(D)) = 0.

Noting that Ãn0−1(D) is a closed bounded convex subset of E, we know from Schauder’s

fixed point theorem that A has a fixed point in Ãn0−1(D) ⊂ D.

Remark 2.1 The well-known Schauder fixed point theorem is the special case n0 = 1
of Theorem 2.1.

By using Theorem 2.1, we now present a new extension of Darbo’s fixed point theorem.

Theorem 2.2 Let D be a closed and convex subset of a real Banach space E. Suppose
that the operator A : D → D is continuous. For any bounded subset B ⊂ E, put

Ã0(B) = B and Ãn(B) = A(co(Ãn−1(B))), n ∈ N. (4)

If there exists n0 ∈ N such that Ãn0−1(D) is bounded and for any decreasing sequence of
sets {Bn} ⊂ D, n ∈ N,

α

(
Ãn0

( ∞⋂
n=1

Bn

))
= 0, (5)

then A has a fixed point in D.

Proof. Let
B0 = D and Bn = co(Ãn0(Bn−1)), n ∈ N. (6)

Then (6) and A : D → D imply that

B1 = co(Ãn0(B0)) ⊂ D = B0.

Hence, Ãn0(B1) ⊂ Ãn0(B0). Therefore,

B2 = co(Ãn0(B1)) ⊂ co(Ãn0(B0)) = B1.

By the method of mathematical induction, we can prove

Bn ⊂ Bn−1, n ∈ N. (7)

If we set

B̂ =

∞⋂
n=0

Bn, (8)

where {Bn} is defined as in (6), then B̂ is a nonempty and convex subset in D. Hence,
(5), (7), and (8) imply

α(Ãn0(B̂)) = 0. (9)
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Since Ãn0−1(D) is bounded, we get that

Ãn0−1(B̂) is bounded. (10)

Next, we shall prove
A(B̂) ⊂ B̂. (11)

In fact, from B1 ⊂ co(Ãn0−1(B0)), we have

A(B1) ⊂ A(co(Ãn0−1(B0))) = Ãn0(B0) ⊂ co(Ãn0(B0)) = B1.

By the same method, we can prove A(Bn) ⊂ Bn, n ∈ N. Hence, we get

A(B̂) =

∞⋂
n=0

A(Bn) ⊂
∞⋂

n=0

Bn = B̂.

Then (11) holds. From (9), (10), (11), and Theorem 2.1, we deduce that A has a fixed

point in B̂ ⊂ D.

Remark 2.2 When
Bn ≡ D, n ∈ N

in Theorem 2.2, then Theorem 2.1 is obtained.

Remark 2.3 When
n0 = 1, Bn ≡ D, n ∈ N

in Theorem 2.2, then Theorem 1.2, i.e., Darbo’s fixed point theorem is obtained. So
Theorem 2.2 includes and extends Darbo’s fixed point theorem.

Remark 2.4 Comparing with [21, Lemma 2.4], i.e., Theorem 1.3, the conclusion
of Theorem 2.2 is the same. But the conditions are different. First, the assumption
that Ãn0−1(D) is bounded is weaker than that A(D) is bounded in [21, Lemma 2.4].
After that, we only need to consider the decreasing sequences without the boundedness
{Bn} ⊂ D in (5), while [21, Lemma 2.4] needs to consider all bounded sets B ⊂ F in
(2). Finally, (5) and (2) cannot be deduced from each other. Above all, Theorem 2.2 is
a good supplement to the extension of Darbo’s fixed point theorem.

3 Applications

Now, as an application of Theorem 2.2, we give an existence theorem for global solutions
of (3).

Theorem 3.1 Let E be a real Banach space. Assume

(H1) For any R > 0, f is bounded and uniformly continuous on J × TR × TR × TR, and

lim sup
R→∞

M(R)

R
<

1

aa0b
, (12)

where

a0 = max{1, ak0, ah0}, k0 = max{|k(t, s)| : (t, s) ∈ D},
h0 = max{|h(t, s)| : (t, s) ∈ D0}, b = max{G(t, s) : (t, s) ∈ D},
M(R) = sup{‖f(t, x, y, z)‖ : (t, x, y, z) ∈ J × TR × TR × TR, t ∈ J}.
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(H2) There exist nonnegative Lebesgue integrable functions Li ∈ L(J,R+) such that for
any decreasing sequences of bounded sets {Din} ⊂ E, α(Din) → 0, n → ∞, i =
1, 2, 3 and t ∈ J ,

α(f(t,D1n, D2n, D3n)) ≤
3∑

i=1

Li(t)α(Din). (13)

Then (3) has at least one global solution in C1(J,E).

Proof. First, we define an operator A : C(J,E)→ C(J,E) by

(Au)(t) = h(t) +

∫ t

0

G(t, s)f(s, u(s), (Tu)(s), (Su)(s))ds, u ∈ C(J,E). (14)

Note that since u ∈ C1(J,E) is a solution of (3) if and only if u ∈ C(J,E) is a solution
of the integral equation

u(t) = (Au)(t), t ∈ J,

we only need to prove that A has a fixed point. Since f is uniformly continuous on
J × TR × TR × TR, we can easily see that A : C(J,E) → C(J,E) is continuous and
bounded. On account of (12), there exist 0 < r < (aa0b)

−1 and R0 > 0 such that for
any R ≥ a0R0,

M(R)

R
< r. (15)

Let

R∗ = max
{
R0, ‖h‖c (1− aa0b)−1 }. (16)

Then, by using (14) and (15), it is not difficult to verify that A(BR∗) ⊂ C(J,E) is
equicontinuous and bounded, and A : BR∗ → BR∗ is bounded and continuous. Set
D = co(A(BR∗)). Then, from Lemma 2.1, we get that D ⊂ BR∗ is bounded and
equicontinuous and

A : D → D is continuous and bounded. (17)

For any decreasing sequence of bounded sets {Bm} ⊂ D, m ∈ N, by (H1) and (14), we
have that A(Bm) is bounded and equicontinuous. Hence, from Lemma 2.1, Lemma 2.3,

and (4), we get for any n ∈ N that Ãn(Bm) is bounded and equicontinuous on J , and so

α(Ãn(Bm)) = max
t∈J

α((Ãn(Bm))(t)), m ∈ N.

Next, we show that for any n0 ∈ N, we have

Ãn0−1(D) is bounded, (18)

and for any decreasing sequence of sets {Bm} ⊂ D, α(Bm)→ 0, m ∈ N,

α

(
Ãn0

( ∞⋂
m=1

Bm

))
= 0. (19)
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Indeed, (18) follows from the fact that D ⊂ BR∗ is bounded. Furthermore, from (13),
(14), and (15), we get

α((Ã1(Bm))(t))

= α

(∫ t

0

G(t, s)f(s, (coBm)(s), (T (coBm))(s), (S(coBm))(s))ds

)
≤ b

∫ t

0

[L1(s)α((coBm)(s)) + L2(s)α((T (coBm))(s)) + L3(s)α((S(coBm))(s))]ds

≤ b

∫ t

0

[L1(s)α((coBm)(s)) + L2(s)k0α((coBm)(s)) + L3(s)h0α((coBm)(s))]ds

= b

∫ t

0

[L1(s)α((Bm(s)) + L2(s)k0α(Bm(s)) + L3(s)h0α(Bm(s))]ds

→ 0, m→∞.

Assume
α((Ãk(Bm))(t))→ 0, m→∞, k ∈ N \ {1}.

Then

α((Ãk+1(Bm))(t))

= α

(∫ t

0

G(t, s)f(s, (coÃk(Bm))(s), T (coÃk(Bm))(s), S(coÃk(Bm))(s))ds

)
≤ b

∫ t

0

[
L1(s)α((coÃk(Bm))(s)) + L2(s)α(T (coÃk(Bm))(s))

+L3(s)α(S(coÃk(Bm)(s)))
]
ds

≤ b

∫ t

0

[
L1(s)α((coÃk(Bm))(s)) + L2(s)k0α((coÃk(Bm))(s))

+L3(s)h0α((coÃk(Bm))(s))
]
ds

= b

∫ t

0

[
L1(s)α((Ãk(Bm))(s)) + L2(s)k0α((Ãk(Bm))(s))

+L3(s)h0α((Ãk(Bm))(s))
]
ds

→ 0, m→∞.

Consequently,
α(Ãn(Bm))→ 0, m→∞, n ∈ N,

and so α(Ãn0(Bm))→ 0, m→∞. Thus, we have

α

(
Ãn0

( ∞⋂
m=1

Bm

))
≤ α(Ãn0(Bm))→ 0, m→∞.

Hence, (19) holds. It follows from Theorem 2.2, (17), (18), and (19) that A has a fixed
point in D. Thus, (3) has at least one global solution in C1(J,E).

Remark 3.1 The main result of [21], i.e., [21, Theorem 3.1] is as follows: Let E be
a real Banach space. Assume



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (3) (2019) 396–404 403

(H3) For any R > 0, f is bounded and uniformly continuous on J × TR × TR × TR, and

lim sup
R→∞

M(R)

R
<

1

aa0b
,

where

a0 = max{1, ak0, ah0}, b = max{G(t, s) : (t, s) ∈ D},
M(R) = sup{‖f(t, x, y, z)‖ : (t, x, y, z) ∈ J × TR × TR × TR, t ∈ J}.

(H4) There exist nonnegative Lebesgue integrable functions Li ∈ L(J,R+) such that for
any bounded sets {Di} ⊂ E and t ∈ J ,

α(f(t,D1, D2, D3)) ≤
3∑

i=1

Li(t)α(Di). (20)

Then (3) has at least one global solution in C1(J,E). Comparing [21, Theorem 3.1] with
Theorem 3.1 above, we can see that the only difference is between (13) and (20). For
all bounded sets {Di} ⊂ E, (20) should hold. For only those bounded and decreasing
sequences {Din} ⊂ E, α(Din)→ 0, i = 1, 2, 3, we need that (13) holds. So (13) is weaker
than (20). Moreover, (20) is a special case of (13) when Din ≡ Di, i = 1, 2, 3, n ∈ N.
Thus, Theorem 3.1 includes and extends [21, Theorem 3.1], which extended and improved
the main results of [11,12,20,22]. Consequently, Theorem 3.1 in this paper extends and
improves not only the main results of [21], but also related results of [11,12,20,22].
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