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Abstract: Necessary and sufficient conditions of the diagonal Riccati stability are
derived for a class of pairs of matrices with special structures. The obtained conditions
are used in the problems of analysis and synthesis of some types of time-delay systems.
Results of numerical simulation are presented to illustrate the effectiveness of the
proposed approaches.
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1 Introduction

The problem of diagonal Riccati stability was introduced in [15] and is motivated by
the construction of the diagonal Lyapunov–Krasovskii functionals for linear time-delay
systems.

In [4], a criterion for a given pair of matrices to be diagonally Riccati stable has been
derived. This result extended the well known condition of Barker, Berman and Plemmons
for the diagonal Lyapunov stability [7]. With the aid of this criterion, necessary and
sufficient conditions of the existence of diagonal Lyapunov–Krasovskii functionals were
found for linear positive differential and difference systems with delay [3, 4].

However, it should be noted that the conditions of the above criterion are not con-
structive enough. Therefore, an actual problem is to determine the classes of matrices
for which simple and constructively verified necessary and sufficient conditions of the
diagonal Riccati stability can be obtained. Some of such classes were found in [2, 5].

In the present paper, a class of pairs of matrices is studied. These matrices can be used
for the modeling of complex systems composed of second order subsystems with a special
structure of connections between the subsystems and with a delay in the feedback law. A
criterion of the diagonal Riccati stability is derived for the matrices under consideration.
Moreover, it is shown that the obtained result can be applied to the problems of analysis
and synthesis of some types of time-delay systems.

∗ Corresponding author: mailto:a.u.aleksandrov@spbu.ru

c© 2019 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua445

mailto: a.u.aleksandrov@spbu.ru
http://e-ndst.kiev.ua


446 A. Yu. ALEKSANDROV AND N.O. KOVALEVA

2 Statement of the Problem

Let R be the field of real numbers, Rn and Rn×n denote the vector spaces of n-tuples of
real numbers and n× n matrices, respectively, ‖ · ‖ be the Euclidean norm of a vector.

For a matrix C ∈ Rn×n, we use the notation C> for the transpose of C. The matrix C
is Hurwitz if all of its eigenvalues have negative real parts, C is Metzler if its off-diagonal
entries are all nonnegative, C is nonnegative if all of its entries are nonnegative. Let
diag{λ1, . . . , λn} be the diagonal matrix with the elements λ1, . . . , λn along the main
diagonal.

Let matrices A,B ∈ Rn×n be given.

Definition 2.1 (see [15]) The pair of matrices (A,B) is diagonally Riccati sta-
ble if there exist diagonal positive definite matrices P = diag{p1, . . . , pn} and Q =
diag{q1, . . . , qn} such that the matrix

R = A>P + PA+Q+ PBQ−1B>P (1)

is negative definite.

In [4, 5] the following results were obtained.

Proposition 2.1 Let the matrix A ∈ Rn×n be Metzler and the matrix B ∈ Rn×n be
nonnegative. Then the pair (A,B) is diagonally Riccati stable if and only if the matrix
A+B is Hurwitz.

Proposition 2.2 Let A ∈ Rn×n, B ∈ Rn×n be given and let D = diag{d1, . . . , dn},
E = diag{e1, . . . , en} with di ∈ {−1; +1}, ei ∈ {−1; +1} for i = 1, . . . , n. The pair (A,B)
is diagonally Riccati stable if and only if (DAD,DBE) is diagonally Riccati stable.

In this contribution, we will look for the conditions of the diagonal Riccati stability
for a special class of pairs of matrices. Assume that n is an even number (n = 2k, k is a
positive integer), and the matrices A and B have the following forms:

A =



a11 a12 0 0 0 0 · · · 0 0 0
a21 a22 0 0 0 0 · · · 0 0 0
0 0 a33 a34 0 0 · · · 0 0 0
0 c1 a43 a44 0 0 · · · 0 0 0
0 0 0 0 a55 a56 · · · 0 0 0
0 0 0 c2 a65 a66 · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 · · · 0 an−1n−1 an−1n
0 0 0 0 0 0 · · · ck−1 ann−1 ann


, (2)

B =



0 0 0 · · · 0 0
0 0 0 · · · 0 b
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · 0 0


. (3)
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Figure 1: Structure of connections in a complex system.

Such matrices can be used for the modeling of complex systems composed of second order
subsystems with a special structure of connections between the subsystems and with a
delay in the feedback law (see Fig. 1).

Furthermore, we will apply the obtained conditions of the diagonal Riccati stability to
the problems of analysis and synthesis for some classes of linear and nonlinear difference-
differential systems.

3 A Criterion of the Diagonal Riccati Stability

Construct the auxiliary matrices

Ã =



a11 ã12 0 0 0 0 · · · 0 0 0
ã21 a22 0 0 0 0 · · · 0 0 0
0 0 a33 ã34 0 0 · · · 0 0 0
0 |c1| ã43 a44 0 0 · · · 0 0 0
0 0 0 0 a55 ã56 · · · 0 0 0
0 0 0 |c2| ã65 a66 · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 · · · 0 an−1n−1 ãn−1n
0 0 0 0 0 0 · · · |ck−1| ãnn−1 ann


,

B̃ =



0 0 0 · · · 0 0
0 0 0 · · · 0 |b|
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · 0 0


.

Here ã2j−1 2j = ã2j 2j−1 = 0 for a2j−1 2ja2j 2j−1 < 0, and ã2j−1 2j = |a2j−1 2j |, ã2j 2j−1 =
|a2j 2j−1| for a2j−1 2ja2j 2j−1 ≥ 0, j = 1, . . . , k.

Denote ∆̃2j−1 2j = a2j−1 2j−1a2j 2j − ã2j−1 2j ã2j 2j−1, j = 1, . . . , k.

Theorem 3.1 Let the matrices A and B be of the form (2) and (3), respectively.
Then the pair (A,B) is diagonally Riccati stable if and only if the inequalities

aii < 0, i = 1, . . . , n, ∆̃2j−1 2j > 0, j = 1, . . . , k, (4)

∆̃12∆̃34 . . . ∆̃n−1n > |a11a33 . . . an−1n−1c1c2 . . . ck−1b| (5)

hold.
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Proof. Let P = diag{p1, . . . , pn} and Q = diag{q1, . . . , qn} be positive definite
diagonal matrices. Without loss of generality, assume that qn = 1.

If the matrices A and B are defined by the formulae (2) and (3), then the matrix (1)

can be represented in the form R = R̃+ diag{q1, q2, . . . , qn−1, 0}, where

R̃ =



R12 L1 0 0 0 · · · 0 0
L1 R34 L2 0 0 · · · 0 0
0 L2 R56 L3 0 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · Rn−3n−2 Lk−1
0 0 0 0 0 · · · Lk−1 Rn−1n


,

R12 =

(
2p1a11 p1a12 + p2a21

p1a12 + p2a21 2p2a22 + p22b
2

)
,

R2j−1 2j =

(
2p2j−1a2j−1 2j−1 p2j−1a2j−1 2j + p2ja2j 2j−1

p2j−1a2j−1 2j + p2ja2j 2j−1 2p2ja2j 2j

)
, j = 2, . . . , k−1,

Rn−1n =

(
2pn−1an−1n−1 pn−1an−1n + pnann−1

pn−1an−1n + pnann−1 2pnann + 1

)
,

Lj =

(
0 0
0 cjp2j+2

)
, j = 1, . . . , k − 1.

Thus, the pair (A,B) is diagonally Riccati stable if and only if there exist positive

numbers p1, . . . , pn for which the matrix R̃ is negative definite.
Let ∆i be the leading principal minor of the i-th order of the matrix R̃, i = 1, . . . , n.

Necessary and sufficient conditions of the negative definiteness of R̃ can be formulated
as follows: aii < 0, i = 1, . . . , n,

detR2j−1 2j > 0, ∆2j > 0, j = 1, . . . , k. (6)

Choose a number l ∈ {1, . . . , k}. Consider the inequalities from (6) depending on the
corresponding parameter p2l−1. We obtain detR2l−1 2l > 0,

∆2j > 0, j = l, . . . , k. (7)

Developing ∆2j by the (2l − 1)-th and 2l-th columns, rewrite (7) in the form

αlj
detR2l−1 2l

p2l−1
> βlj , j = l, . . . , k,

where αlj and βlj are independent of p2l−1, and αlj > 0.
Thus, to derive less conservative restrictions on the entries of the matrices A and B,

one should take a value of p2l−1 for which detR2l−1 2l/p2l−1 is minimal. Hence,

p2l−1 =

{
p2la2l 2l−1/a2l−1 2l for a2l−1 2la2l 2l−1 > 0,

−p2la2l 2l−1/a2l−1 2l for a2l−1 2la2l 2l−1 < 0.

Moreover, taking into account Proposition 2.2, we can assume that b ≥ 0, cs ≥ 0,
s = 1, . . . , k − 1, and a2j−1 2j ≥ 0, a2j 2j−1 ≥ 0 for a2j−1 2ja2j 2j−1 ≥ 0.
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As a result, we obtain that conditions of the diagonal Riccati stability for the pair
(A,B) coincide with those for the pair (Ã, B̃).

The matrix Ã is Metzler and the matrix B̃ is nonnegative. Hence (see Proposition

2.1), (Ã, B̃) is diagonally Riccati stable if and only if the matrix Ã + B̃ is Hurwitz.

Verifying the Sevastyanov–Kotelyanskii conditions [10] for the matrix Ã + B̃, we arrive
at the inequalities (4), (5). 2

4 Applications

In this section, we will show how the result described above can be applied to some
problems of analysis and synthesis of time-delay systems.

4.1 Absolute stability of the Persidskii-type systems

Let the nonlinear time-delay system

ẋ(t) = Af(x(t)) +Bf(x(t− τ)) (8)

be given. Here x(t) = (x1(t), . . . , xn(t))
>

is the state vector; A ∈ Rn and B ∈ Rn are
constant matrices; τ is a constant nonnegative delay. The nonlinearity f : Rn → Rn is
continuous, diagonal f(x) = (f1(x1), . . . , fn(xn))

>
and satisfies the sector-like conditions

xifi(xi) > 0 for xi 6= 0, i = 1, . . . , n. Such a nonlinearity is said to be admissible.
The system (8) is a well-known Persidskii-type system [12, 14]. Such systems are

widely used for the modeling of automatic control systems and neural networks.
From the properties of functions f1(x1), . . . , fn(xn) it follows that the system (8)

possesses the zero solution.
We assume that the initial functions for (8) belong to the space C([−τ, 0],Rn) of con-

tinuous functions ϕ(θ) : [−τ, 0]→ Rn with the uniform norm ‖ϕ‖τ = supθ∈[−τ,0] ‖ϕ(θ)‖.
In addition, let xt stand for the restriction of a solution x(t) of (8) to the segment [t−τ, t],
i.e., xt : θ → x(t+ θ), θ ∈ [−τ, 0].

Definition 4.1 The system (8) is absolutely stable if its zero solution is asymptoti-
cally stable for any admissible nonlinearity and any constant nonnegative delay τ .

Theorem 4.1 Let n = 2k, k be a positive integer, and the matrices A and B in (8)
be of the form (2) and (3), respectively. If the inequalities (4) and (5) are fulfilled, then
the system (8) is absolutely stable.

Proof. Under conditions (4) and (5), the pair (A,B) is diagonally Riccati sta-
ble. Choose positive definite diagonal matrices P = diag{p1, . . . , pn} and Q =
diag{q1, . . . , qn} for which the matrix (1) is negative definite.

Using diagonal elements of P and Q, construct a Lyapunov–Krasovskii functional for
(8) in the form

V (xt) =

n∑
i=1

2pi

xi(t)∫
0

fi(u)du+ qi

t∫
t−τ

f2i (xi(θ))dθ

 .

It is easy to verify that there exists a number γ > 0 such that

V̇
∣∣
(8)
≤ −γ (‖f(x(t))‖+ ‖f(x(t− τ))‖) .

Hence (see [11]), the system (8) is absolutely stable. 2
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4.2 Stability analysis of a mechanical system

Consider a complex system describing the interaction of k mechanical systems with two
degrees of freedom. Let equations of motion be of the form

ẍ1(t) + hα1ẋ1(t) + β11x1(t) + β12x2(t) = 0,

ẍ2(t) + hα2ẋ2(t) + β21x1(t) + β22x2(t) = ω1x2k(t− τ),

ẍ2j−1(t) + hα2j−1ẋ2j−1(t) + β2j−1 2j−1x2j−1(t) + β2j−1 2jx2j(t) = 0,

ẍ2j(t) + hα2j ẋ2j(t) + β2j 2j−1x2j−1(t) + β2j 2jx2j(t) = ωjx2j−2(t), j = 2, . . . , k.

(9)

Here xi(t) ∈ R, αi, βi, ωj are constant coefficients, i = 1, . . . , 2k, j = 1, . . . , k, h is a
positive parameter, τ is a constant nonnegative delay.

Denote n = 2k, x(t) = (x1(t), . . . , xn(t))>. Then the equations (9) can be rewritten
as follows:

ẍ(t) + hDẋ(t) + C1x(t) + C2x(t− τ) = 0. (10)

Here D = diag{α1, . . . , αn}, and C1, C2 are constant matrices with the structures similar
to those of (2) and (3), respectively.

We assume that the initial functions for (10) belong to the space C1([−τ, 0],Rn) of
continuously differentiable functions ϕ(θ) : [−τ, 0]→ Rn with the uniform norm

‖ϕ‖τ = sup
θ∈[−τ,0]

‖ϕ(θ)‖+ sup
θ∈[−τ,0]

‖ϕ̇(θ)‖.

To derive delay-independent stability conditions for (10), we will use the decomposi-
tion method [13,19,20] and the approach proposed in [1, 6].

Consider the auxiliary isolated subsystems

ẏ(t) = Ay(t) +By(t− τ), (11)

ż(t) = −Dz(t), (12)

where y(t), z(t) ∈ Rn, A = −D−1C1, B = −D−1C2.

Assumption 4.1 Let αi > 0, i = 1, . . . , n.

Remark 4.1 Under Assumption 4.1, the system (12) is asymptotically stable.

Assumption 4.2 The inequalities (4) and (5) are valid for the entries of the matrices
A and B.

Remark 4.2 Under Assumption 4.1, the subsystem (11) possesses a diagonal
Lyapunov–Krasovskii functional of the form

V (yt) = y>(t)Py(t) +

t∫
t−τ

y>(θ)Qy(θ)dθ,

where P and Q are constant positive definite diagonal matrices.

Applying Theorem 1 from [6], we arrive at the following result.

Theorem 4.2 Let Assumptions 4.1 and 4.2 be fulfilled. Then there exists a num-
ber h0 > 0 such that if h ≥ h0, then the system (10) is asymptotically stable for any
nonnegative delay.
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4.3 Synthesis of the decentralized control for a multiagent system

The problems of cooperative control of multiagent systems have attracted considerable
attention in the last decade due to their wide applicability [8, 9, 17, 18]. The key goal of
cooperative control is to reach a desired global group behavior by using global/local infor-
mation shared among neighboring agents in a distributed fashion. One of the important
cooperative control problems is that of consensus [8, 16].

In the present subsection, we are going to design a decentralized control ensuring con-
sensus for a group of n mobile agents on a line with a special structure of communication
topology.

Let xi(t) ∈ R be the position of the i-th agent at time t ≥ 0, i = 1, . . . , n. We will
assume that the following conditions are fulfilled:

(i) n = 2k, where k is a positive integer;
(ii) the (2j − 1)-th agent is a satellite of the 2j-th agent, and it receives information

about the distance x2j−1(t)− x2j(t), j = 1, . . . , k;
(iii) the 2j-th agent receives information about the distances x2j(t) − x2j−1(t) and

x2j(t)− x2j−2(t), j = 2, . . . , k;
(iv) the 2-th agent receives information about the distances x2(t)−x1(t) and x2(t)−

xn(t− τ), where τ is a constant nonnegative delay;
(iv) the 2-th agent is a leader: it knows the distance between itself and a desired

position ξ.
Thus, the communication topology of the system has the structure depicted in Fig. 1.
First, consider the case where the dynamics of agents are described by the first order

integrators
ẋi(t) = ui, i = 1, . . . , n. (13)

Here ui ∈ R denotes the control input (or protocol) of agent i. We will say that the
multiagent system achieves a consensus if xi(t)→ ξ as t→ +∞, i = 1, . . . , n.

Under conditions (i)–(iv), the control law can be chosen as follows:

u2j−1 = α2j−1(x2j − x2j−1), j = 1, . . . , k,

u2s = α2s(x2s−1(t)− x2s(t)) + βs(x2s−2(t)− x2s(t)), s = 2, . . . , k,

u2 = α2(x1(t)− x2(t)) + β1(xn(t− τ)− x2(t)) + γ(ξ − x2(t)),

(14)

where αi, βj , γ are constant coefficients, i = 1, . . . , n, j = 1, . . . , k.
Let x(t) = (x1(t), . . . , xn(t))>. Then the system (13) closed by the control (14) takes

the form
ẋ(t) = Ax(t) +Bx(t− τ). (15)

Here A and B are constant matrices with the structures similar to those of (2) and
(3), respectively. The system (15) admits the equilibrium position x = x̄, where x̄ =
(ξ, . . . , ξ)>.

Applying Theorem 4.1, we arrive at the following result.

Theorem 4.3 Let the inequalities

γ > 0, α2j−1 > 0, j = 1, . . . , k,

β1 + γ + min{α2; 0} > 0, βj + min{α2j ; 0} > 0, j = 2, . . . , k,

(β1 + γ + min{α2; 0})
k∏
j=2

(βj + min{α2j ; 0}) > |β1|β2 . . . βk

(16)
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be valid. Then the equilibrium position x = x̄ of (15) is asymptotically stable for any
nonnegative delay τ .

Next, assume that the dynamics of agents are described by the double integrators

ẍi(t) + hẋi(t) = ui, i = 1, . . . , n. (17)

Here ui ∈ R is the control input of agent i, and h is a constant positive damping coeffi-
cient. We will say that the multiagent system achieves a consensus if xi(t)→ ξ, ẋi(t)→ 0
as t→ +∞, i = 1, . . . , n.

Choose a control law for (17) in the form (14). Then the corresponding closed-loop
system can be rewritten as follows:

ẍ(t) + hẋ(t) = Ax(t) +Bx(t− τ), (18)

where A and B are constant matrices with the structures similar to those of (2) and (3),
respectively.

With the aid of Theorem 4.2, it can be shown that the following theorem is valid.

Theorem 4.4 Let the inequalities (16) hold. Then there exists a number h0 > 0 such
that if h ≥ h0, then the equilibrium position x = x̄, ẋ = 0 of (18) is asymptotically stable
for any nonnegative delay τ .

5 Results of Numerical Simulation

To illustrate the effectiveness of the proposed approaches, consider a group consisting of
six agents. Let the control law be of the form (14).

For the simulation, we choose α1 = 1, α2 = −0.25, α3 = 1, α4 = −0.25, α5 = 1,
α6 = −0.1, β1 = −0.5, β2 = 0.5; β3 = 1, γ = 2, τ = 10, ξ = 0.5. In addition, it is
assumed that x(t) ≡ (0.1, 0.4667, 0.7, 0.2, 0.5, 0.2)> for t ∈ [−10, 0].

Figure 2 corresponds to the case where the agent dynamics are described by the
first order integrators. We can see the convergence of agents to the desired equilibrium
position.

Figure 2: The agent time history (first order integrators).

Next, consider the double integrators (17). Figures 3 and 4 demonstrate that if
h = 0.2, then the equilibrium position is unstable, whereas if h = 2, then the agents
achieve the consensus.
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Figure 3: The agent time history (double integrators, h = 0.2).

Figure 4: The agent time history (double integrators, h = 2).

6 Conclusion

In the present paper, simple necessary and sufficient conditions of the diagonal Riccati
stability are derived for a class of pairs of matrices with special structures. These condi-
tions are formulated in terms of algebraic inequalities for the entries of the matrices under
consideration. We have shown that the obtained result can be used for the analysis of
absolute stability of the Persidskii-type systems, the determination of delay-independent
stability conditions for a mechanical system with a special structure of connections and
the construction of decentralized controls providing the achievement of a consensus for
some types of multiagent systems.

An application of the developed approaches to wider classes of matrices and time-
delay systems is our future work.
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