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Abstract: In this paper, we compare the estimation results for the reduced model
and original model of water level in a river. First, we compute a reduced model
from the original model using the balanced truncation method, then we estimate the
reduced model using the Kalman filter. Since the orders of the state variables in the
reduced model and original model are different, we cannot compare them directly.
Therefore, we need an identification of the state variables in the reduced model such
that we can determine the corresponding state variables in the original model or the
real data. The selected river flow model is the Bengawan Solo river in Indonesia.
The Bengawan Solo river is the longest river in Indonesia and often causes floods in
the area around the river. With the river length of 548 km, it is difficult to obtain
complete data at each point, and this will lead to a large order river flow model.
Since the Bengawan Solo river flow model is a large order model, we need to reduce
the model using the balanced truncation method. Next, to obtain data on the water
levels at each unknown point, we estimate the reduced model using the Kalman filter
method. Based on the simulation results, we see that if more points are removed, the
error value is larger. However, if fewer points are known, the computational time is
less.
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1 Introduction

Indonesia is a maritime country with 2/3 of the area covered with water in the form of
sea, lake, and river. River is one form of water that is useful for the life of Indonesian
citizens. Furthermore, the river can also be disastrous if the volume of water in the river
exceeds its capacity. Flood is a disaster in such event. One of the rivers in Indonesia
that often causes floods is the Bengawan Solo river [1]. With the river length of 548
km, the Bengawan Solo river flows through 12 districts and is divided into 20 regions,
i.e. upstream and downstream in Central Java and in East Java. The impact of flooding
caused by the Bengawan Solo river is very large because it has a very long flow area.
Therefore, the Bengawan Solo river water level is a system with a large order.

Thus, it is difficult to obtain complete data at each point. So, in anticipation of
flooding due to the inability of the river to accommodate the increase in water volume, we
estimate the river water level by taking into account the flow velocity using an estimator.

One of the well-known methods in estimation is the Kalman filter [2,3]. The Kalman
filter was first introduced by Rudolph E. Kalman in 1960. There are some factors that
cannot be modeled. Thus we added stochastic factors, such as the system noise and mea-
surement noise. It follows that the system becomes a stochastic dynamical system. The
Kalman filter consists of two processes: the time update and measurement update [4].
The time update is responsible for projecting forward in time the current state and error
covariance estimates to obtain the a-priori estimates for the next time step. The mea-
surement updates are responsible for the feedback for incorporating a new measurement
into the a-priori estimate to obtain an improved a-posteriori estimate. After each time
and measurement update, the process is repeated with the previous a-posteriori estimates
used to project or predict the new a-priori estimates. This recursive nature is one of the
very appealing features of the Kalman filter.

In the process of estimating the altitude of water level of the Bengawan Solo river,
we use a shallow water equation, i.e. the Saint Venant equation. In this paper, the Saint
Venant equation represents the original model which is widely used for the wave models
in the atmosphere, rivers, lakes and oceans [5]. This equation is used to model the flow
in open channels, such as the river flow. Since the Bengawan Solo river has many points
of location denoted by states, the original model is a larger order model. Hence, in
this paper, we also reduce the original model before we estimate the water level of the
Bengawan Solo river using the Kalman filter.

Model reduction is used to simplify the size of realization in a model. This will reduce
the computational time, and hopefully, the error is as small as possible [6]. Currently,
there are many developed methods of model reduction such as the balanced truncation
methods [7–9] and singular perturbation approximation [2, 10]. In [6], a Kalman filter
algorithm has been developed in the reduced model and applied to the heat conduction
distribution problem. The authors in [11] combine the Kalman filter estimation and
model reduction without identification by using the balanced truncation method.

Since the orders of the state variables in the reduced and original models are different,
we cannot compare them. Therefore, we need an identification of the state variables in
the reduced model such that we can determine the corresponding state variables in the
original model. In this paper, we want to determine a relationship between the state
variables in the reduced and original model. We can compute the corresponding state
variables in the original model using the reduced model [12]. The simulation results
show that the Kalman filter estimation of the identified reduced model using balanced



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (4) (2019) 455–463 457

truncation can be carried out for several measurement points of the river water level.

2 The Bengawan Solo River

Bengawan Solo is the longest river on the island of Java, Indonesia. The river is around
548.53 km long and flows through two provinces, Central Java and East Java [1]. Data
on the Bengawan Solo river can be seen in Figure 1 [1].

Figure 1: Data on the water level of the Bengawan Solo river.

Because of the length of the river, the recording of the river water level data is not
easy. The river water level data are often not recorded properly as in Figure 1. So, it is
necessary to estimate the river water level in order to anticipate floods. Since the BBWS
data are not available at all for the water level data in the Karanggeneng area, we will
estimate the water level at 19 points or locations. In this paper, we use the data on water
level of the Bengawan Solo river for the period of June, 2018 – August, 2018 [1].

3 Model Representation

We discuss the shallow water equation that describes the flow of water in rivers [13]:

∂h

∂t
+D

∂v

∂x
= 0,

∂v

∂t
+ g

∂h

∂x
+ Cfu = 0, (1)
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where the initial conditions are taken from the measurement data of water level in the
Bengawan Solo river at t = 1 [1] and the boundary conditions are [2]

h(0, t) = h(x− 1, t), h(L, t) = h(2, t), (2)

where h(x, t) is the water level above the reference plane at the position (or city) x and
time t, t is the time variable, x is the position (or city) along the river, D is the water
depth, g is the gravitational acceleration and Cf is a friction constant.

4 Discretization

The shallow water equation in (1) will be discretized using the Lax-Wendroff scheme.
We can obtain a discrete-time system that is suitable for the Kalman filter and model
reduction. The result of discretization in (1) is as follows [2]:

hk+1
i =

1

2
(hki+1 + hki−1)− D∆t

2∆x
(uki+1 − uki−1),

uk+1
i =

(1− Cf∆t)

2
(uki+1 + uki−1)− g∆t

2∆x
(hki+1 − hki−1), (3)

where h represents the water level and u represents the water velocity. The Lax-Wendroff
scheme is a combination of the Lax-Friedrichs scheme and Leapfrog scheme [2]. The
Leapfrog scheme works by replacing ∆t with 2∆t such that g∆t or D∆t has smaller
value than ∆x in order to achieve the desired accuracy. The result of discretization of
hk+1
i and uk+1

i is as follow:

hk+1
i = hki − a(uki+1 − uki−1) + c(hki+1 − 2hki + hki−1),

uk+1
i = duki − b(hki+1 − hki−1) + c(uki+1 − 2uki + uki−1), (4)

where

a =
D∆t

∆x
(1− Cf∆t), b =

g∆t

∆x
, c =

Dg∆t2

2∆x2
, d = (1− 2Cf∆t).

Thus, we can write (4) in matrix realization as follows:{
xk+1 = Axk +Buk,

yk = Cxk +Duk,
(5)

where
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For the measurement matrix C, we use the number of the Bengawan Solo river elevation
points which do not have the real data, and for the matrix D, it is assumed that 0 is the
adjusted size.

5 Estimation and Identification of Model Reduction

The Kalman filter is one of the data assimilation methods, i.e. estimation of state variables
based on the noisy model and measurement systems [14]. The Kalman filter is divided
into two processes: the time update and measurement update [4]. The time updates
are responsible for projecting forward in time the current state and error covariance
estimates to obtain the a-priori estimates for the next time step. The measurement
updates are responsible for the feedback for incorporating a new measurement into the
a-priori estimate to obtain an improved a-posteriori estimate. The estimation of large-
order model needs a long computational time, so in this case we use the model reduction
to simplify the model without any significant error.

Model reduction is used to simplify the large order system without any significant
error. The behavior of the reduced system is almost the same as that of the original
system [10]. There are many methods of model reduction and one of them is the bal-
anced truncation method. Before we apply the balanced truncation method [7–9], the
realization of the system has to be balanced, i.e. the controllability Gramian is the same
as the observability Gramian [10]. In order to do so, we apply a transformation matrix
T to the original system (A,B,C,D)

Ã = T−1AT, B̃ = T−1B, C̃ = CT, D̃ = D.

The balanced system (Ã, B̃, C̃, D̃) can be written as{
x̃k+1 = Ãx̃k + B̃ũk,

ỹk = C̃x̃k + D̃ũk.
(6)

After we obtain the balanced system in (6), we partition the Gramian Σ such that
Σ = diag(Σ1,Σ2), where Σ1 = diag(σ1, σ2, ..., σr) and Σ2 = diag(σr+1, σr+2, ..., σn).
Then the balanced system is partitioned into[

x̃1(k + 1)
x̃2(k + 1)

]
=

[
Ã11 Ã12

Ã21 Ã22

] [
x̃1(k)
x̃2(k)

]
+

[
B̃1

B̃2

]
u(k), (7)

ỹ(k) =
[
C̃1 C̃2

] [ x̃1(k)
x̃2(k)

]
+ D̃u(k), (8)

where, x̃1(k) ∈ Rr corresponds to Σ1 and x̃2(k) ∈ Rn−r corresponds to Σ2.
Model reduction by using the balanced truncation method is done by assuming x̃2(k+

1) = 0. The reduced system can be written as [9]{
x̃rk+1 = Ãrx̃rk + B̃rũk,

ỹrk = C̃rx̃rk + D̃rũk.
(9)

Because there are differences in the size of the original system matrix and the reduced
system, the results cannot be compared directly. In order to produce a reduced system
that corresponds to the original system, it is necessary to identify the relationship between
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the states of the two systems. The identification can be obtained from the transformation
matrix T [12]

xk = T x̃k. (10)

Equation (10) can be written as

xid = Trx̃rk, (11)

where xid is the state of the identified reduced model with size n× 1, Tr is obtained by
reducing the first part of the inverse transformation matrix T of size n × r, and xrk is
the reduced model of size r × 1.

6 Simulation Results

The shallow water equation (1) describes the relationship between the water level h and
water debit u. In this paper, we focus on the estimation of water level in the Bengawan
Solo river. Due to the unavailability of water debit data, the initial value of u is defined
as 0. We use the following values for the parameters in shallow water equations:

D = 150m, Cf = 0.0002, ∆x = 548km, ∆t = 100, g = 9.8m/s2.

With the parameters above, we estimate the water level h using the Kalman filter
by using the real data for the period of June, 2018 - August, 2018 [1]. First, we reduce
the number of state variables in the model. Each state represents the water level point.
Thus, we will reduce the number of the water level points. The original model has 19
states, it means that the number of the water level points is 19. In the second simulation,
the states in the original model will be reduced to 4-18 states (or points). The simulation
results of the Kalman filter estimation of the identified reduced model using balanced
truncation for 10 and 15 water level points are shown in Figure 2-3.

Figure 2: Estimation of the reduced system with 10 water level points.

From Figures 2-3, we can see that the simulation results of the Kalman filter esti-
mation of the identified reduced model using balanced truncation are quite accurate or
almost the same as those for the original model for several points. For more detailed
values, we describe the relative error value and computational time for each known point
in Table 1.
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Figure 3: Estimation of the reduced system with 15 water level points.

Known
Relative Error Computational time

points Original model Reduced model Original model Reduced model
2 1.11E-04 1.1660 0.125465 0.024951
3 1.77E-04 1.1269 0.130171 0.025277
4 1.14E-04 1.0989 0.129215 0.032373
5 8.63E-05 1.0398 0.212791 0.032134
6 7.02E-05 1.0348 0.134526 0.032752
7 1.32E-04 1.0298 0.134507 0.035429
8 1.73E-04 0.6755 0.133507 0.025639
9 1.51E-04 0.4274 0.133474 0.047240
10 1.31E-04 0.4239 0.133721 0.029778
11 9.37E-05 0.4139 0.131884 0.033390
12 1.23E-04 0.3837 0.135993 0.031910
13 9.26E-05 0.3357 0.128158 0.035152
14 1.33E-04 0.3018 0.134753 0.035960
15 1.49E-04 0.2321 0.127770 0.042461
16 1.09E-04 0.1819 0.129831 0.041342
17 8.10E-05 0.1526 0.132840 0.048576
18 8.62E-05 0.0085 0.137477 0.059243

Table 1: Comparison between the error and computational time for estimation of the original
and reduced models.

Based on Table 1, we conclude that the Kalman filter estimation of the original
model is better than the Kalman filter estimation of the identified reduced model using
balanced truncation. This result is reasonable, because the reduced model cannot achieve
better performance than the best estimation of the original model. In terms of the
computational time, the Kalman filter estimation of the identified reduced model using
balanced truncation is faster than that of the original one. This result is also reasonable,
because the order of the reduced model is smaller than that of the original model.

Based on Table 1, we can see that the error of 18 (from 19) water level points is 0.0085
and the computational time is 0.059243 seconds. On the other hand, the error of 2 (from
19) water level points is 1.1660 and the computational time is 0.024951 seconds. If the
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order of the reduced model is smaller, the error value is larger and inversely proportional
to the computational time. We can see in Table 1 that the computational time for the
Kalman filter estimation of the identified reduced model using balanced truncation is less
than that for the Kalman filter estimation of the original model.

7 Conclusions

In this work, we estimate the water level in the reduced model using balanced truncation.
Since the orders of the state variables in the reduced and original models are different, we
cannot compare them directly. Therefore, we need an identification of the state variables
in the reduced model such that we can determine the corresponding state variables in
the original model. The simulation result shows that the Kalman filter estimation of the
identified reduced model using balanced truncation has an error larger than that of the
original model, but the average computational time to estimate the reduced system is
26% less compared to the estimation of the original model. Thus, for the model reduction,
we can choose the number of water level points based on our needs.
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