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1 Introduction

One of the most important phenomena in the solar system is the occurrence of resonance
which plays a significant role in the study of dynamical system. Resonance occurs when
any two or more frequencies are commensurable in their ratio. The resonance in the
orbital motion of the celestial bodies occurs not only due to the gravitational forces
but also the non gravitational forces, for e.g., radiation pressures, oblateness, P-R drag,
equatorial ellipticity of the Earth etc.

[3] discussed the motion of a geosynchronous satellite by taking the combined grav-
itational forces of the Sun (with radiation pressure), the Moon and the Earth. They
showed for the geosynchronous satellite that angular velocity of the orbital plane lies
between 0.0420 to 0.580 degree per year.

[4] discussed numerically the effects of P-R drag on the equilibrium points of the
photo-gravitational CR3BP including the P-R effect by taking the radiation of two mas-
sive bodies. They have used the modified bisection method to compute the position of
the equilibrium points.

[7] studied the minimum fuel maneuvers to change the position of a spacecraft in
orbit around the Earth. Bi-impulsive maneuver control is applied in the initial position
of the satellite to send it to a transfer orbit that will cross the desired final position of
the spacecraft where both the initial and the final position of satellite belong to the same
Keplerian orbit.

[8] investigated the numerical search of bounded relative motion between two or more
satellites. They studied the possibility of using global optimization technique to locate
the initial conditions resulting into minimum drift per orbit as the perturbations such
as the Earth oblateness and air drag effects are taken into account, an analytic solution
appears to be more complicated.

Other pioneers in this field are [12], [6], [9], [11], [13], [5], [10], [14], [15].

The P-R effect in the three-body problem on numerical experiments in dynamical
consequences has been discussed by many authors by taking only two of the three: (1)
the P-R drag; (2) the three-body problem; (3) resonance. Taking all the three factors
in this paper collectively, we have attempted to bridge the said gap. The motive of
this paper is to investigate the resonance in the motion of geo-centric satellite due to the
Poynting-Robertson drag and oblateness of the Earth in the framework of the three-body
problem. Meticulous study of equations of motion in Section 2 of this paper reveals that
if the regression angle is constant, there are five critical points R′is, i = 1 − 5, at which
resonance occurs in the motion of the orbiting satellite, between the mean motion of
the satellite and the average angular velocity of the Earth around the Sun and if the
regression angel is not constant, resonance occurs at six points Rj

′′s, j = 1−6, with two
frequencies due to the oblateness of the Earth and at many points with three frequencies.
Evaluation of the corresponding amplitude and time period at resonance points have
been evaluated in Section 3. Discussion and conclusion are given in Section 4. In this
section we have compared the amplitudes and time periods at same resonant point and
for different values of q’s, and also discussed the variation in the amplitudes and time
periods for variation in q and φ at the resonant point 1 : 1 and 1 : 2 with the P-R drag
and without the P-R drag. Further we have drawn graphs showing amplitudes and time
periods due to oblateness of the Earth (J2) at different resonant points.
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2 Statement of the Problem and Equations of Motion

Let S represent the Sun, E be the Earth and S̄ be the satellite with the masses MS ,
ME and MP , respectively. The satellite moves around the Earth in orbital plane. Let
the satellite be revolving about the Earth with the angular velocity ~ω and the system be
also revolving with the same angular velocity ~ω. Let ~rE , ~rs and ~r represent the vectors
from the Sun and the Earth, the Sun and the satellite and the Earth and the satellite,
respectively; γ be the vernal equinox, α be the angle between the ecliptic plane and
orbital plane, θ be the angle between the direction of ascending node and the direction
of the satellite, φ be the angle between the direction of ascending node and the direction
of the Sun, ψ be the regression angle, ε be the angle between the equatorial plane and
ecliptic plane (obliquity) and c be the velocity of light. For convenience, let x, y, z be
the co-ordinate system of the satellite with the origin at the center of the Earth with the
unit vectors Î, Ĵ and K̂ along the co-ordinates axes, respectively. Let x0, y0 and z0 be
another set of the co-ordinate system in the same plane, with the origin at the center
of the Earth, with the unit vectors Î0, Ĵ0 and K̂0 along the co-ordinate axes. Let XG,
YG and ZG be the geo-centric reference system with the unit vectors ÎG, ĴG and K̂G,
respectively, along the co-ordinate axes, while the XGYG plane be the Earth’s equatorial
plane, which makes an angle 23027′ with the ecliptic plane (Figure 1).

(a) (b)

Figure 1: Configuration of the three-body problem; (a) in vector form; (b) with co-
ordinate axis.

2.1 Equations of motion in polar form

Let ~FP be the Poynting-Robertson drag per unit mass acting on the satellite due to the
radiating body (the Sun) as shown in Figure 1, given by [4]

MP
~FP = ~f1 + ~f2 + ~f3,

where

~f1 = F
~rs
rs

(the radiation pressure),

~f2 = −F (~v · ~rs)
c

~rs
rs

(the Doppler shift owing to the motion),
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~f3 = −F ~v
c

(the force due to the absorption and re-emission of part of the incident radiation),

~v = the velocity of S̄,

c = the velocity of light,

F = the measure of the radiation pressure.

Figure 2: The coordinate system of the satellite in (XG, YG, ZG) system.

The relative motion of the satellite with respect to the Earth is obtained by

~̈r =~̈rs −~̈rE =
~FSP + ~FEP + ~FP

~MP

MP
−
~FSE

ME
,

where

~FSP = −GMsMp

rs3
~rs, ~FSE = −GMsME

r
E
3
~r
E
.

Force of the Earth on the satellite: We take the potential of the Earth [2] at the
point outside it in the form

U =
GMEMP

r

{
1− J2(R⊕)2

2r2

(
3

(ZG)2

r2
− 1

)}
+ . . . ,

~FEP =
∂U

∂r
~r +

∂U

∂XG
IG +

∂U

∂YG
JG +

∂U

∂ZG
KG

= −GME

r3

(
3J2(R⊕)2

2r2
(5

(ZG)2

r2
− 1)− 1

)
~r − 3J2(R⊕)2

r2
ZGK̂G,

G = the gravitational constant,

θ′ = ∠γEP ′ = the angle between the projection of the line,

EP in the plane of the equator (EP ′) and the vernal (Figure 2) equinox,

J2 = the coefficient due to the oblateness of the Earth,

R⊕ = the mean radius of the Earth.

Thus,

~̈r = −qFg
~rs
rs
− GME

r3

(
3J2(R⊕)2

2r2
(5

(ZG)2

r2
− 1)− 1

)
~r
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− 3J2(R⊕)2

r2
ZGK̂G +

GMs

(r
E

)3
~r
E
− pFg

(
(~v · ~rs)~rs
crs

+
~v

c

)
,

where q = 1− Fp/Fg exhibits the relation between the gravitational force and the radi-
ation pressure resulting from the Sun. Evidently, 0 < q < 1 and p = 1− q.

The motion of the Earth relative to the Sun is given by

φ̇2 =
GMs

r3E
,

also,

~r = rÎ, ~r
E

= r
E
r̂
E
, r̂

E
= cosφÎ◦ + sinφĴ◦, ~rE = r

E
cosφÎ◦ + r

E
sinφĴ◦.

Using these values in the equation of motion of the satellite with respect to the Earth in
vector form yields

~̈r = −qGMs
~rs
r3s
− GME

r3

{(
−1 +

3J2(R⊕)2

2r2
(5

(ZG)2

r2
− 1)

)
~r

}
− 3J2(R⊕)2

r2
ZGK̂G + φ̇2r

E
(cosφÎ◦ + sinφĴ◦)− pFg

{
(~v · ~rs)~rs

crs
+
~v

c

}
. (1)

In the rotating frame of reference with angular velocity ~ω of the satellite about the center
of the Earth, we have

~̈r =
∂2r

∂t2
Î + 2

∂r

∂t

(
~ω × Î

)
+ r

(
∂~ω

∂t
× Î
)

+ r
{(
~ω · Î

)
~ω − (~ω · ~ω) Î

}
, (2)

where ~ω = θ̇K̂ + ψ̇K̂0. Taking dot products of equations (1) and (2) with Î and Ĵ and
equating the respective coefficients, we get the equations of motion of the satellite in the
synodic coordinate system ( [3])

d2r

dt2
− rθ̇2 +

GME

r2
= −qGMs

(~rs · Î)

r3s
+ φ̇2r

E
{cos θ cos(φ− ψ) + cosα sin θ sin(φ− ψ)}

−
3GMEJ2R

2
⊕[1− 3(Î .KG)2]

2r4
− pGMs

(rs)2

{
(~v · ~rs)(~rs · Î)

crs
+

(~v · Î)

c

}
,

(3)

d(r2θ̇)

dt
= −qGMsr

(~rs · Ĵ)

r3s
− φ̇2rr

E
{sin θ cos(φ− ψ)− cosα cos θ sin(φ− ψ)}

−
3GMEJ2R

2
⊕(Î .K̂G)(Ĵ .KG)

2r3
− pGMs

r2s

{
(~v · ~rs)(~rs · Ĵ)

crs
+

(~v · Ĵ)

c

}
. (4)
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I0 J0 K0

I ax bx cx
J ay by cy
K az bz cz

I0 J0 K0

IG 1 0 0
JG 0 cos ε sin ε
KG 0 − sin ε cos ε

Table 1: Relation between coordinate system.

ax = cos θ cosψ − cosα sin θ sinψ,
ay = − sin θ cosψ − cosα cos θ sinψ,
az = sinα sinψ,
bx = cos θ sinψ − cosα sin θ cosψ,
by = − sin θ sinψ + cosα cos θ cosψ,
bz = cosψ sinα,
cx = sinα sin θ, cy = sinα cos θ,
cz = cosα.

Equations (3) and (4) are the required equations of motion of the satellite in polar
form. These equations are not integrable, therefore we follow the perturbation technique
and replace r, θ̇ and ψ̇ by their steady state values r0, θ̇0, ψ̇0 and we may take θ = θ̇0t,
ψ = ψ̇0t and φ = φ̇t, respectively. Putting the steady state values in the R.H.S of
equations (3) and (4), we get

d2r

dt2
− rθ̇2 +

GME

r2
= −qGMs

(~rs · Î)

r3s
−

3GMEJ2R
2
⊕{1− 3(Î .K̂G)2}

2r40

+ φ̇2r
E
{cos θ̇0t cos(φ̇− ψ̇0)t+ cosα sin θ̇0t sin(φ̇− ψ̇0)t)}

− pGMs

r2s

{
(~v · ~rs)(~rs · Î)

crs
+

(~v · Î)

c

}
, (5)

d(r2θ̇)

dt
= −qGMsr0

(~rs · Ĵ)

r3s
−

3GMEJ2R
2
⊕(Î .K̂G)(Ĵ .K̂G)

2r30

− φ̇2r0rE{sin θ̇0t cos(φ̇− ψ̇0)t+ cosα0 cos θ̇0t sin(φ̇− ψ̇0)t}

− pr0
GMs

r2s

{
(~v · ~rs)(~rs · Ĵ)

crs
+

(~v · Ĵ)

c

}
. (6)

Now

~v = {−rE(φ̇− ψ̇0) cos θ̇0t sin(φ̇− ψ̇0)t+ rE(φ̇− ψ̇0) cosα sin θ̇0t cos(φ̇− ψ̇0)t}Î
{r0θ̇0 + rE(φ̇− ψ̇0) sin θ̇0t sin(φ̇− ψ̇0)t+ rE(φ̇− ψ̇0) cos θ̇0t cos(φ̇− ψ̇0)t cosα0}Ĵ
− rE(φ̇− ψ̇0) sinα0 cos(φ̇− ψ̇0)tK̂,

K̂G = − sin εĴ0 + cos εK̂0

= − sin ε(Îbx + Ĵby + K̂bz) + cos ε(CxÎ + CyĴ + CzK̂)

= (−bx sin ε+ cx cos ε)Î + (−by sin ε+ cy cos ε)Ĵ + (−bz sin ε+ cz cos ε)K̂.

With the help of the above values, the transformations in Table 1 and taking r2θ̇ =
constant = h, r = 1

u , we get

d2u

dt2
+ n2u = K1 +K2 cosnt+K3 sinnt+K4 cos 2nt+ k5 sin 2nt
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+K6 cos 3nt+K7 sin 3nt+K8 cos(φ̇+ ψ̇0)t+K9 sin(φ̇− ψ̇0)t

+K10 cos(n+ φ̇− ψ̇0)t+K11 sin(n+ φ̇− ψ̇0)t+K12 cos(n+ φ̇+ ψ̇0)t

+K13 sin(n− φ̇+ ψ̇0)t+K14 cos(2n+ φ̇− ψ̇0)t+K15 sin(2n+ φ̇− ψ̇0)t

+K16 cos(2n− φ̇+ ψ̇0)t+K17 sin(2n− φ̇+ ψ̇0)t+K18 sin 2(φ̇− φ̇0))t

+K19 sin(2n+2φ̇− 2ψ̇0)t+K20 sin(2n− 2φ̇+2ψ̇0)t+K21 sin(n+ 2φ̇− 2ψ̇0)t

+K22 sin(n− 2φ̇+2ψ̇0)t+K23 sin(3n+2φ̇− 2ψ̇0)t+K24 sin(3n− 2φ̇+ 2ψ̇0)t

+K25 cos φ̇0t+K26 cos 2φ̇0t+K27 cos(2n+ φ̇0)t+K28 cos(2n− ψ̇0)t

+K29 cos(2n+ 2ψ̇0)t+K30 cos(2n− 2φ̇0))t+K31 cos(n+ φ̇)t

+K32 cos(n− φ̇0)t+K33 cos(n+ 2ψ̇0)t+K34 cos(n− 2ψ̇0)t

+K35 cos(3n+ 2φ̇0)t+K36 cos(3n− 2ψ̇0)t+K37 cos(3n+ ψ̇0)t

+K38 cos(3n− φ̇0)t. (7)

The solution is given by

u = A cos(nt− ε1) +
K1

n2
− K2t sinnt

2n
+
K3t cosnt

2n
+
K4 cos 2nt

n2 − (2n)2
+
K5 sin 2nt

n2 − (2n)2

+
K6 cos 3nt

n2 − (3n)2
+
K7 sin 3nt

n2 − (3n)2
+
K8(φ̇− ψ̇0)t

n2(φ̇− ψ̇0)2t
+
K9 sin(φ̇− ψ̇0)t

n2(φ̇− ψ̇0)2
+
K10 cos(n+ φ̇− ψ̇0)t

n2 − (n+ φ̇− ψ̇0)2

+
K11 sin(n+ φ̇− ψ̇0)t

n2 − (n+ φ̇− ψ̇0)t
+
K12 cos(n− φ̇+ ψ̇0)t

n2 − (n− φ̇+ ψ̇0)2
+
K13 sin(n− φ̇+ ψ̇0)t

n2 − (n− φ̇+ ψ̇0)2

+
K14 cos(2n+ φ̇− ψ̇0)t

n2 − (2n+ φ̇− ψ̇0)2
+
K15 sin(2n+ φ̇− ψ̇0)t

n2 − (2n+ φ̇− ψ̇0)2
+
K16 cos(2n− φ̇+ ψ̇0)t

n2 − (2n− φ̇+ ψ̇0)2

+
K17 sin(2n− φ̇+ ψ̇0)t

n2 − (2n− φ̇+ ψ̇0)2
+
K18 sin 2(φ̇− ψ̇0)t

n2 − 4(φ̇− ψ̇0)2
+
K19 sin(2n+ 2φ̇− 2ψ̇0)t

n2 − (2n+ 2φ̇− 2ψ̇0)2

+
K20 sin(2n− 2φ̇+ 2ψ̇0)t

n2 − (2n− 2φ̇+ ψ̇0)2
+K21

sin(n+ 2φ̇− 2ψ̇0)t

n2 − (n+ 2φ̇− 2ψ̇0)2
+K22

sin(n+ 2φ̇− 2ψ̇0)t

n2 − (n− 2φ̇+ 2ψ̇0)2

+K23
sin(3n+ 2φ̇− 2ψ̇0)t

n2 − (3n+ 2φ̇− 2ψ̇0)2
+K24

sin(3n− 2φ̇− 2ψ̇0)t

n2 − (3n− 2φ̇+ 2ψ̇0)2
+K25

cos ψ̇0t

n2 − ψ̇2
0

+K26
cos 2ψ̇0t

n2 − (2ψ̇0)2
+K27

cos(2n+ ψ̇0)t

n2 − (2n+ψ̇0)2
+K28

cos(2n+ ψ̇0)t

n2 − (2n− ψ̇0)2
+K29

cos(2n+ ψ̇0)t

n2 − (2n+ ψ̇0)2

+K30
cos(2n− ψ̇0)t

n2 − (2n− 2ψ̇0)2
+K31

cos(n+2ψ̇0)t

n2 − (n+ 2ψ̇0)2
+
K32 cos(n− ψ̇0)t

n2 − (n− ψ̇0)2
+
K33 cos(n+ ψ̇0)t

n2 − (n+ ψ̇0)2

+
K34 cos(n− 2ψ̇0)t

n2 − (n− 2ψ̇0)2
+
K35 cos(3n+2ψ̇0)t

n2 − (3n+2ψ̇0)2
+
K36 cos(3n− 2ψ̇0)t

n2 − (3n− 2ψ̇0)2
+
K37 cos(3n+ ψ̇0)t

n2 − (3n+ ψ̇0)2

+
K38 cos(3n− ψ̇0)t

n2 − (3n− ψ̇0)2
. (8)

The values of constant K ′is are given in Appendix ‘A’ (which can be obtained from the
authors).
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2.2 Resonance

It is clear that the motion becomes indeterminate if any one of the denominator vanishes
in equation (8), and hence the resonance occurs at these points, called the critical points.
It is found that resonance occurs at many points with three frequencies and at six points
R′1(n = ψ̇), R′2(3n = ψ̇), R′3(2n = ψ̇), R′4(3n = 2ψ̇), R′5(n = 2ψ̇) and R′6(4n = ψ̇)
with two frequencies due to oblateness. Also, it is found that resonance occurs at five
points (n = φ̇), (n = 2φ̇), (3n = φ̇), (2n = φ̇), (3n = 2φ̇) in the frequencies n and φ̇.
The 1 : 1 resonance repeated four times, 2 : 1 resonance occurs thrice while other four
resonances occur once only. If we take the solar radiation pressure as a perturbing force,
then there are only three points at which resonance occurs. If we consider the velocity
dependent terms of the P-R drag, then five points of resonance occur, where three points
of resonance are same, and 1 : 2 and 3 : 2 resonances occurs only due to the velocity
dependent terms of the P-R drag.

3 Time Period and Amplitude at the Resonance Point

3.1 Time period and amplitude at n = 2φ̇

We follow the method in [1] to determine the time period and amplitude at n = 2φ̇. It
is suggested to obtain the solution of (7) when that of

d2u

dt2
+ n2u = 0 (9)

is periodic and is known. The solution of (9) is

u = k cos s,

where

s = nt+ ε, n =
k1
k

= the function of k; (10)

k, k1 and ε are arbitrary constants. As we are probing the resonance in the motion of
the satellite at the point n = 2φ̇, in our case, the resulting equation. (7) can be written
as

d2u

dt2
+ n2u = HA′ cosn′t = Hψ′,

where

H =
pFg(r

E
)2φ̇

4ca(rs)(1− e2)
= constant, n′ = 2φ̇, A′ = − sin2 α,

ψ′ =
∂ψ

∂u
= A′ cos 2n′t, ψ = uA′ cosn′t, ψ =

A′k

2
{cos(2n′t+ s) + cos(2n′t− s)}. (11)

Then

dk

dt
=
H

W

∂u

∂s
ψ′ =

H

W

∂ψ

∂s
, (12)
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ds

dt
= n− H

W

∂u

∂k
ψ′ = n− H

W

∂ψ

∂k
, (13)

where

W =
∂

∂k
(n
∂u

∂s
)
∂u

∂s
− n∂

2u

∂s2
∂u

∂k
= a function of k only.

Since n and W are the function of k only, we can put (12) and (13) into canonical
form with new variables defined by

dk1 = Wdk, (14)

dB = −ndk1 = −nWdk, (15)

(14) and (15) can be put in the form

dk1
dt

=
∂

∂s
(B +Hψ),

ds

dt
= − ∂

∂s
(B +Hψ).

Differentiating (13) with respect to t and substituting the expression for ds
dt and dk

dt , we
have

d2s

dt2
=
H

W

(
∂n

∂k

∂ψ

∂s
− n ∂

2ψ

∂s∂k
− ∂2ψ

∂k∂t

)
+
H2

K2

(
∂2ψ

∂s∂k

∂ψ

∂k
−W ∂

∂k

(
1

W

∂ψ

∂k

)
∂ψ

∂s

)
. (16)

Since the last expression of (16) has the factor H2, it may, in general, be neglected in a
first approximation. In (11) we find s and t are present in ψ′ as a sum of the periodic
terms with argument

s′ = s− n′t,

the affected term in our case is

ψ =
kA′ cos s′

2
. (17)

Equation (16) for s′ is then

d2s′

dt2
+ (n− 2n′)2

H

W

∂

∂k

(
1

n− n′
∂ψ

∂s′

)
= 0 (18)

or

d2s′

dt2
− (n− 2n′)2

H

2W

∂

∂k

(
kA′

n− n′

)
sin s′ = 0. (19)

At first approximation, we put constants k = k0, n = n0, W = W0. Then (19) can
be written as

d2s′

dt2
− (n− 2n′)2

H

2W

∂

∂k

(
kA′

n− n′

)
sin s′ = 0. (20)

If the oscillations are small intervals, then (20) may be put in the form

d2s′

dt2
− (n− 2n′)2

H

2W

∂

∂k

(
kA′

n− n′

)
s′ = 0
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or

d2s′

dt2
+ p21s

′ = 0, (21)

where

p1 =

√
pFg(r

E
)2φ̇ sin2 α

8ca(rs)(1− e2)

√ √
k1

W0k0
, (22)

W0 = (W )0 =
∂

∂k
(n
∂y

∂s
)
∂y

∂s
− n∂

2y

∂s2
∂y

∂k 0
= (
√
k1 cos2(2n′t+ ε)0),

=
√
k1 cos2(2φ̇t+ ε0). (23)

The solution of (21) is given by

s′ = A sin(p1t+ λ0),

where

A =

√
k2
p1

, k2, λ0 = the constants of integration, s′ = s− 2n′t.

The equation for s gives

s = 2n′t+A sin(p1t+ λ0). (24)

Using (12), (19) and (22) the equation for k gives

k = k0 +HA′
( q

W

)
0

A

p1
cos(p1t+ λ0), (25)

where k0 is determined from n0 = n′. Since n0 is a known function of k0, the amplitude
‘A’ and the time period T are given by

A =

√
k2
p1

, T =
2π

p1
,

where k2 is an arbitrary constant,

p1 =

√
pFg(r

E
)2φ̇ sin2 α√

8cars(1− e2)k0 cos(2φ̇+ ε0)
.

Using equation (13), k0 may be written as

k0 =

√
k1
n0

.

We may choose the constants of integration k1 = 1, k2 = 1, ε0 = 0 [12].
The amplitude and time period are given by

A =
2
√

2cars(1− e2)√
pFgn0φ̇rE sinα

cos 2φ, T =
4π
√

2ca(rs)(1− e2)√
pFgn0φ̇rE sinα

cos 2φ.

In the same manner we have calculated the amplitudes and time periods at other points
also. Thereafter two cases arise.

Case 1: Regression angle is constant.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (4) (2019) 497–511 507

• If we take the solar radiation pressure as a perturbing force, then there are only
three points at which resonance occurs. The corresponding amplitudes and time
periods are given in Table 2 below.

• In addition to the above, if we consider the velocity dependent terms of the P-R
drag, then at five points R1(n = φ̇), R2(3n = φ̇), R3(2n = φ̇), R4(3n = 2φ̇),
R5(n = 2φ̇) resonance occurs, where three points of resonance are same as in
subcase 1, and 1 : 2 and 3 : 2 resonances occur only due to the velocity dependent
terms of the P-R drag. But the amplitudes and time periods at all resonance points
are not same as in the case of the solar radiation pressure. The corresponding
amplitude and time period are given in Table 3.

Case 2: Regression angle is not constant.
It is found that resonance occurs at many points with three frequencies and at six

points R′1(n = ψ̇), R′2(3n = ψ̇), R′3(2n = ψ̇), R′4(3n = 2ψ̇), R′5(n = 2ψ̇) and R′6(4n = ψ̇)
with two frequencies. The corresponding amplitudes and time-periods are given in Table
4.

Resonance Amplitude Time Period

1 n = φ̇ A1, A2 T1, T2
2 2n = φ̇ A5 T5
3 3n = φ̇ A9 T9

Table 2: Amplitudes Ai’s and time periods Ti’s at resonance points with only radiation
pressure as a perturbing force when the regression angle is constant.

Resonance Amplitude Time Period

1 n = φ̇ A3, A4 T3, T4
2 2n = φ̇ A6 T6
3 n = 2φ̇ A7, A8 T7, T8
4 3n = 2φ̇ A10 T10

Table 3: Amplitudes Ai’s and time periods Ti’s at resonance points for the velocity
dependent terms of the P-R drag when the regression angle is constant.

Resonance Amplitude Time Period

n = ψ̇ A11, A12, A13, A14 T11, T12, T13, T14
2n = ψ̇ A15, A16 T15, T16
n = 2ψ̇ A17, A18 T17, T18
3n = ψ̇ A19 T19
3n = 2ψ̇ A20 T20
4n = ψ̇ A21 T21

Table 4: Amplitudes Ai’s and time periods Ti’s at resonance points for two frequencies
when the regression angle is not constant.
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where Ai’s and Ti’s are are given in the Appendix A and Appendix B, respectively (which
can be obtained from the authors).

4 Discussion and Conclusion

We have investigated the resonance in the motion of a satellite in the Earth-Sun system
due to oblateness of the Earth and the P-R drag. Firstly, the equations of motion of
the geo-centric satellite in vector as well as in polar form has been evaluated by taking
the velocity of the satellite as v. Secondly, the velocity of the satellite in the P-R drag
have been deduced by using an operator and then substituted in the equations of motion.
We get resonances at many points with three frequencies, and at eleven points with two
frequencies between n and φ̇ and n and ψ̇.

Two resonance points 3 : 2 and 1 : 2 occur only due to the velocity dependent terms of
the P-R drag. We have shown the effect of the P-R drag and oblateness on the amplitude
and time period by using the following data of the satellite:

a = 6921000m; e = .0065;n = 0.0628766
deg

sec
; φ̇ = 0.0000114077

deg

sec
;

rs = 149599× 106m; r
E

= 149.6× 109m; c = 3× 108
m

sec
.

We make the above quantities dimensionless by taking

ME +Ms = 1unit, G = 1unit,

rs = the distance between the Earth and the Sun = 1unit.

From Figure 3, we observe that the amplitude and time period increase when q increases
and it is maximum at φ = 0. p is the factor of the velocity dependent terms of the
P-R drag, when q increases, p decreases, and hence, when the P-R decreases, then the
amplitude as well as the time period increase.

Figure 4 explains the variation in A1 and time-period T1, respectively, for −900 <
φ < 900 and 0 < q < 1, at resonance 1 : 1 with the P-R drag. The below graphs show
that the amplitude and time period decrease as φ increases.

(a) (b)

Figure 3: (a) Comparison of amplitudes at same resonant points and for different q′s:
Aq1 = 0.20 (Red); Aq2 = 0.40 (Green); Aq3 = 0.60 (Gray) and Aq4 = 0.80 (Blue). (b)
Comparison of time periods at same resonant points and for different q′s: Tq1 = 0.20
(Red); Tq2 = 0.40 (Green); Tq3 = 0.60 (Gray) and Tq4 = 0.80 (Blue), at resonance 1:1.
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(a) (b)

Figure 4: (a) Variation in amplitude, (b) variation in time period ’T’ for 00 < φ < 900

and q (0 < q < 1) at resonance 1:1 with the P-R drag.

(a) (b)

Figure 5: (a) Variation in amplitude ’A’ w.r.t. φ , at resonance 1:2. (b) Time period
’T’ at resonance 1:1, for −10 < φ < 10 and q (0 < q < 1) without the P-R drag

(a) (b)

Figure 6: (a) Comparison of amplitude. (b) Comparison of time periods due to the
coefficient of oblateness of the Earth (J2) at different resonant points.

Figure 4 explains the variation in A1 and time period T1, respectively, for −900 <
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φ < 900 and 0 < q < 1 at resonance 1 : 1 with the P-R drag. The above graphs show
that the amplitude and time-period decrease as φ increases.

Figure 5 also explains the amplitude and time period with respect to φ. In this case
it can be observed that the amplitude becomes very high of greater range of φ but it
is not in the case of the velocity dependent terms of the P-R drag. Similarly, Figure 5
explains the variation in amplitude for −900 < φ < 900 and 0 < q < 1 at resonance
1 : 2. The graphs show that the amplitude is periodic with respect to φ and it increases
(decreases) as q increases (decreases).

Figure 6 also explains the amplitudes and time periods due to oblateness of the Earth
(J2). In these graphs we have shown the comparison of the amplitude and time period
at different critical points, where resonance occurs, and it is clear from the figures that
the value of the amplitudes and time periods is different at different critical points. The
present study is becoming of more interest in the commensurable orbits, for example,
the interacting and navigation satellite system.
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