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Abstract: This paper deals with the existence and stability of the equilibrium points
in the problem of a geo-centric satellite including the earth’s equatorial ellipticity. We
have determined the equations of motion of the geo-centric satellite which include the
earth’s equatorial ellipticity parameter Γ (the satellite’s angular position relative to
the minor axis of the earth’s equatorial section) and then we have investigated the
existence and stability of equilibrium points. It is observed that there exists an
infinite number of equilibrium points which lie on a circle for different values of Γ.
It is shown that the effect of the earth’s equatorial ellipticity parameter Γ on the
location of equilibrium points is very small (i.e., the coordinates of the equilibrium
points are different after the fifth decimal places). Further, we have observed that
the collinear points are unstable for different values of Γ. The non-collinear points
lying on the y-axis are unstable for different values of Γ. We have also found that
some of the non-collinear points lying on the circle are stable and others are unstable
for different values of Γ.
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1 Introduction

The motion of an artificial satellite is affected by various forces, some of which are the
earth’s gravitational field, atmospheric drag, solar radiation pressure, lunar and solar
gravitational fields, relativistic effect and Poynting-Robertson drag. In recent years, the
idea of establishing an artificial satellite in a synchronous equatorial orbit about the
earth has become increasingly attractive. Since such a satellite would remain above the
same position on the earth’s equator, it could be used as a communication relay station
between any two points on the earth which are within its field of view.

Sehnal [8] discussed the influence of the equatorial ellipticity of the earth’s gravita-
tional field on the motion of a close satellite. The method of variation of constants is
applied to discuss the perturbation of angular elements. Blitzer [4] discussed the motion
of a satellite under the influence of the longitude-dependent terms of the geopotential in
a frame of reference rotating with the mean motion of the spacecraft. Allan [1] investi-
gated the motion in longitude of a nominally geostationary satellite due to the tesseral
harmonics. He further developed the corrective impulses required for the principal J2,2
term. Wagner [9] investigated the motion of 24-hour near equatorial earth satellites in an
earth gravity field through the 4th order. Bhatnagar and Mehra [3] discussed the motion
of a satellite under the gravitational forces of the sun, moon, earth (including the ellip-
ticity of the earth’s equator) and solar radiation pressure. They studied the orientation
of the orbital plane of a geosynchronous satellite. It is shown that the significant effect
of the earth’s equatorial ellipticity is to produce a change in the relative angular position
Γ of the satellite as seen from the earth. Bhatnagar and Kaur [2] studied the in-plane
perturbation of the satellite caused by the attraction of the sun, moon and oblate earth
including the earth’s equatorial ellipticity. Gilthorpe and Moore [6] developed a theory
for the motion of a satellite in a nearly circular orbit perturbed by zonal harmonic terms
in the earth’s gravity field. Mark [7] developed a first-order analytical theory of the
tesseral harmonic J2

2 effects on satellite orbits. Correa et al. [13] investigated two mod-
els of the restricted three-body and four-body problems. They determined the transfer
orbits from a parking orbit around the Earth to the halo orbit in both the dynamical
models. They also compared the total velocity increment to both the models. Prado [14]
studied space trajectories in the circular restricted three-body problem. He assumed that
the spacecraft moves under the gravitational forces of two massive bodies which are in
circular orbits. He also determined orbits which can be used to transfer a spacecraft from
one body back to the same body or to transfer a spacecraft from one body to the re-
spective Lagrangian points L4 and L5. Yadav and Aggarwal [10] investigated resonances
resulting from the commensurability between the mean motion of a geo-centric satellite
and the earth’s equatorial ellipticity parameter. Kumari and Kushvah [11] studied the
stability regions of equilibrium points in the restricted four-body problem with oblate-
ness effects. Camargo et al. [12] studied the attitude synchronization of two dumbbell
shaped satellites by using a generalized Hamiltonian systems approach. They presented
the numerical results of the synchronization behavior of the satellites.

In this paper, we aim to investigate the impact of the earth equatorial ellipticity
parameter Γ on the location and stability of the equilibrium points, which exist in the
problem of a geo-centric satellite. The effect of the earth’s equatorial ellipticity parameter
Γ is also analyzed on the zero-velocity curves by taking different values of the Jacobi
constants.

This paper is organized as follows. We write the equations of motion of geo-centric
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satellite and find the Jacobi integral of the system in Section 2. In Section 3, we determine
equilibrium points and describe the zero-velocity curves whereas, in Section 4, we examine
the stability of the equilibrium points. Finally, Section 5 includes the discussion and
conclusions of the paper.

2 Configuration and the Equation of Motion

The equations of motion of the geo-centric satellite P (r, θ, φ) moving around the earth
E in the equatorial plane are given in [5]:
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Here U is known as the earth’s gravitational potential which can be written as
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2
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where:

g0 = 9.8m/sec2 = gravitational acceleration on the earth’s surface,

r = radial distance of the satellite from the centre of the earth,

Ms = mass of the satellite,

J2 = 1.08219× 10−3 = coefficient due to the oblateness of the earth,

R0 = 6367.4× 105cm = mean radius of the earth,

J
(2)
2 = 2.32× 10−6 = coefficient due to the earth’s equatorial ellipticity,

φ = ∠PEM = latitude of the satellite (Fig.1(a)),

θ = ∠XEF = longitude of the satellite (Fig.1(a)),

Γ = ∠MEF = θ−θE = satellite angular position relative to minor axis of the earth’s
equatorial section (Fig. 1(a)),

θE = ∠XEF = angular position of the minor axis of the earth’s equatorial section ,

˙θE = angular rate of rotation of the earth (Fig. 1(b)),

X, Y, Z=inertial coordinate system with the origin at the centre of the earth and XY
plane in the earth’s equatorial plane.
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(a) Configuration of the satellite P (b) The earth’s equitorial ellipticity parameter Γ

Figure 1: Configuration of the geo-centric satellite.

Substituting the value of U from (4) in equations (1), (2) and (3), we obtain
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We assume that the satellite P lies in the equatorial plane i.e., φ = 0.
Equations (5) and (6) become
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In the synodic coordinate system, we have

¨̄r = (r̈ − rθ̇2)êr + (rθ̈ + 2ṙθ̇)êθ + z̈k̂,

where
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We take the origin of coordinates at the centre of mass of the earth, the plane of motion
of the infinitesimal satellite P is in the xy-plane orthogonal to the line of motion of the
centre of mass of the earth and the motion of the earth takes place on the z-axis. The
equations of the motion of P (x, y) in the synodic coordinate system and dimensionless
variables, i.e., the distance between the synchronous satellite and the earth is unity, the
mass of the earth is unity and choose time t such that the universal gravitational constant
G is unity, are

ẍ− 2nẏ − n2x =
1

r

[
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]
,
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We may take
r2θ̇ = h (constant).

Differentiating with respect to t, we get

rθ̈ + 2ṙθ̇ = 0.

The equations of the motion of P in the synodic coordinate system and dimensionless
variables are
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Now, we define a function F such that
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Hence, equations (10) and (11) become

ẍ− 2nẏ = Fx, (12)

ÿ + 2nẏ = Fy, (13)

where Fx and Fy are the partial derivatives of F with respect to x and y, respectively.
The integral analogous to the Jacobi integral is

ẋ2 + ẏ2 = 2F − C. (14)

The perturbed mean motion of the earth is governed by

n(Γ) =

√
g0R0

2

(
1 +

3

2
R0

2J2 + 9J
(2)
2 cos 2Γ

)
.



542 SUSHIL YADAV, VINAY KUMAR AND RAJIV AGGARWAL

3 Location of Equilibrium Points

The points described by Fx = 0 and Fy = 0 are called the equilibrium points. In fact, all
the derivatives of the co-ordinates with respect to time are zero at these points. Therefore
the satellite P placed at the equilibrium points with zero velocity, will stay there. The
terms ”Libration points” and ”Lagrangian points” are also used in place of equilibrium
points.

Thus, we have

Fx = 0 implies x× f(x, y) = 0,

Fy = 0 implies y × f(x, y) = 0,

where

f(x, y) = n2 − g0R0
2

(x2 + y2)
3
2

+
g0R0

4

3(x2 + y2)
5
2

(
3

2
J2 + 9J

(2)
2 cos 2Γ

)
.

3.1 Collinear points

Solving the above equations for f(x, y) = 0 when y = 0 and by taking different values
of the earth’s equatorial ellipticity parameter Γ, we obtained two collinear points on the
x-axis. In Table 1, we have shown the coordinates of these collinear points for different
values of the earth’s equatorial ellipticity parameter Γ. We noticed the one equilibrium
point is on the positive side of the x-axis, while the other equilibrium point lies on the
negative side of the x-axis for different values of the earth’s equatorial ellipticity param-
eter Γ. Also, the effect of the earth’s equatorial ellipticity parameter Γ on the location
of equilibrium points on the x-axis is very small (i.e., the coordinates of the equilibrium
points are different after the fifth decimal places) and the number of equilibrium points
remains same for different values of Γ.

3.2 Non-collinear points lying on the y-axis

The non-collinear points lying on the y-axis are the solution of the equations f(x, y) =
0 when x = 0. We have found that there exist two non-collinear points lying on the y-axis
for different values of the earth’s equatorial ellipticity parameter Γ (Table 2). Also, the
effect of the earth’s equatorial ellipticity parameter Γ on the location of non-equilibrium
points lying on the y-axis is very small and the number of equilibrium points remains
same for different values of Γ.

3.3 Non-collinear points lying on the circle

The non-collinear points lying on the y-axis are the solution of the equations f(x, y) =
0 when x 6= 0 and y 6= 0. We observed that there exists an infinite number of non-collinear
points lying on the circle. We have shown the location of some of the non-collinear points
lying on the circle in Table 3.

3.4 Zero-velocity curves

Equation (14) represents the relation between the positions and square of the velocity
of the satellite P in the rotating coordinate system. Using initial conditions, the Ja-
cobi constant C can be found numerically. Therefore the contour curves describing the
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Γ Collinear Equilibrium
Points

Stability

0◦ (−0.9994650500230987, 0)
(0.9994650500230987‘, 0)

Unstable

5◦ (−0.9994751560349406‘, 0)
(0.9994751560349406‘, 0)

Unstable

10◦ (−0.9994753049325603, 0)
(0.9994753049325603, 0)

Unstable

15◦ (−0.999475391830673, 0)
(0.999475391830673, 0)

Unstable

20◦ (−0.9994754533738673, 0)
(0.9994754533738673, 0)

Unstable

25◦ (−0.9994750068339644, 0)
(0.9994750068339644, 0)

Unstable

30◦ (−0.9994752431809284, 0)
(0.9994752431809284, 0)

Unstable

35◦ (−0.9994753527773587, 0)
(0.9994753527773587, 0)

Unstable

40◦ (−0.9994754248202805, 0)
(0.9994754248202805, 0)

Unstable

45◦ (−0.9994754785409711, 0)
(0.9994754785409711, 0)

Unstable

Table 1: Location and stability of collinear equilibrium points.

boundaries of the permitted region within the infinitesimal satellite P move freely and
can be found by using equation (14). These curves obtained in the XY-plane by taking
ẋ = ẏ = 0 are known as zero-velocity curves and are given by 2F = C. Fig. 3 shows
zero-velocity curves at Γ = 0◦, for different values of the Jacobi constant C taken in
increasing order. Fig. 4 indicates zero-velocity curves at Γ = 15◦, for different values
of the Jacobi constant C taken in increasing order. Fig. 5 shows zero-velocity curves at
Γ = 30◦, for different values of the Jacobi constant C taken in increasing order. Fig. 6
indicates zero-velocity curves at Γ = 45◦, for different values of the Jacobi constant C
taken in increasing order. It is observed that at a fixed value of the earth’s equatorial
ellipticity parameter Γ, on increasing the values of the Jacobi constant C, the represented
possible boundary regions decrease, where the satellite can move freely. We also noticed
that the possible boundary regions depend on the Jacobi constant, while the effect of the
earth’s equatorial ellipticity parameter Γ on the possible boundary regions is minimal.

4 Stability of Equilibrium Points

To study the stability of equilibrium points, we denote the location of equilibrium points
by (x0, y0) and consider a small displacement (ξ, η) from the point such that

x = x0 + ξ, y = y0 + η.
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Γ Non-Collinear Equilibrium
Points lying on the y-axis

Stability

0◦ (0,−0.9994650500230987)
(0, 0.9994650500230987)

Unstable

5◦ (0,−0.9994751560349406)
(0, 0.9994751560349406)

Unstable

10◦ (0,−0.9994753049325603)
(0, 0.9994753049325603)

Unstable

15◦ (0,−0.999475391830673)
(0, 0.999475391830673)

Unstable

20◦ (0,−0.9994754533738673)
(0, 0.9994754533738673)

Unstable

25◦ (0,−0.9994750068339644)
(0, 0.9994750068339644)

Unstable

30◦ (0,−0.9994752431809284)
(0, 0.9994752431809284)

Unstable

35◦ (0,−0.9994753527773587)
(0, 0.9994753527773587)

Unstable

40◦ (0,−0.9994754248202805)
(0, 0.9994754248202805)

Unstable

45◦ (0,−0.9994754785409711)
(0,−0.9994754785409711)

Unstable

Table 2: Location and stability of non-collinear equilibrium points lying on the y-axis.

Substituting these values in equations of motion (12) and (13), we obtain the variational
equations as

ξ̈ − 2nη̇ =
(
F 0
xx

)
ξ +

(
F 0
xy

)
η, (15)

η̈ + 2nξ̇ =
(
F 0
yx

)
ξ +

(
F 0
yy

)
η, (16)

where the superscript ’0’ indicates that the partial derivatives are evaluated at the equi-
librium point (x0, y0). Let the solution of the variational equations (15) and (16) be

ξ = Aeλt, η = Beλt,

where A, B and λ are constants. Then equations (15) and (16) will have a non-trivial
solution for A and B when ∣∣∣∣ λ2 − F 0

xx −2nλ− F 0
xy

2nλ− F 0
yx λ2 − F 0

xx

∣∣∣∣ = 0.

On expanding the determinant, we obtain the characteristic equation corresponding to
the variational equations (15) and (16) as

λ4 − (F 0
xx + F 0

yy − 4n2)λ2 + F 0
xxF

0
yy −

(
F 0
xy

)2
= 0. (17)

The four roots of characteristic equation (17) play an important role for determining the
stability of equilibrium points. An equilibrium point will be stable if the above equation
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Γ Non-Collinear Equilibrium Points lying on the
circle

Stability

0◦ (0.027075043161954526,−0.9990982575580011) Unstable

(0.950631409170543, 0.3085940863271852) Stable

5◦ (0.02706787135141031,−0.9991084123488571) Unstable

(0.9506385809810823, 0.3086042411180343) Stable

10◦ (0.027067763883445894,−0.9991085645161091) Stable

(−0.446978878143267, 0.893957756286534) Unstable

15◦ (0.446978974966415,−0.8939578053071354) Stable

(0.9506387512193974, 0.3086044821637891) Unstable

20◦ (0.027067656634011672,−0.9991087163739373) Unstable

(0.9506387956984799, 0.3086045451431129) Stable

25◦ (0.02706762217188341,−0.9991087651699426) Stable

(−0.4469789651947475,−0.893957932725505) Unstable

30◦ (0.9945151859441937, 0.09945151482739278) Unstable

(0.95063885829031, 0.3086046337688429) Stable

35◦ (0.027067570280104203,−0.9991088386451358) Stable

(−0.9945152184903229, 0.0994515209075532) Unstable

40◦ (0.9945152473685147,−0.09945151908563067) Unstable

(0.9506389026192351, 0.3086046965355544) Stable

45◦ (0.027067531585647564,−0.999108893433827) Stable

(0.9506389207468378, 0.30860472220299384) Unstable

Table 3: Location and stability of non-collinear equilibrium points lying on the circle.

evaluated at the equilibrium point has four pure imaginary roots or complex roots with
negative real parts.

4.1 Stability of collinear points

At the collinear point (−0.9994650500230987, 0), at (Γ = 0◦), the characteristic roots
are given by λ1 = −0.00125276 λ2 = −0.12927ι, λ3 = 0.12927ι, λ4 = 0.00125276.
At the collinear point (0.9994650500230987, 0) at (Γ = 0◦), the characteristic roots
are given by λ1 = −0.00125276, λ2 = −0.12927ι, λ3 = 0.12927ι, λ4 = 0.00125276.
Thus both the collinear points are unstable. For Γ = 45◦, at the non-collinear
point (0.9994754785409711, 0) the characteristic roots are given by λ1 = −1.81113 ×
10−9ι, λ2 = 1.81113 × 10−9ι, λ3 = −0.129266ι, λ4 = 0.129266ι. For Γ = 45◦, at
the non-collinear point (−0.9994754785409711, 0) the characteristic roots are given by
λ1 = −1.81113 × 10−9ι, λ2 = 1.81113 × 10−9ι, λ3 = −0.129266ι, λ4 = 0.129266ι. Simi-
larly, we have also examined that both the collinear points are unstable for other values
of the earth’s equatorial ellipticity parameter Γ (Table 1).
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(a) (b) (c)

(d) (e) (f)

Figure 2: Effect on zero-velocity curves at the ellipticity parameter Γ = 0◦ and different values
of the Jacobi constants: (a) Γ = 0◦ and C=0.06; (b) Γ = 0◦ and C=0.07; (c) Γ = 0◦ and
C=0.08; (d) Γ = 0◦ and C=0.09; (e) Γ = 0◦ and C=0.10; (f) Γ = 0◦ and C=0.11.

(a) (b) (c)

(d) (e) (f)

Figure 3: Effect on zero-velocity curves at the ellipticity parameter Γ = 15◦ and different
values of the Jacobi constants: (a) Γ = 15◦ and C=0.06; (b) Γ = 15◦ and C=0.07; (c) Γ = 15◦

and C=0.08; (d) Γ = 15◦ and C=0.09; (e) Γ = 15◦ and C=0.10; (f) Γ = 15◦ and C=0.11.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Effect on zero-velocity curves at the ellipticity parameter Γ = 30◦ and different
values of the Jacobi constants: (a) Γ = 30◦ and C=0.06; (b) Γ = 30◦ and C=0.07; (c) Γ = 30◦

and C=0.08; (d) Γ = 30◦and C=0.09; (e) Γ = 30◦ and C=0.10; (f) Γ = 30◦ and C=0.11.

(a) (b) (c)

(d) (e) (f)

Figure 5: Effect on zero-velocity curves at the ellipticity parameter Γ = 45◦and different values
of the Jacobi constants: (a) Γ = 45◦and C=0.06, (b) Γ = 45◦and C=0.07, (c) Γ = 45◦and
C=0.08, (d) Γ = 45◦and C=0.09, (e) Γ = 45◦and C=0.10, (f) Γ = 45◦and C=0.11.

4.2 Stability of non-collinear points lying on the y-axis

At the non-collinear point (0, 0.9994650500230987) for Γ = 0◦ (i.e., in the case of a geo
synchronous satellite), the characteristic roots are given by λ1 = −0.00125276, λ2 =
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−0.12927ι, λ3 = 0.12927ι, λ4 = 0.00125276. At the non-collinear point (0,−0.99946505
00230987) (at Γ = 0◦ ), the characteristic roots are given by λ1 = −0.00125276, λ2
= −0.12927ι, λ3 = 0.12927ι, λ4 = 0.00125276. Thus both the non-collinear points
lying on the y-axis are unstable for Γ = 0◦. For Γ = 45◦, at the non-collinear
point (0 , 0.9994754785409711) the characteristic roots are given by λ1 = −1.81113 ×
10−9ι, λ2 = 1.81113 × 10−9ι, λ3 = −0.129266ι, λ4 = 0.129266ι. For Γ = 45◦, at
the non-collinear point (0 ,−0.9994754785409711) the characteristic roots are given by
λ1 = −1.81113×10−9ι, λ2 = 1.81113×10−9ι, λ3 = −0.129266ι, λ4 = 0.129266ι. Similarly,
we have examined that both the non-collinear points lying on the y-axis are unstable for
other values of Γ (Table 2).

4.3 Stability of non-collinear points lying on the circle

From the roots of the characteristic equation (17), we have noted that some of the non-
collinear points lying on the circle are stable and others are unstable for different values
of the earth’s equatorial ellipticity parameter Γ. In Table 3, we have shown the stability
of two non-collinear points for different values of Γ.

4.4 Stability regions of equilibrium points

From characteristic equation (17), an equilibrium point will be stable if the above equa-
tions evaluated at the equilibrium points has purely imaginary roots or complex roots
with negative real parts. This happens if the following three conditions

(F 0
xx + F 0

yy − 4n2)2 −
(
F 0
xxF

0
yy − (F 0

xx)2
)
> 0,

F 0
xx + F 0

yy − 4n2 > 0,

F 0
xxF

0
yy − (F 0

xx)2 > 0,

evaluated at the equilibrium point are satisfied simultaneously.
We have plotted the stability regions of the equilibrium points for different values of

the earth’s equatorial ellipticity parameter Γ (Fig. 6). We observed that there is a very
small change in the stability region as the value of Γ increases.

5 Discussion and Conclusion

We have studied the locations and stability of the equilibrium points in the problem of
a geo-centric satellite including the earth’s equatorial ellipticity parameter Γ. First, we
write the equations of motion of the geo-centric satellite P moving around the earth in
the equatorial plane. We assume that the satellite P lies in the equatorial plane. We
choose the origin of coordinates at the centre of mass of the earth. The plane of motion
of the infinitesimal satellite P is in the XY-plane orthogonal to the line of motion of
the centre of mass of the earth, and the motion of the earth takes place on the z-axis.
We write the Jacobi integral of the system, and then we calculate the perturbed mean
motion n which is a function of Γ. The possible boundary regions for the motion of an
infinitesimal satellite P are obtained with the help of zero-velocity curves at different
values of the Jacobi constant by fixing the values of the earth’s equatorial ellipticity
parameter Γ. In Figs. 2–5, we observed that at a fixed value of the earth’s equatorial
ellipticity parameter Γ, on increasing the values of the Jacobi constant C, the possible
boundary regions decrease. We also observed that the possible boundary regions depend
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(a) (b)

(c) (d)

Figure 6: Stability regions of equilibrium points for different values of Γ: (a) Γ = 0◦; (b)
Γ = 15◦; (c) Γ = 30◦; (d) Γ = 45◦.

on the Jacobi constant, while the effect of the earth’s equatorial ellipticity parameter Γ
on possible boundary regions is very small. We have also investigated the existence and
stability of the equilibrium points of the system for different values of Γ. We observed
that there exist two collinear points and both of them are unstable for different values
of Γ (Table 1). It is shown that the effect of earth’s equatorial ellipticity parameter Γ
on the location of equilibrium points is very small and the number of equilibrium points
remains the same for different values of Γ. We also observe that there exist non-collinear
points lying on the y-axis and both of them are unstable for different values of Γ (Table
2). Further, we have found that there exist an infinite number of non-collinear points
lying on the circle. Some of them are stable, and others are unstable. Two non-collinear
points for different values of Γ and their stability are shown in Table 3. Finally, we have
plotted the stability regions of the equilibrium points for different values of Γ (Fig. 6).
We notice that there is a minimal change in the stability regions of the equilibrium points
as the value of Γ increases.
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