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1 Introduction

Recently, the theory of fuzzy differential equations has been initiated and the basic results
have been systematically investigated, including Lyapunov stability, in [2, 3, 6, 8, 10]. This
study of fuzzy differential equations corresponds to scalar differential equations without
fuzziness.

A new concept of stability that includes Lyapunov and orbital stabilities as well as
leads to new notions of stability in between them is introduced in terms of a given topol-
ogy of the function space [9] and sufficient conditions in terms of Lyapunov-like functions
are provided for such concepts to hold relative to ordinary differential equations [5].

In this paper, we shall extend the notion fuzzy differential system employing the gener-
alized metric space and then develop the new concept of stability theory proving sufficient
conditions in terms of vector Lyapunov-like functions in the framework of fuzziness. For
this purpose, we develop suitable comparison results to deal with fuzzy differential sys-
tems in terms of Lyapunov-like functions and then employing the comparison result offer
sufficient conditions for the new concepts to hold. This new approach helps to understand
the intricacies involved in incorporating fuzziness in the theory of differential equations.
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2 Preliminaries

Let Pk(Rn) denote the family of all nonempty compact, convex subsets of Rn. If α, β ∈
R and A, B ∈ Pk(Rn), then

α(A + B) = αA + αB, α(βA) = (αβ)A, 1A = A

and if α, β ≥ 0, then (α + β)A = αA + βA. Let I = [t0, t0 + a], t0 ≥ 0 and a > 0 and
denote by En = [u : Rn → [0, 1] such that u satisfies (i) to (iv) mentioned below]:

(i) u is normal, that is, there exists an x0 ∈ Rn such that u(x0) = 1;
(ii) u is fuzzy convex, that is, for x, y ∈ Rn and 0 ≤ λ ≤ 1,

u(λx + (1 − λ)y) ≥ min[u(x), u(y)];

(iii) u is upper semicontinuous;

(iv) [u]0 = [x ∈ Rn : u(x) > 0] is compact.

For 0 < α ≤ 1, we denote [u]α = [x ∈ Rn : u(x) ≥ α]. Then from (i) to (iv), it follows
that the α-level sets [u]α ∈ Pk(Rn) for 0 ≤ α ≤ 1.

Let dH(A, B) be the Hausdorff distance between the sets A, B ∈ Pk(Rn). Then we
define

d[u, v] = sup
0≤α≤1

dH [[u]α, [v]α],

which defines a metric in En and (En, d) is a complete metric space. We list the following
properties of d[u, v]:

d[u + w, v + w] = d[u, v] and d[u, v] = d[v, u],

d[λu, λv] = |λ|d[u, v],

d[u, v] ≤ d[u, w] + d[w, v],

for all u, v, w ∈ En and λ ∈ R.
For x, y ∈ En if there exists a z ∈ En such that x = y + z, then z is called the

H-difference of x and y and is denoted by x−y. A mapping F : I → En is differentiable
at t ∈ I if there exists a F ′(t) ∈ En such that the limits

lim
h→0+

F (t + h) − F (t)

h
and lim

h→0+

F (t) − F (t − h)

h

exist and are equal to F ′(t). Here the limits are taken in the metric space (En, d).
Moreover, if F : I → En is continuous, then it is integrable and

b
∫

a

F =

c
∫

a

F +

b
∫

c

F.

Also, the following properties of the integral are valid. If F, G : I → En are integrable,
λ ∈ R, then the following hold:

∫

(F + G) =

∫

F +

∫

G;

∫

λF = λ

∫

F, λ ∈ R;

d[F, G] is integrable;

d

[
∫

F,

∫

G

]

≤

∫

d[F, G].
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Finally, let F : I → En be continuous. Then the integral G(t) =
t
∫

a

F is differentiable

and G′(t) = F (t). Furthermore,

F (t) − F (t0) =

t
∫

a

F ′(t).

See [2, 3, 8, 10] for details.
We need the following known [4] results from the theory of ordinary differential inequa-

lities. Hereafter, the inequalities between vectors in Rd are to be understood component-
wise.

Theorem 2.1 Let g ∈ C[R+ × Rd
+ × Rd

+, Rd], g(t, w, ξ) be quasimonotone nonde-
creasing in w for each (t, ξ) and monotone nondecreasing in ξ for each (t, w). Suppose
further that r(t) = r(t, t0, w0) is the maximal solution of

w′ = g(t, w, w), w(t0) = w0 ≥ 0, (2.1)

existing on [t0,∞). Then the maximal solution R(t) = R(t, t0, w0) of

w′ = g(t, w, r(t)), w(t0) = w0 ≥ 0, (2.2)

exists on [t0,∞) and
r(t) ≡ R(t), t ≥ t0. (2.3)

Theorem 2.2 Assume that the function g(t, w, ξ) satisfies the conditions of Theo-
rem 2.1. Then m ∈ C[R+, Rd

+] and

D+m(t) ≤ g(t, m(t), ξ), t ≥ t0. (2.4)

Then for all ξ ≤ r(t), it follows that

m(t) ≤ r(t), t ≥ t0.

3 Fuzzy Differential System

We have been investigating so far the fuzzy differential equation

u′ = f(t, u), u(t0) = u0, (3.1)

where f ∈ C[R+ × En, En], which corresponds to, without fuzziness, scalar differential
equation [2, 3, 6, 8]. To consider the situation analogous to differential system, we need to
prepare suitable notation. Let u = (u1, u2, . . . , uN) with ui ∈ En for each 1 ≤ i ≤ N

so that u ∈ EnN , where

EnN = (En × En × · · · × En), N − times.
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Let f ∈ C[R+ ×EnN , EnN ] and u0 ∈ EnN . Then consider the fuzzy differential system

u′ = f(t, u), u(t0) = u0. (3.2)

We have two possibilities to measure the new fuzzy variables u, u0, f , that is,

(1) we can define d0[u, v] =
N
∑

i=1

d[ui, vi], where ui, vi ∈ En for each 1 ≤ i ≤ N and

employ the metric space (EnN , d0), or
(2) we can define the generalized metric space (EnN , D), where

D[u, v] = (d[u1, v1], d[u2, v2], . . . , d[uN , vN ]).

In any of the foregoing set-ups, one can prove existence and uniqueness results for
(3.2) using the appropriate contraction mapping principles. See [1] for the details of
generalized spaces and generalized contraction mapping principle.

We can now prove the needed comparison result in terms of suitable Lyapunov-like
functions. For this purpose, we let

Ω = [σ ∈ C1[R+, R+] : σ(t0) = t0 and w(t, σ, σ′) ≤ r(t), t ≥ t0], (3.3)

where w ∈ C[R2
+ × R, Rd

+] and r(t) is the maximal solution of (2.1).

Theorem 3.1 Assume that for some σ ∈ Ω, there exists a V such that V ∈ C[R2
+ ×

EnN × EnN , Rd
+] and

|V (t, σ, u1, v1) − V (t, σ, u2, v2)| ≤ A[D[u1, u2] + D[v1, v2]],

where A is an N × N positive matrix. Moreover,

D+V (t, σ, u, v)

= lim sup
h→0+

[V (t + h, σ(t + h), u + hf(t, u), v + hf(σ, v)σ′) − V (t, σ, u, v)]

h

≤ g(t, V (t, σ, u, v), w(t, σ, σ′)),

where g(t, w, ξ) satisfies the conditions of Theorem 2.1.
Then V (t0, σ(t0), u0, v0) ≤ w0 implies

V (t, σ(t), u(t, t0, u0), v(σ(t), t0, v0)) ≤ r(t, t0, w0), t ≥ t0.

Proof Let u(t) = u(t, t0, u0), v(t) = v(t, t0, v0) be the solutions of (3.2) and set
m(t) = V (t, σ(t), u(t), v(σ(t)) so that m(t0) = V (t0, σ(t0), u0, v0). Let w0 = m(t0).
Then for small h > 0, we have, in view of the Lipschitz condition given in (i),

m(t + h) − m(t) = V (t + σ, σ(t + h), u(t + h), v(σ(t + h)))

− V (t, σ(t)u(t), v(σ(t))) + V (t + h, σ(t + h), u(t) + hf(t, u(t)),

v(σ(t)) + hf(σ(t), v(σ)))σ′(t)))

≤ A[D[u(t + h), u(t) + hf(t, u(t))] + D[v(σ(t + h)),

v(σ(t)) + hf(σ(t), v(σ(t)))σ′(t)]] + V (t + h, σ(t + h), u(t) + hf(t, u(t)),

v(σ(t)) + hf(σ(t), v(σ(t)))σ′(t)) − V (t, σ(t), u(t), v(σ(t))).
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It therefore follows that

D+m(t) = lim sup
h→0+

1

h
[m(t + h) − m(t)] ≤ D+V (t, σ(t), u(t), v(t))

+ A lim sup
h→0+

1

h
[D[u(t + h), u(t) + hf(t, u(t))]

+ D[v(σ(t + h), v(σ(t) + hf(σ(t), v(σ(t))σ′)]].

Since u′(t), v′(t) is assumed to exist, we see that u(t + h) = u(t) + z(t), v(σ(t + h)) =
v(σ(t)) + ξ(σ(t)), where z(t), ξ(σ(t)) are the H-differences for small h > 0. Hence
utilizing the properties of D[u, v], we obtain

D[u(t + h), u(t) + hf(t, u(t))] = D[u(t) + z(t), u(t) + hf(t, u(t)))]

= D[z(t), hf(t, u(t))] = D[u(t + h) − u(t), hf(t, u(t))].

As a result, we get

1

h
D[u(t + h), u(t) + hf(t, u(t))] = D

[

u(t + h) − u(t)

h
, f(t, u(t))

]

and consequently

lim sup
h→0+

1

h
D[u(t + h, u(t) + h(f(t, u(t))]

= lim sup
h→0+

D

[

u(t + h) − u

h
, f(t, u(t))

]

= D[u′(t), f(t, u(t))] = 0,

since u(t) is the solution of (3.2). Similarly, we can obtain

lim sup
h→0+

1

h
D[v(σ(t + h), v(σ(t)) + hf(σ(t), v(σ(t))σ′]

= D[v′(σ(t)), f(σ(t), v(σ(t))σ′(t)] = 0,

since v(t) is the solution of (3.2). We have therefore the vector differential inequality

D+m(t) ≤ g(t, m(t), w(t, σ(t), σ′(t))), t ≥ t0.

Since σ ∈ Ω, we then get

D+m(t) ≤ g(t, m(t), r(t)), t ≥ t0,

where r(t) is the maximal solution of (2.1). By the theory of differential inequalities for
systems [4] the claimed estimate (3.4) follows and the proof is complete.

Let us next introduce the new concept of stability. Let v(t, t0, v0) bet the given
unperturbed solution of (3.2) on [t0,∞) and u(t, t0, u0) be any perturbed solution of
(3.2) on [t0,∞) and u(t, t0, u0) be any perturbed solution of (3.2) on [t0,∞). Then
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the Lyapunov stability (LS) compares the phase space positions of the unperturbed and
perturbed solutions at exactly simultaneous instants, namely

d0[u(t, t0, u0), v(t, t0, v0)] < ǫ, t ≥ t0, (LS)

which is a too restrictive requirement from the physical point of view. The orbital
stability (OS), on the other hand, compares phase space positions of the same solutions
at any two unrelated times, namely,

inf
s∈[t0,∞)

d0[u(t, t0, u0), v(s, t0, v0)] < ǫ, t ≥ t0.

In this case, the measurement of time is completely irregular and therefore (OS) is too
loose a demand.

We therefore need a new notion unifying (LS) and (OS) which would lead to concepts
between them that could be physically significant. This is precisely what we plan to do
below.

Let E denote the space of all functions from R+ → R+, each function σ(t) ∈ E

representing a clock. Let us call σ(t) = t, the perfect clock. Let τ -be any topology in
E. Given the solution v(t, t0, v0) of (3.2) existing on [t0,∞), we define following Massera
[9], the new concept of stability as follows.

Definition 3.1 The solution u(t, t0, v0) of (3.2) is said to be

(1) τ-stable, if, given ǫ > 0, t0 ∈ R+, there exist a δ = δ(t0, ǫ) > 0 and an τ -
neighborhood of N of the perfect clock satisfying d0[u0, v0] < δ implies

d0[u(t, t0, u0), v(σ(t), t0, v0)] < ǫ, t ≥ t0,

where σ ∈ N ;
(2) τ-uniformly stable, if δ in (1) is independent of t0.
(3) τ-asymptotically stable, if (1) holds and given ǫ > 0, t0 ∈ R+, there exist a

δ0 = δ0(t0) > 0, a τ -neighborhood N of the perfect clock and a T = T (t0, ǫ) > 0
such that

d0[u0, v0] < δ0 implies d0[u(t, t0, u0), v(σ(t), t0, v0)] < ǫ, t ≥ t0 + T,

where σ ∈ N ;
(4) τ-uniformly asymptotically stable, if δ0 and T are independent of t0.

We note that a partial ordering of topologies induces a corresponding partial ordering
of stability concepts.

Let us consider the following topologies of E:

(τ1) the discrete topology, where every set in E is open;
(τ2) the chaotic topology, where the open sets are only the empty set and the entire

clock space E;
(τ3) the topology generated by the base

Uσ0,ǫ = [σ ∈ E : sup
t∈[t0,∞)

|σ(t) − σ0(t)| < ǫ];

(τ4) the topology defined by the base

Uσ0,ǫ = [σ ∈ C1[R+, R+] : |σ(t0) − σ0(t0)| < ǫ and

sup
t∈[t0,∞)

|σ′(t) − σ′
0(t)| < ǫ].
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It is easy to see that (τ3), (τ4) topologies lie between (τ1) and (τ2). Also, an obvious
conclusion is that if the unperturbed motion v(t, t0, v0) is the trivial solution, then (OS)
implies (LS).

4 Stability Criteria

In τ1-topology, one can use the neighborhood consisting of solely the perfect clock σ(t) =
t and therefore, Lyapunov stability follows immediately from the existing results.

Define B = B[t0, v0] = v([t0,∞), t0, v0) and suppose that B is closed. Then the
stability of the set B can be considered the usual way in terms of Lyapunov functions
[4, 7] since

ρ[u(t, t0, u0), B] = inf
s∈[t0,∞)

d0[u(t, t0, u0), v(s, t0, v0)],

denoting the infimum for each t by st and defining σ(t) = st for t > t0, we see that σ ∈ E

in τ2-topology. We therefore obtain orbital stability of the given solution v(t, t0, v0) in
terms of τ2-topology.

To investigate the results corresponding to (τ3) and (τ4) topologies, we shall utilize the
comparison Theorem 3.1 and modify suitably the proofs of standard stability results [4, 7].

Theorem 4.1 Let the condition (i) of Theorem 3.1 be satisfied. Suppose further that

(a) b(d0[u, v]) ≤
d
∑

i=1

vi(t, σ, u, v) ≤ a(t, σ, d0[u, v]),

(b) d(|t − σ(t)|) ≤
d
∑

i=1

wi(t, σ, σ′),

where a(t, σ, ·), b(·) and d(·) ∈ K = [a ∈ C[R+, R+], a(0) = 0 and a(η) is increasing
in η].

Then the stability properties of the trivial solution of (2.1) imply the correspond-
ing τ3-stability properties of fuzzy differential system (3.2) relative to the given solu-
tion v(t, t0, v0).

Proof Let v(t) = v(t, t0, v0) be the given solution of (3.2) and let 0 < ǫ and t0 ∈ R+

be given. Suppose that the trivial solution of (2.1) is stable. Then given b(ǫ) > 0 and
t0 ∈ R+, there exists a δ1 = δ1(t0, ǫ) > 0 such that

0 ≤
d

∑

i=1

wi0 < δ1 implies
d

∑

i=1

wi(t, t0, w0) < b(ǫ), t ≥ t0, (4.1)

where w(t, t0, w0) is any solution of (2.1). We set w0 = V (t0, σ(t0), u0, v0) and choose
δ = δ(t0, ǫ), η = η(ǫ) satisfying

a(t0, σ(t0), δ) < δ1 and η = d−1(b(ǫ)). (4.2)

Using (b) and the fact σ ∈ Ω, we have

d(|t − σ|) ≤
d

∑

i=1

wi(t, σ, σ′) ≤
d

∑

i=1

ri(t, t0, w0) ≤
d

∑

i=1

ri(t, t0, δ1) < b(ǫ).
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It then follows that |t − σ(t)| < η and hence σ ∈ N . We claim that whenever

d0[u0, v0] < δ and σ ∈ N,

it follows that
d0[u(t, t0, u0), v(σ(t), t0, v0] < ǫ, t ≥ t0.

If this is not true, there would exist a solution u(t, t0, u0) and a t1 > t0 such that

d0[u(t1, t0, u0), v(σ(t1), t0, v0] = ǫ and

d0[u(t, t0, u0, v(σ(t), t0, v0] ≤ ǫ
(4.3)

for t0 ≤ t ≤ t1. Then by Theorem 3.1, we get for t0 ≤ t ≤ t1,

V (t, σ(t), u(t, t0, u0), v(t, t0, v0)) ≤ r(t, t0, V (t0, σ(t0, u0, v0)),

where r(t, t0, w0) is the maximal solution of (2.1). It then follows from (4.1), (4.3), using
(a), that

b(ǫ) = b(d0[u(t1), v(σ(t1))]) ≤

d
∑

i=1

Vi(t1, σ(t1), u(t1), v(σ(t1)]

≤

d
∑

i=1

ri(t1, t0, V (t0, σ(t0), u0, v0)) ≤

d
∑

i=1

ri(t1, t0, a(t0, σ(t0), δ1)) < b(ǫ),

a contradiction, which proves τ3-stability.
Suppose next that the trivial solution of (2.1) is asymptotically stable. Then it is

stable and given b(ǫ) > 0, t0 ∈ R+, there exist δ01 = δ01(t0) > 0 and T = T (t0, ǫ) > 0
satisfying

0 ≤

d
∑

i=1

w0i < δ10 implies

d
∑

i=1

wi(t, t0, w0) < b(ǫ), t ≥ t0 + T. (4.4)

The τ3-stability yields taking ǫ = ρ > 0 and designating δ0(t0) = δ(t0, ρ)

d0[u0, v0] < δ0 implies d0[u(t), v(σ(t))] < ρ, t ≥ t0

for every σ such that |t − σ| < η(ρ). This means that by Theorem 3.1

V (t, σ(t), u(t), v(t)) ≤ r(t, t0, δ10), t ≥ t0. (4.5)

In view of (4.4), we find that

d
∑

i=1

ri(t, t0, δ10) < b(ǫ), t ≥ t0 + T,

which in turn implies

d[|(t − σ(t)|] ≤
d

∑

i=1

wi(t, σ, σ′) ≤
d

∑

i=1

ri(t, t0, δ10) < b(ǫ), t ≥ t0 + T.
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Thus |t − σ(t)| < d−1b(ǫ) = η(ǫ), t ≥ t0 + T . Hence there exists a σ ∈ N satisfying

d0[u(t), v(σ(t))] ≤

d
∑

i=1

Vi(t, σ(t), u(t), v(σ(t)))

≤
d

∑

i=1

ri(t, t0, δ10) < b(ǫ), t ≥ t0 + T,

which yields
d0[u(t), v(σ(t))] < ǫ, t ≥ t0 + T,

whenever d0[u0, v0] < δ0 and σ ∈ N . This proves τ3-asymptotic stability of (3.2) and
the proof is complete.

To obtain sufficient conditions for τ4-stability, we need to replace (b) in Theorem 4.1
by

(c) d[|1 − σ′(t)|] ≤
d
∑

i=1

wi(t, σ, σ′),

and then mimic the proof with suitable modifications. We leave the details to avoid
monotony.

It would be interesting to obtain different sets of sufficient conditions as well as discover
other topologies that would be of interest.
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