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Abstract: The problem of designing controls for a linear dynamic system
under input disturbance is considered. The input disturbance is bounded
but the bound information is either deterministic or fuzzy. The control de-
sign is purely deterministic. However, the resulting system performance is
interpreted differently, depending on the bound information. It may be de-
terministic or fuzzy (i.e. with a spectrum of outcome to various degrees).
Finally, the optimal design problem of the control scheme, in which the cost
is in quadratic form, is solved.
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1 Introduction

Fuzzy theory was originally introduced to describe information (for example, the lin-
guistic information) that is in lack of a sharp boundary with its environment (see [1]).
However, it soon turned into the direction that mainly focuses on the use of fuzzy rea-
soning for control, estimation, decision making, etc. The application of fuzzy reasoning
has enjoyed its advantage that it is model free. The designer’s effort is mainly focused
on tuning some parameters based on linguistic reasoning. It has been shown to be rather
effective for a large amount of complex problems.

The current paper, on the other hand, proposes a rather different angle. It endeavors
to explore applications of the original intention of fuzzy theory, namely, information
description. In particular, we cast the framework within the context of control theory.

Granted that the probability theory is quite self-contained, criticism of its validity in
describing the real world does exist. It is interesting to notice that Kalman [2], among
others, despite his early devotion to the use of probability in mathematical system theory,
is now critical on part of its foundation. Kalman contended that probability theory might
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not be all that suitable to describe the majority of randomness. In a sense, the link
between a rather sophisticated mathematical tool and the physical world might be loose.
We stress, however, that Kalman’s recent comment on probability does not automatically
assume him an advocate for fuzzy theory. His view on the latter has been unchanged
(see [3] and [4]).

The fuzzy approach, as originally proposed by Zadeh [1] on the other hand, takes
the extent of occurrence point of view. Historically, the merge between the probability
theory and control/system theory, which can be traced back to the fifties, has been highly
successful and received little criticism. In the state space framework, Kalman initiated
the effort of looking into the estimation problem (see [5]) and control problem (see [6])
when a system is under stochastic noise. The effort has received tremendous attention.
As it turns out, there is now a quite impressive arena on stochastic system and control
theory (see, e.g., [7]) that can not be ignored by any practitioners.

In this work, we shall attempt to pursue a possible use of fuzzy description of uncer-
tainty in robust control design. This may be viewed as an alternative proposal to combine
the fuzzy theory and control theory. The objectives are two fold. First, we explore fuzzy
descriptions of system performance should more information of the uncertainty (in the
fuzzy sense) be provided. This adds more insight on the system performance. Further-
more, this also shows a way to view the system performance with human needs (which
are often best described in a fuzzy sense). Second, we consider an optimal design of the
robust control. The combined average system performance (over the fuzzy description)
and control effort is to be extremized by an appropriate choice of a design parameter.
This may be viewed as an analogous development to the LQG design in stochastic control.

2 Uncertain System and Robust Control

Consider the following uncertain system

ẋ(t) = Ax(t) +Bu(t) +Bv(x(t), t), x(t0) = x0, (2.1)

where t ∈ R is the “time” (or more precisely, the independent variable), x(t) ∈ Rn is
the state, u(t) ∈ Rm is the control, v(x(t), t) ∈ Rm is the (unknown) input disturbance,
A, B are (known) constant matrices. The function v(·, t) is continuous. The function
v(x, ·) is Lebesgue measurable. The task is to choose the control u such that the state
x(t) of the controlled system of (2.1) enters a region around x = 0 after a finite time
and remains there thereafter.

Assumption 2.1 The pair (A,B) is stabilizable.

Assumption 2.2 There is a known scalar u ≥ 0 such that

max
x∈R

n

t∈R

‖v(x, t)‖ ≤ u. (2.2)

Choose constant n × n matrices Q > 0 and R > 0. Solve the following Riccati
equation

ATP + PA− PBR−1BTP +Q = 0 (2.3)

for the solution P > 0, which is also an n× n matrix. Notice that the solution P > 0
exists and is unique if (A,B) is stabilizable. We propose the control u as follows:

u(t) = −1

2
R−1BTPx(t) − γBTPx(t), (2.4)

where γ > 0 is a scalar constant. The choice of γ will be made later.
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Definition 2.1 Consider a dynamical system

ξ̇(t) = f(ξ(t), t) (2.5)

with ξ(t0) = ξ0. The solution of the system (suppose it exists) is uniformly ultimately

bounded if for any r > 0 with ‖ξ0‖ ≤ r, there are d̄(r) > 0 and T̃ (d̄(r), r) ≥ 0 such
that

‖ξ(t)‖ ≤ d̄(r) (2.6)

for all t ≥ t0 + T̃ (d̄(r), r).

Theorem 2.1 [8] Consider that the system (2.1) is subject to Assumptions 2.1
and 2.2. Suppose that the control (2.4) is applied. For each γ > 0, the resulting con-
trolled system is uniformly ultimately bounded. Furthermore, the size of the ultimate
boundedness region, i.e., d̄(r), can be made arbitrarily small by choosing a sufficiently
large γ.

There is a trade-off between the performance and the control effort. As a result, an
optimal quest for the design may be interesting. It is also possible that, based on further
understanding of the input disturbance, one is able to extract more information about
its bound. We describe the information in the following.

Assumption 2.3 There is a scalar ν ≥ 0 such that

max
x∈R

n

t∈R

‖v(x, t)‖ ≤ ν. (2.7)

The membership value of ν in a region U : = [u, u], u ≥ u ≥ 0, is prescribed by a
fuzzy number N , whose membership function is µN : U → [0, 1].

The fuzzy description of the uncertainty bound, as shown in Assumption 2.3, enables
us to pursue a fuzzy-based interpretation of the system performance. By Assumption 2.3,
given that ν is in the fuzzy set N , the possibility that ν = u, where u ∈ [u, u], is given
by µN (u).

For later purpose, we are also interested in the fuzzy number N ·N . This is discussed
as follows. Let

v(x, t) = [ v1(x, t) v2(x, t) · · · vm(x, t) ]T . (2.8)

It is possible that sometimes the designer only knows the fuzzy description of the bound
of each component vi(x, t), i = 1, 2, · · · ,m. Suppose that |vi(x, t)| ≤ νi for all x, t.
The scalar νi belongs to a region Ui : = [ui, ui], ui ≥ ui ≥ 0, which is the universe
of discourse of a fuzzy number Ni. This fuzzy number is prescribed by a membership
function µNi

: Ui → [0, 1].
With the membership function µNi

(·) prescribed, one obtains its α-cuts [uiα
, uiα

].
The square of the α-cuts, that is, [uiα

, uiα
] · [uiα

, uiα
], is obtained (see [9]). The sum of

all these α-cuts, i.e.,
m
∑

i=1

[uiα
, uiα

] · [uiα
, uiα

], also can be obtained for each α (see [9]).

Finally, one may use decomposition theorem to reach the membership function for the
fuzzy number N ·N .

If the designer already knows the membership function µN (·), then it is easy to obtain
the membership function of the fuzzy number N ·N . All it takes is to take the square of
the α-cuts of µN (·), summarize them, and then invoke the decomposition theorem. We
now state the following fuzzy-based system performance.
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Theorem 2.2 Consider that the system (2.1) is subject to Assumptions 2.1 and 2.3.
Suppose that the control (2.4) is applied. For any u ∈ [u, u] and any r > 0 with
‖x0‖ ≤ r, the possibility that

‖x(t)‖ ≤ d̂(u) for all t ≥ t0 + T̃

is given by µN ·N(u), where

d̂(u) = d̂(u) + ǫ, (2.9)

d̂(u) :=

√

u2

2γλm(Q)
. (2.10)

Proof By [8], for any ν = u,

V̇ ≤ −λm(Q)‖x‖2 +
u2

2γ
. (2.11)

This means that V̇ is negative definite for all ‖x‖ such that

‖x‖ >
√

u2

2γλm(Q)
=: d̂(u). (2.12)

From Assumption 2.3, the possibility that ν = u is µN (u). Thus the possibility that

V̇ is negative for all ‖x‖ > d̂(u) is µN ·N (u). By Theorem 2.1, for any t ≥ t0 + T̃ ,

‖x(t)‖ ≤ d̄. Since d̄ > d̂(u), this in turn shows that the possibility of ‖x(t)‖ ≤ d̂(u) is
given by µN ·N(u).

Remark 2.1 The theorem asserts that, given the uniform ultimate boundedness result
in Theorem 2.1, and the additional information provided by Assumption 2.3, one can
further prescribe a possibility distribution that the state enters another region, which is
in general of smaller size. This is a totally new aspect of the system performance, as
compared with the previous work in robust control. The special way of incorporating
fuzzy logic theory with control system analysis is believed to be the first time.

The input disturbance bound ν is often obtained via observed data and analyzed
by the engineer. The observed data is, by nature, always limited. The source of the
disturbance is unlikely to be exactly repeated. Hence any interpretation via the frequency
of occurrence, as the number of repetitions approaches to infinity, suffers from a lack of
basis. An alternative interpretation of the bound for circumstances like this would have
to be fuzzy in its nature. For examples, one may need to adopt the fuzzy (linguistic)
terms such as “close to” or “very close to” a (crisp) value.

The system performance is also often judged by the engineer in terms of the need of
human being: One may choose a (crisp) set point and intend to have the performance
to be “close to” or “very close to” it, after a finite time. These again fall into the
fuzzy category. A typical example of this nature is the “comfort” control in Heating,
Ventilating, and Air Conditioning (HVAC) (see, e.g., [10]). On top of this, the engineer
also has the discretion to impose a hard bound (through, e.g., the prescription of the size
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of uniform ultimate boundedness region) on the performance, which must be met with
absolutely no exceptions. All these can be addressed by the current framework.

3 Optimal Design of γ

The previous section shows a system performance which can be guaranteed by a deter-
ministic control design. By the analysis, the size of the uniform ultimate boundedness
region decreases as γ increases. As γ approaches to infinity, the size approaches to 0.
This rather strong performance is accompanied by a (possibly) large control effort, which
is reflected by γ. From the practical design point of view, the designer may be also in-
terested in seeking an optimal choice of γ for a compromise among various conflicting
criteria. This is associated with the minimization of a performance index.

We first explore more on the deterministic performance of the uncertain system. By
the Rayleigh’s principle,

λm(P )‖x‖2 ≤ xTPx = V ≤ λM (P )‖x‖2 (3.1)

and hence

−‖x‖2 ≤ − 1

λM (P )
V. (3.2)

With this into (2.11), we have

V̇ (t) ≤ − λm(Q)

λM (P )
V (t) +

ν2

2γ
, (3.3)

where V0 = V (t0) = xT
0 Px0. This is a differential inequality. The following is needed for

our analysis of (3.3).

Definition 3.1 [11] If w(ψ, t) is a scalar function of the scalars ψ, t in some open
connected set D, we say a function ψ(t), t0 ≤ t ≤ t̄, t̄ > t0 is a solution of the differential
inequality

ψ̇(t) ≤ w(ψ(t), t) (3.4)

on [t0, t̄) if ψ(t) is continuous on [t0, t̄) and its derivative on [t0, t̄) satisfies (3.4).

Theorem 3.1 [11] Let w(φ, t) be continuous on an open connected set D ∈ R2 and
such that the initial value problem for the scalar equation

φ̇(t) = w(φ(t), t), φ(t0) = φ0 (3.5)

has a unique solution. If φ(t) is a solution of (3.5) on t0 ≤ t ≤ t̄ and ψ(t) is a solution
of (3.4) on t0 ≤ t < t̄ with ψ(t0) ≤ φ(t0), then ψ(t) ≤ φ(t) for t0 ≤ t ≤ t̄.

Instead of exploring the solution of the differential inequality, which is often non-
unique and not available, the theorem suggests that it may be feasible to study the
upper bound of the solution. The reasoning is, however, based on that the solution of
(3.5) is unique.
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Theorem 3.2 [12] Consider the differential inequality (3.4) and the differential equa-
tion (3.5). Suppose that for some constant L > 0, the function w(·) satisfies the Lipschitz
condition

|w(v1, t) − w(v2, t)| ≤ L|v1 − v2| (3.6)

for all points (v1, t), (v2, t) ∈ D. Then any function ψ(t) that satisfies the differential
inequality (3.4) for t0 ≤ t < t̄ satisfies also the inequality

ψ(t) ≤ φ(t) (3.7)

for t0 ≤ t ≤ t̄.

We consider the differential equation

ṙ(t) = − λm(Q)

λM (P )
r(t) +

ν2

2γ
, r(t0) = V0. (3.8)

The right-hand side satisfies the global Lipschitz condition with

L =
λm(Q)

λM (P )
. (3.9)

We proceed with solving the differential equation (3.8). This results in

r(t) =

(

V0 −
λM (P )

λm(Q)

ν2

2γ

)

exp

[

− λm(Q)

λM (P )
(t− t0)

]

+
λM (P )

λm(Q)

ν2

2γ
. (3.10)

Therefore
V (t) ≤ r(t) (3.11)

or

V (t) ≤
(

V0 −
λM (P )

λm(Q)

ν2

2γ

)

exp

[

− λm(Q)

λM (P )
(t− t0)

]

+
λM (P )

λm(Q)

ν2

2γ
(3.12)

for all t ≥ t0. By the same argument, we also have, for any ts and any τ ≥ ts,

V (τ) ≤
(

Vs −
λM (P )

λm(Q)

ν2

2γ

)

exp

[

− λm(Q)

λM (P )
(τ − ts)

]

+
λM (P )

λm(Q)

ν2

2γ
, (3.13)

where Vs = V (ts) = xT (ts)Px(ts). The time ts is when the control scheme (2.4) starts
to be executed. It does not need to be t0.

By the Rayleigh’s principle V (τ) ≥ λm(P )‖x(τ)‖2, the right-hand side of (3.13) pro-
vides an upper bound of λm(P )‖x(τ)‖2. This in turn leads to an upper bound of ‖x(τ)‖2.
For each τ ≥ ts, let

η(ν, γ, τ, ts) :=

(

Vs −
λM (P )

λm(Q)

ν2

2γ

)

exp

[

− λm(Q)

λM (P )
(τ − ts)

]

, (3.14)

η∞(ν, γ) :=
λM (P )

λm(Q)

ν2

2γ
. (3.15)

Notice that for each ν, γ, ts, η(ν, γ, τ, ts) → 0 as τ → ∞.
One may relate η(ν, γ, τ, ts) to the transient portion and η∞(ν, γ) the steady state

portion of the system performance. Since there is no knowledge of the input disturbance
v(x, t) except its possible bound, it is only realistic to refer to η(ν, γ, τ, ts) and η∞(ν, γ)
while analyzing the system performance. We also notice that both η(ν, γ, τ, ts) and
η∞(ν, γ) are dependent on ν. The value of ν is not known except that it lies within a set
U (i.e., the universe of discourse) to the degree that is defined by µN (·).
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Definition 3.2 For any function f : [u, u] → R, the D-operation D[f(ν)] is defined
as follows:

D[f(ν)] =

u
∫

u

f(ν)µN (ν)dν

u
∫

u

µN (ν)dν

. (3.16)

Remark 3.1 In a sense, the D-operation D[f(ν)] takes an average value of f(ν) over
µN (ν). In the special case that f(ν) = ν, this is reduced to the well-known center-of-
gravity defuzzification method (see, e.g., [13]). If N is crisp (i.e., µN (ν) = 1 for all ν),
then D[f(ν)] = f(ν). This is reduced to the classical case.

Lemma 3.1 For any crisp constant a ∈ R,

D[af(ν)] = aD[f(ν)]. (3.17)

We now propose the following performance index: For any ts, let

J(γ, ts) := D

[

∞
∫

ts

η2(ν, γ, τ, ts) dτ

]

+ αD[η2

∞
(ν, γ)] + βγ2

=: J1(γ, ts) + J2(γ) + J3(γ),

(3.18)

α, β > 0. The performance index consists of three parts. The first part J1(γ, ts) may be
interpreted as the average (via the D-operation) of the overall transient performance (via
the integration) from time ts. The second part J2(γ) may be interpreted as the average
(via the D-operation) of the steady state performance. The third part J3(γ) is due to
the control cost. Both α and β are weighting factors. The weighting of J1 is normalized
to be unity.

Remark 3.2 A standard LQG (i.e., linear-quadratic-Gaussian) problem in stochastic
control is to minimize a performance index which is the average (via the expectation
value operation in probability) of the overall state and control accumulation. The cur-
rent optimal design of γ may be viewed as a parallel problem, though not equivalent, in
the fuzzy setting. However, one can not be too careful in distinguishing the difference.
For example, the Gaussian probability distribution implies that the uncertainty is un-
bounded (although a higher bound is predicted by a lower probability). In the current
consideration, the uncertainty bound is always finite.

Let κ := λM (P )/λm(Q). One can show that

∞
∫

ts

η2(ν, γ, τ, ts) dτ =

(

Vs −
λM (P )

λm(Q)

ν2

2γ

)2
∞
∫

ts

exp

[

− 2
λm(Q)

λM (P )
(τ − ts)

]

dτ

=

(

Vs − κ
ν2

2γ

)2
κ

2
. (3.19)
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Taking the D-operation,

D

[

∞
∫

ts

η2(ν, γ, t, ts) dt

]

= D

[(

Vs − κ
ν2

2γ

)2
κ

2

]

=

(

Vs −
Vsκ

γ
D[ν2] +

κ2

4γ2
D[ν4]

)

κ

2
.

(3.20)

Next, we analyze the cost J2(γ):

D[η2

∞
(ν, γ)] = D

[(

λM (P )

λm(Q)

)2(

ν2

2γ

)2]

=
κ2

4γ2
D[ν4]. (3.21)

With (3.20) and (3.21) into (3.18),

J(γ, ts) =

(

Vs −
Vsκ

γ
D[ν2] +

κ2

4γ2
D[ν4]

)

κ

2
+ α

κ2

4γ2
D[ν4] + βγ2

=: κ1 −
κ2

γ
+
κ3

γ2
+ α

κ4

γ2
+ βγ2,

(3.22)

where κ1 := κ
γ
Vs, κ2 := κ2

2
VsD[ν2], κ3 := κ4

4
D[ν4], κ4 := κ2

4
D[ν4].

The optimal design problem is then the following constrained optimization problem:
For any ts,

min
γ
J(γ, ts) subject to γ > 0. (3.23)

For any ts, taking the first order derivative of J with respect to γ:

∂J

∂γ
=
κ2

γ2
− 2

κ3

γ3
− 2α

κ4

γ3
+ 2βγ =

1

γ3

(

κ2γ − 2κ3 − 2ακ4 + 2βγ4
)

. (3.24)

That
∂J

∂γ
= 0 (3.25)

leads to
κ2γ − 2κ3 − 2ακ4 + 2βγ4 = 0 (3.26)

or
κ2γ + 2βγ4 = 2(κ3 + ακ4). (3.27)

Equation (3.27) is a scalar quartic equation. For simplicity, in the rest of discussion,
we shall rule out the trivial possibility of u = u = 0, which results in D[ν2] = 0 and
D[ν4] = 0. In other words, we only consider D[ν2] > 0 and D[ν4] > 0 and hence κ3 > 0
and κ4 > 0 (notice that κ > 0). This in turn means that the solutions (there are two)
γ to (3.27) are not identical to zero.

To observe the constraint γ > 0, we now restrict ourselves to only the positive solution
of (3.27). For the γ > 0 that solves (3.27),

∂2J

∂γ2
= − 3

γ4

(

κ2γ
2κ3 − 2ακ4 + 2βγ4

)

+
1

γ3

(

κ2 + 8βγ3
)

=
1

γ3

(

κ2 + 8βγ3
)

> 0.

(3.28)
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The positive solution of the scalar quartic equation (3.27), which depends on Vs, solves
the constrained minimization problem (3.23). By the continuity of the left-hand side of
(3.27) on γ, the solution γ > 0 to (3.27) always exists. In addition, since the left-hand
side of (3.27) is strictly increasing in γ, the solution γ > 0 to (3.27) is unique. We
summarize the main result as follows.

Theorem 3.3 Consider that the system (2.1) is subject to Assumptions 2.1 and 2.3.
Suppose that the control (2.4) is applied. For given Vs, the unique solution γ > 0 of
(3.27) minimizes the performance index (3.18).

The solutions of the quartic equation (3.27) depend on the cubic resolvent (see [14])

z3 + (−4r)z − q2 = 0, (3.29)

where

r = − 1

β

(

κ3 + ακ4

)

, q =
κ2

2β
.

Let p1 := −4r, p2 := −q2. The discriminant D of the cubic resolvent is given by

D =

(

p1

3

)3

+

(

p2

2

)2

. (3.30)

Since r < 0, D > 0. The solutions of the cubic resolvent are given by

z1 = u+ v, (3.31)

z2 = − (u+ v)

2
+ (u− v)i

√

3

2
, (3.32)

z3 = − (u+ v)

2
− (u− v)i

√

3

2
, (3.33)

where

u =

(

− p2

2
+
√
D

)
1

3

, (3.34)

v =

(

− p2

2
−
√
D

)
1

3

. (3.35)

The cubic resolvent possesses one real solution and two complex conjugate solutions.
This in turn implies that the quartic solution has two real solutions and one pair of
complex conjugate solutions. The maximum real solution, which is positive, of the quartic
equation is given by

γ =
1

2

(√
z1 +

√
z2 +

√
z3

)

. (3.36)

With z1, z2, and z3 into (3.36), a lengthy but straightforward algebra shows that the
positive solution of the quartic equation is given by

γ =
1

2

(√
u+ v +

√

7u2 + 7v2 − 10uv cos
θ

2

)

, (3.37)
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where

θ = tan−1

√

3

2
(u− v)

− 1

2
(u+ v)

. (3.38)

Remark 3.3 The calculation of γ in (3.37) requires Vs which depends on x(ts). In
implementations, this can be obtained via on-line feedback of the state. Notice that ts
is the starting time of the execution of the control. It does not need to be identical
to the initial time t0. The control starts to activate as soon as it receives the feedback
signal x(ts). The control scheme, which minimizes the performance index (3.18), also
only depends on ts, not t0. Certainly, the controlled system with x(ts) the initial state
is uniformly ultimately bounded.

By using (3.27), the cost J in (3.22) can be rewritten as

J = κ1 −
κ2

γ
+
κ3

γ2
+ α

κ4

γ2
+ βγ2

= κ1 −
1

γ2

(

κ2γ + 2βγ4
)

+ κ3γ
2 + α

κ4

γ2
+ 3βγ2

= κ1 −
1

γ2

(

κ3 + ακ4 + 3βγ4
)

.

(3.39)

With (3.37), the minimum cost is given by

Jmin = κ1 −
4

(
√
z1 +

√
z2 +

√
z3)2

(

κ3 + ακ4 +
3

8
β
(√
z1 +

√
z2 +

√
z3

)4

)

. (3.40)

Remark 3.4 Combining the previous results, the robust control scheme (2.4) using the
optimal design of γ > 0 renders the closed-loop system uniformly ultimately bounded
(with the initial state x(ts)). In addition, there is a possibility distribution associated
with the size of the region that the state will enter.

4 Conclusions

The incorporation of uncertainty, which is described in a fuzzy sense, into a robust control
framework is introduced. This is believed to the first attempt for such a merge. As to
the prescription of the desirable performance, it is often the designer’s discretion. Since
in practice it is in fact more realistic to prescribe the performance in a fuzzy sense (such
as “close to”, “very close to”), the current framework fits in well with both the need (the
performance) and the given (uncertainty).
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