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1 Introduction and Main Results

In data communication systems like transoceanic transmission along a fiber cable, there
is increasing demand to achieve transmission rates as high as possible, mainly to the
extensive use of the internet. To do so, a recent approach is to utilize non-linear light-
wave communications with suitable periodic amplifications to compensate for loss and
dispersive effects. The transmission of such optical signal is described by

iΨz −
1

2
β2(z)Ψtt + σ(z)|Ψ|2Ψ = iG(z)Ψ, (1)

see [6, 8, 9]. Here Ψ = Ψ(z, t) is some complex-valued envelope function of the original
electric field, t is time, and z is the longitudinal coordinate of the fiber cable, which
should be thought of to be a periodic variable, since both amplification and dispersion
repeat periodically. Moreover, G(z) accounts for both loss and amplification in the fiber,
whereas β2(z) is related to the dispersion; σ(z) is some additional function.

The transformation Ψ(z, t) = A(z, t) exp
( z
∫

G(z′) dz′
)

removes the term on the right-

hand side of (1) to yield the nonlinear Schrödinger equation

iAz + d(z)Att + c(z)|A|2A = 0, (2)
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with coefficient functions c(z) and d(z) being periodic of some period L > 0. It is then
well-accepted that the central part of the desired pulse-shaped solution to (2) is described
to leading order by

A(z, t) =
Q(t/T (z))
√

T (z)
exp

(

i
M(z)

T (z)
t2
)

, (3)

see the references cited above, and also [2, 4, 5]; the function Q(x) is an input pulse which
often is taken as Q(x) = C0 exp(−x2/2), and M(z) resp. T (z) describe the optical pulse
width resp. the chirp (time-dependent phase) of the breathing central part of the optical
soliton. Most importantly for our purposes, T (z) and M(z) are L-periodic solutions to

dT

dz
= 4d(z)M,

dM

dz
=

d(z)C1

T 3
− c(z)C2

T 2
, (4)

with fixed constants

C1 =

∫

|Q′(x)|2 dx
∫

x2|Q(x)|2 dx
, C2 =

∫

|Q(x)|4 dx

4
∫

x2|Q(x)|2 dx
.

It is hence of fundamental importance for the whole approach to deduce whether or
not periodic solutions of (4) do exist. In some of the papers cited above, this problem is
studied numerically for the dispersion map d(z) taken as an L-periodic step function,

d(z) =

{

d+ : 0 ≤ z ≤ L/4, 3L/4 ≤ z ≤ L

−d− : L/4 < z < 3L/4
, (5)

with d+, d− > 0; the function c(z) was chosen to be constant as is physically reasonable in
case the compensation period is much larger than the amplification distance. Taking d(z)
as in (5) corresponds to a transmission line consisting of two pieces of fibers with opposite
dispersion. Eq. (4), even with dispersion map as in (5), poses interesting mathematical
problems, but despite that there is a large mathematical literature on singular Lagrangian
problems, cf. e.g. [1, 3] and many others, it does not seem that there are general results
that apply to a system as (4), which is Hamiltonian with

H(T, M, z) = 2d(z)M2 +
d(z)C1

2T 2
− c(z)C2

T
.

As we are interested in periodic solutions of period L (the “fixed period problem”), it
would be natural to consider the action functional I corresponding to (4) which is here

I(T, M) =

L
∫

0

[

T (z)
dM

dz
(z) −H(T (z), M(z), z)

]

dz

for M , T in a suitable function space. A critical point of I then would provide a solution
to (4), but it is not clear how the necessary assumptions on I can be verified to apply
some minimax-argument.

The following theorem is our main result.
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Theorem 1.1 Assume c(z) = c > 0 is a constant and d(z) is given by (5). Then
(4) has a periodic solution of period L if d+ > d−.

The proof of Theorem 1.1 is rather elementary and possible through direct calculation
and estimates. Rather than this we would have preferred to give a more functional
analytical proof that also works for non-explicit dispersion maps, but such an approach
was not clear to us. Nevertheless, the same proof also yields some results for a dispersion
map which has the more general form

d(z) =

{

d+ : 0 ≤ z ≤ L1, L − L1 ≤ z ≤ L

−d− : L1 < z < L − L1

, (6)

for some L1 ∈ (0, L/2); see Theorem 2.4.
Theorem 1.1 discusses the case of a dispersion map with positive average dispersion

〈d〉 = 1
L

L
∫

0

d(z) dz = 1
2 (d+ − d−), cf. [7] for some results in the same direction. Due to

numerical observations in [8, 9] there should also exist periodic solutions for the zero-
average case d+ = d−, at least if those values are sufficiently large. If the average
dispersion is negative, d+ < d−, then it will be seen below by means of a symmetry
argument that again a periodic solution T (z), M(z) of (4) can be found. However, it is
of no practical relevance for the original problem, since it will be negative contrary to
what is needed in the ansatz (3). The situation for negative average dispersion currently
is rather unclear.

2 Existence of Periodic Solutions

In this section we carry out the proof of Theorem 1.1. First we rewrite (4), introducing

t = z, a+ = 4d+

√
C1, a− = 4d−

√
C1, b = cC2/

√
C1 and q(t) = T (z). Then (4) reads

as

q̈ =







a2
+

4q3 − a+b
q2 = −V ′

+(q) : 0 ≤ t ≤ L/4, 3L/4 ≤ t ≤ L

a2
−

4q3 + a
−

b
q2 = −V ′

−(q) : L/4 < t < 3L/4
, (7)

where

V+(q) =
a2
+

8q2
− a+b

q
and V−(q) =

a2
−

8q2
+

a−b

q
.

Throughout we assume b > 0, and we also introduce the corresponding energies

H+(q, q̇) =
1

2
q̇2 + V+(q) and H−(q, q̇) =

1

2
q̇2 + V−(q).

For the proof of Theorem 1.1, from d+ > d− we have the hypothesis

a+ > a−. (8)

It should be noted that the transformation q̄(t) = −q(L/2 + t) changes the rôles of a+

and a− in (7). However, since the solution q will be positive under assumption (8), it
turns out that for the negative dispersion case a+ < a− the function q̄ is negative and
hence cannot play the rôle of T (z), cf. the corresponding remarks in the introduction.
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Figure 2.1. Phase portrait of q̈ = −V ′
+(q).

Figure 2.2. Phase portrait of q̈ = −V ′
−(q).

To get a clue where to look for periodic solutions of (7), the phase portraits for
q̈ = −V ′

+(q) resp. for q̈ = −V ′
−(q) are given in Figure 2.1 resp. Figure 2.2.

Thus the only possibility to have a periodic solution in {q > 0} is to match a periodic
orbit from Figure 2.1 to a trajectory from Figure 2.2. The periodic orbits in Figure 2.1
are found to have energies h+ ∈ [−2b2, 0), the value h+ = −2b2 corresponding to the
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fixed-point q = a+/4b. The respective periods may then be calculated explicitly as

1

2
T (h+) =

q0
∫

q1

dq

[2(h+ − V+(q))]1/2
=

a+b π

2
√

2(−h+)3/2
,

where (q1, 0) and (q0, 0) with q1 ≤ q0 are the intersection points of the orbit of energy
h+ with the axis {q̇ = 0}.

Let

q∗ =

{

a+/4b : a+π > 2b2L

(V+)−1
(

− (
√

2a+bπ/L)
2/3
)

: a+π ≤ 2b2L
(9)

with (V+)
−1
(

− (
√

2a+bπ/L)
2/3
)

∈ [a+/4b,∞); observe V+ : [a+/4b,∞) → [−2b2, 0) is

strictly increasing. We define a map q0 7→ q1 7→ q2 as follows.

(1) For given q0 ≥ q∗, determine the energy

h+ = V+(q0) =
a2
+

8q2
0

− a+b

q0
∈ [−2b2, 0). (10)

(2) The point q1 ≤ q0 then is defined through

L

4
=

q0
∫

q1

dq

[2(h+ − V+(q))]
1/2

. (11)

(3) Next, q̇1 ≥ 0 is calculated from

h+ = H+(q1, q̇1) =
1

2
q̇2
1 +

a2
+

8q2
1

− a+b

q1
. (12)

(4) Then we let

h− = H−(q1, q̇1) =
1

2
q̇2
1 +

a2
−

8q2
1

+
a−b

q1
> 0. (13)

(5) Finally, q2 > 0 is defined as the unique intersection point of the orbit with energy
h− of q̈ = −V ′

−(q) with the axis {q̇ = 0}, i.e., the solution of h− = H−(q2, 0).

Remark 2.1 The map q0 7→ q1 7→ q2 is well-defined, since by definition of q∗ in (9)

we have 1
2T (h+) ≥ L

4 for q0 ≥ q∗ in both cases, and therefore q1 exists. Note also that
all quantities are determined by q0, or equivalently, by h+.

Thus the existence of an L-periodic orbit of (7) is equivalent to finding a zero q0 of
the function

F (q0) =

q1
∫

q2

dq

[2(h− − V−(q))]
1/2

− L

4
. (14)
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Since F is continuous, the existence of a zero will be a consequence of

F (q0) → −L

4
< 0 as q0 → q∗, and

F (q0) →
L

4

(

a+

a−

− 1

)

> 0 as q0 → ∞,

cf. (8). The following Lemmas 2.1 and 2.2 verify these assertions, completing the proof of
Theorem 1.1. Before going on, we will state some identities that will be used frequently
throughout. First, from (12) and (13) we infer

h− = h+ +
a2
− − a2

+

8q2
1

+
(a− + a+)b

q1
. (15)

Next, by direct integration of the right-hand side in (11) we obtain

L

4
= −

√

X(q1)

4h+
+

a+b

2
√

2(−h+)3/2

[

π

2
+ arcsin

(

2h+q1 + a+b

a+

√

b2 + 1
2h+

)]

(16)

with X(q) = 8h+q2+8a+bq−a2
+; to derive this it is useful to note that 2h+q0+a+b

a+

√
b2+ 1

2
h+

= −1
by (10). Similarly, integrating (14) we deduce

F (q0) +
L

4
=

√

X(q1)

4h−

+
a−b

2
√

2h
3/2
−

log

(

√

2h−X(q1) + 4h−q1 − 2a−b

2a−

√

b2 + 1
2h−

)

, (17)

utilizing 8h−q2
1 − 8a−bq1 − a2

− = X(q1), cf. (15); the argument of log is ≥ 1, since

2a−

√

b2 +
1

2
h− = 4h−q2 − 2a−b, (18)

and q1 ≥ q2.
The right-hand side of (16) contains no q0, only h+. It will also be important to have

formulae for derivatives w.r. to h+. To begin with,

dX(q1)

dh+
= 8q2

1 + 8(a+b + 2h+q1)

(

dq1

dh+

)

.

Through a tedious and lengthy calculation one may then show by differentiating the
right-hand side of (16) w.r. to h+ that

dq1

dh+
=

3L

16

√

X(q1)

(−h+q1)
− q1

h+
+

a+

(

2bq1 − 1
2a+

)

16
(

b2 + 1
2h+

)

(−h+q1)
; (19)

this works by inserting formula (16) after differentiation again for the arcsin (. . . )-term.
Additionally, we get from (15)

dh−

dh+
= 1 − a2

− − a2
+

4q3
1

(

dq1

dh+

)

− (a− + a+)b

q2
1

(

dq1

dh+

)

. (20)
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After this preparation we can proceed to the proof of Lemma 2.1 and Lemma 2.2.

Lemma 2.1 As q0 → q∗ we have F (q0) → −L
4 .

Proof We first consider the case a+π > 2b2L, i.e., q0 → a+/4b. By definition, q̄0 ≤
q1 ≤ q0, with q̄0 and q0 being the two solutions to h+ = H+(q, 0). Since h+ → −2b2 by

(10), it follows that q̄0 = (−a+/2h+)
[

b −
√

b2 + 1
2h+

]

→ a+/4b, therefore q1 → a+/4b,

and hence also X(q1) → 0 as q0 → a+/4b. By (15), h− → 2b2(a−/a+)(2+ a−/a+), and
therefore h− = H−(q2, 0) gives q2 → a+/4b as q0 → a+/4b. Consequently, F (q0) →
−L/4 as q0 → a+/4b by (17) and (18).

What concerns the second case a+π ≤ 2b2L in (9), we then have T (h∗
+)/2 = L/4,

with h∗
+ = −

(√
2a+bπ/L

)2/3
, by definition of q∗. As q0 → q∗ therefore q1 tends to the

smaller solution q̄∗ of h∗
+ = H(q, 0), i.e., we have X(q1) → 0. According to step (3) – (5)

in the above construction of the map, q2 degenerates to q2 → q̄∗ as q0 → q∗. Since

h− → a2
−/8(q̄∗)

2
+ a−b/q̄∗ > 0, we may argue as before to conclude F (q0) → −L/4

as q0 → q∗.

It remains to analyze the limiting behaviour of F (q0) as q0 → ∞.

Lemma 2.2 As q0 → ∞ we have F (q0) → L
4

(

a+

a
−

− 1
)

.

Proof All limits that are taken in this proof are as q0 → ∞, or, equivalently, as
h+ → 0. Since both terms on the right-hand side of (16) are non-negative and h+ → 0,
we must also have X(q1) → 0, whence

q1(h+q1 + a+b) → a2
+

8
, h+q1 → −a+b, (21)

and therefore 2h+q1+a+b

a+

√
b2+ 1

2
h+

→ −1. By the de L’Hospital rule we are led to check whether

Λ1 = − a+b

3
√

2

d
dh+

arcsin (. . . )

(−h+)1/2

= − a+b

3
(

b2 + 1
2h+

)

(

2
(

b2 + 1
2h+

)[

h+

(

dq1

dh+

)

+ q1

]

− 1
4 (2h+q1 + a+b)

(−h+)
√

X(q1)

) (22)

has a limit as h+ → 0. Utilizing (19), one arrives after some simplification at

2

(

b2 +
1

2
h+

)[

h+

(

dq1

dh+

)

+ q1

]

− 1

4
(2h+q1 + a+b)

= −3L

8

(

b2 +
1

2
h+

)

√

X(q1)

q1
− X(q1)

16q1
.

(23)

Inserting (23) into (22) implies by (21), and since X(q1) → 0, that Λ1 → L/8. Thus de
L’Hospital yields from (16),

a+b

2
√

2(−h+)3/2

[

π

2
+ arcsin

(

2h+q1 + a+b

a+

√

b2 + 1
2h+

)]

→ L

8
, −

√

X(q1)

4h+
→ L

8
. (24)
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By (15) and (21),
h−

h+
→ −a−

a+
. (25)

Thus as a first step towards deriving the limiting behaviour of F (q0) we conclude from
(24) and (25) that

√

X(q1)

4h−

=

(

−
√

X(q1)

4h+

)

(

− h+

h−

)

→ L

8

(

a+

a−

)

. (26)

Next we have to analyze the contribution of the second term on the right-hand side
of (17). For this, we proceed as before and consider first the quotient

Λ2 =
a−b

3
√

2

d
dh+

log(. . . )

h
1/2
−

(

dh
−

dh+

)

=
a−b

3
√

2
(

b2 + 1
2h−

)[

√

2h−X(q1) + 4h−q1 − 2a−b
] (

dh
−

dh+

)

(

Λ21 + Λ22

h
1/2
−

)

,

where

Λ21 = 4

(

b2 +
1

2
h−

)[

h−

(

dq1

dh+

)

+

(

dh−

dh+

)

q1

]

− 1

2
(2h−q1 − a−b)

(

dh−

dh+

)

,

Λ22 =

(

b2 + 1
2 h−

)

√

2h−X(q1)

[

h−

(

dX(q1)

dh+

)

+

(

dh−

dh+

)

X(q1)

]

− 1

4

√

2h−X(q1)

(

dh−

dh+

)

.

By (25) we have O(h+) = O(h−) as h± → 0, whence we can denote such terms simply

by O(h). Because 1
q2
1

(

dq1

dh+

)

→ 1
a+b according to (19), (21) shows 1

q3
1

dq1

dh+
= O(h).

In addition,
√

X(q1) = O(h) by (24) and h+q1 + a+b = O(h) by (21). Using this

information and the explicit representations (20) of dh
−

dh+
and (19) of dq1

dh+
, it follows after

some calculations that
Λ21 = O(h).

Turning our attention to Λ22, we first note 1
4

√

2h−X(q1)
(

dh
−

dh+

)

= O(h3/2), since dh
−

dh+
→

−a
−

a+
by (20) and the preceding arguments. Consequently,

Λ2 =
a−b

6
[

√

2h−X(q1) + 4h−q1 − 2a−b
](

dh
−

dh+

)

×

[

h−

(

dX(q1)
dh+

)

+
(

dh
−

dh+

)

X(q1)
]

h−

√

X(q1)
+ O(h1/2).

(27)

As before, an elementary but quite lengthy calculation yields

h−

(

dX(q1)

dh+

)

+

(

dh−

dh+

)

X(q1) = −3L

2

[

(a− + 2a+)b + 2h+q1

]

√

X(q1)

q1
+ O(h3). (28)
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As a consequence of h−q1 = (h+q1)
(

h
−

h+

)

→ a−b, by inserting (28) into (27) we get

Λ2 → L
8

(

a+

a
−

)

. Thus the rule of de L’Hospital yields

a−b

2
√

2h
3/2
−

log

(

√

2h−X(q1) + 4h−q1 − 2a−b

2a−

√

b2 + 1
2h−

)

→ L

8

(

a+

a−

)

. (29)

Summarizing (26) and (29), we finally obtain from (17) that F (q0) + L
4 → L

4

(

a+

a
−

)

.

The method of proof can also be adapted for

q̈ =







a2
+

4q3 − a+b
q2 : 0 ≤ t ≤ L1, L − L1 ≤ t ≤ L

a2
−

4q3 + a
−

b
q2 : L1 < t < L − L1

, (30)

with L1 ∈ (0, L/2), corresponding to the more general dispersion maps (6). We obtain

Theorem 2.1 For 2L1

(

1 + a+

a
−

)

> L, (30) has an L-periodic solution.

Proof We can proceed as before, and in particular we find F (q0) + (L/2 − L1) →
L1(a+/a−) as q0 → ∞. The condition lim

q0→∞
F (q0) > 0 then means 2L1(1+a+/a−) > L.
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