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Abstract: The paper is concerned with upper bounds for the Hausdorff di-
mension of flow invariant compact sets on Riemannian manifolds and the ap-
plication of such bounds to global stability investigations of equilibrium points.
The proof of the main theorem uses a special Carathéodory dimension struc-
ture in order to get contraction conditions for the considered Carathéodory
measures which majorize the Hausdorff measures. The Hausdorff dimension
bounds in the general case are formulated in terms of the eigenvalues of the
symmetric part of the operator which generates the associated system in nor-
mal variations with respect to the direction of the vector field. For sets with
an equivariant tangent bundle splitting dimension bounds are derived in terms
of uniform Lyapunov exponents. A generalization of the well-known theorems
of Hartman-Olech and Borg is given.

Keywords: Hausdorff dimension; Carathéodory dimension structure; outer mea-
sures via tube covers; system in normal variations; global stability; uniform Lyapunov
exponents; equivariant tangent bundle splitting; Riemannian manifolds.

Mathematics Subject Classification (2000): 58F12, 58F25, 58F10, 28A78.

1 Introduction

The first method of Lyapunov ([9,36,47,49]) traditionally includes all the approaches
for the stability investigation of a given solution of an ODE (or an other dynamical
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system) which consider the perturbed solutions by means of various types of linearized
or variational equations. In particular this method can be used to construct explicitly
(i.e. in the form of a series of known functions and exponential terms including the
Lyapunov characteristic exponents) integral manifolds of stationary solutions in order to
determine the stability character of these solutions.

As a rule in the given variational equation new coordinates are introduced in order
to separate the normal components of the vector fields which act transversally to the
flow lines. The main idea of reparametrization and the use of flow information in the
transversal to an orbit direction goes back to ([20,48]). Using these techniques the well-
known theorems of Hartman-Olech and Borg ([4,19,20]) on global asymptotic stability
are derived. For ODE’s in R™ these results were extended and generalized in [29, 32]
for other types of stability behavior (stability in the sense of Poincaré and Zhukovskij)
including into the consideration Lyapunov functions. Variational systems written in
normal coordinates are also used in stability theory to show orbital stability of solutions of
a differential equation (]20, 31, 32]). For bounded semi-orbits these methods are extended
in [31] to vector fields on Riemannian manifolds. In particular, in this paper sufficient
conditions for orbital stability and instability are deduced by estimating the singular
values of the fundamental operator of the linearized vector field.

Note that for simple mechanical systems in Lagrange form the physical paths can be
interpreted as geodesics on a Riemannian manifold ([17,23, 24]). A prototype of such
systems with instability behavior in the sense of Zhukovskij are geodesic flows on the unit
tangent bundle of a manifold with negative curvature ([10,17, 23,24, 42]). These systems
are characterized by a uniform splitting of the tangent bundle into invariant subbundles
(with respect to the linearization) having equal contracting or expanding rates in all
points of the bundle. They belong to a special type of (strong) hyperbolic systems.
Unfortunately most of the interesting equations are only quasi-hyperbolic ([7, 13,42, 43]).

Stability investigations of flows are closely connected with global properties of invariant
sets or attractors such as dimension (topological, Hausdorff, box-counting etc.) and the
topological shape of these sets (connectness, point-like type etc.) ([14, 18]).

The first general results for upper Hausdorff dimension estimates of flow invariant
sets in R™ in terms of singular values of the linearization are given by [6]. This ap-
proach was extended in [25,39] to map-invariant sets on Riemannian manifolds and in
[26,28,29] by including Lyapunov functions into the contraction conditions for outer
Hausdorff measures. In [8,46] the Douady-Oesterlé results were extended to estimates
for evolution systems in general Hilbert spaces. Hausdorff dimension estimates of general
flow invariant sets using the eigenvalues of the symmetric part of the operator part of the
(standard) equation in variation are deduced in [45] for the R™ and in [39] for manifolds.
Douady-Oesterlé estimates for piecewise smooth maps on manifolds are given in [44].
The hyperbolic or quasi-hyperbolic structure was considered in dimension estimates in
[10, 13] where also an entropy term into the estimate was introduced.

Various dimension upper bounds of invariant sets allow conclusions on the dynamical
behavior of the system. The key step in the papers [29,39,45] is to prove that the
Hausdorff dimension for the maximal compact invariant set is less than two. By a result
of Smith ([45]) such a set contains no simple closed piecewise smooth invariant curves. In
particular the system has no non-constant periodic orbits. On the base of such dimension
estimates a generalization of the mentioned global stability results of Hartman-Olech and
Borg, but also of other types of classical results from the Bendixson-Poincaré theory were
derived in [29, 34, 35].
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Parallel to Hausdorff dimension estimates a number of upper bounds for the box
dimension of invariant sets were deduced ([3, 21,22, 30, 38,46]). The box dimension of a
set is always not smaller than the Hausdorff dimension and gives important information
about the possibility to use embedding homeomorphisms, which map the given invariant
set orthogonal and one-to-one on a hyperplane in standard position ([22,38]). Recently
it was shown that such homeomorphisms can be chosen with Hélder-Lipschitz continuous
inverse ([12]) which enables conclusions for dimension estimates.

Hausdorff and box dimension estimates for flow invariant sets show its effectivity if var-
ious types of local, global and uniform Lyapunov exponents are introduced ([7, 8, 25, 28,
46]). On the base of such Lyapunov exponents the Lyapunov dimension of a set was
defined (Kaplan-Yorke formula [25,42]) and it was conjectured that in typical cases this
dimension coincides with the Hausdorff dimension.

Parallel to the dimension and stability investigation of invariant sets of flows and
cascades various types of dimensions of an invariant measure have been developed ([7, 25,
41]). Defining for the invariant ergodic measure of a flow the Lyapunov exponents one
can introduce the Lyapunov dimension of this measure which is an upper bound of the
Hausdorff dimension of the measure. (The Hausdorfl dimension of the measure is the
largest lower bound of the Hausdorff dimension of the support of the measure ([25]).)
As in the measure free case various stability properties of the underlying flow may be
derived from the properties of the Lyapunov exponents of the measure. It is shown in
[7] that if the invariant measure is ergodic and all Lyapunov exponents of the measure
are negative, the support of this measure is a stable equilibrium point. If exactly one
exponent is zero and the remaining ones are negative, the support is an equilibrium point
or a stable limit cycle.

An important class of invariant sets of dynamical systems are strange attractors which
have locally the structure of the product of a smooth (often one-dimensional) submanifold
directed ‘along the attractor’ and a Cantor-like set ‘transversal’ to the attractor ([18,41]).
Thus, it is natural to investigate the stability and dimension properties of such attractors
considering the intersection of the attractors with surfaces which are locally transversal
to the attractor ([20,26]). The use of transverse intersections (Poincaré sections) is well-
known in stability theory investigations of flow orbits: contracting or expanding behavior
in sections transverse to the flow line directions is the main reason for properties of
stability or instability of the considered orbit ([29, 31, 32]).

The paper is organized as follows. In Section 2 we present a short review of basic
facts on Riemannian geometry. We introduce the variational system written in normal
variations, transversal to the evolution direction of the flow lines, which is natural to
investigate in the case of attractors of differential equations. In Section 3 we give the
definition of a special Carathéodory structure adapted for the dimension investigation of
flow invariant sets. It is defined via covering elements which are tubular neighborhoods
of arcs of smooth curves to approximate the fiber structure of the sets. The main results
of the paper are contained in Section 4. For flow negatively invariant sets which do not
contain singular points of the vector field an upper bound of the Hausdorff dimension is
given. The estimates are derived by means of Carathéodory measures which are contrac-
tive under the flow and majorize the Hausdorff measure. These results generalize those
from [26,27] on Riemannian manifolds. The estimates are formulated in terms of the
eigenvalues of the symmetric part of the generated operator of the associated system in
normal variation. Assuming special properties of the stable and unstable manifolds of
equilibrium points the results are generalized for vector fields having a finite number of
such equilibrium points in the considered invariant set. The used Carathéodory measures
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show in many cases a better contracting behavior under the positive semi-flow than the
Hausdorff measures do. Section 5 is concerned with Hausdorff dimension estimates of
flow invariant sets with an equivariant tangent bundle splitting which are formulated
in terms of uniform Lyapunov exponents. In Section 6 we end with a discussion of the
effectivity of the obtained Hausdorff dimension estimates. In addition we obtain results
about the asymptotic behavior of the dynamical system using the dimension bounds,
which are closely related to results in [4, 19, 20].

2 The System in Normal Variation

In this section we introduce a modified variational equation for a vector field f which will
be used for modeling the variation of time translated pieces of hypersurfaces orthogonal
to a considered orbit. This idea originates from investigations on stability behavior of
solutions of a differential equation (see [20, 31, 32]), where together with the movements of
phase points along a trajectory one considers their movements in transversal direction.
Projecting the covariant derivative of the vector field along a reference orbit into the
(n — 1)-dimensional tangent space lying orthogonal to the vector field in an arbitrary
point of the orbit we get a variational equation describing the normal variation. For the
first time this type of variational equation has been applied to dimensional estimates
in [26,27].

Let us recall some notation from linear algebra and differential geometry used later.
If V and W are m-dimensional Euclidean spaces with scalar products (-, -}y and (-, )w,
respectively, and L: V — W is a linear operator, then the adjoint operator L*: W — V
is the linear operator uniquely determined by the relation (L&, n)w = (£, L*n)y for all
£ eV, neW. The singular values of the operator L are the eigenvalues of the positive
semidefinite operator (L*L)z:V — V. We denote them by oy(L) > --- > o, (L) > 0
ordered with respect to size and multiplicity. For d € R let |d] denote the largest integer
less than d. For an arbitrary number d € [0, m] we define by

() 1 for d=0,
Wy = _
o1(L) ..o (Dol (L) for de(0,ml,

the singular value function of order d of L. Let &€ be an ellipsoid in V and let ¢1(&) >
... > om(€E) > 0 denote the length of its semi-axes. For an arbitrary number d € [0, m]
we introduce the d-dimensional ellipsoid measure by

) 1 for d=0,
w, = _
¢ o) oy (E)olyH(E€)  for de(0,m].

For the linear operator L: V' — W and the ball B(O,r) of radius r around the origin

O of V the image LB(O,r) is an ellipsoid in W with length of semi-axes o;(L)r. For
d € [0,m] it holds

wa(LB(O,7)) = wa(L) re. (2.1)

Consider now a Riemannian manifold (M, g) of dimension n (n > 2) and, for simplic-

ity, of class C'*°, which we call smooth. Denote by T,,M the tangent space at p € M. The
Christoffel symbols of second kind on (M, g) with respect to a chart z: D(xz) — R(x)
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are given by the n® smooth functions T}, = 3¢"*(gjs.i + gsi,j — 9ij.s) (throughout this

paper with summation on repeated indices), where gi;, = %‘;’ﬁ. Here and in the sequel
let f: M — TM be a vector field of class C? on the n-dimensional Riemannian manifold

M (n >2) and let us consider the corresponding differential equation

i = f(u). (2.2)

For simplicity we assume that the global flow ¢: R x M — M of (2.2) exists. This
flow ¢ can also be written as one-parameter family of C2-diffeomorphisms {¢'};cr with
©'(-) = ¢(t,-). In achart z around p let {9;(p)} be the canonical basis of T, M and f(p) =
f19;(p) the representation of the vector field (2.2). The covariant derivative of f in p is

the linear operator V f(p): T,M — T,M defined by V f(p)v = V, fkvi0,(p) = (g{ck v

I‘fjfjvi)ak (p) for all v =v'9;(p) € T,M. For the linear operator Vf(p): T,M — T,M
in the Euclidean space (T,M, (-,-)7,0r) we denote by V f(p)* the adjoint operator and
by SVf(p) := [V f(p) + Vf(p)*] the symmetric part of V f(p).

Let c: [a,b] — M be a piecewise smooth curve such that the restrictions cl; (]
are smooth for any j = 1,...,m — 1. Recall that the length i(c) of ¢ is defined as

m—1 tj+1 )

lc)= 3 [ |le@®)| dt. For a C'-curve c: [a,b] — M let z’(t) be the local coordinates
J=1 4,

of ¢(t) in the chart x. Let F'(t) be a vector field along ¢, i.e., F(t) € TeyyM for all

t € [a,b]. The absolute derivative Dgt(t) € T.(+yM of F along c is defined in the chart =
by
DF(t) dFr
=V ()= — +T5LF ¢ t)).
L = Vo) = (% + T ou(cto)

For a given C'-curve c: [a,b] — M and v € To;)M (to € [a,b]) there exists a unique
vector field F, along ¢ such that F, is parallel along ¢, i.e., V.F, =0 and F,(ty) = v.
This defines for any s, t € [a,b] with s < t the parallel transport Tf((g TosyM —
ToyM along c from c(s) to c(t) which relates to any v € T,,)M the vector F,(t) €
Ty M.

Recall that a geodesic on (M, g) is a smooth curve c: [a,b] — M satisfying %&t) =0.
For any p € M and v € T,M we denote the maximal geodesic with ¢(0) = v and
c(0) =p by ¢,,. Let D' C TM be the set of pairs {(p,v)} with p € M and v € T,M
such that ¢, (1) exists. Then the exponential map exp: D' — M on (M, g) is given by
exp((p,v)) = ¢po(1) for all (p,v) € D' and exp,, is the restriction exp |7, aprapr. It is
well-known (see [24]) that D! is open in TM, that exp: D! — M is smooth, and for
any p € M there exists an open set Dzl, C T, M such that exp,, is a diffeomorphism on
D) and ||do, exp, || = 1.

The behavior of system (2.2) near a given solution ¢()(p) is described by the wvaria-

tional equation
Dy
o = VI )y (2.3)

(see [31,39]). In local coordinates of a chart z around ¢’ (p) system (2.3) takes the form

DyF B of*
dt ~ ozt

yi‘f‘l—‘?jijizvifk o k=1,...,n.
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For any p € M the differential Y (t,p) = d,¢' is the operator solution of (2.3) with
initial condition Y(0,p) = id 1, .

All points p € M with f(p) # O, (f(p) = O,), where O, denotes the origin of
the tangent space T, M, we call reqular (singular) points of the vector field f. If p is
a regular point we may consider the system in normal variations with respect to the
solution ¢)(p) of (2.2) ([31])

Dz

— = Al (0)z, (24)

where the linear operator A(p): T,M — T, M is given by

A(p) =V f(p) — B(p), where

f(p) (2.5)

B(p)v =2 OIE (f(p), SVf(p)v) forall veT,M.

The scalar product (-,-) and the associated norm || - || are taken in the tangent space
T,M. In coordinates of an arbitrary chart x: D(z) — R(x) around the regular point p
the linear operator A(p) is given by

2

Akzvi A
f Gmn

; fFauf's!, ki=1,....n,

where f*¥ and g;; are the coordinates of the vector field f and the Riemannian metric
tensor g in the chart x, respectively, and Sf = % [gj "Nk fPapi+Vifi ] is the representation
in coordinates of the symmetric part SV f(p) of the covariant derivative of the vector
field f in this chart. Note that for ODE’s in R™ with standard metric the system in
normal variations (2.4) coincides with the system in modified variations in [28,29, 32].
Suppose that p € M is a regular point of f and y(-) is a solution of (2.3) along ) (p).
This solution can be splitted for any ¢ € R into two orthogonal components as

y(t) = z(t) + u(t) f (' (), (2.6)

where z(-) is the solution of (2.4) with respect to () (p) with initial condition z(0) = y(0)

and p(-) is a scalar valued C'-function given by wu(t) = (y(t), f(©'(P))/|If (¥ (p))]|?.
For every regular point p € M of f we introduce the (n — 1)-dimensional linear

subspace
T(p) = {v € T,M: (v, /(p)) = 0}

of the tangent space T,M. Denote by SA(p) := 3[A(p) + A(p)*] the symmetric part
of the operator A(p). A straight forward calculation shows that for all v € T+(p) the
following two relations

(f(p), SA(p)v) =0 and (v, A(p)v) = (v, Vf(p)v) (2.7)
are satisfied. Hence, we have SA(p): T*(p) — T+ (p). Using this fact one can easily
prove the first part of the following lemma.

Lemma 2.1 For an arbitrary reqular point p € M of the vector field (2.2) the eigen-
values of the operator SA(p): T,M — T,M are the eigenvalues of the operator SA(p)
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which is restricted to the linear subspace T*(p) and the value —(V f(p) f(p), f()\|If (@) |I*}
Further we have

f(p)
I f(p)][?

SVf(p)z— (f(p), SV f(p)z) = SA(p)z for all =z € T™(p).

In the following we denote at any regular point p of (2.2) the eigenvalues of the
operator SA(p) restricted to the subspace T+(p) by Bi(p) > -+ > B,_1(p), which are
ordered with respect to size and multiplicity. By Z(t, p) we denote the operator solution
of (2.4) with initial condition Z(0,p) = id 11 (). For every t € R the linear operator
Z(t,p): T+(p) — T+(¢(p)) maps between the subspaces T+ (p) and T (¢!(p)) being
orthogonal to the vector field in p and ¢*(p), respectively. The next lemma will be needed
in the sequel and can be proved analogously to [39].

Lemma 2.2 Suppose that p € M s a regular point of the vector field (2.2) and
Z(-,p) is the operator solution of (2.4). Let d € (0,n — 1]. Then for all t >0 it holds

t

wa(Z(t,p)) < exp { / Br(@™(0) + -+ Blay (" (p))

0

(= 1d])Ba1e ()] dT}.

Let B(O,, ) denote the ball of radius r around the origin O, of T,,M. For a regular
point p € M of f let B+(O,,r) = B(O,,r) N T+ (p) be the ball in the subspace T (p)
centered in the origin O, of T, M with radius r. Fix p and r and consider for any ¢ > 0
the ellipsoid &(t) = Z(t,p)B+(O,,r) in the subspace T+(p!(p)). If o1(E(t) > - >
on—1(E(t)) are the lengths of the semi-axes of £(t) and if d is an arbitrary number in
(0,n — 1] we have by (2.1)

wa(E()) = wd(Z(t,p))rd. (2.8)

Our aim is to describe the variation of time translated pieces of hypersurfaces, i.e.,
(n — 1)-dimensional submanifolds, orthogonal to a considered orbit of (2.2). For this
purpose we will use methods from [31, 32] developed there for stability investigations of
flows on manifolds, in order to get information for the Hausdorff dimension of underlying
flow invariant sets. Considering a non-equilibrium solution () (p) of (2.2) with p €
M the local transformation of small pieces of a hypersurface can be described by a
reparametrized local flow. For § > 0 so small that exp, is defined on B(O,,d) we
consider the (n — 1)-dimensional submanifold

B (p,0) := exp,(B*(0,,6))

of M through p which is local transversal at the point p to the trajectory of the vector
field passing through the point p. Every point u € B*(p,§) can be uniquely written in
the form u = exp,(rv), where v € T*(p) is a vector of length [v]| =1 and r € [0,4)
measures the arc length of the geodesic ¢, , connecting p and u. This defines us a unique
representation u = u(r,v) of a point u € B-(p, ).
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Figure 2.1.

Reparametrization of the flow.

The main properties of the described reparametrization are summarized in the follow-
ing two lemmata which proofs are similar to [20, 31], where a slightly different reparamet-
rization is considered. Results on reparameterization for flows in R™ are given in [28,29,32].]]

Lemma 2.3 Suppose that ¢\)(p) is a non-equilibrium solution of the C?-vector
field (2.2). Then for any finite number Ty > 0 there exists a number 1 > 0 such

that for every u € Bt(p,e1) there is a monotonously increasing differentiable function
s(,u): Ry — Ry satisfying s(-,p) = id|,1,] and

(exp ) (W), f(#'(p) =0 forall t€0,To]. (2.9)

The next lemma states that for any regular point p € M of f for the locally defined

reparametrized flow ¢'(-) = ¢(t,-) = @(s(t,),-) the differential d,¢’ of ¢ restricted
to T+ (p) satisfies (2.4). This provides the desired description of the variation of time

translated pieces of hypersurfaces orthogonal to the considered orbit. For the proof again
we refer to the method of [31].

Lemma 2.4 Suppose that ©)(p) is a non-equilibrium solution of (2.2) and the

function s(-,-): [0,To] x B+ (p,e1) — Ry as given in Lemma 2.3 defines a reparametrized
local flow ¢*(u) := @*&) (u). Then for all t € [0,Tp] there holds

dpd' |1y = Z (L, p),
where Z(t,p) denotes the operator solution of (2.4) with Z(0,p) = idp ().

P
We return to the Lemmata 2.3 and 2.4 in Section 4 where they are needed in the proof
of Theorem 4.1.
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3 Tubular Carathéodory Structure

In this section we define a special Carathéodory structure for flow negatively invariant
sets on Riemannian manifolds. The outer measures which arise from this structure will
majorize the Hausdorff measures and will be applied to obtain Hausdorff dimension
estimates of flow-invariant sets on the manifold.

Carathéodory dimension structures were introduced by Pesin [41] (see also [42]) in
order to give a general concept for most of the dimension-like characteristics of sets
and measures. Such structures may be considered as a generalization of a well-known
measure-theoretic construction of Carathéodory [5,11]. The essential parts of such a
structure are the following ([15]).

Let X be an arbitrary set, F be a family of subsets of X, P = [d*,+00) for finite
d* or P = R be a parameter set, and let £&: F X P — [0,00), n: F x R — [0, 00),
and ¢: F — [0,00) be functions. A sub-family G C F is said to be an e-cover of a
set YCX it Y C |JU and 9(G) :=sup{yp(U) | U € G} < € hold. The following

ueg
conditions are assumed to be satisfied:

(A1) e F, ¢(0) =0, and £(0,d) =0 for all d € P.

(A2) &(U,s) =nU,s —d)¢(U,d) for all d, s€P and all U € F.

(A3) For any A > 0 there exists ¢ > 0 such that for all U € F\{0} with ¢(U) <e¢

we have n(U,d) < A if d >0 and n(U,d) > A= if d <0.

(A4) For any subset Y C X and for arbitrary € > 0 there exists a countable e-cover

of Y.

In analogy to [42] we call such a collection (F,P,§,n,1) which satisfies (Al)—(A4) a
Carathéodory (dimension) structure on X. For a given Carathéodory structure
(F,P,&,n,v), an arbitrary set ¥ C X, d € P, and ¢ > 0 we define the Carathéo-
dory d-measure at level ¢ of Y with respect to (F,P,&,n,v) by

HC(K d7 5) = Hglf Z g(Uv d)v
veg

where the infimum is taken over all countable sub-collections G C F being e-covers of
the set Y. For fixed Y and d the function pc(Y,d,e) is non-increasing with respect to
€. Therefore, there exists the limit

pe(Yod) = lim ue(Y,d,e)

which is called the Carathéodory d-measure of Y with respect to (F,P,&,n,¢). For
arbitrary d € P and arbitrary ¢ > 0 the functions pc(-,d,e) and pc(-,d) are outer
measures on X. It turns out that for any set ¥ C X there exists a unique number
de:(Y) € P having the property that

0 for d> de(Y)

Y,d) =
pe(Y,d) {—i—oo for d<de(Y)
holds for d € P. This critical value d.,(Y") is called Carathéodory dimension dime¢Y of
Y with respect to the structure (F,P,&,n, ).

Note that our system of conditions (A1) — (A4) which leads to a Carathéodory structure
is slightly different from the system in [41,42]. In contrast to these works we assume
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that our family of objects in the Carathéodory construction depends on parameters which
come from a (possibly proper) subset of R.

For a standard Carathéodory structure let X be a separable metric space, F the
family consisting of open balls B(u,r) in X with center v and radius r and the empty
set, P =Ry, {(B(u,r),d) = Tdv n(B(u,r),s) =1, Y(B(u,r)) =, 6(@, d) = 1/}(0) =0,
and n(0,s) = 1 for each v € X, r > 0 and each d > 0, s € R. It is easy to see
that such a system (F,P,£,n,1¢) defines a Carathéodory structure on X. We denote by
wr (-, d,r), p(-,d) and dimg the resulting Carathéodory measures and Carathéodory
dimension which are in fact the Hausdorff d-measure at level r, the Hausdorff d-measure
and the Hausdorff dimension, respectively. The concept of the Carathéodory dimension
covers not only several dimension type characteristics of sets but also characteristics of
dynamical systems such as topological pressure and topological entropy (see [41,42]) or
a dimension introduced for Poincaré recurrences ([1]).

Let (M, g) be a smooth n-dimensional Riemannian manifold and p the metric induced
by g. For a piecewise smooth curve y: I — M (I C R an interval) of finite length and
arbitrary £ > 0 we define the e-tubular neighborhood Q(v,¢) of v by

Qy,e) = U B(u, ),

u€y(I)

where B(u,e) = {p € M | p(u,p) < €} is again a metric e-ball on M centered in the
point u. For simplicity we call the e-tubular neighborhood (v, ¢) around the curve v of
length [ shortly tube of length I.

For a given compact set K C M and a given number [y > 0 we denote by T' = {~v}
a family of piecewise smooth curves of a finite length I(v) = Iy such that for any € > 0
the following condition is satisfied:

(A) K is contained in the union of e-tubular neighborhoods (v, ¢) with v € T.

Condition (A) guarantees the existence of arbitrarily fine covers of the set K which are
generated by the family T'. For a family T' satisfying (A) we define a family of subsets
F, a parameter set P, and the functions £: F x P — [0,00), n: F x R — [0,00), and
¥: F —[0,00) by

F={Q(v,e)NK |y€eT, e>0tu{l}, P=][1,+00),
EQ(y,e)NK,d) = g4t n(Q(vy,e) N K, s) =&°, (3.1)
Y(Qy,e)NK) =¢

for y €T, e >0 with Q(v,e)NK #0, £(0,d) =(0) =0, and n(D,s) =1 forall d € P,
s eR.

Straight forward, one can verify that the collection (F,P,€&,n,v) defined via (3.1)
with T" satisfying (A) is a Carathéodory structure on K in the sense as considered above.
In the sequel we will call such a structure simply a Carathéodory structure with tubes of
length ly on K or tubular Carathéodory structure on K, if the underlying set K and the
family I' are clear from the context. The next proposition shows the relations between
the Carathéodory measures and the Hausdorff measures, as well as between the Cara-
théodory dimension and the Hausdorff dimension, generated by this structure. For the
proof we refer to [15,16] and for the R™-case to [27].
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Proposition 3.1 Suppose that K is a compact set on the smooth n-dimensional
Riemannian manifold (M,g). Suppose that (F,P,&,n,¢) is a tubular Carathéodory
structure on K with tubes of length ly defined by (3.1) and with respect to this structure
let be pe(-,d,e), pe(-,d), and dime the Carathéodory d-measure at level e, the Cara-
théodory d-measure, and the Carathéodory dimension, respectively. Then there exist two
numbers k >0 and €9 > 0 depending only on K such that for any set Y C K and any
d >1 the inequality

(Y, d,€) < lokpie (Y, dy ) (3.2)

holds for all € € (0,e0]. Therefore, we have
wr(Y,d) <lokpc(Y,d) and thus dimpgY < dim¢Y.

Now we specify the family I' of curves which will be used further for the considerations
of sets being negatively invariant with respect to a flow. As in the previous section
we consider the complete C?-vector field f: M — TM on a smooth n-dimensional
Riemannian manifold and the corresponding differential equation (2.2) with global flow

{¢'}ier. Let K and K be two compact sets in M satisfying
KCy'(K)CcK forall t>0. (3.3)

(A set K satisfying K C ¢'(K) for all ¢t > 0 is usually called negatively invariant with
respect to the flow.) At first we suppose that the set K does not contain equilibrium
points of (2.2).

To construct the family I" we denote by A the set of all equilibrium points of (2.2) in
K and set e, = 1 dist (A, K), where dist (A, K) = uejixnlger(u,p) is the usual metric

)

distance between two sets in M, and define

©:=Kn | B(pe) (3.4)
peK

With respect to the vector field f, the compact set K from (3.3), and the set ® from
(3.4) define the following coefficient

max || f(u)l|1,n
eK

V(K ®) =" 3.5
T VIR (8.5)

which will be important for the proofs in Section 4. For any p € K we take a time
bp > 0 such that ¢'(p) € ® for all ¢ € [0,b,]. Further, since dyp'|i—o = idr,p we
can suppose that ||d,¢|| < 2 holds for all ¢ € [0,b,]. Since K is compact and contains
no equilibrium points of f there exists a number es > 0 such that for the length of the
integral curve pieces it holds I(¢(+,p)|[0,,]) > €2 for any p € K. We set

1
ly := 3 min{ey, es},

introduce for any ¢ € K the number 7(gq) > 0 satisfying I(¢(-, q)|j0,r(q)]) = lo, and
define the set

= {0l | 7€ K} (3.6)
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Obviously this family I" satisfies condition (A) and (F,P, &, n,v¢) defined by (3.1) on the
base of this family is a Carathéodory structure on K — a Carathéodory structure with
tubes of length Iy — which will be used in Section 4.

4 Dimension Estimates of Flow Negatively Invariant Sets

In the present section we derive upper bounds for the Hausdorff dimension of compact
sets being negatively invariant with respect to the flow of the differential equation (2.2).
Investigating the deformation of such a set under shift maps generated by the flow the
deformation transversal to the flow lines is of great importance.

Our main result is the following theorem which generalizes the results of [26,27] to
vector fields on manifolds. Recall that for d € R we denote by |d]| the largest integer
less than d.

Theorem 4.1 Let f: M — TM be the C*-vector field (2.2) on the smooth n-di-
mensional (n > 2) Riemannian manifold (M, g) satisfying the following conditions:

(a) The flow {'}ier of (2.2) satisfies (3.3) with respect to the compact sets K and
K in M, where K does not contain equilibrium points of (2.2).

(b) For a regular point p € K let B (p) > -+ = Bn_1(p) be the eigenvalues of the
symmetric part SA(p) = 3[A(p)+ A(p)*] restricted to the subspace T (p), where
A(p) is the operator from (2.5). There exist a number d € (0,n — 1], a number
© >0, and a time Tg > 0 such that

To

/ [Bi(¢™(p) + -+ Blay(¢" (p) + (d = [d])Blaj+1(¢" (p)] dT < O (4.1)

0

is satisfied for all reqular points p € K.
Then it holds dimg K <d+1. If d=1 we have dimyg K < 1.

Before proving Theorem 4.1 we formulate some lemmata. The special flow line struc-
ture of sets which are flow negatively invariant allows us to obtain the dimension estimate.
In order to describe the deformation under the map ¢* of tubular neighborhoods around
an arc of a trajectory we investigate the evolution of time translated pieces of hypersur-
faces lying transversal to the considered trajectory. In the next lemma we consider the
influence of ¢! on arcs of a trajectory.

For an arbitrary piecewise smooth curve c¢: [t1,t3] — M we denote its length by I(c).

Lemma 4.1 Suppose that {pt}ier is the flow of (2.2), ® and K are compact sets in
M, ® does not contain any equilibrium points of (2.2), and V (f, K, ®) is the coefficient
from (3.5). Let p € ® and let c': [t1,t2] — M be a restriction of the integral curve
of (2.2) through p given by c'(-) = @(t + -,p)|,.en) and satisfying ([t1,t2]) C @ and

c!([tr,t2]) C K for all t > 0. Then the length I(c) of such a restriction satisfies (ct) <

V(f, K, ®)(c°) for all t>0.

Proof The statement follows immediately from

f It + )l
/Hsow Mar = [ 255 et

(faK,‘I)) (c”)-
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We consider now the family I' of curves of length Iy from (3.6) and the chosen Cara-
théodory structure (F,P,£,7n,v) on the compact set K with tubes of length Iy from
(3.1). The next lemma estimates the tubular measures puc(-, d, €), generated with respect
to (F,P,&,m, 1), of the flow-transformed set K. Its proof is based on the consideration
of the deformation of tubular neighborhoods around trajectory pieces.

Lemma 4.2 Suppose that {¢'}er is the flow of (2.2) satisfying (3.3) with respect to
the compact sets K and K in M, where K does not contain equilibrium points of (2.2).
Suppose also that ®, V(f, K, ®) and ly are given by (3.4), (3.5), and (3.6), respectively.

For p € K let a1 (p) be the largest eigenvalue of SV f(p), and for a regular point p € K
let Bi(p) > -+ = Pu-1(p) be the eigenvalues of SA(p)|rr(py, where A(p) is the operator
from (2.5). Define for a number d € (0,n — 1] and a time Ty > 0 the values

To

k.= 1;1€al><< exp{/[ﬁl(%f(p))+'~~+ﬂLdJ(<PT(p))

0

+ (d — |d])Baj+1(¢" (p))] dT}v (4.2)

V(f,K,®
a = exp {3l0 max oy (p) M} )
peK min £ )llT, m

A:=20\/[d] +1a, and C:= (3V(f, K, ®)+1)2l4)\%

Then for any | > k there exists an €9 > 0 such that for all € € (0,e9] the Carathéo-
dory (d+1)-measure uc(-,d+1,¢e) at level €, generated with respect to the Carathéodory
structure (3.1) with tubes of length ly, satisfies the inequality

e (@™ (K)N K, d+1,\Y%) < Cluc(K,d +1,¢). (4.3)
Proof Fix some v € I'. For arbitrary [ > k& we can choose an €1 > 0 such that the

set V:= |J B(p,e1) contains no equilibrium points of (2.2) and that the inequality
pEK

To
k= e P { / [Br(e™ () + -+ + Blay (7 (w)
0 (4.4)

+ (d = [d])Blaj+1 (@7 (u))] dT} <1
is satisfied. We set

To
o = max exp { / B1(™ (1)) dT} (4.5)

peV
0

and take a number m > 0 such that ¥’ < m? and o < m are satisfied. Since [ > &k’

the equation
ld)\ 1/(A=Ld]) qd
m
{H(/«) "] K=
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uniquely defines a number 1 > 0.

Choose & > 0 such that for any « € K the map exp,, maps the ball B(O,,d) C T,M
diffeomorphically onto the geodesic ball B(u,d) C M. Further with ||do, exp, || =1 we
can suppose that ||d, exp, || <2 and therefore

p(expu U1, €XPy, UZ) < 2[)(’01, 122)

holds for all v, v1, v € B(Oy,0).

To simplify the use of the reparametrized local flow we cover Q(v,r) by a set S(vp,7)
as follows. Let for some p € K and the associated time t(p) > 0 be v,(-) = (-, p)lj0,+(p)]
l

the integral curve of lenght 2ly such that ~, D v and for any r € (0,ly] the inclusion
Q(vy,7) C S(vp,r) holds, where

S(vp,7) UBlur

UEYp

Let p and ¢(p) be fixed in the sequel. We take now
L .
eo(y) < 1 min{eq, 0, dist (K, M\V),lo}

small enough such that the following conditions are satisfied:

(1) The function s: [0, max{Tp,t(p)}] x B*(p,4c0(y)) — R4 as characterized in the
Lemma 2.3 defines a local reparametrization of the flow ¢ by ¢: [0, max{Tp,t(p)}] x
Bt(p,4e0(y)) — M with ¢(t,-) = ¢' () := @*®)(-) for t € [0, max{Ty,t(p)}].

(2) ¢™0 (B (p,4e0(7))) C Blp™(p),d).

(3) The distance between the points ¢’(u) on an integral curve starting in u = exp,(rv) €
Bt (p,e0(7)) and the reference orbit through p for a fixed ¢ € [0,#(p)] is of the size

p(#'(p), ¢' (u)) = [ldp¢’|| - (1 + O(r))

as v — 0. It holds ||d,¢!|| < [|dp¢’|l and ||dp¢'|] < 2 for any ¢ > 0 such that
1(([0,1],p)) < 2lp. Thus, for any u € B*(p,e0(7)) it is p(p'(p), ¢'(u)) < 4p(p,u) for
any such t. We can assume analogous assumptions for the flow in reverse time-direction.
Let for £o(7) > 0 the following be satisfied: If v = ¢([0, t(p)], u) is some arc of trajectory
intersecting S(7vp,e0(7y)) then 7' is completely contained in S(vp,4eo(7y)) and satisfies
1(v") < 3lo.

(4) For any u € K and for any time 7 > 0 such that the integral curve o([0,7],u) is of
maximal lenght 31,V (f, K, ®) it holds

sup I fé(;)dqthg —dup'|| <a forall te(0,7). (4.6)
g€ B(u,160¢e¢ (7))
Suppose that it holds
sup |7 P dgsTrd — o™ <. (4.7)

g€ B (p,4e0(7))
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(5) For any u = u(r,v) € B+ (p,4e0(7)) the deviation arising from the local reparametri-
zation of the flow is of the form s(Tp, u(r,v)) —Tp = O(r) as r — 0 which gives for the
point 70 (u) = @*(T0:)=To (,To (y)) the representation

XD 1y (7 () = Oy + F(&™ ()O(r) + ofr)

as 7 — 0. The vector field C?-varies on M. So we can suppose that for any point
u € B (0 (p),d) for v < 24\/|d] + 10eo(7) any set (p?° 0 ¢~T0)B(u,v) is contained
in a 2v-tubular neighborhood of a curve ¢(-, (¢ 0¢=0)(u))|(_, ) of some finite length,
say of length lg.

Now let r < go(7). Suppose ¢°(Q(v,7)) N K # (. The set B(p,4r) is contained in
the open set V. Taylor’s formula for the differentiable map ¢° provides ([39]) that for
every u € BL(p,4r)

Ha@@ﬁﬁw—%w%m;wm

S et R R Y O]

(4.8)

holds. Considering the image of B+ (p, 4r) under ¢*° with (4.7) we obtain the inclusion
exp¢T0 (ngTO (BJ‘(p, 4r))) C clp(bT0 (BJ‘(OP, 47“)) + Bt (OWT0 (») 1}41“).

The set d,¢™ (B+(O,,4r)) is an ellipsoid with half-axes of length 4roy(p), where o (p)
(k =1,...,n — 1) denote the singular values of the linear operator d,¢’°: T+(p) —
T+(¢™(p)). Using the definition of k', Lemma 2.2 and (2.8) we conclude

wa(dpd™ (B(0p,4r))) < (47)K'. (4.9)

By standard covering results (see e.g. [39]) an ellipsoid & C T+ (p*°(p)) can be found
containing d,¢™ (B+(0p,4r)) 4+ B(O,ro(p),n4r) and satisfying wq(E) < 1(4r)%. Any
set £ can be covered by N balls of radius R = \/WUMH(E). The number N can
be estimated from above by
2L w4 (E)
T ol (E)*
Thus, any set exp,m,(,)(€) and therefore #T0(BL(p,4r)) can be covered by N ge-

odesic balls in M of radius 2R. Fixing such a cover {B(u;,2R)};>1, where u; € M
(j > 1), we choose in every set

K N B(i;,2R) N B* (o™ (p), 6)

a point u; and obtain the cover {B;};>1 of the set ¢7°(Bt(p,4r)) N K with B; =
B(uj74R) mBJ-((pTo(p%é).

Now we consider the deviation arising from the reparametrization. By the prop-
erty (5) any set (0 o ¢~70)(B;) is with precision o(r) (r < go(7)) contained in a
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4R-neighborhood of the orbit trough u;, or more precise, in an 8 R-neighborhood of a
trajectory piece ¢(-, (9™ 0 ~T0)(u;))|(—rr) of length ly.

By the choise of gy(7y) any trajectory piece in S(v,,4r) which intersects S(vp,r) is
of maximal length 3ly. We shift the balls B((¢° o ¢=70)(u;),8R) along the flow lines.
Thus, with the above and (4.6) the set »Z0(S(v,,7)) can be covered by N tubes of length
3V (f, K, ®) + o and diameter 2a - 8R.

Covering each curve arc by curve arcs of length [y we conclude

1% ((pTO(Q('y,r)) NK,d+1,25\/]d] + 1ll/dar)
(4.10)
< NBV(f, K, )+ 1)(2% [d] + 1aLdH1(5))d < i,

Since T' is the set of trajectory pieces starting in a point p in the compact set K we
can pass to g 1= in% g0(y) > 0 such that the (4.10) holds for any Q(y,r) with v €T
yeE

and r < . Let € < ep. For any v > 0 there exists a finite family {Q(v;,7;)}i>1 with
v; € T, 7; < ¢ having the property that |JQ(vi,7;) D K and Y. 7¢ < pe(K,d+1,¢)+v.
i i

K2

We obtain jc(eT0(K) N K,d + 1, NY%) < 3 uc(e™(Qyi, 7)) N K, d+ 1, \Y%) <
CIYr¢ < Cl(pc(K,d+1,¢) +v), where X and C are defined by (4.2). Since v has been

chosen arbitrarily we obtain that (4.3) holds for any e € (0, &¢].

Although we are mainly interested in upper estimates of the Hausdorff dimension of
flow negatively invariant sets we can deduce upper bounds of its Carathéodory dimension
with respect to the chosen tubular Carathéodory structure.

Proposition 4.1 Let the differential equation (2.2) satisfy the conditions of Theo-
rem 4.1 with the number d € (0,n—1] in (4.1) and the negatively invariant set K. Then
the Carathéodory dimension of K, determined with respect to the Carathéodory structure
(3.1) on K consisting of tubes with length ly determined in (3.6), satisfies

dime K < d+ 1.

Proof Tt follows from (4.1) that for an arbitrarily small number s € (0,1) there
exists some number m = m(s) > 0 such that

mTo
k := sup exp{ / [B1(e™ () + -+ Blay (¢ (1))
peEK
) (4.11)

+(d — |d))BLaj+1(¢7 (0))] dT} < exp(=mO) < .

Without loss of generality we can assume that this number k satisfies Ak'/¢ < 1 and
Ck < 1, where X and C are the constants given in (4.2). We choose | > k with A'/¢ < 1
and Ol < 1. Lemma 4.2, applied to the map ¢™70, guarantees that for the chosen number
[ there exists a number gp > 0 such that for all € € (0,g¢] the inequality

pie (" (K) N K, d + 1, NY%) < Clue(K,d + 1,¢) (4.12)
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holds. Let ¢ € (0,ep] be arbitrarily small. Since K is compact the value pc(K,d+1,¢)
is finite. Since K is negatively invariant with respect to ¢"7° we have K = ™70 (K)NK.
Using inequality M'/¢ < 1 we conclude pc(K,d+1,¢) < CLuc(K,d+1,¢). From this
we follow that the equality pc(K,d+ 1,e) =0 holds for every e € (0,e0]. We see that
pc(K,d + 1) = 0. This implies dime¢ K < d+ 1. Since (4.11) holds true if we slightly
reduce d we conclude dime K < d+ 1.

Proof of Theorem 4.1 Applying Proposition 4.1 and Proposition 3.1 we obtain
dimyg K < d + 1. If condition (4.1) is also satisfied for d = 1 it is satisfied for all
d € (0,n —1]. Thus, dimg K < d+1 for all d € (0,n— 1] and we obtain dimpy K < 1.
This proves the Theorem.

Let us again consider compact sets K and Kin M satisfying (3.3) with respect to
the flow of (2.2). We may now assume that the set K possesses equilibrium points and
satisfies the following condition:

(S) The set K contains at most a finite number of equilibrium points of (2.2). Every
such equilibrium point possesses a local stable manifold with dimension at least
n — 1. Trajectories starting in local unstable manifolds or local center manifolds
of such an equilibrium point in K converge for ¢ — +o0o to an asymptotically
stable equilibrium point of (2.2) in K.

The special structure of equilibrium points satisfying (S) allows us to obtain the fol-
lowing theorem. The reason for this is that in some sense in open and flow positively
invariant neighborhoods of these points the flow preserves its contracting property with
respect to the Hausdorff measure ([16]).

Theorem 4.2 Let f: M — TM be a C*-vector field (2.2) on the smooth n-dimen-
sional Riemannian manifold (M,g). Suppose that the flow {p'}ier of (2.2) satisfies

(3.8) and condition (S) with respect to compact sets K and K in M. Suppose also that
condition (b) of Theorem 4.1 is satisfied. Then the conclusion of Theorem 4.1 holds.

In the following statement we denote for a differentiable function v: U C M — R, U
an open set, by Lsv(p) the Lie derivative of v in p in direction of the vector field f.

Corollary 4.1 Suppose that the flow {¢'}ier of (2.2) satisfies (3.3) and condition
(S) with respect to compact sets K and K in M.

Denote by A the set of equilibrium points of (2.2) in M. For p € M\A let (1(p) >
... > Bn_1(p) be the eigenvalues of the symmetric part SA(p) restricted to the subspace
T+(p), where A(p) is the operator from (2.5), and let v: M\A — R be a C*-function.
Suppose also that for a number d € (0,n — 1] there exist a number © > 0 and a time
To > 0 such that

To

/ [Bu(e™ () + -+ + By (0" (1)) + (d — |d))Biay 1 (& ()
(4.13)

o

+Lyv(e" (p)] dr < —©

holds for all reqular points p € K. Then the conclusion of Theorem 4.1 holds.

Proof As mentioned above, on open and flow positively invariant neighborhoods of
equilibrium points of (2.2) which satisfy (S) the flow preserves its contracting property
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with respect to the Hausdorfl measure. So it remains to show that for any compact,
flow negatively invariant set K; C K which does not contain equilibrium points of (2.2)
it holds dimy K7 < d+ 1. On M\A we introduce a new metric tensor by §(p) :=

L?)g(p) for p € M\A. On K; the Riemannian metric § is equivalent to g.

exp (
Changing to the metric § does not alter the Hausdorff dimension of the compact set K.
Consider the operator A(p) from (2.5), the symmetric part SA(p) of A(p), the operator

Vf(p), and SV f(p), which are defined regarding to the scalar product in T, M induced

by the metric §. As in [39] one shows that SV f(p) = SVf(p) + Lf%(p) id 7, 2. Using

(2.7) we obtain that for a regular point p € M the eigenvalues Bz(p) of the operator
SA(p)|rr(p) are related to the eigenvalues 3;(p) (i =1,...,n — 1) with respect to the

original metric g by G;(p) = Bi(p) + L%(m. Therefore,

Bi(p) + -+ + Blay (p) + (d = [d))Blaj1(p)
= Pi(p) + -+ Blay + (d = [d])Blaj+1(p) + Lyv(p)
guarantees (4.13) and thus (4.1) of Theorem 4.1. Hence dimpy K7 < d+ 1.

Corollary 4.2 Consider a 2-dimensional Riemannian manifold M. Suppose that the
flow {p'}ier of (2.2) satisfies (3.3) and condition (S) with respect to compact sets K
and K in M. If div f(p) <0 holds for any regular points p € K then dimyg K < 1.

Proof For the operator A(p) from (2.5) it holds tr (SA(p)|riy) = tr VF(p) —

(V£(p)f(p), f0))/IIf(p)|I?>. We define the C'-function v on the set of all regular points
pin M by v(p) = In| f(p)||?. The statement follows with Corollary 4.1.

5 Flow Invariant Sets with an Equivariant Tangent Bundle Splitting

The considered outer measures defined via tube covers show in many cases a better con-
traction behavior under the flow operator of a vector field in positive time direction than
conventional outer measures defined via a covering of balls do. Using such an approach
for a class of generalized hyperbolic flows on n-dimensional Riemannian manifolds we
may improve upper Hausdorff dimension estimates which are obtained with methods
from [39] (or from [45] for the R™).

Consider again the vector field f: M — TM from (2.2) on the smooth n-dimensional
Riemannian manifold (M, g). Let us introduce a property of flow-invariant sets which
may be considered as a generalized hyperbolic structure. We say that a flow-invariant
compact set K C M possesses an equivariant tangent bundle splitting (which for simplic-
ity consists of only two components) Tx M = E* @ E? with respect to the flow {p!}ier
if for any p € K and i = 1,2 the space E} = E'NT,M is an n;-dimensional subspace
of T, M such that ny +no =n and dy¢'(El) = E;t(p) hold for any p € K and ¢ € R.
Recall that an Anosov flow on K is a flow without equilibria for which among other
properties there exists an equivariant tangent bundle splitting T M = E' @ E?, where
E2 = span{f(p)} for each p € K. For d € (0,n —ng] and t € R we introduce the
singular value function of order d of @' on K with respect to the splitting E* @ E? which
is defined by

E',E?

Wy g (") := sup wd(dpgpt|E1(p)).
peK
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1 2
Since w’ 2 (") is a sub-exponential function the limit

1
Vg := lim 7 1nw5;éE2 (")

exists for any d € (0,n — na] ([46]). We call the numbers

V=, v'i=v;—viq for i=1,...,n—ns

the uniform Lyapunov exponents of {p'} with respect to the splitting E' & E?. Let us
investigate the splitting Tx M = E? @ E? such that E' = T+ with Ezl) = T+(p) and
E? =Tl with E2 = Tl (p) = span {f(p)}.

With the help of Lemma 2.1 one shows that for any regular point p € M satisfying

(SVf(p)z, f(p)) =0 forall ze TJ‘(p) (5.1)

the n — 1 eigenvalues B1(p),...,Bn-1(p) of SA(p)|rL(y), with the operator A(p) from

(2.5), coincide with n — 1 eigenvalues of SV f(p). The subspace Tll(p) is the eigenspace
of the remaining nth eigenvalue @(p) = (V f(p)f(p), f(0))/Ilf()|I* of SVf(p).

We consider now two compact sets K and K in M without equilibrium points of (2.2)
satisfying (3.3) and suppose that (5.1) is satisfied for any p € K. By ar(p) = - = an(p)
denote the eigenvalues of SV f(p). For that case Theorem 3.1 from [39] states that if for
some d € (0,n] the inequality

ai(p) + ... +aq(p) + (d - |d])ajg+1(p) <0

holds for all p € INQ the estimate dimy K < d is true. For the C'-function v: K — R
given by v(p) = 5In|[f(p)|* we have Lv(p) = (Vf(p)f(p), f(p)/If(p)|* = @(p) for

each p € K. If @(p) > 0 holds for all p € K then

ar(p) + - +app) + (d—d)aja+1(p)
=pi(p) + -+ Blaj—1(p) + (d = [d])Bay (p) + Lyv(p).

With this Corollary 4.1 gives an upper bound of dimgy K which is less than or equal
to the upper bound we would get applying Theorem 3.1 from [39]. If d = 2 then
Corollary 4.1 gives the better estimate dimg K < 1.

One easily shows that a compact, flow-invariant set K without equilibrium points
possesses an equivariant tangent bundle splitting 7 @ Tl if and only if (5.1) holds
for any p € K. Obviously the flow {¢’}icg on K then is already reparametrized
globally if one considers the reparametrization described in Lemma 2.3. For that case
the assumptions of Theorem 4.1 can be weaken if we consider the long-time behavior.

Proposition 5.1 Let f: M — TM be the C?-vector field from (2.2) on the n-di-
mensional Riemannian manifold (M,g). Suppose that K C M is a compact and flow-
invariant set without equilibrium points of (2.2) and that K possesses an equivariant
tangent bundle splitting T M = T+& T with respect to the flow. Let D € {0,...,n—1}
be the smallest number such that vi' +---+vp + v, <0. Then it holds

u_l’_..._i_y%)

dimy K < D+ 24 1.

|V%J+1|
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V54l

v+ vy + (d = [d))vfyp, < 0. Fix some e € (0,vq). By definition of vq there

. . Lol , Lol
is a finite number Ty > 0 such that TiolnwiK’T (eT0) < vg+ e, e, wikT (pT0) <

Proof Take an arbitrary number d € (D + M, n— 1] Then it holds v4 =
1

exp(To(vg+e¢)) < 1. Theorem 4.1 basically uses properties of the singular value function
which is estimated from above applying Lemma 2.2. Thus, the proposition can be proved

. . e L N T
applying analogous arguments and using wy ;7 (¢*°) = sup wq(dpe™® |TL(p)).
’ peK

Example 5.1 Consider the vector field in R? given by
0=asinf, i=-x+b (5.2)

(with parameters a > 1, b # 0), being in the first coordinate periodic with period
2m. The arising dynamical system can be interpreted as a dynamical system on the
flat cylinder Z of all equivalence classes [u], u € R?, being a smooth 2-dimensional
Riemannian manifold with the standard metric for factor manifolds. Every solution of
(5.2) is bounded in the second coordinate. Obviously, the set K = {z € Z|z = [u],u =
(0,0),0 € R} is compact and flow-invariant with respect to (5.2). The variational system
(2.3) and the system in normal variations (2.4) with respect to any solution (#(t),0) in
K are given by

. (acosf(t) O . [ —acosf(t) O
y—< 0 _1>y and z—< 0 17

respectively. Thus, f1(z) = —1 for any z € K and condition (4.1) is satisfied with
d=1 and © =T = 1. By Theorem 4.1 we conclude that dimgyg K < 1. Note that in the
present situation other available theorems [39,45] are not applicable since the divergence
of the right-hand side of (5.2) gives the expression acos®—1 which is, in contrast to the
assumptions of Theorem 3.1 from [39], not always negative.

6 Generalizations of the Theorems of Hartman-Olech and Borg

In this section we show that for certain vector fields in R3 the methods of the present
paper provide always more effective conditions for upper Hausdorff bounds than those
which work without projection onto transversal submanifolds (e.g. [39,45]). In addition
to this we improve for these systems results about the structure of w-limit sets, which
are closely related to results in [4, 19, 20].

Consider an arbitrary C2-vector field f in R? with the standard Euclidean metric, i.e.,
the differential equation

i = f(x). (6.1)

Suppose that for (6.1) the global flow {¢'}cp exists. Let K and K be two compact
sets in R3 satisfying K C ¢'(p) C K for all ¢ > 0. For that case for any z € R3 the
covariant derivative V f(z) can be identified with the Jacobi matrix Df(z) of f in .
Suppose that f possesses in K a finite number of equilibrium points and that for any
such equilibrium point all eigenvalues of D f(z) have negative real part.
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Consider the symmetric part SDf(z) = 3 (Df(z) + Df(z)*) of Df(z). As in the
previous sections for any regular p of f define the hyperplanes T+ (z) = {z € R3 |

f(z)*z = 0}, where f(x)* denotes the transposed vector. Let the linear operator
SA(x): T+(x) — T+(x) be given by
_ f@)f ()" ( f(l’)f(x)*>
SA(x) =S8 r)——2"~-2 g _ LI T
@) =PI =Tt SPTE = T ) P

(compare with Lemma 2.1). Denote the eigenvalues of SD f(z), ordered with respect to
size and multiplicity, by a1(z) > aa(z) > as(z). Suppose that [i(z) > fG2(x) are the
eigenvalues of SA(x) restricted to the subspace T+ (x) and suppose further that 3 (z)
and fa(z) are not eigenvalues of SV f(z). It is easy to see that f1(z) and B2(z) are the

zeros of the equation f(z)* (8;(z)] —SDf(x)) 71f(x) = 0. We introduce the polynomial
det(BI — Df(x)) = 5% + 02(2) 8% + 61 (x) B + So (). (6.2)

Let z € K. Note that we have d(z) = — (a1 (z) + aa(z) + as(z)), 61(z) = oy (z)az(z) +
ag(z)ag(x) + ar(x)as(z) and do(x) = —aq(z)az(z)as(x). From this with elementary
calculations (see [16]) it follows that the eigenvalues (;(x) (i = 1,2) of SA(z) are the
zeros of the polynomial

3%+ [62(z) + Ar(2)] B+ [1(z) + d2(x) A () + Ag(x)],

where

Aq(x) = Pf() Df(z)f(x) and

IIf( )|

1

f@)*Df(x)*f(x).
17 )2
Using this fact one sees immediately that the assumptions of Corollary 4.1 are satisfied
for (6.1) if we suppose for the auxiliary function v(z) = 3 In||f(z)||?, defined on the set
of all regular points of R3, the following conditions: There exists a continuous function

s: K — [0,dy] with dy € (0,1] such that for any regular point z € K with h(z) :=
1—s(x)
1+s(z)

(6.3)
Ag(l‘)

the inequalities
d2(x) — h(x)A1(xz) >0 and
T (02(0) = W) A (2))” > i (62(z) — Ay (2))? = 61(2) — Ao(z)

hold. As a corollary we get that if the inequalities

da(z) — A1(xz) >0 and

(6.4)

51(z) + Ag(x) >0
are satisfied for all regular points = of f on K then by Corollary 4.1 it holds that
dimy K < 1. Further, the set K consists of a finite number of equilibrium points and
closed trajectories of (6.1). This can be easily shown using coverings of appropriated
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tubular neighborhoods. Note that the last result is closely related to results in [4, 19, 20].
If in addition to this the set K is positively invariant with respect to the flow of (6.1),
connected, and if K contains exactly one equilibrium point being asymptotically stable,
then K is contained in the basin of attraction of this equilibrium point.

The Hartman-Olech condition ([20]) requires that aj(x) 4+ az(x) < 0 for all regular
points x € K. This is one of the most effective sufficient condition which guarantees that
in the present situation the set K is contained in the basin of attraction of an equilibrium.
Note that this is always sufficient for the condition (6.4).

Let us formulate a further corollary from Theorem 4.2 for the case M = R3. Suppose
now that dy(z) > 0 for all regular points # € K and that there exists a continuous
function s: K — [0,dy) with dy € (0,1] such that the inequalities

1+ s(x)
— - A > d
=5 da(x) 1(x) >0 an

o (6.5)
s(x
————&(x)A ) A >0

=@ 2(2)A1(z) +61(2) + As(z) =

hold for all regular = € K. Tt follows from Corollary 4.1 that dimyg K < 2+4d;. It is
well-known (see [39,45]) that a sufficient condition for the dimension estimate dimpy K <

2 4 d; is the inequality
o1 (2) 4+ ao(z) + dyag(z) <0 forall =€ K. (6.6)

It is easy to show ([16]) that our condition (6.5) is always satisfied supposed that (6.6)
is satisfied.
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